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a b s t r a c t   

Automatic crack detection plays an essential role in ensuring the safe operation of tunnels, which is also 
challenging work in reality. In this paper, an innovative framework, which combines the weakly supervised 
learning methods (WSL) and the fully supervised learning methods (FSL), is presented to detect and seg-
ment the cracks in the tunnel images. Firstly, a WSL-based segmentation network Crack-CAM is proposed to 
annotate the collected data instead of using the traditional manual annotation process. By applying the 
proposed E-Res2Net101 structure and tuning some hyper-parameters, an FSL-based method named 
DeepLabv3+ is optimized to enhance the segmentation performance. After the crack segmentation, the risk 
levels of the detected cracks are judged using a new evaluation metric. In addition, the mean error of the 
lengths, the mean widths, and the areas are calculated for different types of cracks. A crack dataset in tunnel 
scenes that contain 3,921,726 sub-images that are cropped from 521 raw images is built to demonstrate the 
effectiveness of the presented methods. Based on the proposed dataset, the modified DeepLabv3+ achieves 
the highest MIoU of 0.786 and the best F1 of 0.865. Besides, the proposed framework combining WSL 
methods (automatic data annotation) and the FSL methods achieved a performance comparable to the 
framework that is based on manual annotation and the FSL methods, which demonstrates the WSL-based 
Crack-CAM can label images correctly. 

© 2021 Elsevier B.V. All rights reserved.    

1. Introduction 

In recent years, the number and the mileage of railway tunnels 
rapidly increased due to the large amount of traffic construction 
investment. At the same time, the cracks caused by improper con-
struction, materials, and maintenance are also followed, which ser-
iously affects the service function and service life of the tunnel. In a 
tunnel project, it is very momentous to detect and evaluate the 
surface cracks of tunnels over time. However, the traditional crack 
detection methods rely on manual inspections, which wastes a lot of 
human resources and time. Therefore, an effective crack segmenta-
tion system is urgently needed to overcome these shortcomings. 

Due to the advantages of high efficiency and convenience, image 
processing technologies have been used more frequently to detect 
segmentation defects and cracks (Dang et al. 2018; Dorafshan et al., 
2018; Li et al. 2021; Su et al. 2011). However, the tunnel surface is 
different from the general concrete pavement and building, and 

there is usually insufficient light intensity, low contrast, complex 
background texture, and more noise. These confounding factors on 
the tunnel images often lead to the traditional image processing 
technology not achieving the desired result. Some methods that are 
based on deep learning (DL) have recently made significant progress 
in computer vision-related tasks. The DL-based defect and crack 
segmentation application is mainly divided into two research 
methods: fully supervised learning method (FSL) (Liu et al. 2019; Ren 
et al. 2020; Song et al. 2019) and the weakly supervised learning 
method (WSL) (Chen et al. 2020; Dong et al. 2020; Zhu and Song 
2020). Compared with the WSL method, the FSL method has a better 
segmentation effect, but it needs to spend much time with the 
process of labeling data. In this study, the WSL and the FSL methods 
are combined to segment the cracks, and the damage degrees of the 
detected cracks are evaluated using image post-processing. 

The main contributions of this study are listed below.  

• A novel network that is based on the WSL method is presented to 
annotate the dataset, which economizes the time and the cost of 
human power. 

https://doi.org/10.1016/j.compind.2021.103545 
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• A crack segmentation model based on the FSL methods is opti-
mized to enhance the final segmentation accuracy.  

• A crack dataset in tunnel scenes is established to assess the 
proposed crack inspection system.  

• Finally, a risk assessment metric is introduced to evaluate the 
damaged condition of the detected cracks by length and mean 
width. 

The rest of the paper is arranged as follows. Section 2 lists some 
recent studies from three distinct research methods. The detailed 
information of the established data is described in Section 3. Section 
4 shows the proposed crack segmentation framework. In Section 4, 
some experiments are conducted to demonstrate the proposed 
methodology, and the advantages and the disadvantages are dis-
cussed in Section 5. 

2. Related work 

Some researchers have presently developed various defect seg-
mentation applications that are based on image processing methods. 
For example, morphological segmentation based on edge detection 
(MSED) was proposed and compared with the opening top-hat op-
eration (OTHO) method. The result suggests the MSED can obtain a 
better performance than the OTHO (Su et al. 2011). Six distinct 
methods based on edge detection were trained and tested using the 
same dataset, and experimental results show they can correctly lo-
calize most of the cracked pixels. Nevertheless, these methods 
generated negative noise in the output images. In particular, the 
methods based on edge detection have poor effectiveness in seg-
menting low-contrast images (Dorafshan et al., 2018). 

Recently, the FSL-based image segmentation has been im-
plemented in various fields especially in tunnel defect diagnosis 
systems. An automatic crack inspection framework, which is based 
on an improved DeepLabv3, was proposed to predict the crack 
segmentation on the tunnel images. Even though the presented 
method obtained a fast speed of 23 frames per second (FPS), the 
segmentation accuracy was affected by a small dataset (Song et al. 
2019). In contrast, a network named DeepCrack was used for seg-
ment crack by learning the features from multiple levels. The net-
work achieved a good Mean Intersection over Union (MIoU) of 85.9%, 
but the segmentation speed was slow (10fps) (Liu et al. 2019). In 
another study, U-CliqueNet was proposed to separate the crack 
sections from the input tunnel images. According to the comparison 
results, the performance of the presented network was higher than 
that of the other experimental networks in terms of the MIoU. 
However, the dataset used in this study only focuses on one type of 
crack (Li et al. 2020). 

Elaborating annotation documents for various defects is time- 
intensive, and the weakly supervised learning methods were pre-
sented to tackle this problem. Zhu et al. detected and segmented the 
six classes of cracks under complex backgrounds using a weakly 
supervised network (Zhu and Song 2020). However, the main focus 
of this study was to compare the visual effects of the different net-
works, so a detailed analysis of the evaluation metrics for the seg-
mentation was not reported. Chen et al. presented a defect 
segmentation system based on the weakly supervised learning 

approach (Chen et al. 2020). The accuracy was improved using the 
proposed method for both the classification and the segmentation 
tasks, but the time in the localization process should be further re-
duced. A patch-based weakly supervised crack segmentation 
method was introduced to alleviate the time-consuming problem 
caused by the fully supervised methods (Dong et al. 2020). Different 
from their work, a new network structure was presented as the 
backbone of the WSL method, and a K-Means clustering algorithm 
was added to provide more feature information for enriching the 
target area in CAM. In addition, we applied different algorithms 
(dense Conditional Random Field and random walk algorithm) in 
order to refine the generated synthetic label. In another work, a 
crack detection model based on the weakly supervised method was 
used to reduce the workload of the manual labelling process 
(Xu et al. 2020). The proposed network without pre-training achieved 
comparable results compared with the fully supervised networks, and 
the required size of the training samples was very small. However, the 
defect edge in the output image was not very clear. 

In order to further assess the risk level of the detected cracks, 
some researchers have attempted to calculate the lengths and the 
widths of cracks. Xincong Yang et al. presented an approach for 
cracks morphological measurement to obtain the crack width, 
length, and topology (Yang et al. 2018). It has been verified that the 
measurement is effective for common cracks, but it has a limited 
performance on complex cracks. Similarly, crack skeleton extraction 
was used to obtain the length and the width of cracks, and the re-
sults show the predicted crack almost matches with the real cracks 
(Li et al. 2020). Even though the crack length and the width were 
predicted accurately in (Li et al. 2020; Yang et al. 2018), the corre-
sponding risk level of each crack was not reported. 

By reviewing previous works on the crack segmentation topic, 
the main research methods are separated into three categories, in-
cluding conventional edge detection-based methods, the FSL-based 
methods, and the WSL-based methods. As mentioned above, the 
traditional methods that use the edge detection schemes have noise 
that exists in the output images. The FSL methods are limited to 
the time-consuming labelling process. The WSL methods cannot 
achieve a higher accuracy than the FSL methods. Therefore, a WSL 
approach is used to elaborate the annotation data in this research, 
and a fully supervised network is then used for crack segmentation 
to enhance the segmentation effect. Finally, the corresponding risk 
level for each segmented crack is evaluated by calculating some 
parameters of the cracks. 

3. Proposed dataset 

In this research, the data is acquired using a deep scanner truck 
with high-resolution night cameras and LED lights. The collected 
raw images after image stitching have variant resolutions, which 
range from 12, 614*2, 922 to 34, 473*2, 956. To better fit a neural 
network, a total of 521 tunnel images are cut into 3,921,726 sub- 
images of 224*224 with a step length of 100. After cutting the 
images, the obtained sub-images are manually validated, and the 
detailed information is described in Table 1. There are 75,623 sub- 
images with cracks among all of the cropped images, and the data is 
collected from four distinct tunnel locations (Bongsan, Deugseong, 

Table 1 
Detailed information of the proposed dataset from four different locations.        

Location Original image GT-mask image Sub-image with crack Sub-mask with crack Sub-image without crack  

Bongsan 168 168 34,362 34,362 5,000 
Deugseong 150 150 26,965 26,965 5,000 
Gamcheon 112 112 6,405 6,405 5,000 
Hwasan 84 84 7,891 7,891 5,000 
Total images 514 514 75,623 75,623 20,000    
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Gamcheon, and Hwasan) in Korea. In addition, the corresponding 
mask images with the same amounts are considered as the Ground 
Truths (GTs) in this study, which is manually labeled by the experts 
from Deep Inspection Co., Ltd. The labelling tool was developed by 
using Python and PyQt5. 

To make it clear, all mask images (synthetic label) generated by 
WSL methods are represented as ‘mask image’, and all mask images 
(manual label) annotated by humans are expressed as ‘GT-mask 
image’. In WSL stage, the original images are used to generate mask 
images. In FSL stage, GT-mask images and original images are used in 
the framework that is based on manual data annotation and FSL 
methods. Mask images and original images are used in the frame-
work that combines WSL methods (automatic annotation) and FSL 
methods. 

Due to the complicated background of the tunnel images, the 
existing automatic crack inspection systems based on RGB images 
have a limited performance on the crack detection and segmenta-
tion. Fig. 1 shows the original image, the corresponding GT-mask 
image, some sample images from the cropped sub-images, the cor-
responding sub-mask images, and common noise factors. In this 
study, the detected cracks mainly contain three classes: horizontal 
cracks, vertical cracks, and intersecting cracks. In addition, the four 
common noise factors (desquamation, tiles, efflorescence, and wall 
joints) occur in the collected tunnel images, which makes it difficult 
to detect and recognize the cracks. Desquamation indicates the 
peeling off of paint from the surface of the wall, and efflorescence 
refers to a change of the wall’s surface after long-term exposure. 

4. Proposed method 

4.1. Overview of the proposed framework 

In this section, a diagram of the proposed framework is illu-
strated. As presented in Fig. 2, the proposed crack segmentation and 
the assessment system mainly contain three phases. Firstly, a model 

that combines the WSL method and the self-supervised learning 
(SSL) method is proposed to obtain the class activation map (CAM). 
Also, the dense Conditional Random Field (dCRF) and the random 
walk algorithm (RW) are used to generate the annotation images 
based on the acquired CAM (see more details in Section 4.2). Next, a 
fine-tuned crack segmentation model based on the FSL method is 
used to train and evaluate the generated data from the first phase.  
Section 4.3 gives detailed information about the FSL-based crack 
segmentation model. Finally, a new metric for risk level judgment is 
used to classify each crack according to the damage severity in the 
crack risk assessment phase, which is illustrated in Section 4.4. 

4.2. Weakly supervised semantic segmentation 

Since the WSL-based segmentation network can omit the time- 
consuming manual annotation process and obtain a synthetic label 
through the CAM (Božič, Tabernik, and Skočaj 2021), it is used to 
generate the pixel-level mask to train the fully supervised semantic 
segmentation network in this framework. The overall structure of 
the weakly supervised segmentation network (Crack-CAM) is shown 
in Fig. 2 (Section 4.1). Firstly, a proposed feature extraction network 
named E-Res2Net101 is trained to generate the CAM, where the 
input of the network is original sub-images and the corresponding 
image-level annotation files. Based on the predicted value of each 
pixel, CAM is transformed into a pixel-level mask. During the 
transformation process, an RW algorithm is used to refine the mask 
image, and the dCRF then completes further refinement to obtain 
the final target area (Ahn and Kwak 2018; Krähenbühl and Koltun 
2012). It is difficult to obtain a complete response map only based on 
the weak supervised semantic segmentation network, because the 
WSL-based network only detects the discriminative features in the 
image as opposed to the features of the whole target. To obtain a 
complete response map, we refer to the idea of combining the SSL 
method and the WSL method in the SC-CAM algorithm (Chang et al. 
2020). A K-means clustering algorithm is used to provide more 

Fig. 1. Sample images (original images, GT-mask images, sub-images, and sub-mask images) and the confounding factors in the tunnel images.  
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detailed features for the proposed weak supervised segmentation 
network. In addition, the multi-label soft margin loss function 
(Lapin, Hein, and Schiele 2017) was used in the proposed Crack-CAM. 

In the proposed framework, the segmentation performance of 
the Crack-CAM is mainly affected by the main classifier. The 
Res2Net101 has a deep and wide model architecture as a classifi-
cation network, and it is good at extracting fine-grained features in a 
weakly supervised segmentation method. Based on Res2Net101 
(Gao et al. 2019), an enhanced Res2Net101 (E-Res2Net101) is pro-
posed to enhance the feature extraction ability and expand the 
width of the Crack-CAM model. As shown in Fig. 3(a) and Fig. 3(b), 
compared with the Res2Net101, the E-Res2Net101 can connect more 

small residual blocks to expand the receptive field of the network to 
obtain more fine-grained features. Furthermore, the activation 
function in the network is replaced by the Mish instead of the ReLU, 
because the Mish function has better training stability and accuracy 
(Misra 2019). After each convolution operation, the feature maps 
first go through the activation layer, and then perform the normal-
ization operation (Chen et al. 2019; Dang et al. 2021). In addition, the 
pooling layer and the activation layer are added to the shortcut 
structure of the E-Res2Net101 network to obtain more effective 
features, as shown in Fig. 3(c). 

Moreover, the RW algorithm and the dCRF algorithm are neces-
sary for the final performance of the Crack-CAM model. The specific 

Fig. 2. A diagram of the proposed system, including the data annotation process, the crack segmentation process, and the risk assessment process. The CAM represents the class 
activation map, the dCRF is the dense Conditional Random Field algorithm, and the RW is the random walk algorithm. 

Fig. 3. Network module structures: (a) the module in the Res2Net101, (b) the proposed module in E-Res2Net101, and (c) the Shortcut block of the E-Res2Net101. The BN 
represents a batch normalization layer, Conv means a convolutional layer, and Avgpool is an average pooling layer. 
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process is as follows. The Crack-CAM generates the CAM and the 
probability matrix based on the input image, and the RW algorithm 
can learn the semantic boundary information of the target region 
from the obtained probability matrix. Based on the learned 
boundary information, RW calculates the affinity of the adjacent 
features by using their L1 distance within certain radius circles (the 
radius was set 5 in this study) to generate the boundary transition 
probability matrix that is then multiplied by CAM. After several 
iterations, RW spreads the activation scores of CAM to adjacent areas 
to improve the quality of CAM. As a probability graph model, the 
dCRF extracts the pixel characteristics by adopting a unary potential 
function on each pixel, and the pairwise potential function was used 
to obtain the global information. After that, dCRF represents the 
correlation between the pixels. Furthermore, the dCRF prompts si-
milar pixels to be named the same label, whereas the pixels with 
large variances are allocated different labels. The dCRF evaluates the 
effects of all pixels on the current pixel, which includes color, shape, 
texture, and position information, so it can make the image divided 
as far as possible at the boundary. 

4.3. Fully supervised semantic segmentation 

To reach accurate pixel-level segmentation results, the mask 
images that are generated by the WSL method are sent to an FSL 
method along with the corresponding original image for the next 
round of training. The training of the FSL-based method is su-
pervised by the synthetic labels in the framework that combines the 
WSL and the FSL methods. However, the manually annotated labels 
are used to supervise the training process in the framework that are 
only based on the FSL methods. As a fully supervised segmentation 
model, the DeepLabv3+ (Chen et al. 2018) is fine-tuned and modified 
to obtain a better segmentation accuracy in this research. 

As shown in Fig. 4, the DeepLabv3+ consists of two modules: 
encoder and decoder. The proposed E-Res2Net101 structure with 
atrous convolution is applied to the DeepLabv3+ encoder module as 
a backbone to extract the useful features. The advantage of atrous 
convolution is that it can control the size of the receptive field 
through the dilation rate parameter without changing the size of the 
feature maps compared to normal convolution. The larger the dila-
tion rate is set, the larger the receptive field. The features from the E- 
Res2Net101 are separated into high-level and low-level features. The 
high-level features are inputted into the Atrous Spatial Pyramid 
Pooling (ASPP) module and the decoder module. The ASPP module 
adopts the atrous convolutional layers with different dilation rates to 
extract and fuse the multi-scale features. After fusing the features, 
the feature maps are pooled and inputted into the decoder. An extra 
convolutional layer is added to process the high-level features and 
merge the features from the ASPP module to improve the feature 

utilization and obtain more boundary features. The low-level fea-
tures are directly sent to the decoder module, and they are combined 
with other features to provide more details for the final segmenta-
tion. Besides, the modified DeepLabv3+ model uses the cross-en-
tropy (Dong et al. 2021) to calculate loss in the training stage. 

In addition, some hyper parameters of the model are adjusted to 
improve the performance on the proposed tunnel dataset. In the 
fine-tuning process, two common optimizers (SGD and Adam) and 
initial learning rates (0.001 and 0.0001) are tested and compared. 
Moreover, image enhancement methods such as cutout, random 
jitter (contrast, brightness, and saturation) are added to improve the 
generalization ability of the model. 

4.4. Risk assessment 

In the crack risk assessment phase, the area, length, and width of 
the crack are obtained using the skeleton extraction method (Li et al. 
2020). Next, the corresponding risk level is evaluated using a cus-
tomized evaluation method. The segmentation area can be easily 
calculated by the total pixels in the predicted image. Based on ske-
letonized cracks, the length (L) can be calculated by adding all the 
pixels of a single-pixel wide crack. Since the width of each crack is 
uneven, the mean width (W ) is calculated according to the length 
and the area, which is shown in Eq. (1). 

=W
Total Number of detected pixels

L (1)  

In addition, a crack damage severity for risk level judgment can 
be obtained as follows. 

= × + ×
>

R W L
if R high

if R low
(1 ) ,

60,
60, (2) 

where R represents the risk level, and there are two levels (high and 
low) in this study. The width parameter is extremely important for 
the damage severity of the cracks, and the influence of the length 
parameters cannot be ignored. Considering the different effects on 
the crack risk, the weight coefficients of the width and the length are 
set to and 1 . The threshold is empirically set to 60 by observing 
the cracks with different damage severities.In this study, the mor-
phological features of the predicted image are obtained and com-
pared with the morphological features of the ground truth. The 
mean error (ME) between the prediction and the ground truth can 
be obtained by using the equation below. 

= =ME
F F

n

| |i
n

G P1 i i

(3) 

where F represents three morphological features, including length, 
the mean width, and the area. FGi represents the features of the 
ground truth, and FPi represents the features of the prediction. n is 
the total number of cracks. The skeleton extraction algorithm per-
forms well on the proposed dataset. The minimum mean error be-
tween the predictions and the GTs is obtained from the horizontal 
cracks by testing the model with different types of images. 

5. Experimental results 

In this research, all the experiments were performed using a 
Linux machine that is pre-installed with Ubuntu 18.04. It is equipped 
with four Tesla V100 PCle 32 GB GPUs, an Intel® Xeon® E5-2698 v4 
processor, and 256 GB of DDR4 RAM. Section 5.1 illustrates the ef-
fectiveness of the proposed automatic pixel-level annotation net-
work based on WSL methods. Then, Section 5.2 explains how the 
FSL-based segmentation model is optimized and fine-tuned. After 
that, some state-of-the-art (SOTA) approaches are evaluated and 

Fig. 4. The overall encoder-decoder structure of the modified DeepLabv3+, including 
the proposed E-Res2Net101 with atrous convolution and the ASPP module. Conv re-
presents a convolutional layer, and rate is a dilation rate parameter. 
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compared in Section 5.3. Finally, a novel metric is introduced to 
assess the risk level of each detected crack in Section 5.4. 

5.1. Evaluation protocols 

Some standard evaluation protocols for pixel-level segmentation 
are explained and applied to present a comprehensive assessment of 
the experimental methods, which are recommended by the re-
searchers in (Dong et al. 2020; Zhang et al. 2019). In this crack 
segmentation task, the performance is evaluated using Precision, 
Recall, F1, and the Mean Intersection over Union (MIoU), which are 
evaluated using the following equations. 

= =
+
TP

FP TP
Precision

# of correctly predicted pixels
all predictions (4)  

= =
+

Recall
of correctlty predicted pixels

all GTs
TP

FN TP
#

(5)  

=
+

= ×
× + +

F
Precision Recall

TP
TP FP FN

1
2

1/ 1/
2

2 (6)  

=
+ +

+
+ +

MIoU
TN

TN FN FP
TP

TP FP FN
/2

(7) 

where TP, TN, FP, and FN refer to True Positives, True Negatives, False 
Positives, and False Negatives. Besides, the symbol # represents the 
exact number of pixels. 

5.2. Weakly supervised semantic segmentation 

As mentioned in Section 4.2, both Res2Net101 and E-Res2Net101 
are crucial for the feature extraction process in WSL segmentation 
methods. The Res2net101 has a strong capability of multi-scale re-
presentation, and it can accurately locate the target area in class 
activation mapping (Gao et al. 2019). Besides, the E-Res2Net101 is 
proposed by modifying the model structure of Res2Net101. In order 
to compare the effect of two models on the performance of Crack- 
CAM, both Res2Net101 and E-Res2Net101 are trained on the same 
dataset and evaluated using various metrics. As shown in Table 2, the 
overall performance of Crack-CAM with E-Res2Net101 is better than 
the Crack-CAM without Res2Net101. In particular, the MIoU value of 
Crack-CAM with Res2Net101 is 0.34 higher than Crack-CAM without 
E-Res2Net101. 

In the proposed crack segmentation framework, an effective 
WSL-based network (Crack-CAM) is trained to generate the synthetic 
labels. The obtained labels and the corresponding original images 
are then sent to the FSL-based method for the next round of training. 
Thus, the quality of the generated labels is a vital factor in the whole 
process. Fig. 5 shows some results of the proposed Crack-CAM in 
different phases. The first line is some sub-images that are cropped 
from the original images, and the second line is the corresponding 
GT-mask images, which are used as the ground truth of the proposed 
dataset. The third line shows heatmaps from the CAM, and the ob-
tained labels by the dCRF are shown in the final line. As shown in  
Fig. 5, the proposed Crack-CAM method has a robust performance to 
locate the cracks with different structures and widths. Nevertheless, 
the edges of some segmented cracks in the final stage are not 
smooth. 

5.3. Fully supervised semantic segmentation 

In this study, the FSL-based segmentation method named 
DeepLabv3+ (Chen et al. 2018) was modified by applying the pro-
posed E-Res2Net101 structure. Also, the modified DeepLabv3+ was 
then fine-tuned by changing the different initial learning rates (lr) 
and optimizers. Fig. 6(a) represents the MIoU curves of DeepLabv3+ 
using the same initial learning rate (0.0001) and optimizer (SGD). 
The blue and orange lines depict the DeepLabv3+ before and after 
modification, respectively. The MIoU of the modified DeepLabv3+ is 
0.04 higher than that of the original DeepLabv3+. Moreover, the 
performances of the modified model under different hyper-para-
meter settings are recorded in Fig. 6(b) and Fig. 6(c). When the initial 
learning rate is 0.0001, the modified model with the Adam optimizer 
converges faster, but the obtained MIoU is lower than the model 
with the SGD optimizer. Besides, the MIoU metric of the modified 
model achieves the best value of 0.786 when the initial learning rate 
is 0.0001, and the optimizer is set to SGD. 

Moreover, the segmentation results of the modified DeepLabv3+ 
based on the FSL method are compared with the proposed Crack- 
CAM based on the WSL method in this section. As shown in Fig. 7, 
the first line is the sub-images that are cropped from the raw images, 
and the second line is the corresponding GT-mask images labeled by 
humans. The segmentation results of the proposed Crack-CAM and 
the modified DeepLabv3+ are in the third line and the fourth line, 
respectively. Even though the outputs of the Crack-CAM have some 
noise and the edge of cracks are not smooth, it can accurately locate 
the detected cracks. Besides, the output images from the FSL-based 
method have a better segmentation effect than the WSL-based 
Crack-CAM. 

There are various types of confounding factors in the collected 
tunnel images, such as desquamation, tiles, efflorescence, and wall 
joints. The proposed methods are performed on the challenging 
images with the mentioned noises to verify the robustness of the 
methods used in this study. Fig. 8 shows the original images with 
four kinds of noises, the corresponding GT-mask images, the outputs 
of the WSL method, and the outputs of the FSL method. According to 
the output images, the experimental methods can precisely locate 
and segment the cracks under different confounding factors. Espe-
cially, it is difficult to distinguish the wall joints with cracks due to 
the similar colors and shapes, but the proposed methods correctly 
segmented the cracks under the noise of the wall joint in the second 
column. In addition, the FSL method obtained better segmentation 
effects than the WSL method. 

5.4. Comparison with other methods 

In this section, the presented methods are compared with some 
existing SOTA approaches based on the elaborated database. There 
are five experimental methods, including SC-CAM (Chang et al. 
2020), U-Net (Ronneberger, Fischer, and Brox 2015), DeepLabv3+ 
(Chen et al. 2018), DeepCrack (Liu et al. 2019), DeepCrack (Zou et al. 
2018), Crack-CAM (proposed), and the modified DeepLabv3+. The 
performance of each method is evaluated using various metrics, 
which are shown in Table 3. In this study, the multi-label soft margin 
loss function (Lapin, Hein, and Schiele 2017) was used in the WSL 
models, and the cross-entropy loss function (Dong et al. 2021) was 
used for FSL methods. Compared with the other WSL methods, the 
proposed Crack-CAM obtained better performance from the aspects 
of segmentation accuracy (MIoU, F1, and loss) and computational 
complexity (training and testing time). In the experimental FSL 
methods, the MIoU value of the modified DeepLabv3+ is 0.057 
higher than that of the U-Net. However, the U-Net is 0.018 s faster 
than the modified DeepLabv3+ in terms of the segmentation speed. 
The FSL methods have a better performance compared with the WSL 
methods, but they require a complicated annotation process. Thus, 

Table 2 
Performance evaluation of the proposed Crack-CAM method based on the proposed 
dataset.       

Evaluation metrics MIoU Precision Recall F1  

Crack-CAM with Res2Net101 0.583 0.924 0.605 0.732 
Crack-CAM with E-Res2Net101 0.617 0.942 0.631 0.755    
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the proposed Crack-CAM is used for the data annotation in the first 
stage, and then FSL is used for the segmentation task in the proposed 
framework. Experimental results indicate the proposed framework 
combining the WSL method (automatic data annotation) and FSL 
method (crack segmentation) can obtain a performance that is 

comparable to the approach based on an FSL method and manual 
annotation. Besides, the proposed framework contains the time of 
data annotation, whereas the other methods only calculate the time 
of crack segmentation, so the time of the proposed framework 
cannot be compared with the other methods. 

Fig. 5. Output images of the proposed weakly supervised learning network (Crack-CAM) in different stages.  

Fig. 6. MIoU curves of the validation process for different models: (a) DeepLabv3+ and modified DeepLabv3+, (b) modified DeepLabv3+ using the same initial learning rate 
(0.0001) and different optimizers (Adam and SGD), and (c) modified DeepLabv3+ using the same initial learning rate (0. 001) and different optimizers (Adam and SGD). 
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In the crack segmentation process (FSL stage), our modified 
DeepLabv3+ model is evaluated on a publicly available CrackForest 
dataset (CFD) (Shi et al. 2016) that contains 118 crack images cap-
tured in the urban road scene. Table 4 shows the evaluation results 
of the presented algorithm in comparison to other recent studies 
that are considered to be SOTA in the context of the defect seg-
mentation literature, including CrackForest (Shi et al. 2016), MFCD 
(Li et al. 2019), and DeepLabv3+ (Chen et al. 2018). Experimental 
results show that our modified DeepLabv3+ obtained the best per-
formance on different metrics (Precision, Recall, and F1). The 

proposed model has a complex structure, which is capable of gen-
eralizing well on various datasets (He et al. 2016). As a result, it 
showed good performance (F1: 0.936, Precision: 0.928, Recall: 
0.945) on the CFD dataset. Although the performances of the two 
models proposed in (Fan et al. 2020; Inoue and Nagayoshi 2019) 
were 0.021 and 0.017 higher than the proposed model in terms of F1 
score, they only reported the performance for only small datasets, 
and those models can potentially achieve poor performance on other 
datasets due to the disadvantage of weak generalization ability (Zhu 
et al., 2018). 

Fig. 7. Output images of the proposed Crack-CAM and the modified DeepLabv3+.  

Fig. 8. Segmentation results of the WSL method and the FSL method on the images with different noises, such as desquamation, tiles, efflorescence, and wall joints.  
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5.5. Risk assessment 

To confirm a suitable value for the weight coefficient , an ex-
periment with 200 cracks is designed in this section. By using the 
proposed framework, three scatter diagrams of crack risk assess-
ment under different settings of are shown in Fig. 9. The solid lines 
in the three diagrams represent that the risk score R calculated by 
prediction is equal to the R calculated by the GT. Most points are 

close to the solid lines, which indicates the proposed framework 
performed well on the proposed dataset. Besides, the points are very 
scattered when the is equal to 0.3 or 0.6. On the contrary, the 
points gathered in a certain range when is set to 0.9. Thus, it is easy 
to set a threshold value of the risk metric when =0.9. 

The objective of the risk assessment is to judge a proper risk level 
for each crack using the acquired morphological features. Fig. 10 
shows the ground truth, the prediction, and the respective skeleton 
images for each type of crack. Among three morphological features, 
the obtained areas of predictions are discrepant with that of GTs, but 
the calculated lengths and mean widths of predictions are quite 
close to that of GTs. Besides, it can be observed the prediction ske-
leton images coincide with the ground truth skeleton, which verifies 
both the proposed segmentation method and the skeleton extraction 
method have a good effect on the proposed dataset. By calculating 
the risk parameter (R) as defined in Eq. (2), the maximum deviation 
between the GT and the prediction result is less than 3. 

Table 3 
Evaluation results of the different methods on the proposed dataset.         

Methods MIoU F1 Loss Training time Testing time  

WSL methods SC-CAM (Chang et al. 2020) 0.566 0.708 0.14 18 h 21 m 06 s (20 epochs) 0.071 s / image 
Crack-CAM (proposed) 0.617 0.755 0.11 17 h 56 m 55 s (20 epochs) 0.063 s / image 

FSL methods DeepCrack (Liu et al. 2019) 0.665 0.541 0.08 23 h 35 m 12 s (50 epochs) 0.083 s / image 
DeepCrack (Zou et al. 2018) 0.704 0.625 0.07 25 h 16 m 43 s (50 epochs) 0.096 s / image 
U-Net (Ronneberger, Fischer, and Brox 2015) 0.632 0.763 0.08 24 h 10 m 41 s (50 epochs) 0.018 s / image 
DeepLabv3+ (Chen et al. 2018) 0.729 0.824 0.09 14 h 21 m 37 s (50 epochs) 0.020 s / image 
Modified DeepLabv3+ 0.786 0.865 0.06 15 h 13 m 49 s (50 epochs) 0.036 s / image 

Combination of WSL and FSL (proposed method) 0.706 0.802 0.13 – – 

Table 4 
Evaluation results of the different methods on CFD dataset.      

Methods F1 Precision Recall  

CrackForest (Shi et al. 2016) 0.857 0.822 0.894 
MFCD (Li et al. 2019) 0.880 0.899 0.894 
DeepLabv3+ (Chen et al. 2018) 0.910 0.898 0.922 
Modified DeepLabv3+ 0.936 0.928 0.945    

Fig. 9. Scatter diagrams of the crack risk assessment using the proposed framework under different settings of : (a) =0.3, (b) =0.6, and (c) =0.9.  
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To provide a more convincing result, an experiment with ran-
domly selected images from the testing set was conducted to cal-
culate the mean error (ME) of each crack. In this section, a total of 
150 images are tested, including 50 images from each category. As 
mentioned in Eq. (3), the ME of the length, the mean width, and the 
area are computed. Correspondingly, the detailed information of 
each category is described in Fig. 11. According to statistics, the MEs 
(length, mean width, and area) of horizontal cracks are the lowest 
among all the obtained ME values of three categories. Especially, the 
mean width error is 1.11 pixels, which means the mean widths of GTs 
are incredibly similar to predictions. Due to the complex structures 
and the small number of intersecting cracks, the MEs of intersecting 
cracks are the highest, which can be improved by enlarging the 
number of images with intersecting cracks. 

6. Conclusion 

This paper presents a novel idea of automatic data annotation 
using the WSL-based method Crack-CAM, which can save a lot of 
effort and time. Based on the generated labels from Crack-CAM, an 
FSL-based DeepLabv3+ model is fine-tuned and trained by changing 
the architecture and the hyper-parameters to enhance the overall 
performance. A total of 521 tunnel images were collected from four 
different locations in Korea, and the corresponding GT-mask images 
were manually made by experts. In order to better fit the segmen-
tation network, the original tunnel images and the corresponding 
GT-mask images were cut into sub-images of 224*224 pixels. 
Moreover, the proposed methods are compared with the state-of- 
the-art approaches on the proposed dataset. The Crack-CAM 

Fig. 10. Risk assessment of ground truth images and prediction results.  

Fig. 11. Mean error of the morphological features, including the length, the mean width, and the area.  
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obtained the highest MIoU of 0.617 among the WSL-based methods, 
and the modified DeepLabv3+ achieved the highest MIoU of 0.786 
among all the experimental methods. The performance of the pro-
posed framework combining Crack-CAM and the modified 
DeepLabv3+ is similar to that of the method based on the modified 
DeepLabv3+ and the manual annotation images, which demon-
strates the WSL-based Crack-CAM can annotate data correctly. In 
addition, a new metric (R) is introduced to evaluate the risk levels of 
the detected cracks, and the ME is calculated to obtain the error 
between GTs and predictions. Experiments show the ME values of 
the intersecting cracks are the largest due to the complex structures 
and the small number of images. 

In the future, more images with intersecting cracks will be col-
lected and added in the proposed dataset to improve the overall 
segmentation results. In addition, the structure of Crack-CAM will be 
simplified to reduce the computational complexity and save 
training time. 
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