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Abstract: Object tracking is a fundamental computer vision problem that refers to a set of methods
proposed to precisely track the motion trajectory of an object in a video. Multiple Object Tracking
(MOT) is a subclass of object tracking that has received growing interest due to its academic and
commercial potential. Although numerous methods have been introduced to cope with this problem,
many challenges remain to be solved, such as severe object occlusion and abrupt appearance changes.
This paper focuses on giving a thorough review of the evolution of MOT in recent decades, inves-
tigating the recent advances in MOT, and showing some potential directions for future work. The
primary contributions include: (1) a detailed description of the MOT’s main problems and solutions,
(2) a categorization of the previous MOT algorithms into 12 approaches and discussion of the main
procedures for each category, (3) a review of the benchmark datasets and standard evaluation meth-
ods for evaluating the MOT, (4) a discussion of various MOT challenges and solutions by analyzing
the related references, and (5) a summary of the latest MOT technologies and recent MOT trends
using the mentioned MOT categories.

Keywords: multiple object tracking; occlusion; ID switch; appearance; association

1. Introduction

The recent advances in deep learning [1–3] and the availability of computing power [4,5]
has revolutionized several fields, such as computer vision and natural language processing
(NLP). Object detection [6,7] is a well-developed field in computer vision. Object tracking is
usually the next process after object detection, which receives an initial set of detected objects,
puts a unique identification (ID) for each of the initial detections, and then tracks the detected
objects as they move between frames.

Multiple Object Tracking (MOT) is a subgroup of object tracking, which is proposed to
track multiple objects in a video and represent them as a set of trajectories with high accuracy.
However, object tracking usually has one big challenge when the same object is not given
the same ID in all the frames, which is usually caused by ID switching and occlusion. ID
switching is a phenomenon in which an object X with an existing ID A is assigned a different
ID B, which can be caused by many scenarios, such as the tracker assigning another object Y
the ID A as it resembles object X. Another problem is occlusion, which is when another object
obscures one object partly or totally during a short period.

Figure 1 illustrates the MOT process. Initially, the objects in the current frame are
detected by a detector. The objects are then tracked when they are fed into an MOT
algorithm. After that, Figure 2 visualizes the object tracking process of multiple tracked
objects from the current frame to the following frame. The two figures introduce how MOT
aims to accurately track a large number of objects in a single frame.
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Figure 1. The explanation of the ID assignment method, which is one of the main concepts of MOT
using the MOT15 benchmark dataset [8]. Objects in the current frame are first detected using the
detector. The detected result is then fed into an MOT algorithm to assign the ID for each object.
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Figure 2. The visualization of the object tracking for the next frame using the MOT algorithm on
the MOT15 benchmark dataset [8]. Objects in the following frame are first detected. The detected
result is then fed into the MOT algorithm to compare the objects from the current frame with the
objects from the next frame. Finally, the IDs are assigned for each object in the next frame based on
the current frame.

In recent years, numerous novel MOT studies have been proposed to address the
existing tracking problems, such as real-time tracking, ID switching, and occlusion. In
addition, deep learning has been increasingly applied to MOT to improve its performance
and robustness. Table 1 describes, in detail, the contributions of some of the previous
surveys on the MOT topic. Overall, each survey focused on a specific problem of the MOT.
Most lately, Pal et al. focused on the deep learning method and explained detection and
tracking separately [9], so that the readers can easily concentrate on their part of interest .
However, due to the description of many detection-related parts, the description of tracking
is insufficient.

On the other hand, Ciaparrone et al. reviewed deep learning-based MOT papers
that were published in the past three years [10]. They described online methods that
perform in real-time and batch methods that can use global information and compare the
experimental results. However, they focused only on the MOT benchmarks and provided
no comparison for other benchmarks. In another review, Luo et al. described MOT
methodology in two categories [11], and the evaluation focused on the PETS2009-S2L1
sequence of the PETS [12] benchmark. Finally, Kalake et al. reviewed MOT papers during
the last 5 years [13]. Although they covered many aspects of the MOT, it was difficult to
determine the exact evaluation for each tracking method due to the limited evaluation.

Figure 3 shows the total number of papers investigated in this survey. Overall, there is
an increasing trend in the number of MOT papers, which introduced various deep learning-
based MOT frameworks, new hypotheses, procedures, and applications, although previous
surveys partly addressed the tracking and particularly the MOT topic. However, some
existing parts of the MOT have not been covered in those reviews, for instance, (1) most of
the surveys concentrated on the detection part rather than the tracking part [9,10], and (2) a
limited number of benchmarks were mentioned [11]. As a result, a comprehensive survey
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on recent MOT work is meaningful for stakeholders and researchers who want to integrate
MOT into the existing systems or start new MOT research. This survey summarizes the
previous work and covers many aspects of MOT. The main contributions are as follows.

• Describe the most basic techniques applied to the MOT.
• Categorize MOT methods and organize and explain the techniques used with deep

learning methods.
• Include state-of-the-art papers and discuss MOT trends and challenges.
• Describe various benchmark datasets and evaluation metrics of the MOT.

Table 1. List of contributions from previous surveys on MOT.

ID Ref. Year Contributions

1 [9] 2021

• Offers a comprehensive review of object detection models.
• Shows the development trends of both object detection and tracking
• Describes various comparative results for getting the best detector and tracker.
• Categorizes deep learning based on object detection and tracking into three groups.

2 [10] 2020

• Reviews the previous deep learning-based MOT research in the past 3 years
• Divides previous papers into five main sections, which include detection, feature extraction and
motion prediction, affinity computation, association/tracking, and other methods.
• Shows the main MOT challenges

3 [11] 2020

• Shows the key aspects in a multiple object tracking system.
• Categorizes previous work according to various aspects, and explains the advances and drawbacks
of each group.
• Provides a discussion about the challenges of MOT research and some potential future directions.

4 [13] 2020
• Reviews the past five years of multi-object tracking systems.
• Compares the results of online MOTs and public datasets environment in the deep learning model.
• Focuses mainly on deep-learning-based approaches
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Figure 3. The number of published MOT papers yearly since 2012 that are discussed in this review.

2. Methodology

The method used to survey this paper summarizes according to TRANSPARENT
REPORTING of SYSTEMATIC REVIEWS and META-ANALYSES (PRISMA) [14]. Figure 4
shows the process of how papers are collected for review. The papers used in the analysis
were searched for only between 2017 and 2021. The search title used terms, such as
’multiple object tracking’ and ’multiple object tracking deep learning’ and included deep
learning-based papers among the listed papers on the MOT challenge site. We included
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journals and conference papers, for a total of 150 papers. Some of the papers were removed
because they did not used deep learning techniques; thereby, the number of papers became
100. Next, three overlapping papers were excluded; thus, finally resulting in 97 papers.

Records identified from Google 
scholar, Scopus, MOT challenge 

by title
(n=150)

Records screened
(n=100)

Records excluded
Reorganize with deep learning 

technology (n=50)

Studies included in review
(n=97)

Reports assessed for eligibility
(n=97)

Records excluded
Duplicated (n=3)

Figure 4. The search methodology for this paper.

3. Multiple Object Tracking Analysis

Figure 5 shows that most of the MOT algorithms track the location of the object in the
next frame using the information of the detected objects from the current frame.

bounding box
MOT algorithm

Frame t

Object 1

Object 2

Frame t+1

Object 1

Object 2

Figure 5. Description of a basic MOT process that includes (1) the detection of an object in frame t,
(2) the exact position of the object is extracted and fed into an MOT algorithm, and (3) the object is
tracked, and the object location at frame t+1 is predicted.

Before reviewing the MOT research, Section 3.1 describes the MOT concepts, reviews
two main problems that are mainly addressed in MOT, which are occlusion and id switch-
ing. After that, Section 3.2 shows common concepts that are frequently mentioned in
the MOT research. Finally, Section 3.3 provides an in-depth overview of the previous
MOT research.

3.1. Multiple Object Tracking Main Challenges

This section describes two common problems in MOT, which are occlusion and id
switch. After that, four common deep learning approaches that are widely implemented
in MOT, Recurrent Neural Network (RNN), Deep Convolutional Neural Network (CNN),
and Long Short-Term Memory (LSTM), and Attention, are described. Finally, Intersection
Over Union (IoU), which is a common evaluation metric for object detection and object
tracking is explained.
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3.1.1. Occlusion

This section describes occlusion, which is a primary problem that usually happens
during the MOT implementation. When the MOT algorithm is implemented only by the
cameras without using other sensor data, it is difficult for the algorithm to track the location
of the objects when they overlap each other [15]. Occlusion occurs when a part of one
object obscures a part of another object in the same frame. It is even more challenging
to solve the occlusion if one object completely occludes the other object. As a result, the
object information from different frames is required to recognize different objects in the
same location.

Figure 6 illustrates an example of occlusion. Occlusion is still among the existing chal-
lenge of MOT, because when the occlusion happens, it is challenging to predict the object’s
current position with only a simple tracking algorithm [16,17]. Occlusion mainly occurs in
the frames that have many objects, which are solved by extracting appearance information
using CNN [18–20] or using the graph information to find global attributes [21]. Huo’s
paper increased the resolution and appearance feature extraction resolution and robustness
and then performed tracking by associating this data with the detection result [18].

Milan et al. model improved performance by using a robust association strategy that
integrates speed, acceleration, and appearance models [19]. Tian’s model allocates costs,
including appearance and motion directions, when each node in the network calculates the
probability that new nodes are the same ID [20]. Global attributes are the properties found
in the graph method for long-term tracking.

Frame 1

Object 1

Object 2

Frame 2 Frame 3

Figure 6. Visualization of the occlusion for two objects (orange and green). The objects in frame 1
are not overlapping. The objects in frame 2 are slightly overlapped, which is called occlusion. For
frame 3, the green object is almost fully occluded by the orange object.

3.1.2. ID Switch

A tracklet is the calculation of the path of an object in a short period, usually under
10 frames [22,23], which is used by the tracking algorithm to predict the object’s position in
the next frame. As shown in Figure 7, when the same object is not included in the predicted
tracklet in the current frame, this is considered an object that disappears in the current
frame and is assigned the new ID. The object outside of the path is given a new ID, where
the problem of changing the ID of the same object in the entire video is called ID Switching.
A unique ID is assigned to an object by the tracker during the tracking process, but the ID
will be removed if the tracker decides that the object is no longer within the frame.
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Frame 1

Object 1

Frame 2 Frame 3

Object 1
Object 2

tracklet

Figure 7. Example of the ID switch problem. The object in frame 1 and the object in frame 2 are
considered to have the same id because they are in the tracklet. On the other hand, frame 3 is judged
to contain a different object because, there, the object is outside of the tracklet, and thus a new id is
given.

3.2. Multiple Object Tracking Main Concepts

Some concepts commonly appear in the latest MOT research, such as RNN, LSTM,
CNN, IoU, and Attention, The motivation for using ML is because it is challenging to
learn the high-dimensional data with only simple algorithms. Although complex non-ML
pattern recognition algorithms can be applied to perform the tracking algorithm, because
using a simple method to estimate the location of an object, an estimation result frequently
occurs as a lost object [24], and thus many researchers have used deep learning approaches
to extract more robust features.

3.2.1. Recurrent Neural Network (RNN)

RNN performs classification or prediction by learning sequential data from deep
learning algorithms. CNN models used the filters within convolutional layers to transform
data before being passed to the next layer. On the other hand, RNN models make used
of the activation functions from other data points in the sequence to create the following
output. As a result, RNN can process temporal data well. Thus, the current output results
are influenced by the results of the previous time sequence, and the hidden layer acts as
a type of memory that remembers features to send features to the next sequence using
features from the input layer and the previously hidden layer. The hidden layer receives
weights from the input layer and generates an output through an activation function [25].

3.2.2. Long Short-Term Memory (LSTM)

LSTM [1] is a deep learning model derived from RNN. One of the main problems
of RNN is that it fails to deliver important gradient information from the model’s output
to the layers near the model’s input. A vanishing gradient means that the weight of the
top layers has little effect on the output layer because the gradient vanishes further as the
model becomes deeper [2]. LSTM has a structure similar to that of RNN but has two states
in the hidden layer, called short-term states and long-term states, and LSTM has that input
data passes through the hidden layer with a short-term state and a long-term state and
generates output data through the output layer.

To solve gradient vanishing, LSTM is introduced with a forget gate that decides
whether to remember the last information in RNN. The structure of the LSTM is shown
in Figure 8. LSTM controls the current node’s state information with three gates (input,
forget, and output). The Forget gate determines whether to store old state information, the
input gate determines whether to store new information being entered, and the output
gate controls the output of updated cells. LSTM is used in both feature and sequence data
in MOT.
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Figure 8. Visualization of the LSTM architecture [10].

3.2.3. Convolutional Neural Network (CNN)

CNN [2,26,27] is a deep learning-based structure that is most commonly used to
interpret visual imagery. It accepts the input as a multi-channeled image. On the other
hand, RNN [25] is proposed to recognize patterns in data sequences, such as text, genomes,
handwriting, the spoken word, and numerical times series data. Most research has used
CNN to extract object appearance [4,28–32], which is the category of papers including
CNN during the tracking process to extract features or using CNN as backbone during
the detection.

3.2.4. Intersection over Union (IoU)

IoU is one of the evaluation methods shown in Figure 9. An orange circle is an object,
the green bounding box indicates the ground truth annotation, and the red bounding
box represents the predicted result. IoU is the intersection of the actual and detected
result values divided into all actual and detected results areas. In the tracking part, some
researchers used this to predict the tracklet. Bewley et al. used the Hungarian algorithm [17]
with IoU [33].

The Hungarian algorithm is usually applied to solve the assignment problem by
placing the predicted bounding boxes, and the detected bounding boxes in rows and
columns of a cost matrix and allocates detection pairs with minimal cost by calculating the
cost of having a row and column pairs. This method achieved better performance than the
original IoU based tracker, which proved that a standard detector would not always obtain
a good result.

In most cases, the used of a robust detector for the object tracking remarkably im-
proved the tracking performance [4,10]. However, Bochinski suggested that any robust
detector could be a problem if the detector predicted false-positives or false-negatives in
the real world [34]. In this case, the track quality was greatly degraded due to a huge
number of ID switch cases and fragments. Therefore, the authors solved the ID switch
problem through a false-positive filtering process. The experimental results showed that
the ID switch and fragments were significantly reduced on the VisDrone-VDT2018 test set.
In addition, the model achieved a high Frames Per Second (FPS) rate, which indicated that
it could process many frames per second.

Ground truth

Detection result Ground truth ∩ Detection result

Object

Figure 9. Main concept of the IoU tracker [34].
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3.2.5. Attention

Attention [35] is a technique that increases the performance of a model by making
it focus on a specific vector, and this maps the query and key-value pairs to the output
by input three vectors, Query (Q), Key (K), and Value (V). Attention and CNN [36–38]
highlights a specific part of the feature map or describes the image by image captioning [39].
Image captioning methodology highlights some part of the node, making the feature
map one-dimensional vector by flattening instead of using a fully connected layer. In
RNN, attention is used to prevent important information loss when compressing input by
encoders, and Transformer is used for encoders and decoders.

3.3. Techniques Used in the Paper about Multiple Object Tracking

In Section 3.1, this paper describes the methodology used in previous studies and
presents the different methodologies for MOT as shown in Table 2.

Table 2. Common MOT methods and their corresponding references.

Methodology Deep Learning Algorithms + Networks Year

Appearance Learning

Spatial Temporal Information + Template Matching [24] 2017

CNN + Appearnce Model [40] 2019

CNN + Compression Network [28] 2019

LSTM [41] 2017

Target appearance + Linear Subspace [42] 2016

Generalized Minimum Clique Graphs (GMCP) [43] 2012

Occlusion Handling

CNN + FDH [44] 2017

CNN + Semantic Information [29] 2018

GMPHD [45] 2017

CNN + Template Matching + Optical Flow [46] 2015

Detection and Prediction

CNN + Poisson Multi-Bernoulli Mixture (PMBM) Filter [47–49] 2018

Box regression + Siamese Region Proposal (SiamRPN) [50] 2019

CNN + Tracking-by-detection (TBD) + Reinforcement Learning [51] 2018

F-RCNN + MTC [52] 2017

Detector Confidence + PHDP [53] 2016

Segmentation + CRF [54] 2015

Computational Cost Minimization

3D CNN + Kalman Filter [55] 2019

CNN + Global Context Distancing (GCD) + Guided Transformer Encoder (GTE) [56] 2021

Segmentation + Single Convolutional Neural Network (SCNN) [57] 2019

spatial- temporal attention mechanism (STAM) + CNN [58] 2017

Subgraph Decomposition [59] 2015

Motion Variations

TBD without Image information [60] 2017

CNN + kernelized filter [61] 2020

Pairwise Cost [62] 2018

CNN + Motion Segmentation [63,64] 2018

LAC filters + CNN [65] 2017
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Table 2. Cont.

Methodology Deep Learning Algorithms + Networks Year

Appearance Variations, Drifting
and Identity Switching

CNN + Data Association [30] 2018

Joint inference network [66] 2021

cross correlation CNN + scale aware attention network [31] 2020

LSTM + Bayesian filtering network [67] 2019

CNN + LSTM + Attention network [32] 2018

CNN [4] 2017

Distance and Long Occlusions
Handling

CNN [68] 2018

CNN [69] 2018

Detection and Target Association

Kalman Filter + Hungarian Algorithm [33] 2016

CNN [70] 2019

CNN + GMPHD [71] 2019

Affinity

Appearance Learning [72] 2017

CNN [73] 2018

R-CNN [19] 2017

CNN + Online transfer learning [74] 2017

Spatial Temporal and Appearance Modeling [75] 2016

Siamese Network [76] 2016

Tracklet Association

Visual Sensor Networks [77] 2018

GNN [78] 2021

CNN + decision maiking algothm [79] 2018

Single Camera Tracking + CNN [80] 2017

Fast Constrained Domain Sets [81] 2016

Sequential Monte Carlo (SMC) + Labeled Multi-Bernoulli (LMB) filter [82] 2016

Automatic Detection Learning

CNN [83] 2017

Region-based Fully Convolutional Neural network (R-FCN) [84] 2018

Quadruplet Convolutional Neural Networks (QCNN) [85] 2017

CNN + Lucas-Kande Tracker (LKT) [86] 2016

Transformer

CNN + Query Learning Networks (QLN) [87] 2021

CNN + GTE [56] 2021

CNN + query key [88] 2021

CNN + continuous query passing [89] 2021

3.3.1. Appearance Learning

In the first row of the table, one can see appearance learning algorithms. Appearance
learning is a methodology that tracks objects by extracting features from CNN, mainly
using the detectors. Zhang et al. proposed two approaches [90] of appearance learning,
which are CNN features and the cascaded correlation filter. Wei et al. applied appearance,
shape, and motion to decide the matching result between trajectory and detection [24],
which prevents missed detection by including spatial information, such as appearance.

Fagot-Bouquet et al. used a sliding window to find the relationship between the al-
ready estimated trajectory and detection and made function E use the appearance, motion,
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and interaction in the association problem [42]. Sliding window is an algorithm that moves
the array element by a specific length and finds the maximum value. Ning et al. used Long
Short-Term Memory (LSTM) [41], which makes a regression to enable the prediction of
tracking locations in convolutional layers and LSTM [91].

Wang et al. proposed TrackletNet, which combines trajectory and appearance infor-
mation [40], which obtains competitive Multi-Object Tracking Accuracy (MOTA) through
occlusion processing, the generation of tracklets using epipolar geometry, and robustness
to appearance features. Epipolar geometry is that objects have a geometric correlation.
Zamir et al. achieved high MOTA and Multiple Object Tracking Precision (MOTP) in PET
09 sequences using optimization using a method of combining motion and appearance in-
formation and associating time-integrated data with Generalized Minimum Clique Graphs
(GMCG) [43].

Kim et al. proposed a multi hypothesis tracking framework [92] based on both ap-
pearance and behavior using Bilinear LSTM. Multiple Hypothesis Tracking solves the mul-
tidimensional allocation problem through the Breadth-First Search (BFS) process. Sun et al.
solved the ID switching problem in occlusion [28] to increase the multi-object tracking
accuracy and achieved an average 6.3 frame rate per second.

Azimi et al. used AerialMPTNet [93] that model uses appearance, temporal, and graphi-
cal information, and which includes Siamese Neural Network, LSTM, and GNN. Siamese
networks are consist of two sub-networks. Two input images are put into each sub-network
to create two outputs and calculate distance through two outputs. Zhou et al. conducted
research on defensive and unmanned driving [94] and proposed a Fusion-Residual Predictive
Network (FRPN) framework to measure the degree of risk on the road.

Zhang et al. proposed a high-resolution Siamese network [95] to address the low-
resolution feature extraction of patches, which shares information of multiple resolutions
and maintains high-resolution features by connecting convolutional streams in parallel,
and they also attempted to improve the features of CNN as an attention mechanism.
Tang et al. proposed an MDSPF method [96], shared convolutional units, and particle filter
methods. Particle filters used scale-adaptive particle filters for robustness. The particle
filter recursively predicts the state of the object based on prior information.

3.3.2. Occlusion Handling

The second technique is occlusion handling. Ray and Chakraborty separated fore-
ground and background from video sequence [44]. Adding the current frame, they detected
objects in the foreground, which refines the object region, and last, they tracked objects us-
ing the Kalman filter [16]. Xiang et al. tracked using Markov Decision Processes (MDPs) [46]
for online tracking, which manages an object’s birth, death, appearance, and disappearance
to track objects, and this increased at least 7% of MOTA compared to other studies.

Kutschbach et al. applied theGaussian Mixture Probability Hypothesis Density (GM-
PHD) filter [45] for tracking objects, which was also combined with Kernelized Correlation
Filters (KCF). This model sacrifices high sensitivity to increase the runtime and false posi-
tivity, which obtained competitive results on the UA-DETRAC benchmark [97]. Zhao et al.
combined the Correlation Filter tracker with CNN features to enable re-identification
(ReID) [29] when tracked objects are lost, which achieved a low tracking time of 0.07 with a
competitive MOTA and high MOTP.

Hidayatullah et al. tracked using angles and grids to solve blurring or occlusion
problems in fast motion [98]. Xia et al. used CNN and correlation filter [99] to solve
occlusion, pose changing, and movement.

3.3.3. Detection and Prediction

Detection and prediction compare the detection results with the prediction results.
Scheidegger et al. combined the PMBM filter result to the detector [49], which uses 3D vector
information for tracking, and PMBM filters predict world coordinates and achieved high FPS,
and minimizing ID switching. Milan et al. used instance-based segmentation for their tracking
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method [54], which used superpixel association with the low-level image, and they proposed a
new conditional random field (CRF) that uses high-level information and low-level superpixel
information.

Sanchez-Matilla et al. used low confidence, and high confidence from target detec-
tions [53] and also proposed the Probability Hypothesis Density Particle (PHDP) Filter frame-
work, which framework makes reduction computation cost. Zhang et al. used Faster R-CNN
in the detection part [52], which extracts appearance features for re-identification and which
cluster for trajectories.

Li et al. solved the traditional translation invariance to Using ResNet as a backbone in
Siamese networks [50], which predicts using a feature map, Siamese Region Proposal (Siam
RPN) blocks, and Bounding box regression. Furthermore, the network reduces computational
costs and redundant parameters using the correlation layer based on the online model.

Ren et al. proposed Collaborative Deep Reinforcement Learning (C-DRL) [51] as shown
in Figure 10, and which solved occlusion, missed, or false detection with a reinforcement
learning approach. C-DRL first used detection object location in the current frame, and they
predicted the next frame object location and combined this in the Decision network. Even if
the agent is blocked, they can update the location of the agent. Moreover, if candidate agents
have noise, they will be ignored, have a new object location, update the new agent.

Agent Q-net AgentShift 
network

Prediction network Decision network

Environ
ment

Tracking result in frame t

Detected result in frame t+1

Tracking result in frame t+1

Figure 10. The proposed detection and prediction system [51] in MOT15 benchmark [8].

Madasamy et al. proposed Deep YOLO v3 [100], which includes a regression method
for object location probability, which uses CNN with upsampling to detect the small object.
Dao and Fremont used 3D information for MOT [101], and which uses the Hungarian algo-
rithm for track-by-detection. Yin et al. proposed a CNN-based light neural network [102]
in tracking-by-detection, which tracks using a graph matching process.

Song et al. tracked objects from self-driving vehicles to Deepsort using YOLOv3 [103].
In YOLOv3, they removed 32-times subsampling and added four-times subsampling for
traffic signs. Padmaja et al. proposed a human activity tracking system for intelligent
video [104], which uses the Deep landmark model and YOLOv3 detector. Chou et al.
proposed Mask-Guided Two-Streamed Augmentation Learning (MGTSAL) [105] to com-
plement the information of instance semantic segmentation.

Zhou et al. proposed a multi-scale network in Synthetic Aperture Radar (SAR) im-
ages [106] and selected Region Proposal Network (RPN) for classification and regression.
Liu et al. detected 3D skeleton key points to used YOLOv4 [107], which used the Meanshift
target tracking algorithm that converts to spatial RGB and CNN for recognition. Xie et al.
utilized affine transformations [108] to spatial information models using CNN, which also
refines the bounding box using a multi-task loss function including affine transformations
and used Non-Maximum Suppression (NMS).

Shao et al. made used of autoencoder networks [109], motion generation networks,
and location detection networks to generate trajectories. In Nobis et al., the proposed model
fused sensor data [110], which is radar data, with Camera Radar Fusion Net (CRF-Net)
to detect objects. Wu et al. composed the multi-level same-resolution compress (MSC)
feature using a network, such as DSNet, to refine it using encoding and channel reliability



Electronics 2021, 10, 2406 12 of 31

measurement (CRM) to form a tracking framework [111]. Zhu et al. proposed a tracking
framework [112] using vehicle fine-grained vehicle classification and detection.

3.3.4. Computational Cost Minimization

The Weng and Kitani model is for 3D multi-object tracking and approaches the 3D
object detector using by LiDAR point cloud [55], and this model combines the 3D Kalman
filter and Hungarian algorithm with data association, which obtains increased MOTA while
maintaining real-time performance. Tang et al. proposed the Subgraph Multicut model and
heuristic solution using the Kernighan–Lin algorithm [59]. To solve the occlusion problem,
Chu et al. used the spatial-temporal attention mechanism (STAM) model [58] that uses
shared CNN features and ROI-pooling.

Voigtlaender et al. proposed Track R-CNN, which extracts temporally enhanced image
features using CNN and relabel KITTI and MOT challenge for instance segmentation [57].
This benchmark was released. Yu et al. proposed a framework that incorporates GCD
and GTE, called RelationTrack [56], which is shown in Figure 11. GCD is a module that
separates by sense and by ReID to avoid contradictions that optimize during learning.
The GTE module combines transformer encoders with deformable attention for global
information consideration. GTE can capture global information with limited amounts of
resources. They attempted computational cost-minimizing.

Feature 
extraction

Feature 
decoupling

Detection

Association

GTE

GTE : guided transformer encoder

Figure 11. Computational cost minimization using the model [56] with the MOT15 benchmark [8].

Avola et al. used Multi-Stream architecture with Faster R-CNN [113] backbone and
used Deep Association Metric (Deep SORT), which includes Simple Online and Real-time
Tracking. Zhou et al. proposed a framework for the real-time security surveillance of
smart IoT systems [114], and proposed a tracking algorithm for lightweight models by
combining MTCNN and YOLO. In Hossain and Lee, they developed an association metric
by integrating it into Deep SORT [115], which combines Kalman filtering and deep learning
for tracking in small flight drones with limited computing power.

3.3.5. Motion Variations

Bochinski et al. tracked by reducing complexity and computational cost through IoU
trackers [60], and this approach is tracking-by-detection that relies on detector performance.
IoU tracker to make possible 100K fps. Ruchay et al. proposed a locally adaptive correlation
filter with CNN [65], which adapted scene frame information into filters. Sharma et al.’s
model is for urban driving using a single camera, which complements the error in detection
using pairwise costs using 3D cues [62] and performs in real-time.

Whin et al. proposed a kernelized correction filter (KCF) tracking [61] method with
three modules integrated to increase tracking accuracy at high speed in real-time streaming
condition environments. First, they tracked failure detection and search multiple windows
using re-tracking. This paper also analyzed the motion vector for the searching window.
Keuper et al. used bottom-up motion segmentation [63] as a way to group point trajectories
with multi-object tracking through clustering of top-down detect tracking.

Chen and Ren used Multi-Appearance Local Control segmentation (MALC) [64] for
segmenting merge detection, and proposed Track-Oriented Multiple Hypothesis Tracking
(TOMHT) to improved speed and performance. Their main technique is motion variations.
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He et al. proposed a tracking framework [116] in an end-to-end manner for us-
ing unlabeled data, and this framework includes Reprioritized Attentive Tracking with
Tracking-By-Animation. Lee and Kim proposed a Feature Pyramid Siamese Network
(FPSN) [117] to extract multi-level feature information and to add Spatio-temporal motion
features to consider both appearance and motion information.

3.3.6. Appearance Variations, Drifting and Identity Switching

Zhu et al. extracted detection features by using CNN, calculating affinity using spatial
attention [32], which also applied temporal attention to LSTM to use a Dual Matching
Attention Network (DMAN). Wojke et al. solved the occlusion problem using CNN [4],
a deep application descriptor for existing SORT algorithms to solve the re-identification
problem.

In Xiang et al., they used three architectures for their affinity model: A-Net, M-Net, and
Metric-Net [67]. A-Net extracts their appearance, and M-Net extracts Motion. Metric-Net
uses three-channel CNN-LSTM networks, which share weights. For comparison similarity,
Metric-Net uses triplet loss in their framework. A-Net consists of CNN and bounding
box regression. CNN performs with VGG-16 Net for using a pre-trained model and then
fine-tunes it with MOT and person identity datasets.

M-Net has two modules, that is, LSTM and a Bayesian filtering network (BF-Net).
After predicting trajectory and position, they put this into BF-NET and Metric-Net. Metric-
Net inference with data association using Hungarian algorithms, and they put this to
BF-Net. BF-Net estimates their trajectory. Yoon et al. used appearance models based on
joint inference networks [66] in multi-object environments where features need to compare
with other objects.

To learn special features, Liang et al. proposed a cross-correlation network, which
exploits the correlation of CNN features [31]. The cross-correlation network from this
model is shown in Figure 12. This paper addresses the ReID feature using scale-aware
attention networks and approaches appearance variations, drifting, and identity switching.

Detector

Detection 
head

SAAN

Cross correlation network

Matrix multiplication Element-wise Sum

reshape

reshape

transpose

transpose

softmax

softmax

reshape

reshape

avgpool

Figure 12. Example of a model using appearance variations, drifting, and identity switching [31].

Dike and Zhou proposed a Deep Quadruplet network (DQN) [118] that uses a new
loss function for feature space. Gomez-Silva et al. computed affinity using an appearance
preference model [119]. The loss function used in this model is the triple loss function.

Li et al. proposed a tracking model capable of hierarchical time series prediction and
used constrained mix sequential Monte Carlo (CMSMC) [120] to solve the re-id problem.
This paper consists of two modules: a behavior recognition module and a state evolu-
tion module. Lv et al. proposed a depthwise separable convolution neural network (DS-
CNN) [121], which included pointwise convolution(P-Conv2D) and depthwise convolution
(D-Conv2D). Xu et al. proposed the Group Feature Selection Method for Discriminative
Correlation Filters (GFS-DCF) [122] to select group features at the channel and spatial
dimensions.
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3.3.7. Distance and Long Occlusions Handling

There are two approaches the distance and long occlusion handling. Based on single
CNNs, Gan et al. combined cues of multiple features to assign IDs to tracked targets
and stores them [68] in memory for model updates. If the object is missing, the target
is removed, and the target is tracked until target-out. This framework is in Figure 13.
Kampker et al. proposed a framework [69] in urban scenarios with grid-based techniques
and object-based techniques using Lidar raw data. Shahbazi et al. used 3D information to
determine the speed and estimate the location of trackers with detection and tracking [123].

Pos/Neg
Samples Model

Incremental online 
model update

Refresh online 
model update

Prediction
≅object

Y

N

Figure 13. The model proposed in the paper of category distance and long occlusion handling [68]
using the MOT15 Benchmark [8].

3.3.8. Detection and Target Association

In the detection and target association approach, Bewley et al. had a simple pro-
cess [33] for object tracking. They used only the Kalman filter and Hungarian Algorithm to
predict motion. Wang et al. proposed an appearance embedding model for data connection
with single-shot detectors using the Joint Learning of Detection and Embedding (JDE) [70]
method, which are for real-time tracking, and this speed was 22–40 FPS. Figure 14 presents
the comparison between JDE and other detectors.

Baisa applied the Gaussian mixture Probability Hypothesis Density (GM-PHD) [71]
filter to visual similarity CNN to track multiple targets in video sequences, and which
uses a cost-minimizing approach to CNN appearance features and bounding boxes using
Hungarian algorithms. The GM-PHD filter is divided into two steps. One is prediction,
and the other is the update.

Following the linear Gaussian model, they initialize velocity to zero to remove prior
knowledge, which sets the target state independently of survival and detection probabilities.
Visual-similarity CNN is constructed with two steps. First, detect patch from frame k − 1
and k, and concatenate after resizing. That input patch is put into visual-similarity CNN.
Second, they get similarity confidence from binary cross-entropy loss.

Prediction head

Detection 
results Embedding+

Figure 14. A detection and target association model [70] in MOT15 benchmark [8], which com-
pares Separate Detection and Embedding (SDE), two-stage model, and Joint Detection and Embed-
ding (JDE).

Pegoraro and Rossi used cloud sequence by Mm-wave radars and used the extended
Kalman filter [124], and the platform was evaluated in an edge-computing system. In Liu,
tracking using deep learning-based detectors was performed using the Deep Associated
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Elastic Tracker (DAE-Tracker) [125]. Wen used faster-CNN and Hungarian matching
algorithms to track objects [126]. Ullah and Alaya Cheikh proposed an inDuctive Sparse
Graphic Model (DSGM) [21], a graph model that reduced computational complexity by
minimizing connectivity in the multi-target scene, resulting in competitive results compared
to other models.

3.3.9. Affinity

Affinity solves the problem of ID switching and occlusion by comparing the appli-
cation of the detected object and the feature of the tracked object. Ju et al. proposed
a process using a novel affinity model and appearance features [72], which model per-
forms track fragmentation processing when the object is initialized to connect occluded
objects. KC et al. proposed a graph-based model and approached the problem of allocating
identical or distinct labels to the detection of graphs [75].

Each graph assigns a unique label if the spatio-temporal or appearance cues are the
same in detection pairs. Leal-Taixe et al. used the Siamese Network approach [76], which
includes the same two models in one. When two detectors belong to the same tracking
entity, Siamese networks estimate from CNNs.

Milan et al. proposed a tracking method [19] based on recurrent neural networks for
the state of changing by time, and which found that LSTM can learn a one-to-one assign-
ment. The one-to-one constraint ensures that the same measurement is not assigned to
multiple targets in joint data connection for the task of uniquely classifying measurements
in data association. Yoon et al. used the Siamese network [73] to track discriminative
appearance features through appearance matching.

Bae and Yoon improved MOTA using an online detector of information and online
transfer learning [127] and tracklet confidence to update the online multi-object tracking
framework [74]. Tracklet confidence is measured using length, occlusion, and effectiveness
of the track, and transfer learning used a pre-trained model for training a model using
many datasets.

This paper used appearance, shape, and motion models to set tracklet elements. A
tracklet is divided into two ways. One is a high-confidence tracklet, which is locally linked
to the HC-association (High Confidence association) phase, and another is a low-confidence
tracklet, which is globally linked to the LC-association (Low Confidence association) phase.
For the distinction of multiple objects, relating tracklets with appearance modeling is
essential, and, for this, they proposed a deep appearance model and adapted online
transfer learning. The discriminative Deep Appearance Model has a simple layer because
of learning complexity, which the method calculates for minimizing positive objects and
maximizing negative objects.

Xu et al. used augmented Lagrangian in Discriminative Correlation Filters (DCF) [128]
to focus on channel selection. Huang et al. focused on the detector to small object detec-
tion and class imbalance and, thus, used a Hierarchical Deep High-resolution network
(HDHNet) [129] for a prediction network. They used a new loss function that combines
focal loss and GIoU loss.

Chen et al.’s system is an autonomous system [130], which used 3D information
from 3D point clouds [131] and relation conv for pair of objects correlation. Wang et al.
proposed unsupervised learning with a Siamese correlation filter network [132], which
uses a multi-frame validation scheme and cost-sensitive loss and which have real-time
speed using unsupervised learning.

Wu et al. used dimension adaptation correction filters (DACF) to extract features using
CNN from conventional correction filters (CF) [133]. Yang et al. model proceeds in real-
time, and they proposed a tracking method using long-term and short-term features [134],
which optimizes the position of the object using boundary box regression using the cosine
window of the correlation filter.

Mauri et al. conducted research on two approaches for smart mobility [135]: mon-
odepth2 and MADNet. This research exploited the extended Kalman filter to improved the
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SORT approach in tracking. Akhloufi et al. used deep reinforcement learning and IoU to
increase tracking accuracy for tracking in Unmanned Aerial Vehicles (UAVs) [136]. Huo
et al. accurately extracted feature information when the target is obscured, based on the
Reid pedestrian re-identification network (RFB) [18], solved call detection, and linked to
distinguish targets.

Tian et al. combined the learning tracker [20] structured for multi-target tracking and
segmentation with the segmentation algorithm, resulting in accurate segmentation results.

3.3.10. Tracklet Association

Some research needs to associate tracklet when tracking objects, and we show an
example in Figure 15. Jiang et al.’s paper estimated observations by combining 2D features
and 3D features in multiple views [77], such as multi-camera systems. Tracklets are
formed using particle filters are modeled by graphs, and integrated into the full track. Wu
et al. used track-based multi-camera tracking (T-MCT) [80] with clustering and proposed
distributed online framework, including T-MCT re-identification (Re-id).

Le et al. proposed target tracking between cameras as a synchronized overlapping
camera network environment [79]. The decision algorithm performs the tracking, which
allows the camera to track the target in the case of occlusion in each view. Kieritz et al.
proposed Multiple-Instance Learning (MIL) [81] for the training appearance model, which
uses the Integrate Channel Features (ICF) in fast-detected pedestrians.

Scheel et al. used multiple high-resolution radar in their method [82] that has a Labeled
Multi-Bernoulli filter to track vehicles, which also implements the Sequential Monte Carlo
(MC) Algorithm. Weng et al. predicted and tracked using multi-agent interaction, which
uses Graph Neural Networks (GNN) [78] for multi-agent interaction and also uses the
diversity sampling function to avoid duplicated trajectories. GNN is used to visualize
relationships using graphs, which is used for the association between objects in tracking.

Data fusion Particle filters

Data association

Tracklet linking

Camera 2

Camera 1

Top view

Reconstruction

tracklets

Object detection

Object detection

Figure 15. An example of a model of Tracklet association [77] with the MOT15 benchmark [8].

3.3.11. Automatic Detection Learning

This section deals with automatic detection learning. Schulter et al. proposed a data
association network [83] using backpropagation, which tracks over the cost of pairwise as-
sociation. In Son et al., the proposed tracker was an end-to-end Quadruplet Convolutional
Neural Network (CNN) [85] as shown in Figure 16, where the tracker exploits quadruple
loss and gives constraints that places it closer to adjacent detectors.

Lee et al. used ensemble network construct CNN with Lucas Kanade Tracker(LKT) [86]
in motion detection. Their model has robust multi-class multi-object tracking (MCMOT)
with a Bayesian filtering framework. Chen et al. solved occlusions in track prediction using
candidates to handle unreliable detection in existing tracks [84]. Scoring was carried out by
using an R-FCN to select the best among many candidates during tracking.

Voeikov et al.’s goal was tracking real-time processing in high-resolution video [137].
To solve this problem, they used an auto-referee system and the occlusion problem by
using CNN with the appearance feature, which also uses the spatial attention mechanism
of insertion and location. Jiang et al. proposed multi-agent deep reinforcement learning
(MADRL) [138], which uses a learning method that uses Q-Learning (QL) to treat other
agents as part of the current agent’s environment.
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Figure 16. The automatic detection learning model proposed by Son et al. [85] using the MOT15
benchmark [8].

3.3.12. Transformer

Xu et al. proposed TransCenter [87], which consists of the tracking and detection. Each
part includes a Deformable Encoder and Decoder. As this paper describes in Section 3.3.4,
Yu et al. used a transformer in GTE [56], which included a deformable attention to trans-
former encoder. GTE uses defensible attention to overcome slow speeds and limited
resolution during learning and obtains robust embedding for the subsequent association.
Sun et al. used “object query” [88] generated with learned object detectors and “track query”
about objects from previous frames. After a bounding box using each query prediction, an
IoU match generates a final set of objects.

Zeng et al. introduced MOTR [89], which created a transformer and DEtection TRans-
former (DETR) [139]. MOTR models long-range temporal relations through a continuous
query delivery mechanism. In Belyaev et al., they used the Deep Object Tracking model
with Circular Loss Function (DOTCL) [140], a loss function that takes into account bound-
ary box overlap and orientation, and which uses the Transformer Multi-head Attention
architecture.

We organized the MOT methodology from Table 2. We present MOT algorithms in six
categories as shown in Figure 17.

Multiple 
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Kampker et al. [69]

Wang et al. [70]
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Yoon et al. [73]

Bae and Yoon [74]
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Yin et al. [102]

Ning et al. [41]
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Xiang et al. [93]

Milan et al. [19]
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Ray and Chakraborty [44]
Pegoraro and Rossi [124]
Hossain and Lee [115]

Huang et al. [129]

Figure 17. The categorization of MOT algorithms into six main categories, IoU, CNN, LSTM, attention,
Siamese network, and Kalman filter.
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3.3.13. IoU

Bochinski et al. assumed that the detector can detect all objects, resulting in a small
gap in detection [60]. In this case, the objects in the current frame and the previous frame
have high overlap IoU. However, there are disadvantages to IoU. In Huang et al., the two
boxes cannot reflect similarity if the objects in the previous frame do not intersect with
those in the current frame [129]. In addition, not all objects have the same location, even if
they have the same IoU. Therefore, to address this, in this paper, they complement it by
using Generalized Intersection over Union (GIoU) to compute the similarity between two
objects in IoU.

3.3.14. CNN

As we can see in Section 3.1, CNN is often used for extract appearance similar with
feature map. Most research uses this feature for tracking enhancement [28–30]. Ren et al.
used CNN in their prediction network [51]. The network trains the movement of ob-
jects. Zhao et al. combined Correlation Filter (CF) and CNN [29]. For feature extraction,
Scheidegger et al. used CNN for detection [49]. Zhu et al. used the attention module when
they extract features from CNN [32] and used a matching layer after CNN. Wojke et al.
used the wide residual network in CNN [4] for deep appearance descriptor.

Liang et al. adapted scale-aware network (SAAN) [31] through CNN. In Wang et al.,
they used CNN with the Embedding model to extract appearance [70]. Baisa also used
CNN for visual computing similarity from the patch [71]. Yoon et al. proposed a Siamese
network into CNN [73]. Bae and Yoon model used Discriminative Deep Representation
Learning from CNN [74]. Yin et al. used CNN for feature extraction in the associate
network [102]. When the associate network finish, they matched the network using by
hyper-target graph. Other research is discussed in Section 3.3.

3.3.15. LSTM

In MOT, LSTM is mainly used to estimate motion after feature extraction. Ning et al.
used LSTM to temporal construct [41] a detected object. In Zhu et al., this research used Bi-
directional Long-Short Term Memory (Bi-LSTM) [32] after extracting features. Xiang et al.’s
model used M-Net, which includes LSTM to the Affinity model [67]. For data associa-
tion [19], Milan et al. used LSTM. Azimi et al. combined a LSTM module with a GCNN
module [93].

3.3.16. Attention

Attention is used to both CNN and sequence models, like LSTM and RNN. Attention
is often used to emphasizes certain nodes in networks. In Chu et al., they used spatial
attention [58] when they extracted features. Yu et al. proposed a global attraction [56]
that considers inter-pixel interactions, unlike previous models. Zhu et al. used Dual
Matching Attention [32], which uses both spare and temporary attraction. Liang et al. used
scale-aware attention [31] when they were extracting features in a multi-scale environment.

3.3.17. Siamese Network

Attention is used in both sequence data and CNN, which is the same for extracting
sensitive information. In Leal-Taixe et al., they used a CNN-based Siamese network [76],
where they exploited pixel values and optical information. Yoon et al. compared the
appearance from Siamese network [73]. Azimi et al. applied the Siamese network in the
model they used for accurate tracking AerialMPTNet [93]. Wang et al. used the Siamese
network in the Unsupervised learning method [132]. To address the lack of features, Lee
and Kim proposed a Feature pyramid Siamese network (FPSN) [117].
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3.3.18. Kalman Filter

The Kalman filter is suitable to solve the problem of low memory in computational
environments. Therefore, this method is ideal for real-time processing systems, such as
autonomous driving. Bewley et al. used the most common method [33] of the Kalman filter
and the Hungarian algorithm. Weng and Kitani also followed Bewley et al.’s method [33],
which performed in the 3D system [55]. Ray and Chakraborty used only the Kalman filter
in their tracking system [44]. Pegoraro and Rossi used the Kalman filter, classifier, and
radar point cloud in their tracking system [124]. In Hossain and Lee, they combined CNN
and the Kalman filter [115] for tracking.

4. Multiple Object Tracking Benchmarks

Although there are various MOT-related benchmarks, this paper focuses on the MOT
benchmark [8,141] and KITTI [142] benchmark, because they are both well-developed
benchmarks and have been used to evaluate the performance of many state-of-the-art MOT
models [141,142]. The examples of these benchmarks are displayed in Figure 18. Each
benchmark will be addressed in detail in the following subsections.benchmark trainset

MOT15 MOT16 MOT17 KITTI

Figure 18. MOT15 [8], MOT16 [141], MOT17, and KITTI [142] benchmark datasets.

4.1. KITTI Benchmark

The KITTI benchmark includes a set of vision tasks collected using an autonomous
driving platform. KITTI includes’ Car’, ’Van’, ’Truck’, ’Pedestrian’, ’Person (sitting)’,
’Cyclist’, ’Tram’, and ’Misc’ classes. The main goal of the KITTI object tracking task is to
calculate object tracklets only for the ’Car’ and ’Pedestrian’ classes. In total, the KITTI object
tracking benchmark consists of 21 training sequences and 29 test sequences with a variety
of data, such as left color image, right color images, Velodyne point clouds, GPS/IMU
data, camera calibration metrics, L-SVM reference, and Region reference. In the Velodyne
point clouds case, it contains manually labeled 3D points. All of the collected data and
calibration were done by experts.

4.2. MOT Benchmark

The MOT benchmark has had many versions, which include MOT15 [8], MOT16 [141],
MOT17, and others. Compared to other benchmarks, the MOT benchmark contains various
sequences that are challenging for the MOT. Each sequence has fundamental information,
such as frame number, identity number, bounding box left, bounding box top, bounding
box width, bounding box height, confidence score, x position, y position, and z position [8].
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4.2.1. MOT15

MOT15 combines both the Performance Evaluation of Tracking and Surveillance
(PETS) [12], and KITTI benchmarks. The weather condition of the training dataset includes
cloudy, sunny, and night, yet the test dataset does not have a night weather dataset. The
training set has 11 sequences, 5500 frames, 500 tracks, 39,905 boxes, and 7.3 density, while the
testing set contains 11 sequences, 5783 frames, 721 tracks, 61,440 boxes, and 10.6 density. The
dataset resolution is varied from 640 × 480 to 1920 × 1080.

4.2.2. MOT16

After MOT 15, MOT16 was introduced with some new improvements, which included
the annotation of personal gestures. The training set has seven sequences, 5316 frames,
512 tracks, 110,407 boxes, and a density of 20.8, whereas the test set includes seven se-
quences, 5919 frames, 830 tracks, 182,326 boxes, and a density of 30.8. Moreover, with two
videos excluded, the entire dataset was constructed from the start without the involvement
of any other datasets. Finally, the MOT16 dataset has more weather conditions than the
MOT15, which include cloudy, night, sunny, indoor in the training dataset, and cloudy,
night, sunny, shadow, and indoor in the test dataset.

4.2.3. MOT17

MOT17 uses the same video as MOT16 but has a different data structure. They focus
on more accurate ground truth from MOT16 benchmark raw data. MOT17 has 21 sequences
in the training set and the test set, with 15,948 frames, 1638 for the training set, 336,891
for the box, 21.1 for the Density, 17,757 for the test set, 2355 for the track, and 31.8 for
the Density.

5. Evaluation of Multiple Objects Tracking Benchmark Datasets

Although there are various evaluation metrics for the MOT, MOTA, and MOTP [143]
are the two most important metrics that show a tracker’s characteristics and can be cal-
culated for evaluating MOT performance. This section describes how the previous state-
of-the-art systems were evaluated using those evaluation metrics on the two benchmark
datasets (KITTI and MOT).

Firstly, MOTA combines three types of tracking errors, as described below.

MOTA = 1 − ∑t(mt + f pt + mmet)

∑t gt
(1)

where t is a frame. mt is the respectively misses for frame t. f pt is the number of false
positives. mmet is the number of mismatch errors for frame t. gt is the total number of
objects at time t.

Secondly, MOTP can be computed to check whether the tracker performed properly
or not.

MOTP =
∑i,t di,t

∑t ct
(2)

ct is the number of matches found for time t. di,t is the distance between the object and
corresponding hypothesis.

Table 3 shows that for the KITTI benchmark, RRC-IITH [62] achieved the highest
MOTP of 85.73 and ML of 2.77. PC3T model [144] also obtained good performance with
the MOTA of 88.8, MT of 80, and high fps at 222. On the other hand, AB3DMOT [145] did
not report the ID switch, and FR was low at 15.
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Table 3. The previous state-of-the-art models on the KITTI benchmark.

Name Year Class MOTA MOTP IDF1 IDS MT ML FR Tracking
Time(s) fps Ref.

2018 32.7 38.9 26.2 19.6 0.09 [29]

2018 car class 80.4 81.3 121 62.8 6.2 613 73 [49]

2019 car class 83.34 85.23 10 65.85 11.54 222 214.7 [55]

RRC-IIITH 2018 84.24 85.73 468 73.23 2.77 944 [62]

2017 67.36 78.79 65 53.81 9.45 574 [83]

PC3T 2021 88.8 84.37 208 80 8.31 369 222 [144]

DiTNet 2021 84.62 84.18 19 74.15 12.92 196 0.01 [146]

AB3DMOT 2021 car class 86.24 78.43 0 15 [145]

Note: IDSw and IDS are the total numbers of switching ID. IDF1 is F1 Score [147] of ID, which is the ratio to the average number of correctly
identified and calculated detection. MT is the percentage of trajectories tracked over some ratio of time. ML is the opposite of MT, that is,
lost targets. Fps is the number of frames that can be processed in one second. FP is the number of false positives, and FN is the number of
false negatives. Frag and FR are interrupted the number of objects. Hz is speed about the process.

The performances of the previous systems on the MOT benchmark datasets are shown
in Table A1 from the Appendix A. For the MOT15 dataset, FairMOT [148] demonstrated the
highest performance in terms of the evaluation metrics with MOTA of 59, IDF1 of 62.2, MT
of 45.6, and ML of 11.5. The SORT [33] algorithm is a widely accepted real-time tracking
algorithm, because it showed an impressive component speed of 260 Hz and small FN of
11.7. STAM [58] achieved the best IDSw 348, whereas EA-PHD-PF [53] obtained the highest
MOTP of 75.3 and Frag of 1269. DAN [28] showed that it had the best FP of 1290.25.

For the MOT16 benchmark dataset, RelationTrack [56] achieved high performance
with MOTA of 75.6, MOTP of 80.9, FN of 34214, and MT of 43.1. EA-PHD-PF [53], on the
other hand, focused on the detector, which got the lowest FP of 407. oICF [81] obtained
the best IDSw of 380, while JDE [70] achieved the highest ML of 16.7 and FPS of 30.3. Fair-
MOT [148] performed well and achieved the highest IDF1 of 70.4 in the MOT16 benchmark.

For the MOT17 benchmark dataset, the RelationTrack [56] model continued to show
the best performance among the existing models, with MOTA of 75.6, MOTP of 80.9, IDF1
of 75.8, MT of 43.1, and FN of 34,214. GAN et al. implemented long occlusion handling [68],
which obtained IDSw of 560, FP of 7912, and Frag of 1212.

6. MOT Trends

Although object detection and object tracking have been studied for a long time,
the recent development of deep learning and computer vision has led to more advanced
models being introduced in order to solve some existing challenges that the previous
models failed to address. Nevertheless, there remain several challenges in the MOT
that need to be addressed. Figure 19 shows various MOT trends that are attracting the
research community.

Figure 19 and Table 4 demonstrates that, in general, detection, appearance, and
affinity are the most common trends, which are implemented to solve MOT problems.
Detection/prediction is the most common trend lately, which took 32% of the total related
research published in 2020. Another interesting trend is affinity, which has witnessed a
stable rise since 2019 and becomes the most prevalent MOT trend in 2021. Most MOT
research tried to construct a robust detector because it significantly affects the tracking
performance. Basic trackers used only the object’s location to estimate the direction.

However, as it is challenging to track only this information, tracking with the appear-
ance category was proved to offer better performance and has thus received more attention.
Most research from the computational costs minimization trend was used in autonomous
driving cars and Internet of Things (IoT) devices [149].
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Figure 19. Notable MOT trends from the last three years (2019–2021).

Table 4. Organized issues by trends in MOT papers from the past 3 years.

Category Issue 2019 2020 2021

Affinity The number of papers is increasing 6% 10% 22%

Appearance learning

• An important factor in identifying
the id information of the object.
• A lot of relevant papers.

17% 11% 9%

Appearance Variations,
Drifting, and Identity

Switching
17% 16% 9%

Detection prediction

• Detection performance affects the tracking
• Most of the papers attempted to make strong
detectors for the tracking systems

18% 32% 18%

Detection and target
associations 12% 11% 4%

Automatic Detection
Learning 6% 5% -

Transformer Models including deep learning and transformers
have been published recently - - 17%

The Kalman filter and Hungarian algorithm are used for speed improvement because
they could effectively construct light detectors. Unlike conventional methods that used
application features only using CNN, recent methods proposed focusing on essential
features through an attention mechanism. A new method that became available in 2021 is
the application of the transformer [35]. Even though this category was newly introduced
in 2021, it appears that a large number of papers were published.

7. Conclusions

Organizations and research communities worldwide are closely collaborating to rev-
olutionize how visual systems track various moving objects. This research is helpful for
readers who are interested in studying the object tracking problem, especially MOT.
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Driven by the ongoing developments of object tracking, especially MOT, this study
offers a comprehensive view of the field with up-to-date information for (i) MOT’s main
approaches and the common techniques for each approach, which include state-of-the-
art results achieved by the most representative techniques, (ii) benchmark datasets and
evaluation methods for the MOT research, and (iii) several challenges in the current MOT
research and many open problems to be studied.

In particular, this paper analyzed two main problems of the MOT, which included the
occlusion problem and the identity switch problem. Moreover, this review concentrated
on studying the latest deep learning-based methods that were proposed to solve those
problems efficiently. After that, the standard MOT benchmark datasets and evaluation
techniques were listed and discussed in detail. Finally, this survey analyzed the main
challenges of MOT and provided potential techniques that can be further studied to cope
with the challenges.
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Appendix A

Table A1. Performance on the MOT benchmark, which includes the MOT15 [8], MOT16 [141], and MOT17 benchmarks.

Benchmark Name Year MOTA MOTP IDF1 IDSw IR IS FM FAF FP FN MT ML Frag Hz FPS Ref.

LINF1 2016 40.5 74.9 NA 426 9.4 NA 953 1.4 8401 99,715 10.7 56.1 NA NA NA [42]

DAN 2019 38.3 71.1 45.6 1648.08 NA NA NA NA 1290.25 2700 17.6 41.2 1515.6 6.3 NA [28]

MDP OFL 2015 30.1 71.6 NA 690 NA NA NA NA 8789 33,479 10.4 41.3 1301 0.8 NA [46]

MDP REL 2015 30.3 71.3 NA 680 NA NA NA NA 9717 32,422 13 38.4 1500 1.1 NA [46]

2018 32.7 NA 38.9 NA NA NA NA NA NA NA 26.2 19.6 NA NA NA [29]

EA-PHD-PF 2016 53 75.3 NA 776 NA NA NA 1.3 7538 20,590 35.9 19.6 1269 NA NA [53]

C-DRL 2018 37.1 71 NA NA NA NA NA 1.2 7036 30,440 14 31.3 NA NA NA [51]

STAM 2017 34.3 70.5 NA 348 NA NA NA NA 5154 34,848 11.4 43.4 1463 NA NA [58]

CCC 2018 35.6 NA 45.1 457 NA NA 969 NA 10,580 28,508 23.2 39.3 NA NA NA [63]

SORT 2016 33.4 72.1 NA 1001 NA NA NA 1.3 7318 11.7 30.9 NA 1764 260 NA [33]

MOT15

FairMOT 2020 59 NA 62.2 582 NA NA NA NA NA NA 45.6 11.5 NA 30.5 NA [148]

LINF1 2016 40.5 74.9 NA 426 9.4 NA 953 1.4 8401 99,715 10.7 56.1 NA NA NA [42]

EA-PHD-PF 2016 52.5 78.8 NA 910 NA NA NA 0.7 4407 81,223 19 34.9 1321 12.2 NA [53]

C-DRL 2018 47.3 74.6 NA NA NA NA NA 1.1 6375 88,543 17.4 39.9 NA NA NA [51]

STAM 2018 46.0 74.9 NA 473 NA NA NA NA 6895 91,117 14.6 43.6 1422 NA NA [58]

RelationTrack 2021 75.6 80.9 NA 448 NA NA NA NA 9786 34,214 43.1 21.5 NA NA NA [56]

TNT 2019 49.2 NA NA 606 NA NA NA NA 8400 83,702 17.3 40.3 882 NA NA [40]

DMAN 2018 46.1 73.8 NA 532 NA NA NA NA 7909 89,874 17.4 42.7 1616 NA NA [32]

Deep SORT 2017 61.4 79.1 NA 781 NA NA 2008 NA 12,852 56,668 32.8 18.2 NA 20 NA [4]

Deep-TAMA 2021 46.2 NA NA 598 NA NA 1127 NA 5126 92,367 14.1 44 NA NA 2 [66]

CSTrack++ 2020 70.7 NA NA 1071 NA NA NA NA NA NA 38.2 17.8 NA NA 15.8 [31]

2018 44 78.3 NA 560 NA NA NA NA 7912 93,215 15.2 45.7 1212 NA NA [68]

JDE 2019 62.1 NA NA 1608 NA NA NA NA NA NA 34.4 16.7 NA NA 30.3 [70]

oICF 2016 42.8 74.3 NA 380 NA NA NA NA NA NA 10.4 53.1 1397 NA NA [81]

MCMOT HDM 2016 62.4 78.3 NA 1394 NA NA NA 1.7 9855 57,257 31.5 24.2 1318 34.9 NA [86]

MOTDT 2018 47.6 NA NA 792 NA NA NA NA 9253 85,431 15.2 38.3 NA NA 20.6 [84]

MOT16

FairMOT 2020 68.7 NA 70.4 953 NA NA NA NA NA NA 39.5 19 NA 25.9 NA [148]
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Table A1. Cont.

Benchmark Name Year MOTA MOTP IDF1 IDSw IR IS FM FAF FP FN MT ML Frag Hz FPS Ref.

EB+DAN 2019 53.5 NA 62.3 NA NA NA NA NA NA NA NA NA NA NA NA [28]

RelationTrack 2021 75.6 80.9 75.8 448 NA 7.4 NA NA 9786 34,214 43.1 21.5 NA NA NA [56]

TNT 2019 51.9 NA 58 2294 NA NA NA NA 37,311 231,658 23.5 35.5 2917 NA NA [40]

DMAN 2018 48.2 75.9 NA 2194 NA NA NA NA 26,218 263,608 19.3 38.3 5378 NA NA [32]

2021 50.3 NA 53.5 2192 NA NA NA NA 25,479 252,996 19.2 37.5 NA NA 1.5 [66]

2020 70.6 NA 71.6 3465 NA NA NA NA NA NA 37.5 18.7 NA NA 15.8 [31]

2018 44 78.3 NA 560 NA NA NA NA 7912 93,215 15.2 45.7 1212 NA NA [68]

MOT17

FairMOT 2020 67.5 NA 69.8 2868 NA NA NA NA NA NA 37.7 20.8 NA 25.9 NA [148]

Note: IDSw and IDS are the total numbers of switching ID. IDF1 is the F1 Score [147] of ID, which is the ratio to the average number of correctly identified and calculated detection. MT is the percentage of
trajectories tracked over some ratio of time. ML is the opposite of MT, that is, lost targets. Fps is the number of frames that can be processed in one second. FP is the number of false positives, and FN is the
number of false negatives. Frag and FR are interrupted the number of objects. Hz is the speed of the process.
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