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Abstract. Recently, unmanned aerial vehicles (UAVs) have gained much attention. In particular,
there is a growing interest in utilizing UAVs for agricultural applications such as crop monitoring
and management. We propose a computerized system that is capable of detecting Fusarium
wilt of radish with high accuracy. The system adopts computer vision and machine learning
techniques, including deep learning, to process the images captured by UAVs at low altitudes
and to identify the infected radish. The whole radish field is first segmented into three distinctive
regions (radish, bare ground, and mulching film) via a softmax classifier and K-means cluster-
ing. Then, the identified radish regions are further classified into healthy radish and Fusarium
wilt of radish using a deep convolutional neural network (CNN). In identifying radish, bare
ground, and mulching film from a radish field, we achieved an accuracy of ≥97.4%. In detecting
Fusarium wilt of radish, the CNN obtained an accuracy of 93.3%. It also outperformed the
standard machine learning algorithm, obtaining 82.9% accuracy. Therefore, UAVs equipped
with computational techniques are promising tools for improving the quality and efficiency of
agriculture today. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.042621]
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1 Introduction

1.1 Research Motivation

Radish is one of the major horticultural crops in Korea, occupying ∼10% of the entire vegetable
cultivation area. One of the most destructive and economically damaging diseases of radish is
Fusarium wilt of radish. It is a vascular disease that causes a chlorosis, necrosis, and abscission of
leaves and a discoloration of the vascular elements in roots, stems, and petioles, leading to death
of the infected plant.1 Management and control of Fusarium wilt of radish is challenging for
several reasons; for instance, its pathogen is soil inhibiting. Rapid spread of the disease is
often observed, resulting in substantial harvest losses. Early detection of the disease could
aid in preventing the spread of the disease and minimizing the damage. However, manual inspec-
tion is inaccurate, inefficient, and time-consuming. Therefore, an automated, fast, and precise
surveillance system for detecting Fusarium wilt of radish is needed.

Remote sensing permits the acquisition and recording of information of agricultural produce
and environment. Satellite- and aircraft-based technologies have been the two major remote
sensing technologies. Satellite-based remote sensing has been widely studied and applied but
suffers from insufficient information due to low resolution images, inaccurate (or poor quality)
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information due to local weather conditions, and a high cost for the system.2,3 Aircraft-based
remote sensing is often equipped with multiple sensors or cameras, providing high quality
information or images. However, the system is still costly and hard to operate.4 Alternatively,
unmanned aerial vehicles (UAVs) are remote controlled aircraft that offer ad hoc remote sensing
of the surface at relatively low altitudes.5 Due to the rapid advances in sensing, control, and
positioning techniques, UAVs are now capable of acquiring high spatial resolution surface
images at a low operational cost. With the greater capability and availability as well as
cost-effectiveness, the applications of UAVs are rapidly growing6 such as traffic monitoring,7

forest fire monitoring,8 and search and rescue operations.9 UAVs also have great potential
for improving agriculture.10,11 They can not only facilitate obtaining crop and field informa-
tion in a timely manner but also assist farmers in improving crop management and farm
planning.

Computer and information technologies can process and analyze the information or images
obtained by remote sensing to monitor and assess the farming condition, e.g., crop health, crop
yield, and harvest time. Several computer systems have been developed for improving agricul-
ture. For example, plant disease detection,12–15 quality inspection of agriculture products,16 and
vegetable classification.17 These systems were mainly developed based on standard computer
vision and machine learning methods such as support vector machine (SVM). Deep learning is a
new paradigm of machine learning. It has recently proved to be useful for several applications,
for instance, image recognition,18–21 speech recognition,22 and drug discovery.23 The technique,
especially, provides an efficient and effective means of handling large-scale datasets as well as
discovering intrinsic feature representation of the datasets.

In this study, we propose a systematic approach that combines UAVs with computerized
methods to detect Fusarium wilt of radish. Images of radish fields are obtained from UAVs
at low altitudes. The state-of-the-art computer methods, including deep learning, are utilized
to process and analyze the radish images. The rest of this paper is organized as follows. In
Secs. 2 and 3, we describe the data acquisition, image processing, and classification procedures
for detecting Fusarium wilt of radish. In Sec. 4, the performance of our approach in detecting
Fusarium wilt of radish is presented. In Sec. 5, we conclude with the summary of our findings
and perspectives on future directions.

2 Datasets

2.1 Image Acquisition

Images of radish fields were acquired in Hongchun-gun and Jungsun-gun, Kangwon-do, Korea,
from July to September 2016. A commercial UAV (Phantom 4, DJI co., Ltd.), equipped with
an RGB camera (12 mega pixels), was used to obtain the field images at the altitudes of ∼10 m

above ground level. Each image has a spatial dimension of 4000 × 3000 pixels with 72 dpi.
In total, 139 images were attained. Figure 1 shows the exemplary images of radish fields that
were acquired from the UAV.

2.2 Dataset Preparation

Two types of datasets were constructed. The first dataset (dataset1) includes three distinctive
regions of radish fields (radish, mulching film, and bare ground) (Fig. 1). Each image was man-
ually reviewed, and the regions of interest (ROIs) corresponding to radish, bare ground, and
mulching film were selected. In total, 1734 ROIs were selected from 139 images; 634 ROIs
(average size of 475 × 408, ranging from 38 × 69 to 1155 × 1133) for radish, 580 ROIs (average
size of 289 × 220, ranging from 19 × 16 to 900 × 1103) for bare ground, and 520 ROIs (average
size of 158 × 128, ranging from 22 × 28 to 799 × 510) for mulching film regions. This dataset is
used for radish field classification (Sec. 3.1) and segmentation (Sec. 3.2). The second dataset
(dataset2) contains ROIs for healthy radish and Fusarium wilt of radish (Fig. 1). Acquiring
the images of radish fields, the infected regions were first identified. Afterward, the images
were further examined with the prior knowledge of the infected regions, and then the ROIs
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corresponding to Fusarium wilt of radish and healthy radish were manually identified and delin-
eated. 1158 ROIs (average size of 273 × 280, ranging from 80 × 80 to 836 × 943) for healthy
radish and 904 ROIs (average size of 207 × 204, ranging from 39 × 46 to 596 × 632) for
Fusarium wilt of radish were selected from 139 images. This dataset is used for detecting
Fusarium wilt of radish (Sec. 3.3).

3 Methodology

The overview of the proposed method is shown in Fig. 2. First, we conduct radish field clas-
sification using a softmax classifier. The classification of the radish field aims at identifying the
class label of the respective radish, bare ground, and mulching film ROIs. The ROIs are provided
in sataset1. Second, we perform the segmentation of a whole radish field. The whole radish field
is partitioned into a number of disjoint regions, and their class labels are determined by the radish
field classifier. Finally, a convolutional neural network (CNN) model is built for classifying
Fusarium wilt of radish using dataset2. Fusarium wilt classification is only applied to the regions
of radish that were preidentified in the radish field segmentation step.

3.1 Radish Field Classification

We extract texture- and color-based features from the radish, bare ground, and mulching film
regions (dataset1). Texture-based features are extracted using local binary pattern (LBP).24

Color-based features are extracted by applying color-space conversion and an AutoEncoder
(AE).25 Concatenating these two feature sets, a two-stage feature selection method is applied
to choose the most discriminative features. A subset of features that are the most informative
and useful in classifying radish field is designated as the most discriminative features. Utilizing
the discriminative features, a softmax classifier is constructed for radish field classification.
The trained softmax classifier provides the probability that a region belongs to each class label.
The class label with the highest probability is assigned to each region. Figure 3 shows the entire
process of radish field classification.

Fig. 2 The overview of the proposed method for Fusarium wilt of radish classification.

Fig. 1 An exemplary image of radish field. Colored regions indicate differing region of radish fields.
(Green: healthy radish; red: Fusarium wilt of radish; blue: bare ground; black: mulching film).
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3.1.1 Texture feature extraction

LBP can provide texture descriptors that are invariant to rotation and illumination changes at low
computational cost. Given a (center) pixel c in an image, LBP examines its neighboring pixels
(a set of regularly distributed pixels on a circle) p (p ¼ 0; : : : ; P − 1) in a radius R and generates
a binary pattern code as follows:

EQ-TARGET;temp:intralink-;e001;116;414LBPP;R ¼
XP−1

p¼0

sðgp − gcÞ2p; (1)

where sðxÞ is 1 if x ≥ 0 and 0 if x < 0 and gc and gp represent the gray level of the center pixel
and its neighborhood pixels, respectively. To achieve rotational invariance, binary pattern codes
are generated by

EQ-TARGET;temp:intralink-;e002;116;327LBPriP;R ¼ minfRORðLBPP;R; iÞji ¼ 0;1; : : : ; P − 1g; (2)

where RORðx; iÞ is computed by a circular bitwise right shift operation, namely, the same
binary pattern code generated by the bitwise operation is regarded as one identical pattern.
LBP features are computed on a gray-scale image using three neighboring topologies
ðP;RÞ ¼ ð8;1Þ; ð16;2Þ; ð24;3Þ, generating 703,404 features.

3.1.2 Color feature extraction

Radish field images are initially obtained in RGB (red, green, and blue) color space and con-
verted into HSV (hue, saturation, and value) and L � a � b (lightness, green–red, blue–yellow)
color spaces. Histograms are built on hue, �a, and �b channels (256 bins or features per histo-
gram). Then, we concatenate these three color histograms into one color histogram, generating
768 color features. The color histogram features are further processed by adopting AE.25 AE is
an unsupervised learning technique, typically used for dimensionality reduction. It consists of
input and output layers (of the same dimensionality) and hidden layer(s). It tries to learn an
approximation/representation of the input. The dimensionality of the hidden layers is smaller
than the input and output layers. The hidden layers learn the compressed representation of
the input (encoding), i.e., extracting meaningful features from the input. Finally, applying
two-stacked AE26 on the color histogram features, we obtainM reduced and compressed features
(Fig. 4; M ¼ 100).

Fig. 3 The process for radish field classification. Given images of radish, bare ground, and mulch-
ing film, (a) image features are extracted. Then, (b) the discriminative features are selected and
(c) used to build a classification model.
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3.1.3 Feature selection

We perform a two-stage feature selection to choose the most discriminative features for radish
field classification. In the first stage, Wilcoxon rank-sum test is used to select statistically
significant features for classification (p-value < 0.01). In the second stage, random forests (RF)
with 50 trees and out-of-bag (OOB) scheme are adopted to estimate the importance of the fea-
tures. RF is one of the standard machine learning algorithms for classification and regression.
It constructs multiple decision trees using bootstrap aggregating, combining classification
models of a randomly generated training dataset and a random selection of features. The OOB
error is a measure of prediction error based on random subsampling of the training dataset.
To assess feature importance, each feature is permuted and the OOB error is computed again.
The difference in OOB errors before and after the permutation becomes the importance of each
feature. Only features with feature importance >0 are considered. In total, 1770 features are
selected from 703,404 features (Sec. 3.1.2).

3.1.4 Softmax classifier

A softmax classifier is a generalization of logistic function that can be used for multiclass
classification. In an artificial neural network-based classifier, it is mainly adopted as a final
classification layer. Given a feature vector x, the softmax classifier outputs the probability for
each class label jðj ¼ 1; : : : ; CÞ as follows:

EQ-TARGET;temp:intralink-;e003;116;224Pðy ¼ jjxÞ ¼ euðxÞjP
K
k¼1 e

uðxÞk ; for j ¼ 1: : : :C; (3)

EQ-TARGET;temp:intralink-;e004;116;177uðxÞj ¼
XI

i¼1

wij · xi þ bj; (4)

where y is a class label, wij is a weight, and bj is a bias (i ¼ 1; : : : ; I; j ¼ 1; : : : ; C). I and C
denote the number of features and classes (radish, bare ground, and mulching film), respectively.
Computing the softmax classifier amounts to determining the weight w and bias b. These are
chosen to minimize mean squared error with 200 iterations. Equation (3) is called the softmax
function, which outputs a C-dimensional vector of real values between 0 and 1, representing
categorical probability distribution. The class label with the highest probability is assigned to x.

Fig. 4 Stacked AE structure.
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3.2 Radish Field Segmentation

The whole radish field is segmented into radish, bare ground, and mulching film using the radish
field classifier (Sec. 3.1). The radish field classifier is built on ROIs, i.e., extracting texture- and
color-based features from ROIs and assigning class labels to them. To apply the radish field
classifier to the whole radish field image, we first identify a number of distinct regions and
conduct radish field classification. K-means clustering is adopted to divide a whole radish
field image into a number of disjoint regions. Converting the color space of a radish field
image (RGB) into HSV and L � a � b color spaces, K-means clustering is performed on
the hue channel (HSV), �a and �b channels (L � a � b) (K ¼ 3, 5, 10, 15, and 20). For
each of the resultant clusters, the texture- and color-based features (Secs. 3.1.1 and 3.1.2)
are extracted, and the radish field classifier (Sec. 3.1.3) assigns a class label (radish, bare
ground, and mulching film) to each of the disjoint regions. Figure 5 shows the procedure of
radish field segmentation.

3.3 Fusarium Wilt of Radish Detection

We employ a CNN model to detect Fusarium wilt of radish. Radishes are identified via radish
field segmentation (Sec. 3.2). By sliding a rectangular window of a fixed size (200 × 200 pixels)
over the identified radishes, the CNN model determines the disease status, stepping by 50 pixels.

Fig. 5 The overview of radish field segmentation process.
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3.3.1 Convolutional neural network

A VGG-A network27 is adopted to distinguish Fusarium wilt of radish from healthy radish.
A VGG network has been successfully applied to image recognition.19 It consists of eight
layers of convolutional layers and two layers of fully connected layers (Table 1). The original
VGG-A network takes images of size 224 × 224 as input. In this study, the images of size
200 × 200 are fed to the network as input.

3.3.2 CNN training

Our CNNmodel is trained using dataset2 (healthy radish ROIs: 1158 and Fusarium wilt of radish
ROIs: 904). Each ROI is drawn on a whole radish or the infected area of a radish. For each of the
ROIs, an image patch is generated by drawing the smallest rectangular window encompassing
the ROI. All the image patches are resized to a fixed size of 200 × 200 pixels (RGB), which is
about the average size of Fusarium wilt of radish ROIs. 20% of the training dataset is randomly
selected and left as the validation dataset. The validation dataset is used for tuning the learning
rate. In training, we set the batch size to 90 and momentum to 0.9. The learning rate is initially set
to 0.01. As the error rate on the validation set reaches a plateau, the learning rate decreases by
a factor of 10. This is performed three times, i.e., the learning rate gradually reduces to 0.001.
The training runs for 100 epochs, taking ∼40 min. The detailed training steps are available in
Ref. 27.

For training our CNN model, NVIDA DIGITS 5 toolbox with Caffe framework was used.
The experiments were performed on a Linux machine, with Ubuntu 14.04, Intel® Core i7-5930K
processor, three NVIDIATitan X 12GB GPUs, four 3072 cuda cores, and 64GB of DDR4 RAM.

Table 1 CNN architecture.

Type Patch size/stride Output size/features

Convolution_1 3 × 3∕1 200 × 200∕64

Pooling_1 2 × 2∕2 100 × 100∕64

Convolution_2 3 × 3∕1 100 × 100∕128

Pooling_2 2 × 2∕2 50 × 50∕128

Convolution_3 3 × 3∕1 50 × 50∕256

Convolution_3_2 3 × 3∕1 50 × 50∕256

Pooling_3 2 × 2∕2 25 × 25∕256

Convolution_4 3 × 3∕1 25 × 25∕512

Convolution_4_2 3 × 3∕1 25 × 25∕512

Pooling_4 2 × 2∕2 13 × 13∕512

Convolution_5 3 × 3∕1 13 × 13∕512

Convolution_5_2 3 × 3∕1 13 × 13∕512

Pooling_5 2 × 2∕2 7 × 7∕512

FC6 — 1 × 1∕4096

Drop out — 1 × 1∕4096

FC7 — 1 × 1∕4096

Drop out — 1 × 1∕4096

Soft-max — 1 × 1
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3.3.3 Comparison to standard machine learning

We compared the classification performance of our CNN model to RF, a standard machine
learning algorithm. RF with 50 trees are trained and tested for detecting Fusarium wilt of radish.
Intensity- and texture- based features are extracted. Intensity-based features are the mean and
standard deviation of each channel in HSV (hue, saturation, and value) color-space, generating
six features. Texture-based features are extracted using local directional derivative pattern28 with
three neighboring topologies ðP; RÞ ¼ ð8;1Þ; ð16;2Þ; ð24;3Þ, generating 54 features. In total,
60 features are obtained. By adopting the two-stage feature selection method (Sec. 3.1.3),
57 features are selected.

3.4 Evaluation Methods

We assess the performance of the proposed methods (radish field classification, radish field seg-
mentation, and Fusarium wilt of radish classification) via k-fold cross-validation (k ¼ 3). k-fold
cross-validation divides the entire dataset into k roughly equal-sized disjoint subsets. Two sub-
sets are used to train the proposed methods. The remaining subset is used to evaluate the per-
formance of the methods. This is repeated k times with differing choices of the remaining subset.

For radish field classification, the confusion matrix is computed to assess the ability of our
model to distinguish differing areas of radish fields (radish, bare ground, and mulching film).
The confusion matrix CM can be computed by

EQ-TARGET;temp:intralink-;e005;116;488CMij ¼
X

R∈D
jfr ∈ R such that Ground TruthðrÞ ¼ i and Prediction ðrÞ ¼ jgj; (5)

where R is the ROIs and GroundTruthðrÞ and PredictionðrÞ denote the ground truth class label
and predicted class label of an ROI r, respectively.

The pixel-level segmentation accuracy29 (PSA) is adopted to evaluate the radish field
segmentation performance. PSA is calculated as follows:

EQ-TARGET;temp:intralink-;e006;116;397PSA ¼
P

n
i CMiiP

n
i

P
n
j CMij

: (6)

PSA is measured for differing choices of K in K-means clustering (K ¼ 3, 5, 10, 15, and 20)
to examine the effect of the size of the clusters in segmentation performance.

Examining the performance of Fusarium wilt of radish classification, the confusion matrix is
computed. Also, the true-positive rate (TPR; the rate of Fusarium wilt of radish ROIs that are
correctly classified as Fusarium wilt of radish), true-negative rate (TNR; the rate of healthy
radish ROIs that are correctly classified as healthy radish), and accuracy (the rate of Fusarium
wilt of radish and healthy radish ROIs that are correctly classified as labeled) are measured.

4 Experimental Result and Discussion

4.1 Radish Field Classification Results

Using dataset1 (radish ROIs: 634, bare ground ROIs: 580, and mulching film ROIs: 506), radish
field classification was performed. Table 2 describes the classification results. The experimental
results suggest that our model could determine the class label of the radish, bare ground, and
mulching film ROIs with high accuracy. It is notable that we obtained the highest classification
performance (99.7%) for radish ROIs. <3% of the bare ground and mulching film ROIs were
misclassified.

4.2 Radish Field Segmentation Results

Radish field segmentation results (PSA) with differing choices of the number of clusters (K) in
K-means clustering are shown in Table 3. AsK increases, the overall PSA increases up to ∼93%,
but when K > 10, it gradually decreases. This may be ascribable to the size of clusters.
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Increasing K, the size of each cluster decreases. The features, computed from the smaller clus-
ters, may not be robust enough to provide accurate classification performance. With K ¼ 10,
>91% PSA was achieved for radish, bare ground, and mulching film. The experimental results
suggest that K ¼ 10 is the optimal number of clusters for radish field segmentation.

Figure 6 shows the segmentation results with K ¼ 10. Regions corresponding to radish, bare
ground, and mulching film are, in general, correctly classified as labeled. However, misclassified
regions are also observed (Fig. 7). These include withered radishes that are mainly brown in
color. Due to the similarity in color with bare ground, these regions were clustered together
with bare ground by K-means clustering, that is, it is not caused by the radish field classifier
but by the clustering method. As described in Sec. 3.2, K-means clustering is based on three
color channels.

4.3 Fusarium Wilt of Radish Classification Results

In Table 4, we demonstrate the performance of Fusarium wilt of radish classification. The clas-
sification accuracy was measured via k-fold cross-validation (k ¼ 3) on dataset2 (healthy radish
ROIs: 1158 and Fusarium wilt of radish ROIs: 904). We first performed radish field segmenta-
tion and discarded ROIs that contain ≤1% of radishes. Then, our CNN model distinguished
Fusarium wilt of radish from healthy radish, achieving an accuracy of 93.3%. TPR and TNR
were 87.2% and 98.0%, respectively. We note that the image patches may include the regions of
differing class labels due to the image patch generation process (Sec. 3.3.2); for example,
Fusarium wilt of radish ROIs could include a part of a healthy radish. This may have an adverse
effect on the performance of Fusarium wilt of radish classification. A finer training strategy
utilizing the exact regions will aid in improving the overall performance of our method.

Further, the performance of our CNN model was superior to the standard machine learning
algorithm. Using RF, 82.9% accuracy, 83.1% TPR, and 82.8% TNR were obtained in detecting
Fusarium wilt of radish (Table 4). This confirms that the CNN model could improve the standard
machine learning scheme.

Table 2 Radish filed classification performance.

True class/predicted class Radish Bare ground Mulching film

Radish 632 1 1

(99.7%) (0.2%) (0.2%)

Bare ground 0 571 11

(0.0%) (98.4%) (1.9%)

Mulching film 2 11 493

(0.4%) (2.2%) (97.4%)

Note: Data are the number of the predicted regions per class, and data in parenthesis are
the rate of the predicted regions per class.

Table 3 Radish field segmentation performance.

K Radish Bare ground Mulching film Overall

3 93.21% 92.80% 56.38% 90.01%

5 91.47% 93.82% 92.41% 92.01%

10 92.87% 94.44% 91.10% 93.02%

15 87.49% 91.40% 92.38% 88.66%

20 81.31% 87.40% 92.66% 83.38%

Note: Data are the PSA. K is the number of clusters in K -means clustering.
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In addition, we repeated the above experiment with varying sizes of image patches to our
CNN model. Resizing the image patches to 120 × 120 and 280 × 280, the performance of our
CNN model was consistent (Table 5). The results prove that our method is insensitive to the size
of images.

Figure 8 shows the detection result of Fusarium wilt of radish. Regions with Fusarium wilt of
radish are marked with red circles [Fig. 8(a)]. The region-by-region detection results are pro-
vided in Fig. 8(b). The size of sliding window is 200 × 200, which is about the average size of

Fig. 6 Radish field segmentation results.

Fig. 7 Examples of false radish field segmentation.
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Fusarium wilt of radish ROIs. The ROIs were drawn on a radish or the infected area of a radish.
Hence, our method was able to detect the individual infected areas. Overall, the regions of
healthy radish and moderate Fusarium wilt of radish were successfully detected by our method.
However, regions of severe Fusarium wilt of radish were often missed (Fig. 9). This is mainly
due to segmentation failure, i.e., K-means clustering as mentioned in Sec. 4.2.

Table 4 Fusarium wilt of radish classification performance.

CNN RF

True class/prediction class Fusarium wilt of radish Healthy radish Fusarium wilt of radish Healthy radish

Fusarium wilt of radish 788 116 751 153

(87.2%) (12.8%) (83.1%) (16.9%)

Healthy radish 23 1135 199 959

(2.0%) (98.0%) (17.2%) (82.8%)

Note: Data are the number of the predicted regions per class, and data in parenthesis are the rate of
the predicted regions per class.

Table 5 Fusarium wilt of radish classification performance with varying image sizes.

CNN: 120 × 120 window CNN: 280 × 280 window

True class/prediction class Fusarium wilt of radish Healthy radish Fusarium wilt of radish Healthy radish

Fusarium wilt of radish 794 110 771 133

(88.0%) (12.0%) (85.2%) (14.8%)

Healthy radish 30 1128 29 1129

(2.6%) (97.4%) (2.5%) (97.5%)

Note: Data are the number of the predicted regions per class, and data in parenthesis are the rate of
the predicted regions per class.

Fig. 8 (a) Detection of Fusarium wilt of radish. (b) Close-up of the identified Fusarium wilt of radish.
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5 Conclusions

We have demonstrated an approach of utilizing UAVs and computational techniques to identify
Fusarium wilt of radish. Deep learning, in particular, was able to detect Fusarium wilt of radish
with high accuracy. The capability to detect Fusarium wilt of radish from UAVs may offer great
potential for reducing the effort and cost for managing and preventing the disease as well as
improving the crop yield. Our method can be applied to other crops and plants since Fusarium
wilt is a common vascular disease of plants, including tomato, tobacco, banana, and etc.

This study has several limitations. First, the performance of our methods was evaluated via
cross-validation. A validation study on an extended dataset will further ensure the robustness of
our methods. Second, only RGB images were considered. For crop monitoring and management,
infrared images are often employed. Developing a methodology to combine RGB images and
infrared images may further improve the performance of our methods. Third, severe Fusarium
wilt of radish was often missed. Advances in segmentation methods will lead to the improved
detection accuracy. Last, the severity of Fusarium wilt of radish was not considered. Depending
on the level of the severity, the plan for controlling and preventing the disease may differ. Further
study will be conducted to tackle the present limitations, to improve accuracy and robustness of
the detection, and to facilitate efficient and effective monitoring and prevention of Fusarium wilt
of radish.
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