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 Highlights  
 Detecting and categorizing the criticalness of Fusarium wilt of radish.  

 Segmenting the radish regions from other regions on the field such as bare ground and 

mulching film.  

 Classifying the severity of the Fusarium wilt of radish based on thresholding a range of 

color features.  

 Creating two different datasets. One dataset contains images for radish, bare ground and 

mulching film regions which were manually verified and collected. The other dataset 

contains images for healthy, disease light and disease heavy radish. This dataset will be 

made public for the research community for further experimentation and simulations  

 

Abstract. The significant role of plants can be observed through the dependency of animals 

and humans on them. Oxygen, materials, food and the beauty of the world are contributed by 

plants. Climate change, the decrease in pollinators, and plant diseases are causing a significant 

decline in both quality and coverage ratio of the plants and crops on a global scale. In developed 

countries, above 80 percent of rural production is produced by sharecropping. However, due 

to widespread diseases in plants, yields are reported to have declined by more than a half. These 

diseases are identified and diagnosed by the agricultural and forestry department. Manual 

inspection on a large area of fields requires a huge amount of time and effort, thereby reduces 

the effectiveness significantly. To counter this problem, we propose an automatic disease 

detection and classification method in radish fields by using a camera attached to an unmanned 

aerial vehicle (UAV) to capture high quality images from the fields and analyze them by 

extracting both color and texture features, then we used K-means clustering to filter radish 

regions and feeds them into a fine-tuned GoogleNet to detect Fusarium wilt of radish efficiently 

at early stage and allow the authorities to take timely action which ensures the food safety for 

current and future generations. 
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Keywords. Unmanned aerial vehicles, feature extraction, radish field clustering, Fusarium wilt 

of radish classification 

1. Introduction 

In Korea, radish is considered the national vegetable, occupying about 10% of the entire 

vegetable farming area. It is an indispensable ingredient in soups, stews, and other dishes. 

However, the radish yield has decreased sharply due to the Fusarium wilt of radish, a disease 

has emerged at an unprecedented rate. The symptoms include wilting, chlorosis, necrosis, 

premature leaf death and a deterioration of the vascular elements in roots, stems, and petioles, 

which lead to the imminent death of the infected plant [1]. It is a challenge to prevent and treat 

the disease for several reasons. When the disease appears, it spreads rapidly from infected 

plants to healthy plants, resulting in severe harvest losses. Early detection of the disease could 

prevent the widespread of the disease and mitigate the damage. Manual field inspection has 

been applied for a long time, but it is inefficient and time-consuming. Therefore, a surveillance 

system, which can precisely and automatically detect the Fusarium wilt of radish, will likely 

become a reality more than ever as advanced technologies such as UAVs, IoT application, and 

remote sensing are emerging.   

Remote sensing is part of a GIS system that supports the measurements of the agricultural 

area. Satellite, SAR and airplanes have been three major remote sensing technologies for a 

quite some time. The results acquired from satellite remote sensing are affected by poor 

resolution images or inaccurate information due to poor weather conditions and high costs [2], 

whereas in airplane remote sensing, the plane is equipped with multiple sensors and cameras 

that provide high quality and detailed information, yet the equipment is expensive and hard to 

operate [3]. On the other hand, SAR remote sensing, the ground resolution is affected by the 

length of the microwave beam generated by the antenna [35,38]. As an alternate method, 

unmanned aerial vehicles (UAV) are a remote-controlled aircraft which records the field 

surface at relatively low-altitudes [4]. Owing to the advances in sensing technology, control, 

and positioning techniques, UAV is now capable of acquiring high spatial resolution surface 

images at low operational cost. Because it has multiple functions as well as its cost-

effectiveness, UAV applications are rising rapidly. It can be applied in many areas from traffic 

monitoring [5] to forest fire monitoring [6] and search & rescue operations [7]. In addition, 

UAV has promising potential in converting precision farming into autonomous farming [8]. It 

assists farmers in observing crop and field information promptly, which leads to improvement 

in crop management and farm planning. 
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Beside remote sensing, Internet of things (IoT) concepts are emerging and has drawn much 

recent attention to the research community [21,27,28,29]. IoT lets various devices around us 

communicate and collaborate with each other. In the case of radish farming, multiple sensors 

have already been placed on the field to collect periodic scalar data such as light, temperature, 

humidity, etc. then the data are sent directly to the main controller for analyzing and 

automatically adjusting the optimal environmental parameters for radish. As UAV applications 

have rocketed in recent years, it can be integrated into existing IoT system on the field. By 

letting the drone fly over pre-programmed locations at a specific time on a daily basis to record 

multimedia contents such as video and images, these contents are then sent to the main 

controller for detecting the wilt of radish in real-time and notifying the users detailed 

information by sending a message if the disease is detected. 

Traditional approaches in image representation have relied heavily on extracting hand-

engineered features like color, texture and shape features [9,10,36,37], scale-invariant features 

transform (SIFT) [11], and bag-of-visual-words [12]. Those systems relied on shallow 

classification methods like support vector machines [22], decision tree [24], random forest, 

dependencies of inter-block coefficients [30], multi-scale non-negative sparse coding [31], 

multi-factor feature [32,33], swarm intelligence [25], fuzzy reinforcement [34] and neural 

networks for identifying plant diseases [26]. However, the low discriminative ability of these 

features and their failure to describe high-level semantics resulted in poor classification 

performance. Recent successes in deep learning based methods in image classification tasks 

have received many interests of computer vision researchers to utilize these powerful 

hierarchical architectures for various tasks [13]. While modern CNN architectures do require 

huge computational power, efforts have been made to reduce their computational needs while 

keeping their performance as high as possible. As a result, several efficient CNN architectures 

have been proposed like GoogleNet [14], Network-in-Network [15].  

Based on the above analysis and considerations, we proposed a novel approach to combine 

UAVs with computerized methods for detecting the critical nature of the Fusarium wilt of 

radish. The main contributions include four aspects: 

 Detecting and categorizing the criticalness of the Fusarium wilt of radish. 

 Divided the radish regions from other regions on the field such as bare ground and mulching 

film by using clustering algorithm. 

 Classifying the severity of the Fusarium wilt of radish based on thresholding the range of 

color features. 
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 Creating two different datasets. One dataset contains high-resolution radish field images 

obtained from the drone. The other dataset contains images of radish, bare ground and 

mulching film regions which were manually verified and collected. They will be made 

public for the research community for further experimentation and simulations.   

2. Datasets 

2.1. Image Acquisition 

The images used in this study were captured in different areas in Korea including Jungsun, 

Gangwon and Hongchun between July and September 2016. Two commercial UAVs (Phantom 

4, DJI co., Ltd.), equipped with RGB camera (12 megapixels), were used to obtain the images 

at the altitudes of approximately 10m above the ground level. A total 40 images were acquired, 

and each image has dimensions of 4000 x 3000 pixels at 72dpi. Fig. 1 introduces an image 

captured by drone on the radish field. 

2.2. Dataset Preparation 

From the original 40 images, two datasets were created. Dataset A contains manually 

cropped and labeled regions of interest (ROIs) representing three regions: radish, bare ground, 

and mulching film as shown in Fig. 1. In total, 1,500 ROIs were extracted; 500 ROIs for radish, 

500 ROIs for bare ground, and 500 ROIs for mulching film regions. Dataset A is used for radish 

region classification. Dataset B contains the original 40 images of size (4000x3000) pixel. 

ACCEPTED M
ANUSCRIP

T



 

Figure 1. Sample image of radish field. Different colored outlines indicate different regions of radish fields 

(green indicates healthy radish, red indicates Fusarium wilt of radish, blue indicates bare ground, and black 

indicates mulching film) 

 

ACCEPTED M
ANUSCRIP

T



Figure 2. Another sample of radish field. Different colored outlines indicate different regions of radish fields 

(green indicates healthy radish, red indicates Fusarium wilt of radish, blue indicates bare ground, and black 

indicates mulching film) 

3. Methodology 

As shown in Fig. 1, the entire radish field contains three main regions (Radish, bare ground, 

and mulching film). The final goal of this study is to detect Fusarium wilt on radish leaves, so 

clustering is needed to divide the radish field into Dataset B into distinct regions. Next, a 

classifier is trained to recognize which region is radish using Dataset A, the output after 

applying this classifier to the clustered regions is radish regions. After that, by sliding a fixed 

size rectangular window (64x64, 128x128, 256x256) pixel through the radish regions from the 

clustering step, a list of small size radish images was extracted, each image was assigned a 

label indicates the level of disease by applying various image processing methods. Finally, a 

convolutional neural network (CNN) model is implemented for classifying the Fusarium wilt 

of radish based on the severity of the disease. The overall process of the proposed model is 

shown in Fig. 3. 

 

Figure 3. Overall architecture of Fusarium wilt of radish detection model 

3.1. Features Extraction & Features Selection 
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An image contains various useful features such as color, shape, texture. Each type of feature 

serves a specific purpose in image processing. However, image information retrieval using only 

one kind of feature is not good enough for the accuracy and efficiency of the model. The high 

dimensional features lower the model efficiency whereas low dimensional feature decrease 

model accuracy, so it is better to use multi features for feature retrieval. Since color and texture 

are the most important visual features, they are extracted in this study. As shown in Fig. 4, 

Local binary pattern (LBP) in [16] was applied to extract texture features from radish image 

whereas color features were extracted by using color-space conversion. After that, two featured 

sets were combined into one feature vector then AutoEncoder (AE) [17] was utilized to reduce 

the feature dimension. 

 

Figure 4. Features extraction and features selection process 

3.1.1. Features extraction 

The local binary pattern provides a robust texture descriptor which is invariant to rotation 

and illumination changes at low computational cost. In the image, randomly select a pixel c, 

LBP takes its neighboring pixels p (p = 0, …, P−1) (a set of nearby pixels which form circle 

shape) under a radius R and creates a binary pattern vector as shown in following formula: 

𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑠(𝑔𝑝
𝑃−1
𝑝=0 − 𝑔𝑐)2𝑝   (1) 

where s(x) is 1 if x≥0 or 0 if x<0, 𝑔𝑐 and 𝑔𝑝 indicate the grayscale of the center pixel and its 

neighborhood pixels, respectively. However, the binary pattern vector generated above is still 

sensitive to rotational invariance, so Equation (2) is a solution to overcome this problem: 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 = min{ 𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑖) |  𝑖 = 0,1, … , 𝑃 − 1  } (2) 
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where 𝑅𝑂𝑅(𝑥, 𝑖) is calculated by right shift operation on a circular bitwise which means that 

the same binary pattern code created by the bitwise operation is regarded a similar pattern. In 

our case, LBP features are calculated on gray image by computing three nearby topologies (P, 

R) = {(8, 1), (16, 2), (24, 3)} which generated 703,404 features. 

Radish field images were captured in RGB (red, green and blue) color space then converted 

into HSV (hue, saturation, value) to separate color information from luminance and L*a*b 

color space (L stands for lightness, a and b represent the color components green–red and blue–

yellow, respectively) to approximate human vision. Then the histograms were generated using 

hue, *a, and *b channels (one histogram contains 256 bins or features). After that, three color 

histograms were concatenated into one color histogram, generating approximately 768 color 

features. 

3.1.2. Feature selection 

After extracting texture features and color features, they were combined into one single 

features vector. However, two features cannot be directly combined because there is a huge 

difference between their dimensions. Therefore, the classification and clustering step will be 

influenced by the texture features which had many more dimensions than the color features. 

This imbalance will probably affect the accuracy of the model. The solution to this problem is 

to scale the dimensions of these two features to the same dimensions. Initially, texture features 

𝑡𝑖 is shrunk, whereas color features 𝑐𝑖 is extended so each features set will occupy half of the 

dimensions 𝑑𝑥 of the input vector 𝑥𝑖. 

The input vector 𝑥𝑖  is made by concatenating texture features 𝑇𝑖  and color features 𝐶𝑖 , 

which are the shrunken texture features of 𝑡𝑖 and extended color features of 𝑐𝑖, respectively. 𝑇𝑖, 

𝐶𝑖 and 𝑥𝑖 are computed as follows: 

𝑇𝑖 = 𝑊𝑡𝑡𝑖 + 𝑏𝑡   (3) 

𝐶𝑖 = 𝑊𝑐𝑐𝑖 + 𝑏𝑐   (4) 

𝑥𝑖 =  [𝑇𝑖 𝐶𝑖]  (5) 

where the matrices 𝑊𝑡 ∈ 𝑅𝑑𝑥×𝑑𝑡  and 𝑊𝑐 ∈ 𝑅𝑑𝑥×𝑑𝑐  represent the weights, 𝑏𝑡 and 𝑏𝑐 represent 

their biases. 

 After applying scaling, the texture features 𝑡𝑖  was reduced from 703,404 to 𝑇𝑖 =10,000, 

and color features 𝑐𝑖 was extended from 768 to 𝐶𝑖 =10,000. As the result, the input vector 𝑥𝑖 

contains a total of 20,000 features. The number of features was in very a high dimensional 

space so the features selection method is implemented to improve the system performance. 
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There are various available features selection techniques such as PCA, Stacked AutoEncoder, 

etc. PCA is a very simple technique that only performs a linear transformation on the input 

space to align directions of maximum variation with the directions of the axes, whereas Stacked 

AE [17] is a much more sophisticated technique that can model relatively complex 

relationships and non-linearities of the input dataset. It includes an input layer, an output layer 

(having the same dimension) and hidden layer(s) which learn the approximation/representation 

from the input. The dimensions of the input and output layers are greater than the hidden layer. 

The hidden layers learn the input compressed representation (encoding), i.e., getting all the 

input meaningful features. Finally, the input features were reduced and compressed by applying 

two-stacked AE [18] on 20,000 features to only 1,770 features. 

3.2. Radish Region Classification 

The classifier used in this study is the softmax classifier, which computes the probability 

to assign a specific class to a region. The class with the highest probability is appointed to the 

region. It is mainly deployed as a final classification layer for the neural network-based model. 

With a feature vector 𝑥, the softmax classifier returns the probability for each class label 𝑗 (𝑗 =

1, … , 𝐶) as follows: 

𝑃(𝑦 = 𝑗|𝑥) =  
𝑒𝑢(𝑥)𝑗

∑ 𝑒𝑢(𝑥)𝑘𝐾
𝑘=1

    ,    𝑓𝑜𝑟 𝑗 = 1 … . 𝐶    (6) 

𝑢(𝑥)𝑗 = ∑ 𝑤𝑖𝑗 ∙ 𝑥𝑖 + 𝑏𝑗
𝐼
𝑖=1     (7) 

in which 𝑦𝑎 represents the class label, 𝑤𝑖𝑗  is the weight and  𝑏𝑗   is a bias (𝑖 = 1, … , 𝐼, 𝑗 =

1, … , 𝐶). 𝐼 and 𝐶 denotes the features and name of class (mulching film, bare ground, and 

radish), respectively. The weight w and bias b are computed to reduce mean squared error 

(MSE) by iterating 200 times. Equation (6) is called softmax function that return a C-

dimensional vector which contain values between 0 and 1, representing the categorical 

probability distribution. The class with has highest probability is assigned to 𝑥. 

Support vector machine (SVM) was also implemented to compare with softmax classifier 

to find the optimal classifier for the dataset, SVM is proved to be one of the most efficient 

algorithms for classification problem [22]. It uses a decision boundary to separate sample from 

different classes. The SVM kernel used in this study is linear kernel because the number of 

features were larger than the number of training samples, so there is no need to map data to a 

higher dimensional space, and we only needed to search for the suitable parameter C. LibSVM 

[23] is a library for implementing support vector machines (SVM). It helps the users implement 
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and customize SVM easily to fit their case. After using cross-validation supported by the 

library, the best values for C was 0.5. 

3.3. Radish Field Clustering 

In the entire radish field image, radish is the only region of interest for further steps. Thus 

K-means clustering is implemented to cluster the radish field image into distinct regions, and 

only the radish regions are collected. Fig. 5 shows the entire process of radish field clustering. 

Features are extracted from original radish RGB field image. Then, K-means clustering is 

performed with K=3, 5, 10, 15 and 20. For each cluster, the radish field classifier from the 

previous section is used to assign the class name to each cluster.  

After filtering out the radish regions through K-means clustering, a fixed window was 

created to slide through the region, and the window size was set to 64, 128, and 256 

sequentially, so we can discover which window size achieves the best Fusarium wilt of radish 

classification results. 

 

Figure 5. Overview of radish field clustering process 

3.4. Disease Criticalness Categorization 

As the criticalness of Fusarium wilt appears in the radish at many stages, farmers have a 

specific treatment plan for each stage. Early and accurate detection and diagnosis of plant 

diseases is the key factor in plant production and the reduction of both qualitative and 

quantitative losses in the crop yield. Fig. 6 shows sample ROIs for healthy, light and heavy 

disease. 

Each image extracted from the clustering step was converted from RGB to HSV color 

space, and after that, thresholding operations were performed by applying a range of pixel 
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values representing the greenish region. When applying the thresholding technique, the portion 

of a black pixel represents the yellowish region (Fusarium wilt), while the portion of a white 

pixel represents the greenish region (healthy radish). Radish that suffered from the more severe 

disease has more black pixels in the threshold image than healthy radish or radish suffered 

from an early stage of the disease. Therefore, the following properties are used to set the 

threshold to classify each input image into one of these three categories: healthy, light disease, 

and heavy disease as illustrated in Fig. 6. If the percentage of white pixels in the image is over 

or equal to 90%, it is categorized as a healthy radish. For the light disease radish, it is less than 

85% and over 65%. The image is categorized as heavy disease radish if the percentage of white 

pixels is less than 65%. As the result, for each window size (64, 128, 256), 6,000 images were 

extracted: 2,000 for healthy radish, 2,000 for light disease, and the other 2,000 images for 

heavy disease 

 

Figure 6. Sample criticalness categorization on (128x128) pixel window size 

3.5. Fusarium Wilt of Radish Classification 

To detect and classify the criticalness of the Fusarium wilt of radish, a well-known CNN 

model GoogleNet [14] is adopted. This CNN model was proposed in the ImageNet large-scale 

visual recognition challenge [19], this CNN model achieved a remarkable performance of 5.5% 

top-5 classification error compared to AlexNet 15.3% top-5 classification error. 
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3.5.1. Convolutional neural network 

This CNN model is more complicated and deeper in analyzation than all previous CNN 

models. Moreover, it uses “Inception,” which concatenates filters of various sizes and 

dimensions into a single new filter. It contains two convolutions, two pooling and nine 

“Inception” layers. In this paper, three different RGB image sizes were used as an input (64x64, 

128x128, 256x256) corresponding to 3 different window sizes (section 3.3). By comparing 

them, we can decide which size gives the best results. Fig. 7 shows the illustration of CNN 

architecture used in this paper.  

 
Figure 7. Illustration of GoogleNet’s architecture 

3.5.2. CNN training process 

After the disease criticalness categorization in Section 3.4, we have three small datasets for 

three different window sizes: each size includes 2,000 healthy radish images, 2,000 light 

Fusarium wilt, and 2,000 heavy Fusarium wilt. The entire dataset was randomly divided into 

training and validation sets. The training and validation set occupied 75% and 25% of the entire 

dataset respectively, and the validation set was used for tuning the learning rate. In the training 

phase, the batch size was set to 90 and momentum was 0.9.  The learning rate was initially set 

to 0.01 and gradually reduced to 0.0001 according to the error rate of the validation set, as the 

parameter vector bounces around chaotically with a high learning rate. Therefore it is ideal to 

step decay the learning rate. The training phase ran for 30 epochs, which took approximately 

1 hour.  

The system used for training the CNN model was NVIDIA DIGITS toolbox with Caffe 

framework. The experiments were implemented on a Linux machine preinstalled Ubuntu 

14.04, it used Intel® Core i7-5930K processor, four 3072 Cuda cores, 4 Titan X 12GB GPUs, 

and 64GB of DDR4 RAM. 
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4. Experimental Results and Discussion 

4.1. Evaluation Methodology 

4.1.1. Classification evaluation protocol 

K-fold cross-validation (k=3) is applied to evaluate the system performance. It seperates 

the entire dataset into roughly k equal-sized subsets. Two subsets are used to train the proposed 

method, while the remaining subset is utilized to compute the performance of the method. The 

training process is reiterated k times with a different collection of the remaining subset. In 

radish field classification, the confusion matrix is calculated to evaluate the ability of our model 

to distinguish different regions (mulching film, bare ground, and radish). The confusion matrix 

CM is calculated as: 

𝐶𝑀𝑖𝑗 =  ∑ |{𝑟 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ(𝑟) = 𝑖 𝑎𝑛𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑟) = 𝑗}𝑅∈𝑑   (8) 

where 𝑅 is the ROIs and 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ(𝑟) and P𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑟) denote the ground truth class 

label and predicted class label of an ROI 𝑟, respectively. 

4.1.2. Clustering evaluation protocol 

The K-means clustering was accessed with a different value of K (K=3,5,10,15, and 20). 

Therefore, the results varied when the different K were applied. To find the value of K, which 

had the highest performance, the clustering results were evaluated by calculating the pixel-

level clustering accuracy [20] (PSA). PSA is the most popular semantic clustering measure that 

evaluates pixel-level classification accuracy. PSA is calculated in Equation (9) 

𝑃𝑆𝐴 =  
∑ 𝐶𝑖𝑖

𝑛
𝑖

∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗

𝑛
𝑖

  (9) 

PSA was measured using a range of K values (K=3, 5, 10, 15, and 20). Thus we can decide 

whether the size of the clusters affects the clustering performance. 

4.2. Radish Region Classification Results 

Table 1 and Table 2 show the confusion matrix of classification results on Dataset A (radish 

ROIs: 500, bare ground ROIs: 500, and mulching film ROIs: 500). After that, we calculated 

precision, recall, and F-measure for SVM classifier and softmax classifier using the confusion 

matrix. The result is shown in Fig. 8; it is noticeable from the graph that softmax classifier 

achieves the overall performance over 90%, whereas for SVM the F-measure is 72% since 

correctly classified bare ground was only 342 per 500 samples. As a result, the softmax 

classifier is chosen to be the default classifier in the model. 
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Predicted 

True 

Predicted 

Predicted 

True 

Table 1. Confusion matrix for softmax classification 
 

Radish Bare Ground Mulching Film 

Radish 498  0 13 

Bare ground 1 491 104  

Mulching film 1 9 383 

Table 2. Confusion matrix for SVM classification 
 

Radish Bare Ground Mulching Film 

Radish 475  3 2 

Bare ground 18 342 6 

Mulching film 7 155 492 

 

Figure 8. Comparison between SVM and softmax classifier on Dataset A 

4.3. Radish Field Clustering Results 

Radish field clustering accuracy was computed by pixel-level clustering accuracy (PSA), 

it is also validated by 3-fold cross validation with same dataset and classifier used for radish 

field classification evaluation.  
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Figure 9. PSA evaluation on K-means with different K   

Radish field clustering results (PSA) with different cluster (K) values are presented in Fig. 

9. As K increases, the overall PSA accuracy increases gradually to 93%. However, when K is 

more than 10, it gradually decreases. As the optimal value of K depends solely on the dataset, 

in case of this dataset, PSA was used to find the most suitable K value. With K=10, the PSA 

accuracy was over 91%. The results confirm 10 is the optimal amount of cluster for radish field 

clustering. 

 

Figure 10. Radish field clustering results 
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Fig. 10 shows the clustering results with K=10. The regions corresponding to radish, bare 

ground, and mulching film are correctly classified as labeled. Although the clustering result 

works great on separating radish, bare ground and mulching film, misclassified regions are 

also represented in Fig. 11. These include withered radishes that are mainly brown as their 

resemblance to ground color; these regions were clustered to bare ground by K-means 

clustering. The low performance is caused by  the clustering method, as K-means clustering 

depends on 3 color channels as described in section 3.2. 

 

Figure 11. Wilt of radish clustering results (Brown leaves was misclassified as bare ground) 

4.4. Fusarium Wilt of Radish Classification Results 

Fig. 12 shows the results of Fusarium wilt of radish classification on different image sizes. 

Overall, the 128x128 image size dataset achieves the highest classification performance at over 

90% for three classes. Taking a closer look into 128x128 window size, the model misclassifies 

two pairs of classes, the first pair is (normal, disease light), the second pair is (disease light, 

disease heavy), one possible reason is because the color value range threshold to distinguish 

between three classes was similar. Therefore it was unable to assign the right class for some 

images. Besides the 128x128 size dataset, the results for 64x64 and 256x256 window sizes are 

not as good as 128x128 size dataset, thus in this study, the 128x128 size dataset is deemed the 

optimal size. 
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Figure 12. Fusarium wilt of radish classification results on different window sizes 

Fig. 13 shows the Fusarium wilt of radish detection results on radish region images. Fig. 

14 shows the detailed detection results of the Fusarium wilt of radish. The Fusarium wilt of 

radish grows from yellow to brown as the disease gets worse. As can be seen in Fig. 13, light-

level Fusarium wilt of radishes (partly yellow) and heavy-level Fusarium wilt of radishes 

(mainly yellow) are successfully detected. However, some parts of the leaves are missing 

because browned radishes such as heavy-level Fusarium wilt of radish or dried radish are often 

clustered as bare ground in the clustering step. As the result, they were filtered out because 

only radish region images are extracted. This problem causes a reduction of Fusarium wilt of 

radish detection accuracy. 
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Figure 13. Extracted radish image (Left) and wilt of radish detection result in radish field (Right) 

 

Figure 14. Close-range Fusarium wilt of radish detection 

Conclusions 

This study introduces an efficient framework to identify and detect different levels of 

Fusarium wilt on radish from healthy to disease heavy. Many techniques were implemented to 

improve the performance of the system such as extracted both color features and textures 

features from the image, clustered the field and selected only radish region. Finally, 

GoogLeNet can detect Fusarium wilt of radish with the accuracy of over 90%.  

The model is capable of detecting the Fusarium wilt of radish from UAV’s images, which 

have a great potential for reducing the labor cost in managing and preventing the disease, as 

well as ensuring sustainable radish production. The proposed system can detect Fusarium wilt 

on another type of crops including tomato, tobacco, banana because it is a common vegetable 

disease. Therefore, the model plays an important role in maintaining the sustainability of crop 

yields. 

In the future, several related issues will be studied. First, besides RGB image, infrared is 

often employed to monitor diseases, and the infrared filter is easy to equip on existing UAV’s 

camera lens. A methodology that combines RGB images and infrared images will probably 
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improve the performance of the model. Secondly, several pre-processing techniques and deep 

learning models to improve the performance of this problem will be studied.  
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