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ABSTRACT As a key technology of intelligent transportation system, the intelligent vehicle is the carrier of
comprehensive integration of many technologies. Although vision-based autonomous driving has shown
excellent prospects, there is still a problem of how to analyze the complicated traffic situation by the
collected data. Recently, autonomous driving has been formulated as many tasks separately by using different
models, such as object detection task and intention recognition task. In this study, a vision-based system was
developed to detect and identity various objects and predict the intention of pedestrians in the traffic scene.
The main contributions of this research are (1) an optimized model was presented to detect 10 kinds of objects
based on the structure of YOLOv4; (2) a fine-tuned Part Affinity Fields approach was proposed to estimate
the pose of pedestrians; (3) Explainable Artificial Intelligence (XAI) technology is added to explain and
assist the estimation results in the risk assessment phase; (4) an elaborate self-driving dataset that includes
several different subsets for each corresponding task was introduced; and (5) an end-to-end system containing
multiple models with high accuracy was developed. Experimental results proved that the total parameters of
optimized YOLOvV4 are reduced by 74%, which satisfies the real-time capability. In addition, the detection

precision of the optimized YOLOv4 achieved an improvement of 2.6% compared to the state-of-the-art.

INDEX TERMS Deep learning, intention recognition, object detection, risk assessment.

I. INTRODUCTION

Rapid urbanization has highlighted a series of problems,
especially in the aspect of transportation, which severely
limits travel and has certain security risks. Even though some
progress has been made in the existing object detection tech-
nologies in self-driving, there still exist potential risk factors
of collision as motor cars are surrounded by many objects
in daily life, including some uncontrollable moving objects
(pedestrians and vehicles) and static objects (traffic lights and
signs). Therefore, it is necessary to promptly detect various
static objects and accurately estimate the intention of moving
objects.
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In the object detection tasks, the main deep learning
methods are divided as one-stage detection algorithms and
two-stages detection algorithms. YOLO [1] and SSD [20]
are one-stage detection methods that directly convert the
detection problem to a unified regression problem. Due to
the characteristics of the structure, the one-stage methods
are faster than two-stage methods. Faster R-CNN [3] is a
typical two-stage network that generates a series of candidate
bounding boxes and then classifies each object by using the
Convolutional Neural Network (CNN). From the aspects of
detection and localization precision, the two-stage methods
perform better than most of the one-stage methods. In this
study, the proposed model with multiple tasks is based on
the one-stage methods to reduce the time used for the object
detection phase.
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In the intention recognition section, most researchers rely
on appearance-based features [6] and skeleton-based fea-
tures [S], [7]. The intention of pedestrians is recognized by
using the pose estimation algorithm in this study. For the
dangerous vehicle assessment stage, the directions of vehicles
are predicted by different references, such as the taillight of
vehicles [9] and traffic features [8]. Besides, the traffic light is
an important sign in the traffic scene, which is recognized by
using a CNN model after filtering candidate traffic lights [27].

The main contributions of this paper are as follows¢z

« In the object detection phase, the structure is optimized
based on YOLOvV4 [18] model, and the computation
complexity is significantly reduced while improving the
detection accuracy.

« In the pose estimation section, the Part Affinity Fields
method is fine-tuned to improve the inference time.

« Explainable Artificial Intelligence (XAI) technology is
added to explain and assist the estimation results in the
risk assessment phase.

o Three datasets for different tasks are collected and vali-
dated manually.

« An end-to-end system with high accuracy is proposed
to integrate several phases, including object detection,
pose estimation, intention recognition, dangerous vehi-
cle recognition, and traffic light recognition.

The rest of the paper is arranged as follows: Section 2
presents a literature review on previous methods. The descrip-
tion of the different methods used in this research is discussed
in Section 3. Detailed information and acquisition process of
datasets are illustrated in Section 4. In Section 5, the obtained
results for each task and comprehensive performance of the
proposed framework are analyzed. Finally, the conclusion
and future study are stated in Section 6.

Il. RELATED WORK

A. OBJECT DETECTION

Recently, multi-objects detection has been a prevailing topic
that attracting a lot of researchers in the field of autonomous
driving. A one-stage method You Only Look Once (YOLO)
was first presented to address object detection as a regression
problem. As one of the state-of-the-art works, YOLO can
achieve robust and fast performance in object detection, but
the spatial constraint of the model limits the predicted amount
of objects [1]. Another one-stage method is named the single
shot Multi-box detection (SSD) [20]. For a 300 x 300 input
size, the SSD model can achieve at 59 FPS, and 74.3% mean
Average Precision (mAP) on the PASCAL VOC dataset,
which is greatly superior to the real-time YOLO [1]. Besides,
aunified network was performed for object detection. Experi-
ments show the processing speed of the method is slower than
the YOLO [1], but it achieved better performance in mAP due
to the improved gripping process [2]. Compared with most
of the one-stage methods, the two-stage methods can obtain
more accurate detection results, but the detection speed is
slower. For example, Faster R-CNN is a kind of two-stage
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method, which optimized the overall accuracy by introducing
a region proposal network [3]. In previous work, the per-
formance of the autonomous driving dataset BDD100K has
not been reported. Thus, the latest method YOLOv4 [18] is
superior to the other state-of-art detectors and was optimized
and tested on BDD100K dataset in this study.

B. INTENTION RECOGNITION

Since deep learning has significantly enhanced object detec-
tion performance, some extensions have been proposed to
estimate the postures of pedestrians and vehicles. Based
on the appearances of pedestrians, a CNN model was pro-
posed to classify the pedestrians’ head pose and body ori-
entation, and the method is available for still images and
image sequences [6]. In another work, a neural network
using appearance features was provided to predict the loca-
tion and keypoints in pose estimation [28]. In contrast to
CNN-appearance-based methods, the dynamical model with
Gaussian processes was presented to predict paths and poses
of pedestrians by analyzing fitted skeletons [7]. The proposed
skeleton-based intention recognition was compared with the
appearance-based model to evaluate the effectiveness, and
the results proved that the former achieved better perfor-
mance [5]. However, classification accuracy on the skeleton
features obtained 88% by using Random Forest algorithm,
which is not satisfactory in the self-driving system.

C. RISK ASSESSMENT
For risk assessment, the recognition of traffic lights and the
moving trend for vehicles are important factors to avoid traf-
fic accidents. A recurrent network with effective performance
was used to predict the intention of drivers at different types
of intersections [8]. In another work, an end-to-end method
combining CNN and Long Short-Term Memory (LSTM) was
applied to recognize the direction of vehicles based on vehicle
taillights [9]. As the key signal on the road, the detected
traffic lights were recognized by a CNN model after filtering
the traffic light candidates by the importance map in a real-
time system [27]. A multi-task learning approach combining
object detection and distance estimation was presented to
probe the characteristics of dangerous objects with different
distances [4], which achieved a better performance of 2.27%
than SSD method on the KITTI dataset. Even though there are
some existing methods for safe driving, the method that can
jointly process object detection, intention recognition, and
risk assessment is not considered in the previous work.
There are two main categories considered in self-driving,
including still objects and dynamic objects. Herein, a vision-
based model with multiple tasks was proposed to detect vari-
ous objects and assess the posture of pedestrians and vehicles
(dynamic objects) in this study. Besides, the traffic lights (still
objects) are recognized to indicate whether the automatic
driving system should continue to drive.

lIl. METHODOLOGY
In this part, the whole diagram of the proposed framework
is shown in Fig. 1. In real traffic scenes, the risk factors
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FIGURE 1. Flowchart of the proposed framework. There are four tasks in
the proposed framework, including object detection, risk assessment for
vehicles, skeleton-based intention recognition, and traffic light
recognition.

affecting self-driving mainly include dynamic objects (pedes-
trians and different kinds of vehicles) and static objects (traf-
fic lights and stop signs). Thus, various objects are localized
and detected using an optimized YOLOv4 model in the first
step. And then, based on the detected objects, it is extremely
necessary to estimate the intentions of vulnerable road users
for performing safe self-driving without traffic accidents.
Furthermore, the recognition of traffic lights is an essential
part of unmanned driving, and its recognition accuracy is
directly related to the safety of intelligent driving. In this
paper, the model used for object detection is described in
detail (see in Section A). After that, the skeleton-based inten-
tion recognition for pedestrians is illustrated in Section B.
Finally, the recognition of dangerous vehicles and traffic
lights with XAI technology is explained in Section C.

A. OBJECT DETECTION

Object detection is the main task in the whole system, which
gives the bounding boxes and categories probabilities for
each object. As the state-of-art object detector, YOLOv4
obtained better performance in detection speed (FPS) and
detection accuracy (mAP) than all available methods on MS
COCO dataset [22]. The model structure of YOLOvV4 is
composed of CSPDarknet-53, Spatial Pyramid Pooling in
Deep Convolutional networks (SPPnet), Path Aggregation
Network (PANet), and three YOLO heads, as shown in Fig. 2.
As the backbone of YOLOv4, CSPDarknet-53 is responsible
for extracting deep features of the input image through 5 Res-
block bodies (C1-C5). The network contains 53 convolution
layers with the sizes of 1 x 1 and 3 x 3, and each convolution
layer is connected with a batch normalization (BN) layer and
a Mish activation layer. Furthermore, all activation functions
in YOLOV4 are replaced with leaky-ReLU that requires less
computation. SPPnet effectively increased the receptive field
of the model through different max-pooling layers with the
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FIGURE 2. Overall structure of YOLOv4, including CSPDarknet
(backbone), SPPnet, PANet and 3 YOLO heads. The modified part (C3-C5)
is in the backbone of the model, which is highlighted in blue color.

size of 5,9, and 13. and PANet used top-down and bottom-up
approaches to extract features repeatedly. Three YOLO heads
with sizes of 19 x 19, 38 x 38, and 76 x 76 are used to fuse and
interact with feature maps of different scales to detect objects
of different sizes. In this study, the original model structure
is modified to reduce the computation complexity by using
the layer pruning method. As shown in Fig. 2, eight short-
cut structures in the backbone structure were removed from
C3-C5 Resblock bodies highlighted in blue color.

The loss function used in the YOLOv4 model consists of
three parts: object localization offset loss LconrLioc, Object
confidence loss L.,,s and object classification loss L,
as shown in (1), where A is the balance coefficient.

Loss = A Lconf + A2Lcia + A3Ljoc e
=Y (Obj;In(p) + (1 = Objpln(1 = pp)) ~ (2)
Laa ==Y Y (Oyln(py+1—0pin(i—py) (3)

ieBox jeclass

Lconf

dﬁg (Actr s Bctr)

Lioe = 1 —IOU (A, B) + 7

+av “4)

In (2), Obj; indicates whether there is an object in the
predicted object bounding box i, and the result value is O or 1.
pi refers to the probability that there is a real object in the pre-
diction box. The probability value is obtained by calculating
the sigmoid function. In (3), O;; and p;; mean whether there is
a j-class object and probability in the prediction boundary box
i, respectively. YOLOv4 adopts the Complete Intersection
Over Union (CIOU) algorithm [23] to calculate the object
localization offset loss, as shown in (4), where the aspect ratio
«v and Euclidean distance of the center point (A, Bey) for
the predicted bounding box A and the GroundTruth bounding
box B are calculated.

In this study, the original YOLOv4 model is mainly mod-
ified from the aspect of network structure. First, the network
structure of YOLOv4 enhances the learning of small objects,
but the detection performance for some large objects is not
good in real testing. That is because the weight of high
dimensional features becomes lower after the fusion of high
dimensional features and low dimensional features. Based
on the above analysis of the confidence loss formulas, the
confidence weight for each YOLO head were designed to
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FIGURE 3. Modifications of CSPDarknet.

keep balance. Secondly, compared with YOLOV3, the mAP
of YOLOV4 is increased by nearly 8%, but the inference
speed is not significantly improved. Thus, the channel and
layer pruning algorithm [24] is adopted to reduce the model
parameters. Fig. 3 presents the modification of the backbone
structure of YOLOV4. In this experiment, the channel pruning
method reduces the parameters of the whole model by 66%,
from 64,363,101 to 21,749,380. Besides, 8 shortcut structures
were removed by the layer pruning method using in the
backbone part. The total parameters of the final simplified
model are only 26% of the original YOLOv4. According to
the testing result, the inference time of the modified model
obtained 0.012s faster than the original one.

Moreover, the BDD100K dataset is used in the training
phase of the object detection task, and the number of each
class has a large gap. For example, there are 714,121 car sam-
ples and only 136 train samples in the training set. Although
the original YOLOv4 adopted some techniques to solve the
imbalanced data problem, such as MixUp, CutMix, Mosaic,
and Focal loss algorithm, the imbalanced data problem still
exists according to the testing results. To further improve
the performance of YOLOv4 on detection accuracy, images
with a small sample size, including bike, motor, train, and
rider, are selected from the training set for intensive train-
ing. The selected images contain not only the samples of a
specific category but also may include the samples of other
categories. Besides, this step is performed after the training
of each epoch. Therefore, the model can train samples from
all categories to avoid biased training.

B. INTENTION RECOGNITION

Based on the monocular pedestrian detection, the method
of using pose estimation as the main information to predict
whether pedestrians have the intention of crossing the road
is explored in this section. As a part of the proposed system,
the intention recognition is combined with the object detec-
tion algorithm to predict the intention of detected pedestri-
ans. Firstly, the area of the detected pedestrian is obtained
by YOLOv4 and input into the method called Part Affin-
ity Fields (PAFs) [17] to generate human skeleton features.
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skeleton Affinity Fields

FIGURE 4. Overall process of PAFs. A total of 18 human keypoints are
detected for pose estimation, as shown in (a). (b) and (d) represent the
input image and output image respectively. In (c), the confidence map
and part affinity fields generated from two-branch CNN are used to
predict body part locations and parts association.

In order to avoid the situation that the object detection algo-
rithm does not capture the required human features, the area
of the bounding box is slightly expanded by increasing the
original side length by 1/6. (The same method is used in the
process of risk assessment). Secondly, the CNN model is used
to analyze the image with skeleton features overlayed and
identify the intention of pedestrians. Finally, the recognition
results are returned to the YOLOv4 model and displayed as a
label on the bounding box.

1) POSE ESTIMATION

In the pose estimation stage, the PAFs model is adopted to
acquire the skeleton features. The original structure of PAFs
composes of the first 10 layers of VGG-19 [12] and six
groups of CNN structures containing two branches. The two
branches are responsible for generating confidence maps and
PAFs, respectively. As shown in Fig. 4 (a), there are 18 key
points of human body parts, including nose, neck, right shoul-
der, left shoulder, right elbow, left elbow, right twist, left
twist, right hip, left hip, right knee, left knee, right ankle, left
ankle, right eye, left eye, right ear, and left ear [30]. Based
on the bottom-up approach, this algorithm predicts the part
locations and the connection relations of these parts in the
input image Fig. 4 (b), and generates the confidence maps
and part affinity fields through multiple learning processes,
as shown in Fig. 4 (c). Finally, confidence maps and part
affinity fields are assembled to generate the parsing result
Fig. 4 (d).

Though the experiments, it is found that when the human
area is very small, the original PAFs method misses some
body parts, such as ankles and wrists, so more detailed fea-
tures need to be extracted in the training phase to improve
the location precision. Moreover, with the increase of the
number of stages, the precision is not significantly improved,
but the computational complexity of the model is increased.
Considering the above two problems, the original structure of
PAFs model is modified, as shown in Fig. 5. Firstly, the num-
ber of convolution layers for feature extraction is increased
from 10 to 14, and BN layer is added to the model to achieve
the decoupling between layers, so as to accelerate the training
speed of the model. Secondly, 6 groups of CNN structures
used to generate confidence maps, and PAFs were reduced
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FIGURE 5. Architecture of the modified PAFs. The feature maps extracted
from 14 convolutional layers in the blue box are input to two-branch CNN
structure to generate confidence maps and part affinity fields, which are
used to obtain keypoints and associate body parts.

to 4 stages to simplify the structure of the model. Finally, the
7 x 7 convolution kernel in the CNN structure is replaced by
multiple 3 x 3 convolution kernels, which can enhance the
network capacity and reduce the number of parameters.

2) INTENTION RECOGNITION

After the pose estimation stage, the skeleton features are
acquired and fed into a CNN model to recognize the inten-
tion of pedestrians. A suitable CNN model is selected by
comparing the recognition accuracy and recognition speed.
Besides, the performances of skeleton-based features and
appearance-based features are evaluated and compared in the
experiment result section.

C. CNN-BASED RISK ASSESSMENT

The risk assessment section is considered as two CNN-based
classification tasks, dangerous vehicle estimation, and traffic
light recognition. Due to the special structure of CNN, it has
unique advantages in various tasks, such as image classifica-
tion, object detection, and segmentation. Different from com-
mon neural networks, the basic structure of CNN includes
convolutional layers and pooling layers, and the essence is
feature extraction and parameter reduction. CNN can directly
learn the mapping relations between a large number of inputs
and outputs without any precise mathematical expression.
Besides, the complexity of the CNN model is reduced greatly
through three strategies (local receptive field, weight sharing,
and down sampling).

In this study, five different CNN models are evaluated
and compared to achieve high recognition accuracy. VGGNet
demonstrates that the depth of the network structure is the
essential part of the performance for an algorithm. By repeat-
edly stacking 3 x 3 small convolution kernel and 2 x 2
max-pooling layer, convolution neural network with 16-19
layers depth is successfully constructed [12]. GoogLeNet has
made a bold attempt in the network structure. Although the
architecture of GoogLeNet has 22 layers, it is much smaller
compared with AlexNet and VGGNet. Thus, GoogLeNet
is more suitable when computing resources or memory are
restricted [13]. As a residual network, Resnet can main-
tain strong accuracy growth with depth increasing, which
effectively avoids the problem that the accuracy of VGG
model decreases with the increase of number of layers [14].
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FIGURE 6. Sample images from the four different datasets.

TABLE 1. Category information and amount of each dataset.

Dataset Category No. training ~ No. testing
set set
BDD100K Bus; traffic light, traffic 70,000 20,000
[21] sign, person, bike;
truck; motor; car; train;
rider
Pedestrian Crossing; not-crossing 3,400 400
Vehicle Danger; no danger 900 100
Traffic light ~ Green light; green_left; 5,240 400

green_up; green_right;
red light; red_left;
red_up; red_right

Besides, there are some lightweight CNN models, such as
MobileNet and EfficientNet. MobileNet is a small and effi-
cient CNN model, which is suitable to install in real-time
applications [15]. EfficientNet was first proposed in 2019 and
optimized in terms of speed and accuracy [16].

IV. DATASET

This study mainly includes four tasks: object detection, dan-
gerous vehicle prediction, intention recognition of pedestrian,
and traffic light recognition. The four datasets towards dif-
ferent tasks are concluded as in table 1, and the following
subsections introduce the used datasets in detail. The dataset
called BDD100K [21] is available online, and the other
datasets are collected and validated by ourselves. The size
of all images in BDD100k dataset is 1280 x 720, and the
size of images in three collected datasets is random. There
are some sample images from the datasets used in this study,
as shown in Fig. 6. Some sample images under different
environmental conditions are shown in the first row. In the
second row, the first three images are from the dataset with
skeleton features, the last three images are from the dataset
with only appearance features. The images in the third row
are from the vehicle dataset. In the fourth row, there are eight
types of the traffic lights, which are named ‘green light’,
‘green_left’, ‘green_right’, ‘green_up’, ‘red light’, ‘red_left’,
‘red_right’, ‘red_up’, respectively.
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A. BDDI100K DATASET

BDD100K includes 10 types of objects under different
weather conditions or in different types of scenes, which is a
large-scale and diverse dataset [21]. In this paper, the dataset
containing 70,000 annotated images is used in the training
process of the object detection part.

B. PEDESTRIAN DATASET

In the intention prediction task, there are 740 useful frames
extracted from the videos that are captured by the driving
recorder of a Tesla car. The extracted frames are from dif-
ferent sequences, so all of them are independent. By using
the object detection algorithm, the areas of pedestrians are
extracted from the collected images. After that, the PAFs
algorithm was used to fit the skeletons for each pedestrian.
The dataset used for the intention prediction consists of 1,900
images with fitted human skeletons and 1,900 images without
fitted human skeletons.

C. VEHICLE DATASET

The various vehicles in the process of driving are recorded by
the dash cam of a Tesla in the traffic scene. Firstly, the frames
with vehicles are extracted from different sequences of the
collected videos, and then the areas of vehicles are obtained
and analyzed by using a deep learning-based method. The
total number of images is 1,000, and the divided ratio between
the training set and testing set is 9:1.

D. TRAFFIC LIGHT DATASET

In this paper, the dataset used for the traffic light task includes
8 kinds of common traffic lights. The dataset was manually
collected from various websites and contains 5,240 training
images and 400 testing images.

V. EXPERIMENTAL RESULTS

All experiments were worked on a Linux machine
pre-installed with Ubuntu 14.04. It has four Titan X 12 GB
GPUs, 64 GB of DDR4 RAM, and an Intel®Core i7-5930K
processor. And the system is developed by using python
programming language.

A. OBJECT DETECTION
As the main tasks in this study, both the precision and speed
of object detection should be concerned. In this section, sev-
eral standard detectors with state-of-the-art performance are
evaluated from the aspect of detection accuracy (mAP) on the
same dataset. On the other hand, the parameters of the opti-
mized YOLOV4 are reduced by 74% by using the channel and
layer pruning algorithm. Experiments indicate the inference
time of the modified model (0.021s) is 36% (0.012s) faster
than the original YOLOvV4 (0.033s). The detection speed of
the proposed system satisfies the real-time capability in terms
of computational complexity.

Table 2 shows a comparison of detection accuracy (mAP)
based on the BDDI10OK validation dataset. The models
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TABLE 2. Comparison of detection accuracy based on the BDD100K
dataset, including YOLOv3, SSD, WLOD, YOLOv4 and Modified YOLOv4.

YOLOv3 SSD WLOD YOLOv4 Modified
YOLOv4
mAP 25.8 339 343 50.1 52.7

Person Traffic light

------ YOLOV4(leaky-ReLU) <ot YOLOVA(leaky-ReLU) i, - YOLOvA(leaky-ReLU)
—— Modified YOLOv4 11 —— Modified YOLOv4 3 —— Modified YOLOv4

%0 0z o4 o6 os 10 %% 02 o4 06 o8 1o %o o0z os os o8 10
Recall Recall Recall

FIGURE 7. Precision-recall curves for three objects (person, car, and
traffic light) on the BDD100k dataset. Compared YOLOv4 with the
modified YOLOvA4.

assessed include Single Shot MultiBox Detector (SSD) [20],
Wasserstein Loss based Model for Object Detection
(WLOD) [26], YOLOv3 [25], YOLOvV4 [18], and the opti-
mized YOLOv4. It is remarkable that the Mish function
in the backbone of the YOLOv4 model is replaced with
leaky-ReLU because the experimental environment used for
this research cannot afford the large computation caused
by the Mish function in the training process. The modified
YOLOV4 outperformed other models because it not only
used some effective data augmentation techniques in the data
acquisition process, such as MixUp, Mosaic, and CutMix,
but also adopted the intensive training method. By using
these techniques, the training set was enriched to improve
the performance of the model. The mAP of the modified
YOLOvV4 achieved the highest value of 52.7, which is 2.6
points higher than the original YOLOv4.

As a standard approach, the precision-recall (PR) curve is
used to assess the performance of the experimental models.
Person, cars, and traffic lights are the most common and
important objects in the real traffic scene, which should be
paid more attention than other objects. In this section, the
detection performance of the modified YOLOv4 was com-
pared with that of the original YOLOv4 with leaky-ReLU
function based on BDD100K dataset. Fig. 7 presents the
comparison on PR curves for three different objects. If the
overlap value of prediction and GroundTruth is more than 0.5,
then the sample is considered as true positive. Experiments
shows that the average precision values of the modified model
are significantly improved to 62.1% and 81.4% for person
object and car object. For traffic light, the two experimental
models achieved similar performance because the extracted
images for intensive training do include a lot of traffic light
samples.

B. SKELETON-BASED INTENTION RECOGNITION
For each detected pedestrian, pose estimation is applied to
adjust a skeleton by using an efficient method named PAFs
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FIGURE 8. Comparison results between two experimental methods for
seven different body parts.

with open source code [17]. In this study, the overall speed
of the developed system is important to deal with multiple
tasks. Thus, the original architecture is modified to improve
the performance of the model in terms of the inference time.
After conducting several experiments, the fine-tuned PAFs
model uses SGD as the optimizer. The initial learning rate
and momentum are set to 0.00005 and 0.9, respectively. The
batch size is 10, and weight decay is 0.0001.

The original PAFs model and the fine-tuned model
were evaluated on the MPII dataset [19], which is
around 2000 samples excluded from the training set. Fig. 8
shows the assessment results of the experimental models,
including the pose estimation of seven human parts (head,
shoulder, elbow, wrist, hip, knee and ankle) and the inference
time on the cropped image with a single person. Compared
with the original PAFs method, the fine-tuned PAFs method
enhanced the learning for some body parts that is difficult to
locate. For example, the average precision of the ankle part
obtained by fine-tuned PAFs is 0.7 higher than that of the
original one. After modifying the PAFs method, precision of
elbow and hip parts are lower than before among seven body
parts. The inference speed of the original PAFS method under
our test environment is much slower than the speed mentioned
in the previous paper [17]. The average inference time of the
fine-tuned PAFs method for an image with a single person
is 0.09s, which is 30% (0.040s) faster than the original PAFs
method (0.130s).

Intention recognition is realized by using a deep learn-
ing model on two distinct datasets (skeleton-based data &
appearance-based data). Table 3 presents information on the
datasets used in the intention recognition section and the
performance of two CNN models for each dataset. The total
number of images and the split ratio between training and
testing are exactly same for the two datasets. Compared
with the appearance-based data, both models achieved higher
accuracy on the skeleton-based data. The main reason for
this is that the skeleton features can provide useful informa-
tion to the learning process. Moreover, the performance of
a lightweight model (mobilenet) is compared with a model
(VGG-19) that has a complicated structure in this experiment.
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TABLE 3. Details of datasets and performances (recognition accuracy &
time for each image) of two CNN models based on the datasets. “acc”
refers to the recognition accuracy.

Pedestrian # O.f # (,)f VGG-19 MobileNet
dataset training | testing - .
set set acc time acc time
With 1,700 | 200 | 97.5% 90.5%
skeleton
i .02 011
Without | 205 | 290 | 92,00 | %0205 | g319, | 00118
skeleton

The recognition time of mobilenet is 45% (0.009s) faster than
that of VGG-19 for each image (0.020s). However, VGG-19
obtained the highest recognition accuracy of 97.5% based on
the skeleton features, which is 7% higher than mobileNet on
the same data. In the fine-tune process of VGG-19 model, the
optimizer was set to Adam. The number of total epochs was
30, and the learning rate was 0.0001. Also, the first 17 layers
of the model were frozen during the training process.

C. RISK ASSESSMENT

In the risk assessment stage, it mainly includes the danger-
ous vehicle assessment section and traffic light identification
section, both of which are addressed as CNN-based clas-
sification tasks. For dangerous vehicle estimation, vehicles
are classified into safe vehicles or dangerous vehicles. For
traffic light recognition, traffic lights are recognized into the
safe signal (green light) and dangerous signal (red light).
In addition, the XAI technology is applied to explain the
classification results in this study.

1) DANGEROUS VEHICLES ESTIMATION

In this study, the vehicles are divided into two classes (danger-
ous vehicles and safe vehicles) using a CNN model. If some
cars stop or change direction, suddenly, they will threaten the
safety of other vehicles. And the stationary vehicles or the
vehicles that keep going straight is considered the vehicles
without danger signals. In order to achieve high recognition
accuracy, several famous models are compared and eval-
uated in this section. The best performance was recorded
for each CNN model by adjusting various hyper-parameters.
As shown in Fig. 9, each model result is provided with
different colors, and the model parameters are converged after
around twenty epochs. The performance of the fine-tuned
Efficientnet model achieved the best validation accuracy at
94% among the examined models, which is 8% higher than
the final recognition result of Resnet model. The learning
rate was set to 0.001. The optimizer used for the fine-tuned
Efficientnet model is Adadelta, which dynamically adapts
over time and has minimal complexity beyond stochastic
gradient descent (SGD) [10], [29].

2) TRAFFIC LIGHT RECOGNITION

Traffic light recognition is a vital task in the field of auto-
matic driving, which directly affects traffic safety and order.
The optimal hyperparameters are tuned to achieve the best
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TABLE 4. Confusion matrix for traffic light recognition on the traffic light dataset (8 classes).

Class Green Green _ Green _ Green _ Red Red Red Red Accuracy

light left right up light _left _right up (%)

Green light 50 0 0 0 0 0 0 0 100
Green _ left 0 49 0 0 0 1 0 0 98
Green _ right 1 0 47 3 0 0 0 0 94
Green _ up 0 4 0 46 0 0 0 0 92
Red light 1 0 0 0 49 0 0 0 98
Red _ left 0 0 0 0 0 47 0 3 94
Red _ right 0 0 0 0 0 0 48 2 96
Red up 0 0 0 0 1 2 0 47 94

Average accuracy 95.75
Validation Accuracy
09 /\(Wm

8%
NV
i

0 5 10 15 20 2 30

epochs

accuracy

—— MobileNet
—— VGGNet
—— GoogLeNet
—— Resnet
Efficientnet

FIGURE 9. Plot of training epochs and validation accuracy for different
CNN models models (MobileNet, VGGNet, GoogLeNet, Resnet and
Efficientnet).

performance of MobileNet model in this experiment. For
example, the learning rate was 0.001, the momentum was set
to 0.9, and the optimizer was SGD. Table 4 presents in detail
the confusion matrix results of the fine-tuned MobileNet
model on the testing set with 8 classes. The experimental
results suggested that model works well with an average
accuracy of 95.75%. Since Green_ up and Green _ left have
the same color and similar shape, the model misclassified
the Green_ up as Green _ left, and the class named Green
_ up has the highest error rate at 8%. Among 8 classes
of common traffic lights, Green Light class obtained 100%
recognition accuracy, and the other classes of traffic light
have the accuracy between 94% and 98%.

3) EXPLAINABLE RECOGNITION RESULTS

In the risk estimation phase, CNN-based models are used to
identify vehicles or traffic lights under current traffic situa-
tions. Neural networks learn features from the input image
and give the corresponding classification results, which is
considered a black-box algorithm. In this study, Randomized
Input Sampling for Explanation (RISE) algorithm is applied
to make the final classification explainable by generating
the saliency map [11]. For dangerous vehicle estimation, the
fine-tuned Efficientnet model is used to estimate whether the
vehicles captured from the camera have dangerous behaviors.
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FIGURE 10. Saliency maps of testing images including different
dangerous situations (brake, turn left, turn right, cross).

FIGURE 11. Saliency maps of testing images with 8 classes of common
traffic light.

The dangerous behaviors are divided into four types, includ-
ing brake, turn left, turn right, and cross. For traffic light
recognition, the fine-tuned mobileNet recognizes 8 classes of
traffic lights.

As shown in Fig. 10 and Fig. 11, the saliency map shows
how important each pixel is for the final classification results.
The light areas of the vehicle contribute to brake and orienta-
tion attention the most, while the tires parts are significant for
the cross intention. Moreover, the saliency map highlights the
importance of the circle parts to the red light and green light,
as well as the importance of the arrow parts to each direction
light.

D. QUALITATIVE EVALUATIONS
In this section, some qualitative results containing successful
samples and failed samples are shown in Fig. 12 and Fig. 13,
and then the performance of the whole system is evaluated
from the aspects of accuracy and process time (See details in
Table 5).

In this research, the testing images are captured by the
Tesla driving recorder in the real traffic scene under different
weather conditions [31]. From the visualized testing results
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FIGURE 12. Visualized successful testing cases of the whole system in various traffic scenes under different environment conditions.
‘C’ means the pedestrian has the intention to cross the road. ‘NC’ means the pedestrian has no intention to cross the road. ‘danger’
indicates the vehicle has dangerous signals. ‘normal’ indicates the vehicle has no dangerous signals.
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FIGURE 13. Visualized failed testing cases of the whole system in various traffic scenes under different environment conditions.

TABLE 5. Performance (accuracy and processing time) of four different
tasks and the input size for each task.

Task Performance Time (s) Input size
Object detection mAP 52.7 0.021 608x608
Intention
recognition 97.50 0.020 224x224
(Skeleton-based)
Dangerous vehicles accuracy
o (%) 94.00 0.045 150x150
recognition
Traffic light 9575 | 0.010 32x32
recognition

of the proposed system, it can be observed the system can
accurately detect most of the objects in each image, even
some objects that are far from the camera. However, there are
also some errors that occur in the testing process, as shown
in Fig. 13. Although there are some images under different
weather in the BDD100K dataset, severe weather still is a
challenging factor in the testing process due to the low quality
and bad illumination conditions. For example, in the first
picture, the object detection model gives 3 boxes for the
pedestrians, but there are 2 persons in the ground truth. The
images with severe environmental conditions are considered
to be handled to remove noise by some image preprocessing
technique in the future, such as defogging, low-light enhance-
ment. Since some of the pedestrians in the second picture are
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very small or hidden, it is hard to identify each body part of
pedestrians in the phase of pose estimation, which directly
affects the final results of intention recognition.

The performance of the entire system with multiple tasks
are evaluated in terms of accuracy and the processing time
of each task under the specific input size. As shown in
Table 5, all recognition tasks can obtain good accuracy of
over 94.00%. For the object detection task, the detection
accuracy achieved 52.7% by using the optimized YOLOv4
model on BDD100K dataset. The processing time of the traf-
fic light recognition task is the shortest among all tasks due
to the lightweight MobileNet model and the small input size.
According to the comprehensive evaluation of the system,
all of the tasks can achieve a good performance in accuracy.
However, since there are four different tasks in the developed
framework, the total processing time per image is not fast
enough for real-time applications.

VI. CONCLUSION

In this study, a vision-based object detection and recogni-
tion framework was proposed for autonomous driving. The
proposed framework contains one object detection task and
three recognition tasks. Various objects are detected by using
an optimized YOLOv4 model with less parameters, which
can achieve faster processing speed and higher detection
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accuracy than the original. For detected objects, vehicles,
pedestrians, and traffic lights are extremely important objects
in the self-driving topic. Thus, there are three recognition
tasks for the corresponding objects. By comparing with dif-
ferent CNN models, the most suitable model with the highest
accuracy is selected for each recognition task. Besides, the
RISE algorithm is used to explain the classification results
by making the corresponding saliency maps for each image.

In the future, more attention should be paid to improving
the overall speed of the proposed framework. To improve the
performance of the system, a separate pipeline that can effi-
ciently process single-frame-based and multi-frame-based
recognition can be applied in the following study. Consider-
ing that the distance between the autonomous vehicles with
other objects is important, distance prediction also should be
integrated into this framework.
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