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A B S T R A C T

Surveys for assessing the condition of sewer pipeline systems are mainly based on video surveillance or CCTV,
which is a time-consuming process that relies heavily on human labor because an operator has to watch videos,
looks for defects and decides the defect's type manually. Previous research required suitable handcrafted features
that were inefficient in analyzing sewer pipeline condition, so a robust and efficient framework is crucial as it
eliminates the time-consuming tasks and helps the operator access condition of sewer systems more efficiently.
This study proposes a defect classification system on CCTV inspection videos based on convolutional neural
networks (CNN). The dataset was manually constructed and validated by extracting the images from CCTV
videos, and the images were labeled according to six predefined defects. The CNN model was fine-tuned before
training, and trained on a total of 47,072 images (256× 256 pixels). The highest recorded accuracy was at
96.33%. As a result, the presented framework will motivate the finding of a more robust model that auto-
matically and precisely evaluates the condition of sewer pipeline systems using CCTV and encourages the in-
tegration of the proposed model in real applications.

1. Introduction

Public infrastructure is the lifeblood of every community, and the
underground sewer system is its backbone. Modern underground sewer
systems are constructed in the form of a complex pipeline network, and
their maintenance is not easy tasks due to the difficulty to detect and
diagnose the defects inside the system. A delay in detection and diag-
nosis of a sewer system can lead to an unexpected functional failure or
structural integrity [1], which can cause not only severe damage to the
environment but also requires high repairing cost. In the worst sce-
narios, it can even lead to human casualties. The most critical steps to
avoid sewer pipe deterioration is regular inspection of underground
pipelines. However, rehabilitation and maintenance of an aging sewer
require considerable budget and time-consuming planning process [2].

Presently, in sewer inspection and maintenance, robots are usually
deployed to record CCTV videos that can be used to assess the structural
condition of sewer pipes later. CCTV systems are widely used due to the
unsanitary environment, complex surveillance circumstances, and high
pressure under sewer pipes. Moreover, they are the most prevalent and
cost-effective methods to assess a sewer system [3]. There is a massive

competition between giant industrial robotics companies to develop a
new generation of robot that is cheaper, smarter, and more efficient. In
Korea, Electronics and Telecommunication Research Institute (ETRI)
has currently developed an advanced CCTV inspection technology
which was used by UnderGround Safety (UGS) research [34]. The main
purpose of the research is to use a utility hole inspection vehicle which
can reach up to 50 ft deep in sewerage lines with a diameter of over
600mm to inspect their condition. The robot provides a 360-degree
field of view and a 3D point cloud for precise utility hole measurements.
Furthermore, its head is equipped with a high-resolution camera which
is capable of inspecting in-pipe defects precisely.

As evaluation technology continues to develop, an automated defect
classification system has become a valuable tool to improve perfor-
mance and save a considerable amount of money for inspection and
assessment processes in long-term; it also enables the development of
consistent deterioration models and proactive asset management stra-
tegies. This system can evaluate recorded CCTV videos and analyzes the
sewer line condition automatically. The automated defect classification
system must be integrated with existing CCTV software to support the
inspection process by providing real-time feedback and notifying the
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operator through the defect indication module to avoid possible mis-
interpreting or skipping defects due to the operator's exhaustion or
inexperience.

In a CCTV video, subtitle information is crucial because it provides
in-depth details about the condition of the sewer system so an operator
can easily observe and pinpoint the location and severity of a defect. A
text extraction system is usually applied to extract subtitle information;
it includes three phases. Localization focuses on locating text lines,
followed by enhancing the image quality to increase the contrast be-
tween text and background. Finally, in the recognition phase, optical
character recognition (OCR) engines are used to recognize the text.
Although OCR engines work best on scanned documents, they do not
provide satisfying results if an image has poor resolution, low contrast,
or contains too complicated background.

This study proposes a deep learning framework that supports au-
tomated defect classification and location recognition in sewer frames
extracted from CCTV inspection videos. We also introduce a dataset
originated from CCTV videos; it is generated and evaluated manually.
Initially, all frames are extracted from CCTV videos, then images which
show sewer defects are collected and labeled to a corresponding class.
The proposed system includes three main modules. The first module
extracts keyframes from CCTV video, and then the second module is
implemented to recognize all frames that contain defects and classifies
them into a specific class. Finally, for each of the extracted frame, text
detection and recognition module are implemented to recognize sub-
title information from a frame, which includes position, date, and time
of the inspection.

Applying the proposed model, we aim to answer the following
questions by conducting various experiments and use results as a
foundation:

1. What is the performance of the deep learning based sewer pipe
condition assessment on the collected dataset?

2. Are locations of the defects correctly recognized by text recognition
module?

3. Does a report on a specific CCTV video generated by the proposed
model match a report generated manually by an operator?

The rest of the paper is divided as follows. Section 1 introduces a
problem statement for this research. In Section 2, we thoroughly survey
previous sewer pipe condition evaluation approaches. The proposed
framework will be explained carefully in Section 3. In Section 4, we
describe in detail how the proposed dataset was collected as well as
evaluation protocols which were used to evaluate experiments results.
In Section 5, various experiments are conducted to test the proposed
model on the collected dataset. Based on the results from Section 5,
Section 6 provides detailed discussions. Finally, Section 7 summarizes
entire research and make some comments on future direction.

2. Related work

With the advent of technology, especially in computer vision, the
number of vision-based methods to detect defects inside a sewer has
increased rapidly. However, conventional computer vision techniques
require many pre-processing steps and relevant features need to be
selected manually. For example, Zhang [5] applied morphological op-
erations and threshold on grayscale level images to detect potential
defective regions, and then they used a distance histogram based shape
descriptor to extract defects features. They successfully removed over
90% of misidentified objects and reserved 90% of defects' length. Yang
[1] used wavelet transform and computation of co-occurrence matrices
to extract text features. Finally, they applied a neural network approach
and proved that it performed better than support vector machine (SVM)
and the Bayesian classifier. Su [6] used morphological segmentation
based on edge detection (MSED) to assist inspectors to detect pipeline
defects in CCTV inspection images. They also applied mathematical

morphology-based image segmentation methods, which included
opening the top-hat operation (OTHO) and closing bottom-hat opera-
tion (CBHO). Most segmented cracks had completeness above 50% by
CBHO. The highest completeness was 82.79%. Recently, Phat Huynh
[7] proposed a novel 3D inspection system to detect anomalies in sewer
pipes using stereo vision coupled with novel image processing algo-
rithms and showed that various types of defects were detected suc-
cessfully. Sinha [8] and Duran [9] applied artificial neural networks for
sewer fault detection frameworks. Duran [9] retrofitted CCTV camera
with a laser profiler that passed precise internal measurements to ANN
to identify structural faults. Sinha [8] identified significant features
within the CCTV footage and applied fuzzy logic to some character-
istics, such as shape size and light intensity. Then, fuzzy features were
fed to the trained ANN to recognize cracks within CCTV footage. An-
other research proposed an automatic fault detection method for re-
corded CCTV videos [10]. The authors calculated a feature descriptor
for each video frame before passing it to a machine learning classifier to
predict contents of a particular frame. They achieved over 80% detec-
tion accuracy on still images. Similarly, an anomaly detection approach
for sewer fault detection by using CCTV videos in [11]. Authors used a
one-class support vector machine (OCSVM) to train the images of reg-
ular pipes and highlighted any abnormalities or faults within a sewer
video for further analysis.

In recent years, deep learning has been widely used in various
computer vision-based tasks, such as object detection and image clas-
sification. Deep learning models are capable of extracting visual fea-
tures automatically from images so unlike conventional machine
learning techniques, they do not require many processing steps.
Recently, many researchers have applied deep learning based ap-
proaches to detect the defects inside civil infrastructures. Cha [12] used
a convolutional neural network model to identify cracks on the roads.
The model was trained on 40,000 images with an accuracy of about
98%. Moreover, the trained CNN was combined with a sliding window
technique to scan an image with a size larger than 256× 256. Zhang
[13] proposed a quantitative evaluation of road defect detection was
implemented using a dataset of 500 3264×2448 images and achieved
an accuracy of over 90%. Moselhi and Tariq [14] applied a three-layer
neural network combined with a back-propagation algorithm to classify
four types of sewer defects. The accuracy was at over 98%, and it
correctly classified 214 out of 218 cases in the testing dataset. Cheng
and Wang [15] developed a deep learning-based approach for pipe
defect detection via a faster region-based convolutional neural network
model (faster R-CNN). They acquired 3000 images, which were col-
lected from CCTV inspection footages. They used 85% for training and
validation process whereas 15% was used for testing. Also, they used
mean average precision (mAP), missing rate, and detection speed to
evaluate system performance and yielded 83% mAP. Although many
sewer defect detection has already used CNN, their proposed frame-
works only classified defects inside sewer lines, whereas our proposed
system classified sewer defect as well as showed defect location by
combining deep learning and computer vision techniques.

There have been various approaches for text detection. Two widely
used techniques are sliding window classification and connected com-
ponent analysis (CCA). The connected component-based method con-
sidered text information as a set of distinct connected components
based on color similarity or spatial layout [16]. On the other hand, in
sliding window classification approaches [17], a classifier is fed with
positive windows that contain text, and these windows are further di-
vided into text areas by applying morphological operations. Existing
methods do solve specific text detection challenges to some extent, but
one model worked well on a particular type of dataset but became in-
effective on other types, because the critical issue in text detection is the
complex background. For subtitle detection in videos, multi-frame in-
tegration is usually used, because it reduces background complexity
and increases the detection rate. For example, Guo et al. [18] im-
plemented a multi-frame corner matching to lower the impact of the
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background on the text. A usual approach is text detection module is
applied on several consecutive frames, and then an MFI is used to verify
the detected text areas. On another research, maximally stable extremal
regions (MSERs) [19] are used as features to extract text or non-text
components and proved that the accuracy was significantly improved
compared to original features, and it worked best on an image that had
a complex background. Moreover, in [20], MSERs in hue, saturation,
and value (HSV) color space was applied, and the results showed that
HSV color channel outperformed the original red, green, and blue
(RGB) color channel in detecting text pixels candidate. This paper in-
vestigated MSERs by extracting edges and connections to refine text
components.

Building upon previous approaches, this paper proposes a con-
volutional neural network (CNN) based system for sewer defects clas-
sification and location recognition. The framework was constructed by
applying transfer learning [21] and fine-tuning existing CNN archi-
tecture (see Section 3.1). The proposed model was trained using a total
of 47,072 images that were manually extracted from 6605 sewer CCTV
videos. In [22], CNN method was applied to categorize sewer CCTV
images into three types of defects (root intrusion, deposits, and cracks).
In the proposed system, six different types of sewer defects were in-
vestigated. Moreover, the proposed system also included a text detec-
tion and a recognition module to analyze subtitles printed on the CCTV
inspection footage and showed exact defect location.

3. Proposed framework

Fig. 1 shows an overview of the proposed framework. Frames ex-
tracted from sewer videos are divided into two classes (normal and
defect), then each defect image is assigned a corresponding label. At the
end of this step, a huge sewer defect dataset is constructed. After that, a
convolution neural network (CNN) model based on the model devel-
oped by Krizhevsky [23] is applied to classify defects in underground
sewer pipes. The original AlexNet model was trained to classify Im-
ageNet dataset which contained 1.28 million images belonged to a
thousand classes [24] — in our framework, fine-tuning and

augmentation processes are applied. Besides, text detection and the
recognition modules are implemented to recognize the location of a
defect after classifying each frame from a CCTV video.

3.1. Deep convolutional neural network for defect classification

CNNs have emerged as critical hierarchical architectures that are
capable of learning abstract features from data automatically. CNN
models have proved their effectiveness in a wide variety of applications
such as segmentation [25], face recognition [26], speech recognition
[27], drug discovery [28], and plant disease detection [29]. A typical
CNN model consists of three different neural layers, which are con-
volutional, pooling, and a fully connected layer. Each of them has a
specific role in the model architecture. A layer is made of neurons, and
visual cortex inspires the connectivity between these neurons. Each
neuron has learnable weights and biases, and it accepts some inputs and
performs dot product. The last layer is a fully connected layer which is
responsible for computing class probabilities. Neurons in a layer act like
edge detectors and react to the various types of edges encountered in an
image. The inherent hierarchy in deep networks allows neurons in
deeper layers to learn more complex structures, which ultimately result
in the remarkable performance of CNNs in recognition tasks. Arevalo
et al. [30] and others in [31,32] showed that CNNs trained on huge
datasets, such as ImageNet, could act as generic descriptor extractors
that have powerful discriminative capabilities. The CNN model used in
this research was AlexNet which consists of eight learned layers, five of
them are convolutional layers, and the remaining layers are fully con-
nected layers; it was proposed in 2012 ImageNet large-scale visual re-
cognition challenge (ILSVRC-2012) and achieved a remarkable perfor-
mance compared to other non-deep learning approaches in ILSVRC-
2012.

The pre-trained AlexNet model is designed to recognize 1000 ca-
tegories of natural objects in ImageNet dataset. However, in this re-
search, AlexNet is fine-tuned to extract visual features from sewer
images. Fine-tuning works on a principle of transfer learning, where
CNN models are created to deal with extensive classification problem

Fig. 1. Overview of the proposed defect classification and defect location recognition framework for sewer line assessment system.
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(such as ImageNet classification). These models can be applied in other
classification problems as optimized features extractor to minimize the
error in the specific domain. In transfer learning, features and para-
meters from a prior network are transferred to a new network, and the
new model can yield high performance and significantly less training
time with suitable modifications. Inspired by the transfer learning
concept, AlexNet model's parameters are slightly modified. The net-
work is fed with 256×256 fixed sized images, and dimension of the
last fully connected layer is changed according to the sewer dataset and
is set to six output neurons, and each neuron corresponds to one of the
six classes from sewer dataset which includes crack longitude, debris,
joint faulty, joint open, lateral damage, and surface damage.

Fig. 2 and Table 1 describe a detailed configuration for each layer.
The first eight layers of AlexNet architecture, which are Conv1, Pool1,
Conv2, Pool2, Conv3, Conv4, Conv5, and Pool3 are dedicated to fea-
tures extraction. After each convolutional layer, a ReLU (Rectified
Linear Units) function is applied at the output of the convolutional
layer. There are three fully connected layers (FC-1, FC-2, and FC-3), and
the output of the last fully connected layer was reduced from 1000 to 6
neurons.

To train and test the CNN model, an NVIDIA DIGITS 5 toolbox with
Caffe framework was used. Experiments are performed on an Ubuntu
14.04 OS that used an Intel® Core i7-5930K processor, four NVIDIA
Titan XP 12GB GPUs, four 3072 Cuda cores, and 64GB of DDR4 RAM.

3.2. Text detection and recognition

We used text detection and recognition framework proposed by
Dang in [35]. As depicted in Fig. 3, the model consisted of four Section
1) In multi-frame integration section, for each second, 30 continuous
frames were extracted from the input video. After that, frame averaging
was adopted to enhance text edge and reduce background complexity.
2) Image preprocessing. 3) Text detection included two steps, which
were text localization (find the text lines) and text line verification (all
detected false alarm lines are removed). 4) Text recognition consisted of
two steps, which were text quality enhancement and training with
Tesseract OCR.

Although CCTV videos were recorded under various environments,
captions always appeared in every frame at a fixed position whereas
background changed continuously as the robot moved forward in a
sewer line. The robot recorded a video at 30 Fps (frames per second).
Thus, a multi-frame integration (MFI) method was applied to a patch of
30 continuous frames. Moreover, within these 30 frames, subtitle in-
formation was guaranteed to be the same. Frame averaging technique
used in this study is multi-frame average.

For a frame cluster Ci (from frame i to frame i+29), the output
image is generated as follows:

=
∈

AverageImage x y avg p x y( , ) ( ( , ))i
j C

j
i (1)

let pj(x,y) indicates the pixel value of frame j at position (x,y.)
Fig. 4 shows two examples of a multi-frame averaging method.

Fig. 4(a) describes the frames before applying the multi-frame in-
tegration technique; the background of the image is quite complex and
contains many edges, which significantly lower text detector perfor-
mance. However, after applying multi-frame averaging, the back-
ground's complexity was vastly reduced as presented in Fig. 4(b). Fi-
nally, Fig. 5 shows the result of text detection after applying the method
proposed by [35].

In the text recognition module, Tesseract OCR [36] was im-
plemented, which is an open-source OCR engine based on long short-
term memory algorithm that was developed at HP and has recently
taken over by Google. It supports the training of text recognition for
various languages. The reason we used Tesseract OCR instead of other
text recognition engines was due to its impressive performances on
various research, such as in [19,35].

4. Proposed dataset and evaluation protocols

4.1. Proposed dataset description

4.1.1. Dataset acquisition
In this research, a total of 6605 CCTV videos that can be to access

sewer pipes lines' condition are used; it is provided by Korea Institute of
Civil Engineering and Building Technology.1 These videos were taken
by a commercially available Robo Cam 6 (Tap Electronics Ind. Co., Ltd);
it is equipped with a 1/3-in. SONY Exmor CMOS camera module with
camera capability to capture 360° continuous rotations, and 240° side
views up/down tilt. It also uses powerful halogen lamps to capture the
images/videos in various lighting conditions. The duration of each
video is from 1 to 15min and subtitles information printed on each
video contains essential information for further inspection. Table 2
shows eight types of subtitle information on CCTV videos.

4.1.2. Data augmentation
The effectiveness of deep CNN models is known to depend on the

availability of large training data. As a result, data augmentation is a
useful technique to expand training data. A significant attribute of the
data augmentation is that predefined classes remain unchanged after
applying those augmentation techniques. It has been shown that data
augmentation can reduce overfitting on a model and increase the
amount of training data. There are various augmentation methods, such
as transformation, deformation, flipping, rotation, and translation.
Wang et al. [33] applied generative adversarial networks (GANs) and
standard transformations to create a large dataset. They used a hor-
izontal flip to increase the training data. However, the rotation was not
adopted because types of defects were sensitive to rotational flip. For
example, if the rotation is applied to the joint faulty class, the joint
faulty class became crack longitude. It will be confusing and may re-
duce the performance of the model. Based on Wang et al. [33] research,
we applied the horizontal flip to the proposed dataset. Furthermore,
text detection and recognition modules are not affected by flipped
images because the original dataset was used in this module.

4.1.3. Dataset description
In the proposed dataset, six types of sewer defects were investigated

(Fig. 6). The total number of manually validated defected images before
applying augmentation was 24,137. Then, the number of images in the
dataset increased to 48,274 after data augmentation was used. Fur-
thermore, the dataset was divided into two separate parts, one for
training and the other for testing. In the training part, 97% of the entire
dataset, which equals to 47,072 images, were applied for training and
validation purpose (75% out of 47,072 images were used as training,
and 25% were used as validation). The remaining 3% of the dataset was
used in the testing part (1202 images). Fig. 6. depicts 6 types of sewer
defects extracted from CCTV videos, and Table 3 describes the details of
the sewer defect dataset.

Because frames extracted from different videos varied in size, so all
images were resized to a fixed size of (256×256 pixels). The reason for
choosing a relatively small size is that the CNN models are usually
trained on an image with the resolution from 128×128 to
256× 256 pixels. Besides, although higher resolution images provide
more precise information compared to lower resolution images, they
require high computational power and a significant amount of proces-
sing time.

4.2. Evaluation protocols

4.2.1. Sewer defects classification
This section describes the evaluation protocols that were used to

1 2https://www.kict.re.kr/eng.
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evaluate sewer defects classification as well as text recognition. The
performance of the defect classification framework was evaluated using
six videos from the sewer CCTV videos. Results generated from the
model were compared with manually generated assessment reports to
examine the proposed framework's effectiveness. These reports were

created by UnderGround Safety (UGS) [4] research at Electronic and
Telecommunication Research Institute (ETRI) South Korea. An operator
inspects each video manually and checks whether defects appear. If the
video includes any defects, then the operator classifies those defects
according to the type of sewer defect.

Fig. 2. CNN architecture for the proposed sewer defect classification framework.

Table 1
Detailed configurations of the proposed CNN model.

Configuration Conv2 Pool1 Conv2 Pool2 Conv3 Conv4 Conv5 Pool3

Input map 3 96 96 256 256 384 384 256
Input 256× 256 55×55 27×27 27×27 13×13 13×13 13×13 13×13

Output map 96 96 256 256 384 384 256 256
Filters 11× 11 3×3 5×5 3×3 3×3 3×3 3×3 3×3
Stride 4× 4 2×2 1×1 2×2 1×1 1×1 1×1 2×2

Zero padding 0 0 2 0 1 1 1 0

Fig. 3. The system architecture for the sewer text detection and recognition [35].
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4.2.2. Text detection and text recognition
The evaluation protocol used in text detection and recognition was

recommended by Wolf et al. in [34]. The approach shows object level
precision and recall using detection quality restraints. Both the amount
and the feature of the detected bounding boxes were calculated. The
assessment was calculated by precision, recall, and F-measure as fol-
lows:

=
∑ ∑

∑
Precision

M D G

D

( , )

| |
i
N

j
D

D j
i i

i
N i

| |i

(2)

Fig. 4. Sample images before and after applying the multi-frame averaging (a) Without the multi-frame averaging and (b) With the multi-frame averaging [35].

Fig. 5. Text line verification using saturation channel. (a) Original image, (b) The saturation channel, (c) Text lines detection results (blue bounding box), and (d)
Results after applying text lines verification (blue bounding box) [35]. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 2
Subtitle information in the text recognition module.

Subtitle information Contents

Driving distance Distance from the starting point
Pipe number Pipe unique number
Survey date Date of an investigation
Survey time Survey time

Circumference Size of sewer line
Type Type of sewer lines

Start/end location Start and end location of the exploration
Driving direction Backward or forward
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= ×
×

+
F Precision Recall

Precision Recall
2measure (4)

where N is dataset size. |Di| and |Gi| are the amount of detected and
ground truth rectangles in image i-th. MD(Dj

i,Gi) and MG(Gj
i,Di) are the

matching scores for the detected rectangle Dj and ground truth rec-
tangle Gj. Two rectangles are considered equal if their intersection
proportion is higher than a fixed threshold, which manages matching
quality. The threshold for one to many matching was set to 0.8 for the
simple background dataset and 0.6 for the complex background dataset.

The number of correctly recognized letters measured the word re-
cognition performance (WRA), and it is defined as:

=WRA C
T

| |
| | (5)

where C indicates the amount of correctly recognized letters, and T is
the number of ground truth letters.

5. Experimental results

5.1. Sewer defect classification

In previous research on defect classification, learning features were
selected and extracted manually. However, CNN models learn to extract

features automatically by updating the weights of receptive fields [34].
In this paper, 75% of the dataset was randomly selected for training,
and 25% of the dataset was used to validate the training process and
learning rate. The learning rate can be defined as the optimization and
minimization of the loss function of the network. Moreover, it is the
most crucial hyper-parameter for tuning the networks, and it de-
termines how fast weights (in the case of a neural network) or the
coefficients (in the case of linear regression or logistic regression)
change [37–39]. In the proposed model, initially, the learning rate was
set to 0.01, and it was gradually reduced to 0.001 according to the error
rate of the validation set.

The accuracy of training and validation phases increased sig-
nificantly to over 80%, and the corresponding loss of training and va-
lidation decreased dramatically to below 10% after the first ten epochs.
Then the accuracy increases gradually before stopping at over 96%
while the loss decreases constantly to 10%. The highest accuracies
achieved in the training and validation process were 96.50% at the 25th
epoch and 96.60% at the 30th epoch, respectively. Fig. 7 summarizes
the training and validation accuracies. In this study, the CNN model
was trained with 30 epochs, and the total training time lasted 1 h
35min.

Fig. 8 describes the class activation map of six common sewer de-
fects, which are lateral, joint open, joint faulty, debris, surface damage,
and defect longitude. For each defect, the corresponding class activa-
tion map shows that the defect classification framework correctly
learned the defects features. Besides, Table 4 presents a confusion
matrix for the testing set, and it was computed to assess the ability of
the proposed CNN model in classifying different defects. Experimental
results suggested that the CNN model correctly recognized all six classes
with the highest accuracy at 99.5% on both debris silty and surface
damage. However, there is a low accuracy at 85% on defects longitude
class.

In addition to the previous experiment, our proposed system was
further applied to a total of six videos from the sewer CCTV video da-
tabase. Results were then compared with assessment reports. Table 5
shows the comparison between results from our model and results
collected from assessment reports. Overall, the number of defects
identified by our model is equal to the number of defects showed in
reports. Especially, in video number 5, precisely 13 defects similar to

Fig. 6. Six types of sewer defects extracted from CCTV videos.

Table 3
Detailed description for the sewer defect dataset.

Defects class No. images After
augmentation

Training
images

Testing
images

Longitudinal
defect

2265 4530 4530 200

Debris silty 3882 7764 7764 200
Joint faulty 3801 7602 7602 200
Joint open 6146 12,292 12,292 200
Lateral 4767 9534 9534 200

Surface damage 3276 6552 6552 200
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the report are detected by the proposed model.

5.2. Text detection on CCTV's recorded videos

Detection and recognition module was used to recognize subtitle
information from ten videos. Although the robot started recording on
the ground for some time before it was put into the sewer line to check
the recording quality, we only need to extract frames after the robot
was in the sewer line. Thus, the frames, which contained the “start the
inspection” subtitle in Korean, were searched. When this information
was detected in a specific frame, all frames (after that frame) were
extracted. On the contrary, all video frames will be extracted.

All the videos were recorded at 30 frames/s on the sewer system at
different locations. Information regarding the length of the video, the
total extracted frames, the number of frames after detecting the “start of
inspection” Korean text, and the number of frames after applying multi-
frame average are described in Table 6.

Subtitle information is described in Table 7. In each video, only the
travel distance changed as the robot was moving forward, while other
information was similar throughout the video. We also selected two

videos (Video ID 7 and 8) as shown in Fig. 9, which had a different font
compared to the rest of the videos in the dataset to check whether
Tesseract OCR can recognize text information.

Text detection module was used on each video. Ground truth labels
were manually created, and then they were used as the ground truth to
compare with detected bounding boxes. The model detected 41,058
bounding boxes out of 46,328 bounding boxes with false alarms of 5270
text boxes. The result proved that using the multi-frame average tech-
nique significantly reduced wrongly detected boxes and simultaneously
increased the accuracy. Enhancement of background quality increased
the quality of the low-resolution text, but at the same time blurring the
background. Also, the detection module can detect text boxes in a video
that has a slightly different font and format.

5.3. Blurred images analysis

In this experiment, we evaluated the performance of the CNN model
under extreme illumination conditions by applying an artificial blur on
testing images as shown in Fig. 10. Table 8 describes the observed re-
sults before re-training the model with blurred images. It was

Fig. 7. Training and validation accuracies for each epoch.

Fig. 8. Sewer defects and their corresponding visualization.
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noticeable that defects longitude and joint open classes were affected by
the effect of blurred images because they showed poor performance at
51% and 57%, respectively.

However, after adding blurred images to the training dataset and re-
training the CNN model, we obtained a significant improvement in
terms of accuracy as represented in Table 9. The accuracy for defects
longitude class increased from 51% to 86.5%, while the accuracy for
joint open class improved from 57% to 99%. This experiment showed
that the model's ability to deal with extreme illumination conditions
had improved remarkably after the model was trained on blurred
images.

5.4. Defects classification and defect location recognition

In this experiment, the performance of the system was assessed by
integrating the defect classification and the text recognition module. A
sewer video was randomly selected from sewer CCTV videos dataset,
then defect classification and text recognition modules were applied to
evaluate the interpretation of the system. Finally, the results of the
proposed system were compared with the manually generated sewer
report as depicted in Fig. 11. Table 10 demonstrates the comparison
results of the proposed system and manually generated report results.
The distance in the report (xxx.xx m) was a little different from the
automatic recognition (xxx m) because we only considered the first
three digits of the distance that already indicated the exact location of
the defect.

5.5. Comparative analysis of defects classification

Compare to Moselhi [14] results; the proposed method showed a
remarkable performance on defect classification. Moreover, Moselhi
experimented three sewer defects, which were crack, joint displace-
ment, and spalling, whereas the proposed method could classify six
types of sewer defects as well as recognize their locations. Table 11
shows the comparative analysis of the proposed method with Moselhi
defect classification results.

6. Discussion

As discussed in the introduction section, three key research ques-
tions need to be answered based on the experiments. The first question
was about the performance of the proposed model on the collected
sewer dataset. The results showed that our model achieved a state-of-
the-art performance at 96.3%. The second question and the third
question asked about the performance of defects location recognition.
As shown in Section 5.4, the results obtained when compared to the
manually generated report with the results generated from our model
proved that our model performed well on the defects location re-
cognition.

Through various experiments, we proved that our proposed model
was effective in detecting sewer defects. We also solved the location
recognition that previous research failed to solve. It has a great possi-
bility to reduce the labor cost associated with manually reviewing the
CCTV video. As a result, it reduces processing time and labor cost.

7. Conclusion

This paper presented a framework for automated sewer defect
classification and recognition of defect location in CCTV inspection
videos based on deep learning. Conventional image processing techni-
ques relied heavily on handcrafted feature extraction and morpholo-
gical methods that did not provide satisfying results when CCTV videos
have a complex background and illumination conditions. The proposed
system overcomes these challenges by exploiting the deep convolu-
tional neural network approach. In previous studies, most of the re-
search has been done using defects detection and classification, whereas

Table 4
Confusion matrix on the sewer defect dataset (testing) using the proposed defect classification system.

Class Longitudinal defect Debris silty Joint faulty Joint open Lateral Surface damage Accuracy

Longitudinal defects 170 0 0 25 0 5 85%
Debris silty 0 199 0 0 1 0 99.5%
Joint faulty 2 0 198 0 0 0 99%
Joint open 0 0 7 193 0 0 96.5%
Lateral 0 3 0 0 197 0 98.5%

Surface damage 0 0 1 0 0 199 99.5%
Average accuracy 96.33%

Table 5
A comparison between results from proposed model and manually generated
assessment report.

# Video name No. defects in
report

No. defects from the proposed
model

1 G-DS-01-0707~0708 1 1
2 G-DS-02-1896 4 3
3 G-DS-02-1899 4 4
4 G-DS-02-2043 4 4
5 G-DS-01-1531 13 13
6 G-DS-01-2180 3 3

Table 6
Number of frames before and after applying multi-frame integration.

# Video length
(Seconds)

Total extracted
frames

Frames after detecting
“start of inspection.”

Total frames after
applying MFI

1 682 20,483 18,234 607
2 675 20,245 16,681 556
3 418 12,532 11,125 370
4 303 9108 8312 277
5 526 15,795 14,963 498
6 680 20,404 16,325 544
7 563 16,889 14,823 494
8 597 17,910 15,121 504
9 639 19,164 19,164 638
10 1304 39,099 39,099 1303

Table 7
Detailed description of CCTV video subtitles.

# Inspection date Sewer pipe ID Diameter Travel distance

1 15-11-27 GDS012169~GDS012180 I400 000m–>052m
2 15-12-07 GDS011531 I700 000m–>047m
3 15-12-16 GDS010622 I300 000m–>027m
4 15-11-27 GDS010707~GDS010708 I300 000m–>041m
5 15-12-24 GDS012126~GDS012127 I300 0m–>41m
6 15-12-28 GDS012129~GDS012130 I600 0m–>63m
7 15-11-28 GDS010283~GDS010284 I300 0m–>48m
8 15-11-30 GDS010333~GDS010290 I300 0m–>42m
9 15-11-25 GDS011365 I400 0m–>47m
10 15-11-27 GDS011313 I300 0m–>58m
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the proposed method not only classifies the sewer defects but also re-
cognizes their location by employing text detection and recognition
modules.

With defects classification, a total of 48,274 images that contained
defects extracted from different sewer CCTV videos, which contained

48,274 images. Testing results showed consistent performance, even
though testing images had different illumination conditions and back-
ground noise. The highest accuracy recorded on trained CNN network
was 96.33%. Moreover, in text detection and recognition modules,
which is the combination of multi-frame integration, various processing

Fig. 9. Videos that use a different font and format compared to other videos in the dataset [35].

Fig. 10. Blurred image samples resulting from extreme lighting environments.

Table 8
Sewer defect classification results before re-training the model on blurred images.

Class Defect longitude Debris silty Joint faulty Joint open Lateral Surface damage Accuracy

Defects longitude 102 1 15 11 0 71 51%
Debris silty 0 187 1 8 4 0 93.5%
Joint faulty 0 0 196 2 0 2 98%
Joint open 2 0 78 114 4 2 57%
Lateral 0 0 0 0 198 2 99%

Surface damage 0 0 1 6 15 178 89%
Average accuracy 81.2%
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Table 9
Sewer defect classification results after re-training the model on blurred images.

Class Defect longitude Debris silty Joint faulty Joint open Lateral Surface damage Accuracy

Defects longitude 173 0 2 22 0 3 86.5%
Debris silty 4 188 0 7 1 0 94%
Joint faulty 0 0 198 2 0 0 99%
Joint open 0 0 1 199 0 0 99%
Lateral 0 0 0 0 200 0 100%

Surface damage 0 0 0 0 0 200 100%
Average accuracy 96.58%

Distance/
Location

Defect
Type

Fig. 11. An example of a manually generated sewer inspection report.

Table 10
Defect classification and location recognition from the model in comparison
with a manually generated report.

Classified defects
(Manual)

Classified defects
(Automatic)

Defect location
(Manual)

Recognized location
(Automatic)

Joint faulty Joint faulty 2.47m 2m
Joint faulty Joint faulty 10.51m 10m

Debris Debris 15.63m 15m
Joint open Joint open 18.48m 18m
Lateral Lateral 24.02m 24m

Joint open Joint open 26.47m 26m
Lateral Lateral 26.78m 26m

Table 11
Comparative analysis of the proposed defect classification method with other
research.

Class Moselhi DB Our DB

Moselhi et al.
[14]

Proposed Moselhi et al.
[14]

Proposed
model

Crack 0.9590 0.986 0.806 0.85
Joint displacement 0.9617 0.995 0.896 0.965

Debris N/A N/A N/A 0.995
Lateral N/A N/A N/A 0.985

Surface damage N/A N/A N/A 0.995
Joint faulty N/A N/A N/A 0.99
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steps, and MSERs to extract the text edges made the method a truly
robust one. The low false alarms rate will ensure the method provides
accurate information for the real sewer analyst application.

Furthermore, this study was validated with the Korean language by
performing the detection and recognition of Korean subtitles using a
multi-scale template matching method. The detection module obtained
single-line text instead of a text region that contained multiple text
lines, which benefits the recognition module. Although this study was
designed mainly for detecting and recognizing text in sewer CCTV's
videos, it worked properly for most of the complex background videos.
Besides, the proposed system was developed to classify sewer defects.
However, if more than two types of defects appeared in an image, the
system can classify only single defects, which have the highest prob-
ability. In the future, the proposed work can be extended to real-time
sewer defects classification to classify multiple defects at the same time.
Moreover, the system will be able to cope with live video streaming
instead of recordings, which can assist the operators during the in-
spection process and overcome issues related to operator fatigue and
inadequate training.
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