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A B S T R A C T   

Prompt and specialized pest management involving localization and recognition has become a crucial means to 
prevent pest attacks in modern agriculture. Traditional pest monitoring methods are inaccurate and inefficient 
due to the hand-crafted features and the low-resolution images. As a result, this study presents an automatic 
framework that can precisely detect 10 species of pests in the natural environment and assist humans in iden-
tifying the locations and contours of pests efficiently. The main contributions of this paper include (1) a novel 
attention module that encourages the network to focus on the important features; (2) an optimized super- 
resolution approach that is used for both training and testing images to enhance the image quality; (3) a pest 
monitoring network is proposed by improving the D2Det’s structure and adjusting the parameters; and (4) a 
dataset containing pest images and manually annotated files. Experiments showed that the proposed Pest-D2Det 
model achieved state-of-the-art performances in terms of the mean Average Precision (mAP) values of detection 
(78.6%) and segmentation (77.2%). Meanwhile, the performance of our efficient channel and spatial attention 
network (ECSA-Net) indicated that it is lightweight and effective, which can be integrated into deep learning- 
based models without computation burden.   

1. Introduction 

Crops are damaged by various species of pests every year during the 
cultivation process, which makes the yield and quality of crops decline 
in varying degrees. Prompt management of pests can effectively avoid 
the economic loss of crops. However, pests have the characteristics of 
different scales, variant shapes, and complex textures. Traditional 
methods that only rely on vision and experience cannot identify and 
localize a large number of pests quickly and accurately under complex 
environments. In modern agriculture, the urgent demand for pest 
monitoring and control has driven the further exploration of intelligent 
pest localization and recognition systems. 

Previous studies of pest localization are mainly based on image 
processing and conventional machine learning approaches due to simple 
implementations (Maharlooei et al., 2017; Wang et al., 2018). Never-
theless, these methods are easy to be affected by the change of image 
features. Recently, deep learning methods are employed in pest instance 
identification tasks on account of excellent performances (Chen et al., 
2021; Liu, 2019). In particular, the attention mechanism was proved to 

be active in enhancing the perception of the target area (Zhao et al., 
2021). In this context, this research aims at designing a novel attention 
mechanism and integrating it into a pest segmentation network to boost 
overall accuracy. 

Moreover, as long as the collected training data are diverse and clear 
enough, the existing technologies are able to handle the pest localization 
problems. However, the captured images from natural scenes vary at 
resolutions and illumination conditions in practice, which is challenging 
for the multi-class detection and identification task (Barbedo, 2020)(Li, 
2022). Therefore, super-resolution (SR) and data augmentation tech-
niques are explored before the pest localization network in order to 
provide more satisfying image qualities in this study. 

The principal contributions of this study are listed as follows.  

• A novel attention module is designed to encourage the network to 
focus on the informative features.  

• An optimized SR method is used to improve the performances for 
both detection and segmentation tasks. 
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• An effective pest monitoring network is proposed by modifying the 
D2Det’s structure and adjusting the parameters.  

• A dataset including 9,872 pest images and corresponding annotated 
files is provided, which can be used in the instance segmentation 
task. 

This paper contains six sections. Related studies on pest analysis are 
reviewed in Section 2. Section 3 presents the overall flowchart of the 
present framework and the primary methodology. Section 4 introduces 
the dataset and corresponding metrics for evaluations. Some experi-
ments are presented and discussed in Section 5. Finally, the conclusion 
of this study is given in Section 6. 

2. Related work 

Some early reports on pest location and surveillance explored 
traditional image processing and machine learning techniques. For 
example, some image processing methods, like color transformation and 
contrast adjustment, were employed to improve the efficiency of pest 
detection and counting on leaves (Maharlooei et al., 2017). Experiments 
suggested the image processing method for segmentation obtained good 
results in certain illumination conditions. In another work, a cognitive 
vision approach was used for pest segmentation by using some strategies 
such as block processing, adaptive initial cluster centers, and leaf vein 
removal (Wang et al., 2018). The results demonstrated the cognitive 
segmentation method with some complicated processing had a lower 
error rate and standard deviation. As one of the classical machine 
learning algorithms, a Support Vector Machine (SVM) was applied to 
classify and detect various types of pests. Before that, image processing 
was used to improve detection precision and speed (Ebrahimi et al., 
2017). Besides, the SVM was also used and integrated into the study of 
bio-inspired techniques for pest image recognition. The model inspired 
by the human attention mechanism was used to detect pest areas, and 
the features are extracted by using a proposed method. After that, all 
features were input to an SVM model for the classification task. Exper-
iments showed the developed method reached a result comparable to 
the deep learning methods (Deng et al., 2018). 

Recently, deep learning techniques have been particularly trendy 
due to the ability of automatic feature extraction. A smartphone-based 
pest detection application was developed by employing different ob-
ject detection models. Among the experimental models, YOLOv4 

obtained the highest accuracy on the data with three classes (Chen et al., 
2021). In (Liu, 2019), a PestNet model was introduced to detect and 
classify 16 species of pests based on fixed regions. A Channel-Spatial 
Attention was united into the backbone to extract features firstly, and 
then a potential pest location was obtained. Finally, the Position- 
Sensitive Score Map was used to get results of classification and detec-
tion. This study achieved a high mean Average Precision (mAP) of 
75.46% for pest detection. Based on deep learning, a residual network 
with an attention mechanism was presented to detect the severity of the 
plant disease. Compared with other existing attention networks, the 
proposed model achieved a better classification accuracy and shorter 
speed (Zhao et al., 2021). 

Deep learning-based pest monitoring frameworks need quality and 
sufficient data to support reliable detection and recognition results. 
Thus, some researchers attempted to tackle the data problems by using 
different image processing technologies. For instance, a data augmen-
tation approach in (Li, 2019) is introduced to solve the problem that the 
collected images have significant differences in scale and posture. In 
another work, the captured images under the natural environment are 
noisy and blurry, which is not conducive to detect and segment pests in 
images. An SR method was used to boost the detection precision of low- 
resolution images (Yue et al., 2018). Besides, different image processing 
technologies were combined to improve the performance of the classi-
fication task in greenhouses (Espinoza et al., 2016) or natural scenes (Li 
et al., 2020). 

Prior to our work, there is still a lack of a benchmark dataset for pest 
segmentation tasks. In addition, the conventional methods combining 
image processing and machine learning are easy to implement and have 
low computational complexity, but they rely heavily on handcrafted 
features. As a particular type of machine learning, deep learning 
methods require an extensive dataset and high computing resources. 
However, they can automatically extract features and get satisfactory 
results in computer vision. Based on the aforementioned problems, data 
augmentation approaches and the sparse convolution-based SR model 
are employed to build a dataset with more high-resolution images. After 
that, a pest localization network with an attention mechanism module is 
proposed to detect and classify pests in natural environments efficiently. 

3. Proposed pest localization framework 

In this section, the system overview of pest localization and 

Fig. 1. Diagram of the proposed pest localization system. In the data preparation stage, the dataset consists of the preprocessed images and the corresponding 
annotation files. The pest localization model is proposed by modifying the structure and tuning the parameters in the training stage. And then the performance of the 
trained model is evaluated in the testing stage. 
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recognition is introduced in Fig. 1. Firstly, the collected images are 
preprocessed by applying the SR algorithm (Section 3.1). A segmenta-
tion dataset is then constructed by annotating the images, which in-
cludes the training set and testing set. In the training stage, 9,472 images 
are generated to enhance the generalization ability of the deep learning 
model by adopting some data augmentation methods, such as random 
rotations, flips, and brightness adjustment. After that, the training set is 
fed into a deep learning-based pest localization model. Various strate-
gies are implemented including architecture modification, attention 
module integration (Section 3.2), and fine-tuning (Section 3.3) to 
improve the performance of the model. Finally, the effectiveness of the 
trained model is assessed by assessing the predicted results in the testing 
stage from the aspects of detection mAP and segmentation mAP, 
respectively. 

3.1. Image preprocessing 

The SR methods are usually carried out as a preprocessing method to 
enhance the image resolutions because the blurry tiny pest images 
captured in the natural environment are challenging for the multi-class 
detection and recognition tasks. In this study, the latest and efficient 
method named a Sparse Mask Super-resolution (SMSR) is explored to 
reconstruct pest images with detailed information (Wang, 2021). The 
novelty of the SMSR network is that the spatial and channel masks are 
used to distinguish different regions. The former can identify essential 

features, and the latter is used to mark unimportant features. Hence, the 
unimportant information in feature maps is skipped to release the 
computing space while keeping the equivalent performance. 

The sparse mask module (SMM) is a crucial component of the SMSR 
network, which is mainly used to reduce redundancy by localizing and 
extracting important features. As shown in Fig. 2, spatial masks (Mspa

k ) 
and channel masks (Mch

k,l) are generated to obtain the redundant calcu-
lation of the model. Then, masks are sent to the corresponding sparse 
mask convolutional layers, ranging from 1 to L. After that, feature maps 
go through a 1x1 convolution layer and an attention module, where the 
attention module is used to encourage feature maps to be more infor-
mative and meaningful. After applying the proposed attention module, 
the parameters and computations of the original SMSR model were 
reduced. 

In order to further reduce the parameters and computations of the 
SMSR model, the attention module named SENet (Hu et al., 2018) in 
SMM was replaced with our proposed attention module highlighted in 
the red dashed box. The model structure and complexity of our attention 
module will be introduced in Section 3.2. In the SR stage, a new dataset 
containing 1300 training samples and 150 testing samples was estab-
lished to improve the model’s generalization ability by combining the 
DIV2K dataset (Agustsson and Timofte, 2017) with our pest dataset. 

3.2. Attention module: ECSA-Net 

A convolutional block attention module named efficient channel and 
spatial attention network (ECSA-Net) is designed to recalibrate features 
from the aspects of channel and space. Fig. 3 shows the model structure 
of ECSA-Net, which includes the channel attention branch and spatial 
attention branch. In this study, the proposed lightweight ECSA-Net is 
integrated into the super-resolution model and the pest localization 
model without computational burden. 

Inspired by the idea of feature aggregation in the convolutional block 
attention module (CBAM) (Woo et al., 2018), the average pooling and 
the max-pooling are applied in the channel attention branch to compress 
the dimension of the input feature F(HxWxC) along the channel direc-
tion. CBAM utilized two fully connected layers to reduce the dimensions 
of feature maps, which affects the learning effectiveness of the channel 
attention branch. Besides, adaptive convolution has a positive impact on 
improving the cross-channel learning ability (Wang et al., 2020). As a 
result, we applied a one-dimensional convolution layer that adaptively 
selects the convolution kernel size according to the number of channels 
after the pooling operation. The mapping relationship between the 

Fig. 2. The structure of the improved sparse mask module (SMM). Note. An 
efficient ECSA-Net in the red dashed box was proposed to replace the previous 
attention module, which reduces the parameters and computations of the 
original model. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 3. The structure of the proposed ECSA-Net, which includes the channel attention branch and the spatial attention branch.  
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number of channels and the size of the convolution kernel is shown in 
Equation (2). When the number of channels increases, a larger convo-
lution kernel is selected to control the range of cross-channel learning. 
This convolution layer with shared weights avoids the mismatch be-
tween channel and weight, and it dramatically reduces the parameter 
quantity. After the convolution operation, the feature maps on the two 
branches are combined together to form the channel attention maps 
through the ReLU activation function and the Sigmoid activation func-
tion. The feature map Fc is obtained by multiplying the channel attention 
map and the input feature map F, as shown in Equation (1). 

In the spatial branch, the input feature F passes through a 2-dimen-
sional convolution layer with a 1x1 kernel to generate a spatial projec-
tion tensor with the size of HxW. Each point Pxy on the projection tensor 
represents the combination of all channels at (x, y) position. After that, 
the ReLU layer and Sigmoid layer activate tensors in the range of [0, 1] 
to generate spatial attention maps. Equation (3) shows the calculation 
for the spatial feature map Fs. Finally, the spatial attention branch and 
the channel attention branch are connected in parallel, and the feature 
maps of the two branches are fused to generate a new feature map. 

Fc = F*
(
σ
(
r
(
f K(Avg(F) )

) )
+ σ

(
r
(
f k(Max(F) )

) ) )
(1)  

K =
log2C

α + β/α (2)  

Fs = F*σ(r(f 3×3(F))) (3)  

where Fc and Fs represent output feature maps of the channel attention 
branch and the spatial attention branch, respectively. F refers to the 
input features of ECSA-Net, σ and r are Sigmoid activation function and 
ReLU activation function, respectively. The Avg function represents the 
average pooling, and Max function represents the max pooling. 
Convolution operation is represented by f , K and 3x3 indicate the kernel 
sizes of one-dimensional convolution and two-dimensional convolution, 
respectively. In Equation (2), the convolution kernel K has a nonlinear 
relationship with the number of channels C, constant α and β were set to 
2 and 1 in this study. In convolution operation, the convolution kernel 
must be set to odd, so when K is even, K becomes K + 1. 

3.3. Pest-D2Det’s architecture 

In this study, an effective Pest-D2Det model is presented to detect 
and identify pests by improving a two-stage D2Det model (Cao et al., 
2020). As shown in Fig. 4 (b), the architecture of the Pest-D2Det model 
consists of backbone, neck, region proposal network (RPN) (He et al., 
2017), and head. Firstly, Res2Net101 (Gao et al., 2019) replaces the 
previous backbone (ResNet101) in the D2Det model because of its 
powerful multi-scale feature representation ability. Then, a proposed 
lightweight attention module is embedded into each residual block of 
the Res2Net101 model to form a new backbone named ECSA- 
Res2Net101, as shown in Fig. 4 (a). Next, ECSA-Res2Net101 and 
feature pyramid networks (FPN) (Lin et al., 2017) are used to extract and 
fuse effective multi-level features from input images. Then, RPN gen-
erates the foreground candidate box by sliding the window on the 
feature map, and it calculates the position offset of the foreground 
candidate box relative to the Ground Truth (GT) (He et al., 2017). The 
head section of D2Det is retained in our model structure. The two 
branches of the head adopt the dense local regression and the discrim-
inative ROI pooling algorithm (Cao et al., 2020) respectively to locate 
the target area and predict the target label. 

The proposed ECSA-Net in the new backbone extracts more effective 
features related to spatial location and channel information for the 
backbone network, and it does not add a lot of parameters to the model. 
According to the experimental result, the parameters amount of the Pest- 
D2Det network is about 109.05 M, and the parameters of the ECSA-Net 
module (0.68 M) only account for 0.62% of the total parameters. On the 
other hand, the ECSA-Net module only occupies 0.78% of the total 
computations in terms of floating point operations per second (FLOPs). 

In the training process, the loss function, optimizer, and initial 
learning rete of the model were fine-tuned to further improve the 
model’s learning ability. Firstly, the Pest-D2Det network adopted 
different loss functions for regression and classification tasks. Focal loss 
is an improvement on cross-entropy loss, making the model pay more 
attention to the training samples with poor classification results by 
reducing the weight of samples that are easy to classify. Different from 
the classification task, the loss function of the regression task is used to 
calculate the difference between the predicted box and the GT. The CIoU 
loss function converges fast, and it involves the calculation of the 
overlap area, center point distance, and aspect ratios of predictions and 

Fig. 4. (a) The residual block of the new backbone (ECSA-Res2Net101); (b) The overall structure of pest localization model (Pest-D2Det). Note. Images are fed into 
the proposed backbone and FPN module to generate features, RPN is used to classify the background and foreground of inputs. After that, there are 2 branches to 
predict the object area and label. 
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GTs. During the fine-tuning process, the influence of cross-entropy loss 
and focal loss for the classification task, as well as the effectiveness of 
CIoU loss and smooth L1 loss were analyzed and discussed in detail. 
Secondly, a more suitable optimizer was used to replace the SGD opti-
mizer that was used in the D2Det model. As for the initial learning rate, 
it is usually set to 0.001, 0.01, or 0.1 in previous work (Kim et al., 2016) 
(Dang, 2022). Although high learning rate can boost the training 
convergence rate, it is prone to gradient exploding or vanishing. 
Therefore, the initial learning rate was finally adjusted from 0.001 to 
0.01 to improve the training performance in terms of convergence speed 
and stability. 

4. Dataset and evaluation metric 

4.1. Dataset 

4.1.1. Data preparation 
Based on the crop pest dataset proposed in (Li et al., 2020), a total of 

2,000 original images were manually reviewed and selected to construct 
a representative dataset for the pest instance localization and classifi-
cation tasks. There are 10 types of pests, including cydia pomonella, 
gryllotalpa, leafhopper, locust, oriental fruit fly, Pieris rapae Linnaeus, 
snail, spodoptera litura, stinkbug, weevil. The pest images have variant 
resolutions, ranging from 224 × 90 to 4000 × 2337, and most of them 

Fig. 5. Visualization of the proposed pest dataset, which includes the original images and the annotated images.  

Fig. 6. Example of various data augmentation methods (a) original image, (b) Gamma contrast, (c) flip, (d) random rotation, (e) Gaussian blur, (f) brightness, (g) 
channel shuffle, and (h) cutout. 
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were acquired in natural scenes. 
Before the pest segmentation process, all the pest images should be 

labeled with a public available annotation tool (LabelMe) to obtain the 
GT. The generated format of GT is a json file, and annotated pixels in GT 
indicate the pest location. After labelling, the images with annotation 
files were separated into a training set and validation set with a ratio of 
8:2. The samples from the dataset for some original images and visual-
ization annotations are shown in Fig. 5. 

4.1.2. Data augmentation 
Deep learning-based approaches require a sufficient number of 

samples. The more the number of training samples, the better the effect 
of the trained model and the stronger the generalization ability of the 
model. Thus, data augmentation was employed on all original training 
images as well as the labeled files to expand the data. After the data 
augmentation process, the total number of training images (9,472) is 
about five times more than the previous training amount (1,600). 

Some proper augmentation techniques were applied to this study as 
an addition to the common data augmentation methods. For example, 
cutout randomly fills a fixed size square area with the specified pixels in 
an image, which enables the feature extractor to learn the global in-
formation of the image (DeVries and Taylor, 2017). Besides, the channel 
shuffle generates new data by randomly transforming the color space of 

the image to enhance the model’s generalization ability in the training 
process (Jung, 2019). Fig. 6 illustrates some examples of various data 
augmentation methods. 

4.2. Evaluation metric 

This study mainly focuses on the performance of pest detection and 
segmentation tasks, and the corresponding metric suggested by some 
researchers in (Araujo, 2019; Hong, 2020) is mean Average Precision 
(mAP). This metric is calculated by the values of true positive (TP) and 
false positive (FP) to assess the detection and segmentation results. The 
calculation is shown in Equation (4). 

mAP = mean(
TP

FP + TP
) (4)  

where TP means the number of target pixels that are accurately detected 
and segmented as target pixels. FP indicates the number of non-target 
pixels that are incorrectly detected and segmented as target pixels. 

Moreover, peak signal to noise ratio (PSNR) is used to assess the 
effectiveness of the SR approach, which is an important metric in image- 
based instance localization and recognition (Sara et al., 2019). The 
PSNR value was computed using Equation (5) shown below: 

Fig. 7. Results of the original SMSR model and modified SMSR model with the scale factor x4. Note. ‘LR’ represents the low-resolution image that is used as the input 
data of the SR method. In the SR phase, the input LR images is processed to generate the output SR image, and then the obtained SR image is compared with the 
Ground Truth in order to evaluate the model’s image reconstruction effect. 
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PSNR = 10log10
m2

MSE
(5)  

where m is the maximum value of the input pixels, and the MSE repre-
sents the mean square error. In this study, a big PSNR value implies that 
there is a slight difference between the GT image and the reconstructed 
image. 

In terms of the efficiency, the metric termed FLOPs is considered as a 
prevalent indicator to measure the model’s computations (Molchanov 
et al., 2016). The calculation of the deep neural network is reflected in 
the convolution layer (conv) and the fully connected layer (fc), as shown 
in Equation (6) and (7). 

FLOPs(conv) = 2*HW*(CiK2 + 1)Co (6)  

FLOPs(fc) = 2*Ci*Co (7)  

where H and W represent the height and width of the feature map after 
convolution operation, respectively. Ci and Co is the number of input 
channels and output channels. K represents the size of the convolution 
kernel. 

5. Experimental results 

All the experiments were conducted on a Linux machine with the 
Ubuntu 18.04 system installed. It has four Tesla V100PCle32GB GPUs, 
an Intel® Xeon® E5-2698 processor, and 256 GB of DDR4 RAM. In the 

training process of the proposed model, the focal loss was used for 
classification, and the CIoU loss was used for regression. The Adam 
optimizer is applied to update the training parameters. The initial 
learning rate was 0.01, and the decay was 0.0001. The batch size was set 
to 2, and the number of training epochs was 36. First of all, Section 5.1 
demonstrates the effectiveness of the optimized SMSR network in the 
presented pest localization framework. Section 5.2 then showed how the 
proposed Pest-D2Det model performed on the proposed dataset. After 
that, Section 5.3 examines the improvement of the fine-tuning process. 
Next, the performances in various scenarios are discussed and analyzed 
in Section 5.4. Finally, the proposed instance segmentation model is 
compared with other work in Section 5.5. 

5.1. Image preprocessing 

In the image preprocessing phase, the super-resolution technique is 
performed to boost the resolution of the input pest image, and the per-
formances of the SMSR model before and after modification are evalu-
ated by calculating PSNR. In this experiment, two types of pests (weevil 
and Pieris rapae Linnaeus) were randomly selected to show the 
improvement of the modification on the original SMSR model. For each 
pest image, the regions of interest were cropped from the GT, low- 
resolution (LR) input image, result of the original SMSR model, result 
of modified SMSR model, respectively. The super-resolution results of 
two different models with the scale factor x4 are presented in Fig. 7, 
which suggested that the modified SMSR network successfully 

Table 1 
The performances of the original and the modified SMSR models on pest detection and segmentation.  

Index Model Training set Testing set Det_AP Seg_AP    

PRL WEL CP GLP PRL WEL CP GLP 

1 Original SMSR √ √  71.7  64.0  75.3  71.4  68.9  59.3  76.4  64.6 
2 Modified SMSR √ √  73.4  64.5  76.8  72.5  69.7  61.2  78.9  66.3 
3 × √  69.1  62.6  73.2  70.0  65.7  57.8  72.4  61.8 
4 × × 64.5  57.2  70.0  64.9  61.2  52.8  68.1  57.5 
5 √ × 67.2  59.9  71.8  67.7  63.9  55.3  70.6  60.1 

Note. ‘Det_AP’ and ‘Seg_AP’ represent the AP values for pest detection and segmentation, respectively. ‘√’ indicates the images were processed by SR, and ‘×’ indicates 
the images were not processed by SR. ‘PRL’ is the Pieris rapae Linnaeus class, ‘WEL’ is the weevil class, ‘CP’ is the cydia pomonella class, ‘GLP’ is the Gryllotalpa class. 

Fig. 8. Visualization results of the networks in the feature extraction process. The networks are integrated with and without different attention modules.  
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reconstructed the details from the seriously degraded inputs. For 
example, the texture of leaves and the contours of pests are blurry in the 
input images and the output images of the original SMSR, whereas these 
details are vivid in the results of the modified model. Besides, the 
modified SMSR model obtained better performance in terms of the PSNR 
values. 

In this section, four classes (Pieris rapae Linnaeus, weevil, cydia 
pomonella, and Gryllotalpa) with inferior image quality were explored 
to highlight the significant impact of the SR phase on the whole 
framework. In addition, the effects of the SR model before and after 
modification are compared by evaluating their respective performances. 
Original images and SR images are used for training and testing to make 

Fig. 9. (a) mAP curves of the detection task on the validation set, (b) mAP curves of the segmentation task on the validation set, and (c) loss function curves on the 
training set. Note. ‘Det_mAP’ and ‘Seg_mAP’ represent the mAP for pest detection and segmentation, respectively. 

Table 2 
Pest detection and segmentation results of different models. Comparison of different models from the aspects of model parameters (Param.), FLOPs, detection mAP, 
and segmentation mAP. mAP (mAP at IoU = 0.50:0.95). mAP50 (mAP at IoU = 0.50). mAP75 (mAP at IoU = 0.75).  

Backbone Framework Param. FLOPs Detection Segmentation 

mAP mAP50 mAP75 mAP mAP50 mAP75 

Res2Net101 D2Det 108.37 M 341.11G  70.6  89.7  86.1  69.6  88.7  85.4 
Res2Net101 + SE 113.77 M 344.31G  71.9  91.5  87.2  71.0  90.1  87.2 
Res2Net101 + CBAM 113.76 M 345.44G  72.4  92.1  88.5  71.4  90.9  87.9 
Res2Net101 + ECA 109.05 M 342.12G  72.1  91.9  88.3  71.3  90.7  87.9 
Res2Net101 + ECSA (proposed) 109.05 M 343.80G  73.3  92.4  89.6  72.6  91.5  88.3  

Table 3 
Different parameter settings (loss function, optimizer, and initial learning rete) and the corresponding performances in terms of detection mAP (Det-mAP) and seg-
mentation mAP (Seg_mAP).  

Fine-tuning Loss function Optimizer Initial learning rate Det_mAP Seg_mAP 

Classification Regression 

1 cross-entropy loss smooth L1 loss SGD  0.001  73.3  72.6 
2 focal loss CIoU loss SGD  0.001  75.4  74.8 
3 focal loss CIoU loss SGD  0.01  76.2  75.6 
4 focal loss CIoU loss Adam  0.01  78.6  77.2  
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different experimental groups. Table 1 demonstrates the effectiveness of 
the modified SMSR models on pest detection and segmentation, and the 
results are assessed by the AP metric. Compared to the fourth experi-
ment without any SR processing, the second experiment that applied SR 
for training and testing images achieved higher AP values for each class. 
It suggests that the SR process is necessary for the pest localization 
framework to enhance the overall performance. Moreover, the third 
experiment outperformed the fifth experiment for both detection and 
segmentation tasks. That is probably because the SR operation has a 
greater impact on the testing process than it does on the training process. 
Furthermore, the noteworthy gap between the first and second experi-
ments illustrates the improvement of the SMSR model. 

5.2. Pest detection and segmentation 

In this section, an experiment was conducted to prove that the pro-
posed attention module is of great significance to the feature extraction 
process in the detection and segmentation tasks. Fig. 8 displays the 
visualization results of different methods. The first line is the input 

image, and the second line is the result of the Res2Net101 network 
without any attention module. The other lines show the results of the 
networks that integrate different attention modules (CBAM, ECA, and 
ECSA) with baseline (Res2Net101). Compared with the result of the 
network without any attention module, the network with an attention 
module covers more information in the target area. Besides, the ECSA- 
integrated network (Res2Net101 + ECSA) paid more attention to the 
pest details like the foot part. That is because the ECSA module learned 
better and extracted more features from the pest region than the other 
experimental attention modules. 

The modified D2Det was presented by replacing the original base 
model (ResNet101) in the backbone of the D2Det, and then an effective 
Pest-D2Det model was proposed by adding a new attention module on 
the new backbone. In order to assess the Pest-D2Det comprehensively, 
the model’s performances were evaluated in terms of the loss and mAP. 
Fig. 9 plots the curves of different models, where the blue, orange, and 
green lines refer to the performances of the original D2Det, the modified 
D2Det, and the proposed Pest-D2Det models, respectively. Fig. 9 (a) and 
(b) shows that the Pest-D2Det model obtained the highest detection 

Fig. 10. Detection and segmentation results of the proposed Pest-D2Det model. Note. There are three scenarios, which include the images with single pest (a, b, c), 
the images with multiple pests that belong to the same categories (d, e), and the image with multiple types of pests that belong to different categories (f). 
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mAP of 73.3% and segmentation mAP of 72.6% on the validating set, 
and the modified D2Det outperformed the original D2Det model. That 
suggests the modification on the backbone and the proposed attention 
module can enhance the performance of the original D2Det model. In 
addition, the loss function curves were used to reflect the training of 
three experimental models. The loss curve of the original D2Det model 
shows a significant fluctuation in the first 5000 iterations. In contrast, 
the loss curve of the Pest-D2Det model has the advantages of stability 
and fast convergence. 

Furthermore, a fair comparison with other top-performing methods 
is necessary to verify the efficiency and precision of the proposed 
method by using different backbones in the D2Det framework. As shown 
in Table 2, parameters and computations of the proposed ECSA module 
only account for 0.62% and 0.78% of the ECSA-integrated network, 
respectively. Even the ECA-integrated network has fewer computations 
(FLOPs) than the proposed network, it is inferior to our network by 1.2% 
and 1.3% in terms of the values of mAP for both the detection task and 
the segmentation task. Experiments demonstrate the proposed Pest- 

Fig. 11. Detection and segmentation results of the proposed Pest-D2Det model under various challenging conditions. (a) original image, (b) image with mosaic, (c) 
rotated image, (d) image with man-made noises. 
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D2Det model with the ECSA-Res2Net101 backbone can detect and 
segment pests with high precision (detection mAP: 73.3%, segmentation 
mAP: 72.6%) while almost maintaining the original network 
complexity. 

5.3. Parameter analysis 

Since fine-tuning approach strengthens the network to learn the 
features of the targets (Hu et al., 2018), some parameters are adjusted to 
improve the mAP of the proposed model. Table 3 presents different 
parameter settings (loss functions of different tasks, optimizers, and 
initial learning rates) of the Pest-D2Det network and the corresponding 
performances for both detection and segmentation tasks. A total of four 
groups of control experiments were conducted to demonstrate the effect 
of each parameter. According to the experiment 1 and 2, the Pest-D2Det 
model using the focal loss and CIoU loss achieved better performance. In 
particular, the segmentation mAP of the 2nd model is 2.2 higher than 
that of the 1st model. That proved the loss functions used in the 2nd 
model play a critical role in detecting and segmenting pests. In addition, 
the detection and segmentation mAP values of the 4th model obtained 
an improvement of 3.2 and 2.4 compared with the performance of the 
2nd model. It is confirmed that the initial learning rate and the optimizer 
have a clear influence on detection and segmentation. 

5.4. Results and discussion 

A comprehensive experiment that involves various scenarios is 
conducted by visualizing and analyzing the results of pest localization 

and classification. There are three distinct scenarios, from the simple 
situation to the complicated situation. As shown in Fig. 10, the result 
images (a, b, c) in the first line contain only one pest, and the images (d, 
e) in the second line have multiple pests that belong to one class. In the 
third line, multiple images with a single pest were cropped and stitched 
into one image, and then the image with various types of pests was input 
into the proposed model to generate the result image (f). According to 
the visualized results, it is challenging for the proposed network to 
segment the pest’s tiny body parts like legs and antennae. However, the 
generated high confidence scores prove that the proposed network can 
correctly localize and classify the pest images in three different sce-
narios. As shown in Fig. 10 (c), all body parts of the pest are precisely 
segmented along its edges. Even if the instances in Fig. 10 (e) are densely 
distributed and vary in size, they are still correctly segmented with 
different colors and predicted with the same label. Besides, the image 
with 5 categories of pests is given different colors and labels in Fig. 10 
(f). 

Moreover, the robustness of the proposed model is demonstrated by 
making difficulties on the input images. As shown in Fig. 11 (a), the 
original input image containing a weevil pest is precisely localized and 
identified by our method. In Fig. 11 (b), some parts of the pest body are 
blocked by additional mosaic, and the remaining sections are still 
localized correctly. Fig. 11 (c) illustrates the proposed method is robust 
against the image rotation. Finally, in Fig. 11 (d), noises are added 
manually around the pest, and the noisy image is predicted accurately. It 
is unambiguous that our network can predict the pest images under 
various challenging conditions. 

On the one hand, the performance of the proposed method is 
assessed by calculating the detection and segmentation precision of each 
pest class. As shown in Fig. 12, the proposed model achieved the highest 
detection AP of 84.2% on the Pieris rapae Linnaeus class, while it ob-
tained the highest segmentation AP of 91.7% on the cydia pomonella 
class. In contrast, the average precision for the locust class is the lowest 
among the ten species of pests for both detection and segmentation 
tasks. The possible reason is that this pest class has many unnoticeable 
tiny body parts. Besides, the color of this kind of pest is usually similar to 
the natural background. 

On the other hand, the processing time of the proposed model is 
tested on the images with different input sizes and pest numbers. As 
shown in Fig. 13, both factors (input size and number of pests) are 
proportional to the time consumption, whereas the former has a more 
significant impact on time consumption. As for a single pest image, the 
processing time of a 1920x1200 image is 0.26 s, which is about four 
times that of a 650x400 image. That is because the model needs more 
convolution computation in a large image than in a small image. 

650x400 1333x800 1920x1200
Number of pests: 1 0.06 0.13 0.26
Number of pests: 2 0.08 0.15 0.29
Number of Pests: 3 0.09 0.17 0.31
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Fig. 13. The time consumption of the Pest-D2Det model on the images with different input sizes and pest numbers.  

Table 4 
Performance comparison of different instance segmentation models in recent 
studies based on the same pest dataset.  

Model Input size Time (s/ 
image) 

Det_mAP 
(%) 

Seg_mAP 
(%) 

Mask R-CNN (He et al., 
2017) 

1333 ×
800  

0.114  66.5  64.7 

MS R-CNN (Huang 
et al., 2019)  

0.115  68.2  67.9 

HTC (Chen et al., 
2019)  

0.326  71.8  67.5 

D2Det (Cao et al., 
2020)  

0.149  70.4  69.1 

Pest-D2Det  0.157  78.6  77.2 

Note. ‘Time’ means the average processing time of the whole testing set. 
‘Det_mAP’ and ‘Seg_mAP’ represent the mAP for pest detection and segmenta-
tion, respectively. 
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5.5. Comparison with other work 

In this section, an experiment is constructed to further demonstrate 
the effectiveness of the proposed model by comparing it with the state- 
of-the-art. Table 4 shows the compared results of different instance 
segmentation models in recent research on our collected dataset. Even 
though the Mask R-CNN model processes per image with the shortest 
time, its results for detection and segmentation accuracy are unsatis-
factory. Compared with the Mask R-CNN, our model obtained a 
considerable improvement of the detection mAP at 12.1% and the seg-
mentation mAP at 12.5%. 

6. Conclusion 

This paper proposes an automatic pest localization framework that 
can efficiently distinguish pest regions from the complicated back-
ground. Firstly, a practical and lightweight attention module named 
ECSA-Net is designed to enhance the learning ability for important 
features in deep learning-based models. In this study, the proposed 
ECSA-Net network is integrated into the SR model and the pest moni-
toring model due to its effectiveness and efficiency. Moreover, an opti-
mized SR method is used for both training and testing images to get 
better localization and classification results. Furthermore, a dataset 
including 9,872 images and the corresponding annotation files is fed 
into a Pest-D2Det network that is proposed by modifying the backbone’s 
structure of the original D2Det model and adjusting parameters. Ex-
periments show that the proposed Pest-D2Det model was robust against 
various scenarios and achieved state-of-the-art performance in terms of 
the detection mAP (78.6%) and segmentation mAP (77.2%). 

However, the proposed pest monitoring framework cannot be used in 
a real-time application that requires precise locations of pests in the 
natural background. Besides, the detection performance of small body 
parts like legs and antennae is not satisfactory. Therefore, a real-time 
system will be developed by reducing the computation complexity to 
perform live videos in the future. In addition, more pest images should 
be collected and annotated to improve the localization performance of 
pest details. 
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