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 An efficient deep learning-based sewer defect classification framework.

 Effectively deal with the imbalanced data problem using various approaches.

 Subtitle recognition that gives more information about detected defects. 

 A novel frame reduction algorithm that significantly reduces the computational time.

Abstract

Sanitary sewer systems play a fundamental role in protecting water quality and the public well-being. 
Structural, civil, and functional operations of any sewer network can deteriorate at accelerated levels 
due to harsh environments inside the sewer pipes. The existing maintenance procedures are usually 
deemed inefficient in terms of the assessment accuracy, reliability, safety, and the cost due to the 
difficulty of detecting and diagnosing defects inside the sewer network. As a result, this paper proposes 
a robust and efficient deep learning-based framework that can detect and evaluate the defects 
automatically with high accuracy. The main contributions of the work include (1) a fine-tuned deep 
learning-based sewer defect detection framework that is based on the block-based architecture, which 
contains a series of convolutional layers that can efficiently extract the abstract features from the 
defective regions, (2) hybrid extensions of the proposed model that apply the ensemble-based approach 
and the cost-sensitive learning-based method in order to cope with the imbalanced data problem (IDP) 
efficiently, and (3) a novel frame reduction algorithm that is based on analyzing the contextual 
information of the closed-circuit television (CCTV) videos. The experimental results indicated that the 
proposed framework obtained a state-of-the-art performance compared to the previous sewer defect 
detection systems, and it was robust against the IDP. The benefits of the proposed defect detection 
framework are that it motivates more efficient defect analysis algorithms and promotes a complete 
integration of deep learning-based approaches in real-world sewer defect analysis applications. 

Keywords: Sewer network; crack classification; deep learning; CCTV; text recognition; imbalanced 

data;

1. Introduction

Infrastructure is a fundamental factor that can stimulate the economic development of every 

community because it connects supply chains, brings new opportunities to struggling 

communities, and defends the nation against an increasingly unpredictable natural 

environment. Moreover, it stimulates the economy by providing millions of jobs in 

construction and maintenance yearly [1]. Modern concrete structures, such as sewer pipelines, 

require a substantial financial investment, a carefully planned blueprint, lengthy construction 

time, and operational issues [2]. Even though these structures can be used for prolonged periods 

if they are adequately maintained, manual maintenance procedures are often considered 

ineffective in terms of cost, safety, assessment accuracy, and reliability [3]. In addition, the 

structural, civil, and functional systems of these concrete structures can deteriorate rapidly due 



to harsh environmental conditions. A postponement with identifying and analyzing concrete 

structures can bring about sudden structural and functional failures that could leak harmful 

substances into the environment and demand high rehabilitation costs. As a result, they must 

always be maintained in the best manner in order to mitigate the loss of life during natural 

disasters, such as earthquakes, floods, or criminal acts [4, 5].

Manual inspection is the primary way of periodically evaluating the structural and 

functional requirements in order to guarantee that it meets the basic service specifications. 

However, it is labor-intensive, time-consuming, and strenuous, because the structural 

inspection companies have to hire professional inspectors to manually perform the structural 

inspections using various equipment [2]. Robots and scanning devices [6] have been 

increasingly used in recent years to inspect and maintain concrete structures in order to reduce 

maintenance costs and improve the effectiveness of an automated inspection. Thus, there is an 

enormous contest among the top industrial robot manufacturers to create a better line of robots, 

such as the latest utility hole inspection vehicle from the Electronics and Telecommunication 

Research Institute (ETRI), South Korea, which supports a 3D point cloud and a 360-degree 

field of view for accurate utility hole analysis that can go up to 50 feet in sanitary sewers. 

Moreover, the high-resolution vision sensor that is attached to the robot's head enables it to 

precisely record the inner conditions in medium and large sewer pipes. Closed-circuit television 

(CCTV) recorded by the robots is a cost-effective and suitable means to monitor the pipe's 

condition in an unsanitary environment or complex surveillance circumstances where humans 

cannot reach. 

A training dataset is then generated, which is based on the collected CCTV videos. For the 

sewer fault classification problem, the datasets contain different types of defects, and each type 

contains numerous images that are extracted from the videos and validated manually. However, 

the collected datasets usually suffer from the imbalanced data problem (IDP), which refers to 

a dataset where the samples between the classes are not represented evenly [7]. Three groups 

of regularly used solutions to deal with the problem are the data-based approaches, the 

ensemble-based methods, and the cost-sensitive learning-based methods [8]. However, only 

the ensemble-based approach and the cost-sensitive learning-based approach are implemented 

in this study. The data-based approach, which includes the over-sampling and the under-

sampling techniques, is performed by removing or adding the duplicate samples from the 

original dataset, which can significantly influence the system’s performance [9, 10].

Due to the massive amount of collected CCTV videos, it is crucial to implement an AI-

powered crack detection framework in order to identify the cracks and extract the contextual 



information about them automatically [7]. The traditional computer vision (CV) approaches 

achieved poor performance and could only be applied to the small datasets, because they 

required the manual selection and extraction of the distinctive defect features [6]. The deep 

learning-based defect detection systems have been proved to improve the overall performance 

and save a considerable amount of time and effort compared to the conventional machine 

learning (ML) techniques [1, 2]. Moreover, they have also motivated a consistent improvement 

of the structural inspection technologies and proactive asset management strategies. The 

existing literature surveys revealed that the computationally intensive algorithms usually 

achieved a high classification performance [5], whereas the customized classification methods 

compromised the false-positive rates and accuracy [1]. Furthermore, the defect classification 

for concrete structures is a challenging subject that depends on many factors, such as the input 

quality, lighting environment, and background noise. Although various structural assessment 

studies have been introduced, they did not achieve convincing results and contained a limited 

number of the defect types [2, 4].

The printed subtitles on each frame of a CCTV video provide the contextual information 

about the fault inside a sewer pipe, such as the position, date, time, pipe diameter, and pipe 

type. This information is automatically recognized based on the text recognition frameworks, 

so it can be used later to provide in-depth details about a defect. A standard text recognition 

system involves three stages, which include text localization, enhancement, and text 

recognition. Localization is implemented in order to identify the appearance of the text. 

Common text features, such as intensity, color, and geometry, are usually applied to perform 

localization. Text localization is followed by text enhancement methods in order to increase 

the image quality, which improves the text and the background contrast. Lastly, optical 

character recognition (OCR) models are applied to perform text recognition [11]. 

Based on reviewing the different aspects of a sewer defect detection system, a pressing 

need is needed in order to promote a robust defect detection framework in sewer pipelines that 

can efficiently identify the different types of defects, extract textual information, and are 

resilient to the IDP. This manuscript proposes a deep convolutional neural network (CNN)-

based sewer defect detection framework to detect the 7 types of defects, including crack, debris 

silty, faulty joint, open joint, protruding lateral, surface damage, broken pipe, and a normal 

class without the defects as illustrated in Fig. 1 in order to automatically extract the defect's 

abstract features and deliver a state-of-the-art defect classification accuracy for CCTV videos. 

The introduced framework is motivated by the recent successes of the CNN-based models on 

numerous applications that showed its ability to extract multiple abstract features from the 



training datasets [1, 2]. After that, three hybrid models that apply different algorithms into the 

existing framework are also introduced in order to solve the IDP. Lastly, various tests are 

performed in order to confirm the effectiveness of the defect detection framework and the 

hybrid models with different dataset settings. In the initial test, the performance of the 

framework is examined on a balanced dataset and compared with the existing sewer faulty 

classification models. After that, the second experiment is conducted in order to verify the 

decisions that are made by the proposed model, which is based on the explainable artificial 

intelligence (XAI) methods. Three hybrid models are then tested on different imbalanced data 

settings that range from 1:1 to 1:100. Finally, the system is applied to generate the defect reports 

for the real CCTV videos, and the generated reports are then compared with the ground truth 

reports that are created by the inspectors. 

Figure 1. Sample images of eight classes of the sewer dataset.

The proposed framework contributes to the advancement of sewer defect analysis in many 

ways. Firstly, it offers a deep learning-based defect detection framework that can be applied to 

detect various types of sewer defects. Secondly, this paper evaluates a range of methods that 

help the proposed model achieve a robust performance in extremely imbalanced data settings, 

which is the problem that usually occurs with structure defect detection projects. Thirdly, the 

contextual information of a defect, which was ignored in the previous research, is also 

recognized using a text recognition module.  This data is useful in order to provide in-depth 

details about the defect. Fourthly, a novel frame reduction algorithm, which is based on the 

recognized contextual data, is presented in order to reduce the number of CCTV frames that 

need to be processed. Finally, some XAI techniques have been implemented in order to gain 

insight into how the proposed model was trained. These contributions collectively generate a 



technical framework that is required to achieve a precise and efficient sewer defect detection 

framework using CCTV videos.

The manuscript is divided as follows. Section 2 thoroughly summarizes the previous 

approaches about sewer defect detection, the IDP, and the XAI.  The sewer defect detection 

framework is described in Section 3. Next, the collected sewer defect image dataset is 

introduced in Section 4. In Section 5, multiple experiments are conducted in order to examine 

the robustness of the defect detection framework on both the imbalanced dataset and the 

balanced dataset. Finally, we conclude the research in Section 6 by analyzing the strengths and 

the weaknesses of the proposed model and introduce the future work.

2. Related work

2.1. Sewer defect classification

Due to technological advancements, especially in CV, there is an ever-increasing amount 

of vision-based sewer defect classification research [12]. For example, Myrans et al. proposed 

an automatic method that recognized various types of defects in CCTV videos [13]. Firstly, a 

feature descriptor for each frame from a video was computed. After that, two ML algorithms 

were then implemented in order to analyze the content from the individual frames. The Hidden 

Markov Model and the filtering method were applied to extract information from a sequence 

of frames in order to smooth the prediction. The experimental results on a dataset that was 

collected by Wessex Water showed that the model obtained a detection accuracy of over 80%. 

Moreover, the smoothing technique on the sequence of frames decreased the false-negative 

rate and considerably increased the performance. However, the dataset used in this research is 

small, which contained only 1000 images, and over half of the dataset, which totaled 623 

images, belonged to the no faults class. Ye et al. introduced a sewer faults recognition approach 

based on feature extraction and an ML algorithm [14]. Various features, such as texture 

features, Hu invariant moment, Daubechies (DBn) wavelet transform, and lateral Fourier 

transform, were extracted from the defect regions. After that, these features were used to train 

a support vector machine (SVM) model in order to categorize the seven types of sewer pipe 

defects. The model performance on 28,760 m of sewer pipes reached 84.1%. However, the 

proposed model performed poorly with the two classes, which included collapse and joint 

damage, because it suffered from the IDP. Fang et al. introduced a defect identification 

framework, which used an unsupervised ML-based fault detection algorithm on CCTV footage 

[15]. Moreover, the authors obtained the related features from a collection of images and 



combined the extracted features in order to increase the accuracy. The evaluations were 

conducted on small and big image sequences, which produced the highest recorded accuracy 

above 90%. Even though traditional CV methods have been extensively used for automated 

defect detection in CCTV footage, the traditional CV algorithms rely heavily on the pre-

processing methods and the appropriate feature extraction for certain cases, which is both error-

prone and labor-intensive. In addition, these models are usually examined in artificial testing 

setups that lead to biased results and poor performances on real-world data.

In the recent decades, deep learning, which is a subset of ML that applies multi-layered 

artificial neural networks, has proved to deliver state-of-the-art performances in different fields, 

which include object detection, object classification, natural language process, and many 

others. Deep models effectively learn abstract features from training data without human 

invention, and conventional image processing techniques are not compulsory. Therefore, deep 

learning-based models have been applied extensively to the defect classification for public 

infrastructures during the last few years. For example, Hassan et al. introduced a CNN-based 

sewer crack identification framework on images that were extracted from CCTV videos as the 

input [2], which was based on performing transform learning of the AlexNet model. The 

proposed model can recognize the 6 main types of cracks with an average accuracy of 96.33% 

on the testing dataset. However, the model’s performance was influenced by the imbalanced 

distribution of the images between the classes.  In another study, Cheng et al. performed 

automatic sewer crack detection using a faster region-based convolutional neural network 

(Faster R-CNN) approach [1]. Many hyperparameters were tailored in order to examine the 

most influential factors with the proposed model’s performance. Several experiments were 

implemented in order to evaluate the model’s performance, which include the accuracy and the 

computational costs. The change of parameters, such as the stride values and the filter 

dimensions, contributed to the high detection accuracy, which led to a mean average precision  

(mAP) of 83%. The proposed framework can only be applied to static images, so interpreting 

the videos should be studied. Xie et al. applied a two-level hierarchical deep CNN model in 

order to automatically extract the representative features for sewer defect identification [5]. 

The framework proved to generalize the new data well and solved the difficulties of the IDP 

through several experiments, which obtained a classification accuracy that was over 94% on 

multiple benchmark datasets. However, the framework required high computational costs and 

failed to point out the correlations, such as crack defects and deformations, which usually occur 

together. Meijer et al. introduced a self-collected sewer defect dataset from CCTV footage with 

over 21 thousand images [4]. The authors then fed the collected dataset, which was based on a 



deep learning approach, in order to perform the defect detection. In addition, a multiclass 

classification was applied to detect multiple defect types in a single image. They also proposed 

a leave-two-inspections-out cross-validation approach that effectively eliminated a data 

leakage bias. However, the suggested classifier did not achieve the standard performance for 

real crack classification systems.  

Even though many studies applied deep learning in order to perform the sewer defect 

detection, the subtitles printed on the sewer CCTV videos were not considered, and the datasets 

used for training were small. This manuscript addresses the mentioned problems by introducing 

a huge sewer defect dataset, analyzing the subtitles in order to perform an in-depth analysis of 

the detected defects, and proposing a frame reduction algorithm to reduce the number of frames 

that need to be processed.

2.2. Imbalanced data problem (IDP)

Sewer images that contain defect region(s) are minor compared to non-defect images 

during the data collection process, which was previously described. As a result, the previous 

sewer defect detection frameworks usually suffer from the IDP [16]. There are three main 

approaches that are usually used to solve the IDP, which include the resampling approach, cost-

sensitive learning approach, and ensemble learning approach. The resampling approach is 

usually applied to the tabular data by removing or adding the samples in order to balance the 

samples between the classes, which is inappropriate for the sewer defect dataset used in this 

study [9]. On the other hand, the cost-sensitive learning approach is introduced to solely solve 

the IDP, whereas the ensemble learning method combines the results of multiple base 

classifiers to enhance the model generalization, which can also be used to deal with the IDP [8, 

9]. Therefore, this work integrates the cost-sensitive learning technique and the ensemble 

learning technique into the deep learning model in order to create different hybrid extensions 

of the model to cope with the IDP. 

Ensemble learning approaches use several techniques and learning algorithms in order to 

acquire a higher system’s performance than the performance of any of the learning algorithms 

by themselves [17]. The main idea is to incorporate a group of weak learners in order to form 

a better classifier, which consequently improves the system’s performance and robustness. 

Bagging and boosting are two main techniques that are used in ensemble learning [18, 19]. 

Bagging approaches generate multiple new training subsets by randomly taking with 

replacement from the original dataset. In the boosting methods, the learners are trained 

consecutively with the initial learners, which apply simple models to the data, and then probe 



the data for mistakes. Following trees are fit, and at every step, the intention is to improve the 

performance of the previous learner. In the case of the defect detection framework, only the 

boosting technique is examined, because the final learner has lower errors as it improves the 

performance and reduces the pitfalls of using only one model. In addition, bagging has 

demonstrated that it rarely achieved a better bias when a single model has a low performance.  

Extreme gradient boosting (XGBoost) [20] and a light gradient boosting machine 

(LightGBM) [21] are popular extensions of the gradient boosting technique, which is popular 

for its speed and robustness. They have shown excellent results with several classification 

algorithms [22]. They both implement the left-wise growth strategy when growing the tree in 

order to obtain the best tree and prevent the possible loss of information, which is a problem 

that remains in the gradient boosted tree approaches. However, the main difference is that while 

LightGBM applies a method call Gradient-based One-Side Sampling (GOSS) in order to 

analyze and lower the data instances, which helps to figure out a suitable split value, XGBoost 

relies mainly on pre-sort-based and histogram-based algorithms in order to estimate the most 

appropriate split. In contrast, the cost-sensitive learning approach attempts to solve the problem 

by assigning different costs for each class [8]. Conventional ML algorithms consider that each 

class has equivalent misclassification costs, which leads to a significant drop in their 

performance when facing the IDP [2, 4]. 

2.3. Explainable artificial intelligence (XAI)

Explainable AI or XAI refers to a collection of methods and approaches that help to 

interpret decisions that are made by the AI models and make them more comprehensible to the 

users and the researchers. These methods aim at solving the current black box nature of AI 

algorithms, because AI algorithms cannot explain what features lead to a decision. Moreover, 

XAI presents the reasons for decision-making in a way that people can understand, so it can be 

applied to areas that require transparency and user trust, such as medical [23], banking [24], 

and law [25]. Previous work on the sewer defect classification ignored the importance of XAI 

that can explain the results, which were predicted by the AI models. As a result, this study 

attempts to implement the Class Activation Map (CAM) and the layer activation visualization 

methods in order to interpret and explain the classification model's predictions. Both methods 

are based on analyzing and visualizing the feature maps of a specific convolutional layer in 

order to enable the interpretation and explanation of how a CNN model learns the notable 

characteristics from each type of the defect.



CAM results from performing Global Average Pooling (GAP) in a feature map that is 

extracted from the final convolution layer and putting the value in Softmax in order to get the 

probability value. A paper proposed by Dang et al. proposes a manipulated face image 

detection framework that is based on deep learning [22]. CAM is used in the paper in order to 

explain the decisions that are made by the proposed deep learning model by transferring the 

weights of the Softmax layer back to the feature maps of the fifth convolutional layer, which 

thereby emphasizes the significant parts in the image that affect the prediction. The 

manipulated regions were marked correctly in the CAM output, which showed that the 

framework categorized the tampered images by detecting the tampered regions. On the other 

hand, layer activation visualization is an XAI technique that is implemented in order to 

visualize how the convolutional layer extracts the significant features of an image through the 

filter, which is the feature maps. For example, Xie et al. introduced the automated identification 

and classification of sewer cracks using a hierarchical deep learning approach [5]. The former 

layers output relatively fine detail from an image through the feature map visualization method. 

For example, some feature maps from the Conv0 layer highlight features, such as color, shape, 

background, and foreground from the sewer pipe images. On the other hand, the feature maps 

show less detail as the network gets deeper.

3. Methodology

Fig. 2 shows a comprehensive structure of the suggested sewer defect detection framework 

with four key modules: data collection, model training, subtitle recognition, and report 

generation. First of all, the proposed sewer defect dataset is generated based on investigating 

the frames that were extracted from the CCTV videos and filtering out the images that contain 

defects. After that, they are classified into one of the seven types of defects and the normal 

class. Prior to the training process, the data augmentation and preprocessing techniques are 

implemented in order to refine the training dataset. Next, the dataset is used to train two 

different models. One model is used for the defect classification, and the other model is used 

for the subtitle recognition. For the defect classification model, the abstract features are 

extracted by a series of convolutional layers. The final output layer eventually uses the 

extracted features in order to decide the output label, which is one of the eight classes, for an 

input image. In addition, the IDP is also addressed by applying two different IDP techniques 

to the proposed model. These models will be examined using different imbalanced data settings 

in Section 5.4.



Figure 2. Detailed visualization from input to output of the sewer defect detection framework.

3.1.   Defect detection agent

3.1.1. Fine-tuned sewer defect classification model

The successful use of CNNs for various tasks motivated us to apply them for the crack 

classification application [27, 28]. VGG is one of the most commonly used deep CNNs for the 

image classification task, which obtained the highest performance for the ILSVRC-2014 [28]. 

As a result, a model that is based on the VGG19's architecture with some essential adjustments 

regarding the previously mentioned defect detection topic was implemented. 

All the layers from the pre-trained VGG-19 were initially initialized. However, the defect 

dataset is unassociated with the benchmark ImageNet dataset, so the top 17 convolutional 

layers are frozen to act as an abstract features extractor. The blue box in Fig. 3 indicates the 

customization for the sewer defect detection model during the fine-tuning phase. The model 

accepts color images of size  as the input. All the layers are kept similar to the 224 ∗ 224 ∗ 3

original VGG-19 model except for two convolution layers with a kernel size of , which 3 ∗ 3

were placed after the convolution layer that belongs to the fourth convolution block and before 

the pooling layer. Thus, the number of convolutional layers increases from 4 to 6 in the 

convolutional block 5. A series of five convolutional blocks is followed by three fully-

connected layers. The top two fully-connected layers contain 4096 neurons each, whereas the 

number of output neurons in the final fully-connected layer is decreased from 1000 to 8 in 

order to fit the total number of 8 classes in this manuscript. Batch normalization is a standard 

approach that is used to optimize the deep learning models by unifying the scattered data, 



avoiding the vanishing gradient, and increasing the network's robustness. Several research 

papers have demonstrated that batch normalization remarkably stabilized the training process 

and reduced the number of training epochs [11]. As a result, a batch normalization layer is put 

after the first two fully-connected layers.

Figure 3. A fine-tuned VGG19 structure with five convolutional blocks for the sewer defect detection. 
Note. Two more convolutional layers (blue box) are added to the fourth convolutional block. Additionally, 

a batch normalization layer (blue line) is put between the second and the third fully-connected layers.

3.1.2. Hybrid sewer defect detection model 

After the initial experiments, the classification accuracy dropped significantly when the 

number of images was unevenly distributed between the classes. As a result, the previous sewer 

defect identification models experienced poor performances due to the IDP [17]. Therefore, 

this section applies two standard methods to cope with the IDP that include the cost-sensitive 

learning method and the ensemble learning method, which are shown in Fig. 4. Two 

algorithms, which include XGBoost and LightGBM, are implemented in the ensemble 

learning-based approach, whereas the misclassification cost customization is implemented in 

the cost-sensitive learning approach.

Figure 4. Two primary hybrid approaches that are applied to solve the IDP.



3.1.2.1. Extreme gradient boosting (XGBoost)

XGBoost is an efficient approach in order to force the algorithm to concentrate on the 

misclassification from the minority class when the imbalance data problem occurs. It includes 

the construction of a series of two-stage learners from the initial data and then combines their 

predictions [20]. The objective function of XGBoost at iteration , which was described in [20], 𝑡

was defined by the equation below.

ℒ(𝑡) =
𝑛

∑
𝑖 = 1

𝑙(𝑦𝑖,𝑦𝑖
(𝑡 ― 1) + 𝑓𝑡(𝑥𝑖)) +  Ω(𝑓𝑡) (1)

where  is the loss function that estimates the difference between the ground truth  and 𝑙 𝑦𝑖

the predicted . For the regression problem,  is usually the root-mean-square deviation 𝑦𝑖 𝑙

(RMSE), and it is logloss or mlogloss for the classification problem. On the other hand, the  Ω
regularization parameter assists XGBoost in order to smooth the learned weights to control the 

overfitting. The regularization value is assigned by analyzing the number of samples and the 

prediction threshold of the samples.

3.1.2.2. Light gradient boosting machine (LightGBM)

LightGBM concentrates on reducing the model training time based on combining several 

learning methods [21]. The primary objective of this method is to implement the Exclusive 

Feature Bundling (EFB) and the Gradient-based One-Side Sampling (GOSS), which are two 

methods that are used in order to cope with the issue remaining in XGBoost, which scans the 

data repeatedly [15]. GOSS decreases the computing complexity by excluding data with small 

gradients that have a minor impact on the calculation of the information gain. The EFB method 

enables the dependent features to be combined in order to minimize the number of features. 

Moreover, LightGBM has a fast convergence rate using the weighted quantile sketch 

algorithm, a histogram-based splitting algorithm, and the leaf-wise tree growth strategy in order 

to manage big datasets.

3.1.2.3. Cost-sensitive learning

Cost-sensitive learning is another common approach that is used to solve the imbalanced 

data problem, which focuses on specifying the separate costs to the kinds of misclassification 

errors. After that, different methods are implemented in order to consider those costs. For 

instance, the cost matrix  indicates the average cost of classifying an observation from 𝑐𝑚𝑐1𝑐2

class  to class . In the matrix, all the diagonal elements are equal to 0, which is an accurate 𝑐1 𝑐2



classification. The risk  for deciding output  for the input  is defined in [8], which is 𝑅 𝑜𝑖 𝑥

specified using the equation below.

𝑅(𝑜𝑖|𝑥) = ∑
𝑖

𝑐𝑚𝑐1𝑐2𝑃(𝑣𝑗|𝑥)    (2)

The probability of selecting class  depends on the predetermined misclassification cost 𝑖

through the equation, and the posterior probabilities determine the uncertainty about the ground 

truth of . The main objective of cost-sensitive learning is to minimize the misclassification 𝑥

cost by producing class  with the least risk .𝑣𝑗 𝑅

3.2. Text recognition and report generation

Subtitle information printed on the CCTV video contains critical information for an in-

depth analysis of the detected sewer defects, which include the travel distance, the pipe ID, the 

sewer type, the diameter, the inspection date, and the inspection time. It provides useful 

information about the sewer pipe under investigation. The information can be recognized 

automatically using text detection and recognition algorithms in order to provide in-depth 

details of a defect. This section is dedicated to a fully automated process that supports operators 

in detecting, analyzing, and reporting all defects that occur inside a CCTV video in order to 

make a final report file.

3.2.1. Template matching

Template matching is a method in order to discover regions of an image that are similar to 

a template image. The similarity can be computed using a popular method that is called 

Normalized Correlation Coefficient matching proposed in [26], which is described in Equation 

3.

(3)𝜂(𝑥′,𝑦′) =  
∑𝑀

𝑖 = 1
∑𝑁

𝑗 = 1{𝑥′(𝑖,𝑗).𝑦′(𝑖.𝑗)}

 ∑𝑀
𝑖 = 1

∑𝑁
𝑗 = 1{𝑥′(𝑖,𝑗)}2

 ∑𝑀
𝑖 = 1

∑𝑁
𝑗 = 1{𝑦′(𝑖,𝑗)}2𝜖 [0,1] 

where x' is the original image of size ,  that refers to the template of size , and 𝑃 ∗ 𝑄 𝑦′ 𝑀 ∗ 𝑁

 is the dividend of the fraction corresponds to the cross-correlation between the reference 𝜂(𝑥′,𝑦′)

image and the original input. The sum-up is done for each image spot: . 𝑥′ = 0..𝑤 ―1;𝑦′ = 0..ℎ ―1

The template is considered a match if the degree of match between the original image and the 

template is greater than the predefined threshold.

The template matching method is the translation invariant, which is sensitive to the image 

size and template. Thus, if the text size of the template is slightly different from the one in the 

original image, it is likely that the algorithm fails to match the text. A three-step multi-scale 



approach is introduced to make the template matching method more robust to the image scaling 

changes. 

 It loops over the source image at various scales by reducing the size gradually.

 It implements template matching on each of the scaled source images and keeps track 

of the match with the highest correlation coefficient.

 It selects a match with the most significant correlation coefficient and considers it as 

the matched region.

3.2.2. Text recognition module 

The text recognition module that is utilized to perform the subtitle recognition in this study 

was introduced by Dang et al. [10], and it includes four main processes, which include the 

multi-frame integration, the preprocessing, the text detection, and the text recognition, as 

described in Fig. 5.

Figure 5. Overall architecture of the text detection and recognition module that was introduced by Dang et 
al. [10].

Firstly, the multi-frame integration process is implemented in order to enhance the contrast 

and simplify the background by computing an average image based on 30 consecutive frames 

(frame rate: 30 fps). For a series of frames  ( ), the output average image is created by Ci i ∈ [0,29]

using the equation that is given next.

 (4)𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝑚𝑎𝑔𝑒𝑖(𝑥,𝑦) = 𝑎𝑣𝑔
𝑗 ∈ 𝐶𝑖

(𝑝𝑗(𝑥,𝑦))

where  refers to the pixel value at location of frame .𝑝𝑗(𝑥,𝑦) (𝑥,𝑦) 𝑗

The multi-frame integration process is followed by a series of image preprocessing 

methods, such as blurring, histogram equalizer, and morphological operations, in order to 



reduce the possible noise. The third process involves two main sub-process that include text 

localization, which detects the subtitle information from the output image of the previous step, 

and text verification, which reduces noise and eliminates false alarms. Finally, the text 

recognition is trained based on the Tesseract OCR engine in order to recognize the detected 

text.  

3.3. Report generation agent

3.3.1. Defect detection and extraction based on the nature of the CCTV subtitle 

The operator’s reaction can be identified and simulated when a defect is detected by 

analyzing distinct characteristics of the subtitles that were printed on the sewer CCTV video 

using the proposed text detection and recognition agent. The robot usually starts recording 

video before it is placed inside a sewer pipe, so parts of the CCTV recorded outside the sewer 

pipe can be discarded in order to reduce the processing time. The proposed template matching 

approach (Section 3.2.1) is useful to remove unnecessary frames by detecting the Investigation 

starts template, which is depicted in Fig. 8. If the Investigation starts template is seen in one 

frame, all the frames following that frame are extracted. On the other hand, all the frames are 

processed if the template is not found. 

Even after conducting the frame reduction using the template matching approach, the 

sequence of the images that is fed into the frameworks is still huge. Therefore, one more method 

is proposed in order to reduce further the number of frames that are fed into the deep learning 

model. While the robot is being controlled to move inside the sewer pipeline in order to perform 

the investigation, if a sewer fault is identified by the streaming CCTV camera, the operator 

stops the robot at that position for about 3-8 seconds and utilizes the mounted camera to inspect 

the defect thoroughly, which is displayed in Fig. 6. As a result, Algorithm 1 is proposed in 

order to reduce the number of frames processed by the defect detection model, because the 

travel distance subtitle remains unchanged during the 3-8 seconds window.



Figure 6. Four sample images of an open joint defect when the robot stops in order to investigate the 
defect for 6 seconds from 16:07:15 to 16:07:21. 

Note. The red boxes indicate that the Travel distance subtitle of 040.6m remains unchanged.

Algorithm 1. Defects detection using the travel distance subtitle
  1: For frame x in extracted_frames X do
2: current_distance = recognize_distance(x)
3: time = get_time(x)

  4:     If current_distance is NULL then
5: start_time = time
6: end_time = start_time

  7: add current_distance, start_time, end_time to the temp_array
  8:  Else 
  9: end_time = time
10: update end_time in the temp_array
11:  End If
12:     If (current_distance is different than (select current_distance from temp_array)) and ((end_time 
– start_time) > 3000) then
13: extract all the frames that have the current_distance information 
14: current_distance = -1, temp_array = NULL
15: End If
16: End For

Initially, the proposed text recognition module is applied to recognize the distance 

information for all frames that were extracted from a CCTV video. Suppose that the difference 

between the end time and start time of a specific distance is equal to or higher than 3000ms, 

which is 3 seconds, and a defect appears at this particular distance. Only the first frame is 

extracted to perform the defect classification in order to reduce computational complexity. 

Finally, the subtitle information that describes the crucial contextual information regarding the 

defect is recognized using the text recognition module. 



3.3.2. Report generation module 

This module’s primary purpose is to support the operators in order to automatically analyze 

the sewer videos and generate a detailed report about the defects that appear in the video. This 

module fills the template, which is shown in Fig. 7, using two primary data sources that include 

the detected defect images using the proposed model, and the recognized contextual 

information for each detected defect using the text recognition module.

Figure 7. Report template that is created to report detailed information regarding the detected defects in a sewer 
CCTV video. 

Note. The template contains all defects that appear in the video, their corresponding label, and the robot’s travel 
distance information when a defect occurs.

4. Sewer defect dataset

There are 7733 sewer CCTV videos used in this study, which include lengths that range 

from 30 seconds to 15 minutes, and a video size of 1280x720. They were given to us from the 

Korea Institute of Civil Engineering and Building Technology. All the videos were captured 

by a commercial Robo Cam 6 (Tap Electronics Ind. Co., Ltd). The robot has a 1.3-megapixel 

Exmor CMOS sensor with the ability to perform full 360 rotation, and 240-degree side views 

up/down tilt. Moreover, six high-power led lamps, which were 35W, allow the robot to capture 

the videos in various environments. The inspectors controlled the robots in order to perform 

the investigation of several concrete sewer pipes across South Korea. 

From the original collection of CCTV videos, all the frames were extracted and manually 

investigated in order to create a new sewer defect dataset, which included seven kinds of sewer 

defects and one normal class with a total of 38,386 images. The normal class indicates images 

that do not contain any defects. The number of images was expanded to 115,170 after the 



implementation of three different data augmentation techniques, which included horizontal 

flip, shear range, and zoom range. Table 1 describes in detail the number of images for each 

class before and after applying the data augmentation process. Overall, an extreme class 

imbalance scenario can be observed between the normal class that contains 41,804 images and 

the crack class that has 7,142 images after implementing the data augmentation process.
Table 1. Number of images for each class before and after applying the image augmentation process.

Class Before augmentation After augmentation
Crack 2380 7142

Debris silty 4036 12,108

Faulty joint 5397 16,193

Open joint 3174 9524

Protruding lateral 3754 11,264

Surface damage 2542 7628

Pipe broken 3169 9507

Normal 13,934 41,804

Total 38,386 115,170

The subtitle information printed on any single frame of a CCTV video contains the crucial 

information for in-depth analysis, such as the travel distance, the pipe identification number 

(ID), the inspection date, the pipe diameter, and the sewer type, which is illustrated in Fig. 8.

Figure 8. Essential subtitles printed on a sample frame that was extracted from a CCTV inspection video.

5. Experimental results

Extensive experiments are conducted in this section using the proposed dataset in order to 

show the model’s effectiveness in identifying and analyzing the different sewer fault types. 

The first experiment, which is conducted in Section 5.1, was performed to examine the 

framework performance in the normal data scenario. Moreover, the proposed model was also 



compared with two previous sewer faulty detection frameworks. Next, the model robustness 

against different attacks is examined in Section 5.2. After that, two XAI methods, which 

include layer activation visualization and class activation map, were implemented in order to 

interpret the proposed model, which is shown in Section 5.3. The fourth experiment, which is 

included in Section 5.4, then verifies the performances of the different hybrid models in the 

imbalanced dataset scenario. Finally, we also deploy the proposed model in a real-world 

application in order to detect sewer defects, which is described in Section 5.5.

5.1. Sewer fault classification on a balanced dataset

The model performance was evaluated in a balanced dataset setting and compared with the 

previous sewer defect detection models. From the augmented dataset, 56,000 images were 

selected randomly, which include 7000 images per class. The dataset was then separated into 

two parts that included the training sets, which contained 90% of the dataset or 50,400 images, 

and the remaining 10% of the dataset, which was used as the testing sets and contained 5600 

images. The training dataset is further divided into two subsets that include the training subset, 

which contains 75% of the training dataset, and the validation subset, which contains 25% of 

the training dataset. The deep learning model was built and trained on Keras, which is a Python-

based high-level open-source deep learning API. Adam optimization is used as the main 

optimization function in the model. At first, we set the learning rate equal to 0.001, and it is 

slowly minimized to 0.0001 depending on the validation error. The system was trained with 50 

epochs and a batch size of 64. The total training time lasted for 1 hour 10 minutes. Fig. 9 

presents the accuracy and loss of training and validation processes. The training accuracy and 

validation accuracy rise remarkably to above 90%, but the training loss and validation loss 

declines notably to below 0.25 after epoch 20. The accuracy and loss continue to improve 

gradually and become stable before stopping at 97.6% for the validation accuracy and 0.024 

for validation loss at epoch 49th. 



Figure 9. Training and validation results of the sewer defect classification framework. 

Next, the model performance on the testing dataset that contains a total of 6300 images for 

eight classes, which include 700 images per class, was described in the confusion matrix in 

Table 2. The obtained accuracy demonstrates the robustness of the model, which could detect 

7 classes of defects and the normal class with an average accuracy of 97.6%.
Table 2. Confusion matrix for the defect classification results on the testing set. 

Note. Abbreviations for the table include crack (CC), debris silty (DS), faulty joint (FJ), open joint (OJ), 
protruding lateral (PL), surface damage (SD), broken pipe (BP), normal (NO), and accuracy (ACC).
Class CC DS FJ OJ PL SD BP NO ACC (%)
CC 666 0 0 7 0 15 6 6 95.1

DS 0 684 3 5 2 0 1 5 97.7

FJ 11 1 658 23 0 0 5 2 94

OJ 5 3 8 674 0 2 0 8 96.2

PL 0 11 8 2 673 3 2 1 96.1

SD 17 0 25 0 1 652 0 5 93.1

BP 4 13 0 3 0 1 677 2 96.7

NO 5 3 6 3 0 2 1 680 97.1

The proposed framework was also compared with two previous deep learning-based defect 

classification models. The customized model proposed by Kumar et al. classifies whether an 

input sewer image is normal or contains defects [29]. It contains two convolutional layers with 

ELU activation and two fully connected layers. On the other hand, Perez et al. applied a pre-

trained VGG-16 model in order to classify four types of sewer defects, which included mold, 

stains, deterioration, and normal [16]. These two models were implemented using the detailed 

description from the papers. The hyper-parameters were set similar to the settings of [16, 29]  



except for the final Softmax layer was reconfigured to 8 for the performance comparison on 

the proposed sewer defect dataset. A performance comparison between the three approaches to 

the testing set is revealed in Table 3.
Table 3. The experimental results of the three different models on the collected sewer defect dataset.

Model Input size Number of 
convolutional layers

Testing 
time/image Accuracy (%)

Fine-tuned model (224, 224, 3) 19 0.15 97.6
Kumar et al. [1] (256, 256, 3) 2 0.057 85.4
Perez et al. [2] (224, 224, 3) 13 0.094 95.2

The fine-tune VGG-19 model yields the highest accuracy at 97.6%, whereas the model 

proposed by Perez achieves a 95.2% accuracy. Finally, the two convolutional layers’ structure 

introduced by Kumar obtained the lowest accuracy of 85.4%. The results prove that the deeper 

the model, the better performance it gets.

5.2. Model robustness evaluation

In this section, we examine the proposed defect identification method robustness by applying 

several attacks, which include adding noise, cropping, and rotating. Fig. 10(a) displays an input 

protruding lateral (PL) defect, which was correctly predicted by the model as the PL with the 

confidence of 1. In Fig. 10(b) and Fig. 10(e), the major parts of the defect are obstructed, and the 

images are then fed into the proposed system. These two inputs were still predicted as the PL 

with an accuracy of 98.48% and 99.95%, respectively. Different types of noise were added to 

Fig. 10(c) and Fig. 10(f), but the model predicted them as the PL with a high accuracy of over 

95%. In the last scenario, which is described in Fig. 10(d), the defect region was blocked and fed 

into the proposed framework. The model accurately predicted it as the normal class with the 

accuracy of the PL class being only 20.17%. Based on these results, the proposed method proved 

that it detected the defects under varying conditions despite the noisy images, which can occur 

in the real surveillance videos.



Figure 10. The impact of noise on the classification results of the proposed sewer defect detection model for the 
protruding lateral (PL) defect. 

Note. Images a, b, c, e, and f are correctly predicted as the PL, while the image d is predicted as not PL.

In Fig. 11, we investigated the model performance against challenging cases where the PL 

image is injected into other images, which makes it more challenging for sewer defect detection. 

Fig. 11(a) and Fig. 11(c) show the image's prediction inside the pipe where the PL image is being 

injected into different locations. Both of them are predicted as the PL with an accuracy of 96.83% 

and 100%, respectively. Fig. 11(b) and Fig. 11 (d) show the image's prediction outside the pipe 

where the PL image is being injected into different locations. Both of them are predicted as the 

PL with an accuracy of 73.21% and 85.83%, respectively. The outputs from the proposed model 

were the PL despite the small defect sizes, which shows the robustness of the defect classification 

model.



Figure 11.  The experimental results of the proposed sewer defect detection model on challenging cases.

Fig. 12 shows the impact of different types of rotations on the model’s performance. The 

model accurately predicted the defect class with an overall accuracy of over 90%, which is 

helpful to the CCTV-based sewer defect detection framework.



Figure 12.  The experimental results of the proposed sewer defect detection model on the rotation cases.

5.3. Explainable AI for the proposed model

In this section, three different visualization methods, which include layer activation and 

CAM [8], show how the model identifies and recognizes a class. These methods were 

implemented using the Keras-vis library [11], which is a high-level toolkit that is used in order 

to explain the trained model.   

5.3.1. Layer activation visualization

The intermediate activations are useful to gain an understanding of how successive layers 

transform their input. Thus, the intermediate activations of the CNN were visualized in this 

section in order to show how the model managed to learn specific abstract features, such as 

shape, edge, and color from an image through several convolutional layers. Intermediate 

activations can be displayed by visualizing the feature maps from a specific convolutional 

layer. Each feature map is dedicated to different types of features, so the most appropriate 

approach to represent them is by separately displaying the content of each feature map as a 2D 

image. Fig. 13 shows the visualization of the intermediate activations for the first and the last 

convolutional layer for the input open joint image. The intermediate activations from the first 

layer still retain the full shape of the input, which focuses on the input image's outer border, 



and most of the information from the input image is maintained. However, more abstract 

features, such as single borders, corners, color, and angles, are learned when the model gets 

deeper. Therefore, the activation layer visualization becomes less visually interpretable.

Figure 13. Visualization of 64 intermediate activations belongs to the first convolutional layer (convolution_1) 
of the proposed model. 

5.3.2. Class activation maps (CAM)

CAM allows humans to monitor the essential regions in the image relevant by projecting 

the class-specific weights of the Softmax layer back to the feature maps from the last 

convolutional layer. Fig. 14 shows that defect regions for a specific type of defect are accurately 

highlighted in the corresponding CAM image. As a result, the proposed model shows that it 

correctly classifies the sewer defect images, which is based on detecting the defect regions.



Figure 14. CAM visualization for eight different classes of the collected dataset. 
Note. The left image shows the original image, whereas the corresponding CAM image depicts the CAM for the 

input.

5.4. Defect classification on various imbalanced dataset settings

In this section, two classes, which include crack and normal, were selected to perform the 

imbalanced experiments. Based on the original images from these two classes (crack: 2380 and 

normal: 13,934), various data ratios from balance (1:1) to severely imbalance (1:100) were set 

in Table 4.
Table 4. Number of images for the crack class (CC) and the normal class (NO) with different balancing 

ratios.
1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10 1:100

CC 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 130
NO 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 13,000



Two different approaches were implemented to cope with the IDP. The data ratio between 

the different classes is used to set the corresponding weight for each class before the model is 

trained using the cost-sensitive learning method. Every image that belongs to the minor class 

is regarded as n, which is customizable, images in the majority class. As a result, the model is 

compelled to handle the imbalanced classes and balanced classes evenly. On the other hand, 

the ensemble learning-based approach contains two main parts, which include feature 

extraction and ensemble learning. The fine-tuned VGG-19 model is turned into a feature 

extractor in the feature extraction part by removing the final Softmax classifier. 4096 feature 

vectors extracted from the first part are then used to train the XGBoost / LightGBM classifier 

of the second part. Fig. 15 presents the AUC values of the four different models, which include 

the proposed model, the cost-sensitive learning-based model (CS), the XGBoost model (XGB), 

and the LightGBM model (LGB) on various data ratios.

Figure 15. AUC values of four different methods using the introduced imbalanced dataset.
Note. The ratio of crack images (CC) is minor compared to the number of normal images (NO) (CC/NO=1/100, 

1/10, 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, and 1/1).

There is a small difference between the AUC values of the four models when the data ratio 

is equal to 1/1 and 1/2. However, the fine-tuned VGG model's AUC value decreases 

significantly when the imbalanced data becomes more severe and reaches 0.67 when the 

balancing factor is 1/100. Moreover, the three approaches, which are based on the proposed 

model effectively deal with the IDP even under severely imbalanced data. The XGB model 

obtains the highest AUC value of 0.94, LGB achieves a slightly lower AUC value of 0.92, and 

CS gets the lowest AUC value of 0.82 when the data ratio is 1/100. Overall, the LGB and XGB 

show more robust performance in terms of the AUC value under different data ratio settings 



compare to the CS model and the fine-tuned VGG model.  In addition, the LGB model's AUC 

value is better than the XGB model in most cases when the imbalanced ratio gets higher.

5.5. Evaluation of the report generation module

This section attempts to investigate the performance of the report generation module by 

comparing the model predictions with the ground truth defect reports, which are created 

manually by the ETRI. The manually generated report is generated by inspectors who assess a 

sewer video in order to investigate defects that appear, classify them into a specific type, and 

finally put them in the report. A test sewer CCTV video that has not been utilized for the 

training process was selected in the first part. The video lasted for 10 minutes and 30 seconds. 

Table 5 compares the results of the proposed model and the ground truth. Overall, the model 

correctly classified most defects that are reported in the ground truth report with only one 

misclassified case, which involved the lateral protruding being misclassified as the broken pipe. 

The ground truth report (xxx.xx m) is different from the distance recognized by the text 

recognition module (xxx m), because the first three digits indicate the meters. In contrast, the 

last two are the more extract locations in centimeters.  
Table 5. The experimental results of the automated defect classification and location recognition compare with 

the ground truth data. 
Note. The red color indicates the wrong prediction.

Defect type Location#  Ground truth Prediction  Ground truth Prediction
1 Faulty joint Faulty joint 2.47m 2m
2 Faulty joint Faulty joint 10.51m 10m
3 Faulty joint Faulty joint 14.44m 14m
4 Protruding lateral Protruding lateral 15.63m 15m
5 Protruding lateral Protruding lateral 24.02m 24m
6 Protruding lateral Protruding lateral 26.78m 26m
7 Open joint Open joint 30.38m 30m
8 Protruding lateral Broken pipe 41.97m 41m
10 Faulty joint Faulty joint 42.50m 42m
11 Surface damage Surface damage 43.61m 43m

Fig. 16 shows the generated sewer report that contains the defect image, the defect type, 

and the location. Moreover, next to the defect type is the current time of the video when the 

defect occurred. In the second part, twelve sewer CCTV videos and their corresponding reports 

were selected randomly in order to verify the proposed defect classification system. 



Figure 16. A sample of the sewer inspection report generated by the proposed model. 
Note. The red dotted box indicates the wrong prediction, where the lateral protruding image was predicted as 

pipe broken class.

Fig. 17 supplies the classification performance of the system compare with the manually 

generated report. Overall, 85 defects were automatically extracted from 12 videos out of 83 

defects in the manual report, and our proposed system correctly classified 81 defects. The 

overall classification accuracy recorded on the twelve videos is 95.3%, which indicates 81/85 

defects are correctly classified.
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Figure 17. The number of defects detected by the proposed system (prediction) compared to the manually 
generated ground truth report for twelve random CCTV videos.



6. Conclusion

This paper proposes a deep learning-based automated sewer defect classification 

framework for the collected images by CCTV videos. In addition, a huge sewer defect dataset, 

which contains about 38,386 images for the seven defect classes and one normal class, is 

introduced along with the deep learning model. We also addressed the IDP by applying three 

methods, which include XGBoost, LightGBM, and misclassification cost customization, to the 

proposed CNN model. 

The experimental results demonstrated that the proposed network could efficiently classify 

the sewer pipe defects and provide in-depth information for the detected defects by recognizing 

the subtitles that were printed on the video frames, which include the location, diameter, and 

type. The proposed method proved to achieve a better defect classification performance than 

the previous learning-based methods through various experiments with the highest recorded 

accuracy of 95.7% on the testing set. In addition, the LightGBM extension showed a robust 

performance in solving the IDP even with the most extreme imbalanced case (1/100). Finally, 

a novel frame reduction algorithm is implemented based on recognizing the robot travel 

distance subtitle in order to reduce the number of frames to be processed. The experimental 

results showed that the model detected various defects precisely with low false alarm rates and 

robust against several types of attacks, such as noise, rotation, injection, which is appropriate 

to be integrated into the sewer defect detection applications that use the CCTV videos. 

Moreover, several XAI approaches were implemented to interpret and explain the proposed 

model's predictions in order to improve the user's trust and demonstrate that it was possible to 

apply the proposed model to real-life applications.

However, the system failed to recognize an image with over two types of defects, because 

it can only recognize the defect with the highest probability. Therefore, a meta-heuristic 

learner, such as particle swarm optimization (PSO), can be used in the future to train a tailored 

loss function in a separate layer and independently return the output to enable it to perform 

defect classification on images that contain more than one type of defect. Another possible 

solution is to customize the cut-off probability for the multi-classes case. The system can also 

be extended to perform real-time defect detection and classification on live-streaming CCTV 

videos that are recorded by a robot, which can provide more precise investigations and support 

inspectors during the decision-making process.



Acknowledgment

This work was supported by a grant from the project entitled, “Underground Space DB Accuracy 

Improvement and Underground Utilities Safe Management Technology“, which was funded by Korea 

Institute of Civil Engineering and Building Technology (KICT) and by  Basic Science Research 

Program through the National Research Foundation of Korea (NRF) funded by the Ministry of 

Education (2020R1A6A1A03038540).

References

[1] J. C. Cheng and M. Wang, "Automated detection of sewer pipe defects in closed-circuit 
television images using deep learning techniques," Automation in Construction, vol. 95, pp. 155-171, 
2018.
[2] S. I. Hassan, L. M. Dang, I. Mehmood, S. Im, C. Choi, J. Kang, et al., "Underground sewer 
pipe condition assessment based on convolutional neural networks," Automation in Construction, vol. 
106, p. 102849, 2019.
[3] J. Gibson and F. Rioja, "Public infrastructure maintenance and the distribution of wealth," 
Economic Inquiry, vol. 55, pp. 175-186, 2017.
[4] D. Meijer, L. Scholten, F. Clemens, and A. Knobbe, "A defect classification methodology for 
sewer image sets with convolutional neural networks," Automation in Construction, vol. 104, pp. 281-
298, 2019.
[5] Q. Xie, D. Li, J. Xu, Z. Yu, and J. Wang, "Automatic detection and classification of sewer 
defects via hierarchical deep learning," IEEE Transactions on Automation Science and Engineering, 
vol. 16, pp. 1836-1847, 2019.
[6] J. B. Haurum and T. B. Moeslund, "A Survey on Image-Based Automation of CCTV and 
SSET Sewer Inspections," Automation in Construction, vol. 111, p. 103061, 2020.
[7] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, "Learning from 
class-imbalanced data: Review of methods and applications," Expert Systems with Applications, vol. 
73, pp. 220-239, 2017.
[8] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri, "Cost-sensitive learning 
of deep feature representations from imbalanced data," IEEE transactions on neural networks and 
learning systems, vol. 29, pp. 3573-3587, 2017.
[9] L. M. Dang, K. Min, S. Lee, D. Han, and H. Moon, "Tampered and Computer-Generated 
Face Images Identification Based on Deep Learning," Applied Sciences, vol. 10, p. 505, 2020.
[10] T. N. Nguyen, H. Nguyen-Xuan, and J. Lee, "A novel data-driven nonlinear solver for solid 
mechanics using time series forecasting," Finite Elements in Analysis and Design, vol. 171, p. 
103377, 2020.
[11] L. M. Dang, S. I. Hassan, S. Im, I. Mehmood, and H. Moon, "Utilizing text recognition for 
the defects extraction in sewers CCTV inspection videos," Computers in Industry, vol. 99, pp. 96-109, 
2018.
[12] W. Guo, L. Soibelman, and J. Garrett Jr, "Visual pattern recognition supporting defect 
reporting and condition assessment of wastewater collection systems," Journal of computing in civil 
engineering, vol. 23, pp. 160-169, 2009.



[13] J. Myrans, R. Everson, and Z. Kapelan, "Automated detection of faults in sewers using CCTV 
image sequences," Automation in Construction, vol. 95, pp. 64-71, 2018.
[14] X. Ye, R. Li, Y. Wang, L. Gan, Z. Yu, and X. Hu, "Diagnosis of sewer pipe defects on image 
recognition of multi-features and support vector machine in a southern Chinese city," Frontiers of 
Environmental Science & Engineering, vol. 13, p. 17, 2019.
[15] X. Fang, W. Guo, Q. Li, J. Zhu, Z. Chen, J. Yu, et al., "Sewer Pipeline Fault Identification 
Using Anomaly Detection Algorithms on Video Sequences," IEEE Access, vol. 8, pp. 39574-39586, 
2020.
[16] H. Perez, J. H. Tah, and A. Mosavi, "Deep learning for detecting building defects using 
convolutional neural networks," Sensors, vol. 19, p. 3556, 2019.
[17] B. Krawczyk, "Learning from imbalanced data: open challenges and future directions," 
Progress in Artificial Intelligence, vol. 5, pp. 221-232, 2016.
[18] B. Wang and J. Pineau, "Online bagging and boosting for imbalanced data streams," IEEE 
Transactions on Knowledge and Data Engineering, vol. 28, pp. 3353-3366, 2016.
[19] H. Wang, Y. Li, L. M. Dang, J. Ko, D. Han, and H. Moon, "Smartphone-based bulky waste 
classification using convolutional neural networks," Multimedia Tools and Applications, vol. 79, pp. 
29411-29431, 2020.
[20] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 
22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-
794.
[21] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., "Lightgbm: A highly efficient 
gradient boosting decision tree," in Advances in neural information processing systems, 2017, pp. 
3146-3154.
[22] L. M. Dang, S. I. Hassan, S. Im, and H. Moon, "Face image manipulation detection based on 
a convolutional neural network," Expert Systems with Applications, vol. 129, pp. 156-168, 2019.
[23] Z. Papanastasopoulos, R. K. Samala, H.-P. Chan, L. Hadjiiski, C. Paramagul, M. A. Helvie, et 
al., "Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen 
receptor status from breast MRI," in Medical Imaging 2020: Computer-Aided Diagnosis, 2020, p. 
113140Z.
[24] H. Hagras, "Toward human-understandable, explainable AI," Computer, vol. 51, pp. 28-36, 
2018.
[25] A. Deeks, "The Judicial Demand for Explainable Artificial Intelligence," Columbia Law 
Review, vol. 119, pp. 1829-1850, 2019.
[26] Tsai, Du-Ming, and Chien-Ta Lin. "Fast normalized cross correlation for defect detection." 
Pattern Recognition Letters 24.15 (2003): 2625-2631.
[27] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, "Going deeper in spiking neural networks: 
Vgg and residual architectures," Frontiers in neuroscience, vol. 13, 2019.
[28] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image 
recognition," arXiv preprint arXiv:1409.1556, 2014.
[29] S. S. Kumar, D. M. Abraham, M. R. Jahanshahi, T. Iseley, and J. Starr, "Automated defect 
classification in sewer closed circuit television inspections using deep convolutional neural networks," 
Automation in Construction, vol. 91, pp. 273-283, 2018.




