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Highlights

 A huge fruit disease dataset of 6 different diseases that contains over 81,000 images.

 An efficient transformer-based fruit disease detection framework.

 Analysis of the disease region using the transformer’s feature discriminability scores.

 The proposed model outperformed previous state-of-the-art object detection models.
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Abstract

Plant diseases pose a significant threat to fruit production and quality if not

detected and managed promptly. Precise and efficient recognition of these dis-

eases is critical for ensuring plant health and maximizing fruit production. To

tackle this issue, a range of image processing and deep learning techniques have

been preferred for plant disease recognition due to their superior performance.

This paper proposes an end-to-end transformer-based model that improves both

the accuracy and detection rate of fruit diseases. The model is based on a

state-of-the-art transformer model and trained using the Collaborative Hybrid

Assignment (Co-DETR) scheme. Moreover, several targeted modifications to

the original model are conducted to optimize its performance. These modi-

fications enable the model to detect six types of plant diseases with a mean

average precision (mAP) of 0.89 while maintaining efficient training times. The

proposed model consistently outperforms state-of-the-art detection models. In

addition, the model offers interpretability through the visualization of feature
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discriminability scores to ensure that the prediction process is interpretable and

understandable. Finally, the model demonstrates robust performance under

challenging environmental conditions, such as poor lighting and image blurring,

which is essential for real-world applications in disease management and preci-

sion agriculture.

Keywords: image processing, transformer, deep learning, precision

agriculture, fruit disease

1. Introduction1

According to the Food and Agriculture Organization (FAO), global food2

demand is projected to surge by 70% by 2050 as the world population surpasses3

9.1 billion [1]. Fruits, as critical sources of essential nutrients, play a pivotal4

role in ensuring food security and combating malnutrition [2]. However, it is5

increasingly challenging to achieve and sustain high fruit yields due to factors6

such as limited farmland, climate change, and the devastating impact of pests7

and diseases [3]. Among these threats, fruit diseases, such as mango scab and8

citrus thrips, often cause catastrophic yield losses and economic devastation9

when left undetected.10

Traditional fruit disease detection relied on manual inspection, a labor-11

intensive and error-prone process with delays in identifying early-stage symp-12

toms [4]. The lag between symptom appearance and detection often results13

in significant losses. To address these challenges, automated detection systems14

using machine learning (ML) and deep learning (DL) have emerged as transfor-15

mative solutions for scalable, accurate, and efficient disease monitoring [5].16

While early ML approaches utilized handcrafted features, such as color, tex-17

ture, and shape, with classifiers like support vector machines (SVMs) [6] and18

random forests (RFs) [7], their performance was constrained by domain-specific19

feature engineering and environmental variability [3]. Recent DL advancements,20

particularly convolutional neural networks (CNNs), have demonstrated superior21

performance in disease classification [8], segmentation [9], and detection [10, 11].22
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However, CNN-based models often require manual hyperparameter tuning, like23

anchors, proposals, and post-processing to reduce redundant predictions [12].24

Transformers were initially developed for natural language processing (NLP).25

Their self-attention mechanisms [13] enable global context modeling, which ad-26

dresses CNN limitations in capturing long-range dependencies [12]. For in-27

stance, Longformer [14] introduced sliding window attention to process long28

documents efficiently. Reformer [15] reduced computational complexity using29

locality-sensitive hashing for large-scale NLP tasks. Beyond NLP, the adapt-30

ability of transformers was further enhanced by specialized variants customized31

to domain-specific challenges. For example, in finance, transformer variants32

have been trained to model temporal patterns and forecast price movements33

[16, 17], while in remote sensing and fault detection, they have enabled pre-34

cise anomaly identification in high-resolution imagery and industrial systems35

[18]. In manufacturing, transformers powered quality inspection and predictive36

maintenance [19]. In protein sequence modeling, Performer with kernel-based37

attention was introduced to effectively model the scalable protein sequence [20].38

However, their application to fruit disease detection remains underexplored,39

with challenges in convergence, data scarcity, and subtle symptom recognition40

in complex agricultural environments [21].41

To bridge this gap, this study introduces FD-TR, a modified transformer-42

based fruit disease detection model based on Co-DETR training scheme [22].43

The key contributions of this study are:44

• The proposed model was trained on a large-scale fruit disease dataset of45

81,000 high-resolution images.46

• Key modules (e.g., loss, optimizer) of Co-DETR were replaced, and hy-47

perparameters were fine-tuned to address the unique challenges of fruit48

disease detection.49

• Introduction of a feature discriminability score visualization method to50

enhance model interpretability for real-world deployment.51
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• The model demonstrated its robustness through systematic evaluation52

across four benchmark datasets and an additional healthy fruit subset.53

The outline of the manuscript is as follows. Section 3 provides a compre-54

hensive description of the fruit disease dataset used in this study. Section 455

discusses in detail each component of the proposed fruit disease detection frame-56

work based on DINO with a Co-DETR training scheme. The results of various57

experiments conducted to evaluate the model’s performance are reported in Sec-58

tion 5. Section 6 discusses the main contributions and experimental results of59

this study. Finally, Section 7 provides conclusions and outlines future research60

directions.61

2. Related Work62

Table 1 provides an overview of recent fruit disease detection studies. It63

highlights the diversity of models used, ranging from CNN models to hybrid64

and transformer-based architectures, applied on various fruit types. While most65

models achieved high accuracy on their respective datasets, the majority were66

limited by small sample sizes, limited disease coverage, and lack of real-world67

deployment validation. These limitations emphasized the need for a more gen-68

eralized, scalable, and interpretable solution.69
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Table 1: Summary of recent fruit disease detection studies (2020–2025)

Author(s)

& Year

Method Dataset Main findings Limitations

Xie et al.

(2020)

[23]

Inception + SE-

block

Grape leaf images

(4449 images)

0.81 mAP at 15

FPS

Computationally

intensive architec-

ture

You et

al. (2022)

[24]

YOLO + Deep

Metric Learning

Strawberry dataset

(7230 images)

97.8% overall accu-

racy

Complex archi-

tecture; lab-based

dataset

Syed et

al. (2022)

[25]

Two-stage CNN Citrus leaf images

(598 images)

94.37% accuracy Limited generaliz-

ability

Huang et

al. (2023)

[26]

EfficientNet-

Inception CNN

+ U-Net

Citrus dataset (800

images)

95.6% classifica-

tion accuracy;

87.7% severity

segmentation

Only 2 citrus dis-

eases; small, lab-

based dataset

Arifin et

al. (2024)

[27]

ResNet50 features

+ Logistic Regres-

sion

Citrus dataset

(1814 images)

99.69% accuracy Small, imbalanced

dataset; no lesion

localization

Sun et

al. (2024)

[11]

YOLOv5 + shuffle-

channel blocks

Natural orchard

images (4252

images)

0.93 mAP Manual hyperpa-

rameter tuning and

post-processing

needed

Aksoy et

al. (2025)

[28]

ResNet152V2

(transfer learning)

Kaggle apple

fruit disease (502

images)

92% classification

accuracy

Small dataset (4

classes)

Faye et

al. (2025)

[29]

ResNet50 for sever-

ity grading

SenMangoFruitDDS

(862 images)

97.8% accuracy Only on mango;

limited background

variability

He et al.

(2025)

[30]

Sparse Attention

YOLOv11

Passion fruit

dataset (10,000

annotated images)

90% F1-score Only passion

fruit; stem-focused

labels; high compu-

tational cost
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2.1. Traditional Machine Learning Approaches70

Early efforts in fruit disease detection focused on ML models using hand-71

crafted features. For instance, SVMs trained on color and texture features72

achieved moderate success in classifying diseases on fruits [6]. RFs were em-73

ployed to distinguish apple fruit diseases based on color and texture descriptors74

[7]. However, these methods struggled with environmental variability and re-75

quired extensive domain expertise for feature design [3].76

2.2. Deep Learning-Based Approaches77

The developments of CNNs revolutionized fruit disease detection. One-stage78

detectors like You Only Look Once (YOLO) and Single Shot MultiBox Detector79

(SSD), and two-stage frameworks such as Region-based CNN (R-CNN), were80

progressively adopted for precise recognition of fruit diseases [3]. For example,81

Sun et al. [11] introduced an innovative method for identifying fruit diseases in82

natural orchard settings using a combination of binocular cameras and DL tech-83

niques. They implemented a Unimatch stereo-matching algorithm to generate84

depth maps that focused detection on leaves and proposed a lightweight disease85

detection model based on YOLOv5-augmented with shuffle-channel blocks and86

attention modules. The experimental results reveal that it outperformed the87

YOLOv5-s architecture with 0.93 mean average precision (mAP). Syed et al.88

[25] presented a two-stage CNN for citrus disease detection. Firstly, the model89

employed a region proposal network to identify potential diseased areas on citrus90

leaves. After that, it classified these regions into specific disease categories using91

a classifier. The model demonstrated a high detection accuracy of 94.37% for92

citrus black spot, citrus bacterial canker, and Huanglongbing. In another study,93

Xie et al. [23] addressed real-time detection of common grape leaf diseases us-94

ing a customized Faster R-CNN with Inception-v1, Inception-ResNet0-v2, and95

SE-block. The model achieved a mAP of 0.81 at a real-time detection speed of96

15.01 frames per second (FPS). Although these DL models enabled early and97

accurate disease detection, they still required manually fine-tuned hyperparam-98

eters like anchors and proposals during training and additional post-processing99
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algorithms to reduce duplicate predictions [12].100

2.3. Transformer-Based Approaches101

Transformers have introduced paradigm shifts in object detection. Vision102

Transformers (ViTs) effectively processed entire images as sequences of patches,103

which enhanced global context modeling and motivated researchers to extend104

their use to more complex tasks such as object detection [31]. For example,105

Carion et al.[32] proposed detection transformer (DETR), an end-to-end object106

detector that directly predicted bounding boxes (BB) and classes via learned ob-107

ject queries. DETR did not require extensive manual tuning and was proved to108

handle varying object sizes and overlapping objects more effectively. Subsequent109

extensions, such as Deformable DETR [33], DN-DETR [34], and DAB-DETR110

[35], aimed to improve DETR’s convergence and performance. While these ex-111

tensions showed better detection performances, they still performed poorer than112

the CNN counterparts [12]. The recent introduction of a collaborative hybrid113

assignments training scheme for DETR (Co-DETR) [22] addressed the issue of114

sparse supervision in DETR models by utilizing multiple auxiliary heads with115

one-to-many label assignments to enhance the learning of both the encoder and116

decoder. Co-DETR improved the training efficiency and discriminative feature117

learning of DETR-based detectors without adding any extra computational cost118

or parameters during inference. The experiment results demonstrated a signifi-119

cant performance gain on various DETR variants. The integration of Co-DETR120

into DINO-Deformable-DETR achieved 66.0% AP on the Common Objects in121

Context (COCO) test-development set.122

3. Materials123

Table 2 highlights the evolution of benchmark datasets in plant disease re-124

search. Earlier datasets, such as PlantDoc [36] and PlantVillage [37], included125

diseases affecting both fruits and leaves on multiple species but did not specifi-126

cally focus on fruit diseases. In contrast, smaller self-collected datasets, such as127
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the Pomegranate Fruit Diseases [38] and Citrus Diseases [39], primarily focus on128

diseases of single fruit types and contain fewer than 3,000 images, which limit129

their scalability and generalizability.130

This research stands out by training the proposed model on a large fruit131

disease identification dataset containing roughly 81,000 images that cover six132

different fruit disease types [40]. Provided by the National Information Society133

Agency of Korea (NIA)1, this extensive dataset exceeds the scope and size of134

most existing datasets. The collection of data was made possible through the135

collaboration of Jeju Special Self-Governing Province2, with additional support136

from Flexink3 and Bgrinfo4 for data acquisition, and GDS Consulting5 for data137

refinement and processing. The scale and diversity of this dataset significantly138

contribute to the strength and practical relevance of this study.139

Table 2: Descriptions of several widely used plant disease datasets. Note: # stands for the

number of something

Dataset Year Category #

species

#

classes

# images

PlantVillage [37] 2015 Classification 14 38 54,305

PlantDoc [36] 2020 Classification 13 27 2,598

Citrus diseases [39] 2024 Classification 1 5 759

Pomegranate fruit

diseases [38]

2024 Classification 1 5 5,099

Fruit disease dataset

[40]

2024 Detection 8 6 81,000

For details on the data collection process, including camera settings and140

acquisition methods, please refer to [40]. Figure 1 presents representative images141

1https://www.nia.or.kr/site/nia_kor/main.do
2https://www.jeju.go.kr/index.htm
3https://flexink.com/en/home/home-en/
4http://www.bgrinfo.co.kr/
5http://gdsconsulting.co.kr/
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from each class of the fruit disease dataset on eight different plant species,142

including banana, fig, lemon, mango, mandarin, olive, passion fruit, and pitaya.143

(d3) Thrips

(d5) Broad mite

(d1) Anthracnose 

(d4) Weevil

(d6) Fungal infection

(d2) BFB

Figure 1: Depiction of the six classes of fruit diseases from the dataset used in this study,

with the affected regions highlighted by red BB.

Fruits displaying signs of disease, such as spots, lesions, or other visible144

deformities, are visually inspected in both natural environments like orchards145

and controlled settings such as research greenhouses. Annotations are made at146

the lesion or affected region level. Each symptom is evaluated using specific147

attributes, including texture, spread, and severity, to ensure accurate labeling.148

Annotation guidelines follow established diagnostic criteria specific to each dis-149

ease, as outlined below.150

• Anthracnose (Colletotrichum spp.): Anthracnose affects a wide variety151

of plants, including pitaya, passion fruit, and olive [41]. Anthracnose152

typically presents small, sunken, dark brown to black lesions on the fruit’s153

skin. These lesions may extend and finally lead to significant areas of rot.154

The disease can lead to premature fruit drop, leaf loss, and a significant155
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reduction in overall fruit yield.156

• Bacterial fruit blotch (Acidovorax citrulli): a serious disease caused by157

the bacterium Acidovorax citrulli [42]. The disease typically manifests158

as dark, water-soaked lesions on the fruit’s surface. These lesions often159

start small but can rapidly expand to cover large portions of the fruit. As160

the disease progresses, the affected areas may crack and release a sticky,161

amber-colored bacterial exudate. The lesions can combine and lead to162

large, irregular blotches that severely influence the fruit’s appearance and163

marketability. In severe cases, the entire fruit may become soft and rot.164

• Broad mite (Polyphagotarsonemus latus): Broad mite is a tiny pest that165

can cause significant damage to various plants. The mites can infest young166

lemon fruits [43] and cause russeting or scars on the fruit surface. The af-167

fected fruits may be deformed and dropped prematurely in extreme cases.168

• Weevil (Curculionoidea): Weevils [44] are small beetles that can cause sig-169

nificant damage to a variety of plants, including fig. Some weevil species170

burrow into the fruit and cause internal damage that may not be imme-171

diately visible from the outside. As a consequence, weevil infestation can172

lead to premature fruit drop, and the affected fruits may become con-173

tracted. The entry points created by weevils can also serve as gateways174

for secondary infections by fungi or bacteria, which can further degrade175

the fruit’s quality.176

• Thrips (Thysanoptera): Thrips feed by piercing the surface of plant tissues177

and sucking out the contents of the cells [45], which leads to a range of178

symptoms that can seriously affect the health and yield of the plants. The179

most common symptom is surface scars, which affect the quality of the180

fruits.181

• Fungal infection: Fungal infections can significantly impact the quality,182

marketability, and production of fruits such as bananas, lemon, mango,183

and fig [46]. Each type of fruit can be affected by specific fungal pathogens,184
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which lead to distinct symptoms and potential economic losses. For ex-185

ample, black mildew forms a thin, black layer that can cover significant186

portions of the fruit’s surface, such as lemon and mango. Although the187

fungus does not penetrate the fruit, it can lead to an unsightly appearance188

on the affected fruits. Powdery mildew can appear as a white to greyish189

powdery growth on the skin of figs. This fungal layer can lead to a rough190

fruit’s surface and cause the fruit to crack in severe cases.191

The annotation process focused on capturing both the visual characteristics192

of lesions and any related symptoms or traits that could improve the disease193

detection performance of the models. A dedicated team of 15 experts from194

MKG Engineering and Construction (MKGENC) were tasked with a five-month195

image annotation assignment. Each person annotated approximately 55 images196

per day to ensure that various disease symptoms were labeled precisely. An197

open-source annotation tool developed in Python was used to facilitate the198

entire annotation process [47]. Figure 2 provides an overview of the dataset by199

showing the number of images for each disease class. It includes a total of 81,000200

labeled images, which were split into 80% for training, 10% for validation, and201

15% for testing. Therefore, 64,800 images were used for training, while 8,100202

images were designated for both validation and testing.203

4. Methods204

4.1. System Overview205

Figure 3 illustrates the primary steps of the fruit disease detection frame-206

work, referred to as FD-TR. In this framework, “FD” represents fruit disease207

detection, while “TR” refers to the transformer-based model. The two core208

components of the framework are outlined as follows.209

• Data pre-processing: Real-world data often presents significant variabil-210

ity due to factors such as inconsistent lighting (e.g., shade, overexposure,211

underexposure), blurriness (caused by camera motion or low-quality op-212

tics), diverse angles (e.g., oblique views, close-ups), and noise (introduced213
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Figure 2: A horizontal bar chart revealing the distribution of images per each disease class

from d1 to d6.

by sensor imperfections or compression artifacts). Therefore, data aug-214

mentation is essential to improve the model’s robustness against these215

real-world challenges and its ability to generalize to unseen data [48]. The216

data augmentation technique involves artificially replicating these condi-217

tions within the dataset to effectively increase its size and diversity.218

• Fruit disease detection: While existing object detection models like Mask-219

RCNN [49], YOLO [50], and SSD [51] achieved strong performance on220

benchmarks such as COCO [52] and Pascal VOC [53], they rely on man-221

ual hyperparameter tuning and multi-stage training. To address these222

limitations, we propose FD-TR, a transformer-based architecture with ef-223

ficient end-to-end training. FD-TR focuses on specific parts of the input224
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Data augmentation

FD-TR model

(II) Fruit disease 

detection

Model analysis

Annotation

(I) Data collection

Mango Banana

Fig Mandarin

Lemon Olive

Passion 

fruit

Pitaya

Detected disease

Collected images

Figure 3: Description of the primary processes of the proposed fruit disease detection frame-

work (FD-TR).

image most relevant for identifying diseases. Moreover, feature discrim-225

inability scores analysis provides insights into the model’s decision-making226

process for practical applications [13].227

4.2. Data Augmentation228

This section outlines the image augmentation process applied to the fruit229

disease training dataset to improve the model’s robustness and generalization230

by simulating various real-world conditions. These augmentation methods were231

performed on the original training set to better represent the variability encoun-232

tered in real-world agricultural settings. The augmentation techniques expanded233

the original training set of 64,800 images by five-fold to 324,000 images.234

This process involved a series of transformations applied to the original im-235

ages, including random horizontal and vertical flips to replicate different ori-236

entations of fruits on trees, and rotations at angles of 90°, 180°, and 270° to237

enhance the model’s invariant to fruit positioning. In addition, color jittering,238

where the brightness, contrast, saturation, and hue of input images were ran-239

domly adjusted within predefined ranges to mimic varying lighting conditions240

and potential color distortions caused by natural environments. To increase241

the model’s robustness against the effects of camera noise and environmental242
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factors, Gaussian noise was introduced to the images. Furthermore, random243

cropping and resizing were performed to expose the model to fruits at different244

scales and viewpoints. Figure 4 provides a visual representation of the sampled245

augmented images obtained through different augmentation techniques.246

Input image

Data 

augmentation

Figure 4: Output images of applying predefined data augmentation techniques on the original

dataset.

4.3. Co-DETR Framework247

Co-DETR introduces a novel collaborative hybrid assignments training scheme248

designed to enhance the efficiency and effectiveness of DETR-based detectors.249

This scheme relies on versatile label assignment strategies to significantly boost250

the encoder’s learning capabilities in end-to-end detection frameworks [22]. Co-251

DETR also optimizes the encoder’s learning process by training multiple parallel252

auxiliary heads with one-to-many label assignments. In addition, Co-DETR im-253

proves the overall detection performance by optimizing the attention learning254

of the decoder through customized positive queries derived from the positive255

coordinates identified by the auxiliary heads. Figure 5 illustrates the Co-DETR256

model, which includes three primary modules: a backbone, a transformer en-257

coder, and a decoder.258
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Figure 5: Illustration of the architecture of the Co-DETR approach.

According to the standard DETR protocol, the input image is fed into the259

backbone and encoder to extract latent features. Several predefined object260

queries subsequently interact with the decoder through cross-attention mecha-261

nisms. Co-DETR improves this process by integrating a collaborative hybrid262

assignment learning and a custom positive query generation module, which op-263

timize feature learning in the encoder and attention learning in the decoder.264

4.3.1. Collaborative Hybrid Assignments Training265

To address the insufficient supervision of encoder outputs caused by the lim-266

ited positive queries in the decoder of standard DETR architectures, Co-DETR267

integrates multiple label assignment strategies (e.g., Adaptive Training Sample268

Selection (ATSS), Faster R-CNN) with auxiliary supervision heads. These aux-269

iliary heads strengthen encoder supervision by refining discriminative learning.270

Specifically, after processing the latent features F , the encoder transforms them271

into a feature pyramid F1, . . . ,FJ via a multi-scale adapter, where J denotes the272

number of feature maps with downsampling stride of 22+J . Following the ViT-273

Det framework, Co-DETR constructs its feature pyramid using a single-scale274

encoder feature map, which is upsampled using bilinear interpolation.275

For example, the feature pyramid is built by sequentially applying upsam-276

15



pling (stride 2 with 3× 3 convolution) or downsampling to the encoder’s single-277

scale feature. In multi-scale encoders, only the coarsest resolution features are278

downsampled to generate the feature pyramid. For each K collaborative heads,279

the predicted output P̂i is sequentially propagated through the feature pyramid280

F1, . . . ,FJ . Within the i-th head, module Ai computes supervised targets for281

positive and negative samples, P pos
i , Bpos

i , P neg
i , using the supervised target set282

G, as follows:283

P
{pos}
i , B

{pos}
i , P

{neg}
i = Ai(P̂i, G) (1)

where pos and neg represent the spatial coordinates classified as positive and284

negative by Ai. The index j corresponds to the feature index within the feature285

pyramid Fj . Bpos
i denotes the spatial coordinates of the positive samples, while286

P pos
i and P neg

i refer to the supervised targets associated with these coordinates,287

including both category labels and BB regression offsets.288

The encoder loss function can be defined as follows:289

Lenc
i = Li(P̂

{pos}
i , P

{pos}
i ) + Li(P̂

{neg}
i , P

{neg}
i ) (2)

For negative samples, the regression loss is excluded from consideration.290

The objective of optimization for the K auxiliary heads is therefore defined as291

follows:292

Lenc =

K∑
i=1

Lenc
i (3)

4.3.2. Customized Positive Queries Generation293

In the one-to-one matching paradigm, each ground-truth box is paired with294

a single specific query as its supervised target. However, when the number of295

positive queries is insufficient, this can lead to inefficient cross-attention learning296

within the transformer decoder. To address this issue, Co-DETR generates a297

diverse set of customized positive queries. Specifically, in the i-th auxiliary head,298
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the customized positive query Qi ∈ RMi×C (where Mi represents the number299

of positive samples) is generated through the following process:300

Qi = Linear(PE(B{pos}
i )) + Linear(E({F∗}, {pos})) (4)

Here, PE(·) represents positional encoding, which extracts the relevant fea-301

ture from E(·) based on the spatial positive and negative coordinates (j,Fj).302

Therefore, there are K+1 query groups involved in the one-to-one matching303

process, including those with label assignments. The auxiliary label assignment304

shares weights with the standard L decoder layers. In the auxiliary branches, all305

queries are conditioned on the positive query, eliminating the need for redundant306

matching. The loss for the l-th decoder layer in the i-th auxiliary head is307

formalized as follows:308

Ldec
i,l = L̃(P̃i,l, P

{pos}
i ) (5)

where L̃dec denotes the loss from the original one-to-one matching branch.309

Finally, the global objective function of Co-DETR is defined as:310

Lglobal =

L∑
l=1

(L̃dec
l + λ1

K∑
i=1

Ldec
i,l + λ2Lenc) (6)

Here, λ1 and λ2 are the coefficients that balance the different losses.311

4.4. Model Customization312

Although Co-DETR can be applied to state-of-the-art transformer architec-313

tures such as DETR with Improved deNoising anchOr box (DINO) [54] and314

Deformable DETR [33] for fruit disease detection, the performance of these315

base models remains sensitive to critical factors like label assignment strategies,316

robustness to complex backgrounds, and adaptability under varying environ-317

mental conditions. To optimize transformer-based detection for fruit disease318

detection, several targeted adjustments were introduced to the original trans-319

former models’ architecture and optimization process. These modifications were320

implemented before applying the Co-DETR approach, as outlined in Table 4.321
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The modifications include integrating BatchFormerV2 to enhance feature322

representation through batch-based learning, adopting the LAMB optimizer,323

known for its efficiency in training large-scale models [55], and utilizing the324

Complete Intersection over Union (CIoU) loss function instead of the GIoU to325

improve localization accuracy. These modifications are expected to improve the326

baseline models’ performance and generalization capabilities on the fruit disease327

domain.328

Table 3: Comprehensive explanation of the model fine-tuning process

Model Auxiliary Loss Optimizer

Deformable DETR N/a Hybrid (L1 + GIoU) AdamW

DINO N/a Hybrid (L1 + GIoU) AdamW

FD-TR (This study) BatchFormerV2 [56] Hybrid (L1 + CIoU) LAMB

• BatchFormerV2 (BF): Proposed by Hou et al. [56], BF enhances trans-329

formers’ capacity to model inter-sample relationships within mini batches.330

Unlike conventional transformer blocks that operate on pixel- or patch-331

level feature maps, BF processes feature structured by batch size. In332

FD-TR framework, BF implements a two-stream architecture where both333

branches share weights and merge into a unified transformer decoder. This334

design ensures efficiency and coherence during the training process as all335

shared blocks are consistently trained with the same weights. Moreover,336

the original transformer blocks retain their full functionality without BF,337

which minimizes any additional computing during inference. The appli-338

cation of BatchFormerV2 into various transformer models, such as DETR339

[32] and Deformable-DETR [33], consistently demonstrated a performance340

improvement of over 1.3 mAP on the benchmark MS COCO dataset.341

• Complete Intersection over Union (CIoU): The Generalized IoU (GIoU)342

extends the standard IoU metric by measuring the overlap between the343

predicted and ground truth BB while considering areas outside their in-344
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tersection [57]. CIoU improves GIoU by introducing additional terms that345

account for localization precision and aspect ratio alignment. This refine-346

ment enables better convergence and improved detection accuracy com-347

pared to GIoU loss. Therefore, CIoU and L1 loss are utilized to calculate348

the box regression reconstruction loss for FD-TR model in this study.349

LCIoU = 1− IoU +
d2 (p, pgt)

c2
+ αV (7)

The variable c denotes the diagonal length of the smallest enclosing box350

that covers both the predicted and ground truth BB, while d represents351

the Euclidean distance between their center points. p and pgt refer to the352

central points of the predicted and ground truth BB, respectively. The353

variable V measures the consistency of the aspect ratios, and α serves354

as a trade-off parameter that assigns less weight when the overlap is low355

and more weight when the overlap is high. The value of α is computed356

dynamically as:357

v =
4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

, α =
v

(1− IoU) + v
, (8)

We compared a dynamically computed α with fixed values α ∈ {0.25, 0.5, 1.0}358

on the validation set (Table 4). The dynamic α showed the highest peak359

validation mAP (0.77), but α = 0.5 achieved a comparable validation360

mAP (0.75). To improve reproducibility and make cross-experiment com-361

parisons more straightforward, we therefore use α = 0.5 in all subsequent362

experiments. Moreover, fixed α also reduces hyperparameter tuning. If363

the aim is to maximize single-run peak mAP, dynamic α remains an ap-364

propriate choice.365

• LAMB optimizer: While AdamW is commonly considered the default opti-366

mizer for a variety of vision transformer-based models [12], [58] have iden-367

tified potential training instability, particularly when there is an increased368
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Table 4: Ablation study comparing the dynamic α and fixed candidates {0.25, 0.5, 1.0}

α values Mean mAP

Dynamic 0.77

0.25 0.68

0.5 0.75

1 0.7

ratio between the L2-norm of weights and gradients. To mitigate this is-369

sue, this study adopts the Layer-wise Adaptive Large Batch Optimization370

(LAMB) optimizer as an alternative. LAMB combines the strengths of371

both the Adam and Layer-wise Adaptive Rate Scaling (LARS) optimizers372

[55]. In particular, the layer-wise adaptive technique from LAMB normal-373

izes each dimension based on the square root of the second moment, while374

also applying layer-wise normalization. This method has been proved to375

be effective for distributed training and has demonstrated effectiveness in376

transformer models on large-scale datasets.377

mt = β1m
(prev )
t + (1− β1) gt

vt = β2v
(prev )
t + (1− β2) g

2
t

mt =
mt

1− (β1)
t

vt =
vt

1− (β2)
t

rt =
mt√
vt + ϵ

x
(i)
t+1 = x

(i)
t − ηt

ϕ
(∥∥∥x(i)

t

∥∥∥)∥∥∥r(i)t + λx
(i)
t

∥∥∥
(
r
(i)
t + λx

(i)
t

)

(9)

where the hyperparameters β1 and β2 regulate momentum and weight378

decay, respectively. mt refers to the first moment estimate at time step t,379

and vt indicates the second moment estimate. The parameter λ manages380

the degree of layer-wise adaptiveness, while ηt represents the learning rate381

20



vector at time t, and ϕ denotes the parameter vector at the same instance.382

A small constant ϵ is introduced to prevent division by zero. In addition,383

rt represents the update ratio used in the LAMB optimizer.384

4.5. Feature Discriminability Scores Analysis385

After training, feature discriminability maps are generated by analyzing the386

multi-scale feature outputs from the DETR-based model [32]. They offer valu-387

able insights into how the model distributes its focus on different regions of388

the input image. The feature discriminability scores are obtained by extract-389

ing multi-scale features from the model’s final layers. For each feature map,390

the L2-norm is computed across the channel dimension to quantify the activa-391

tion strength at each spatial location, consistent with established visualization392

practices for CNN activations [59]. The resulting feature discriminability scores393

are then normalized by their maximum values to ensure consistent intensity of394

different scales.395

To visualize the feature discriminability scores, each normalized feature map396

is resized to match the dimensions of the input image using linear interpolation.397

The resized maps from each scale are then aggregated by combining them to-398

gether, followed by averaging to produce a final feature map that integrates in-399

formation from all scales. This final map highlights the regions that the model400

considers most relevant during the prediction process, with higher values in-401

dicating areas of greater focus. The output feature discriminability map is a402

valuable tool for evaluating the model’s interpretability and its ability to cor-403

rectly identify disease-affected regions in the image.404

Let feats be a list of multi-scale feature maps, each with dimensions L×B×405

C × H × W . L is the number of layers or scales, B = 1 is the batch size, C406

is the number of channels, and H × W are the spatial dimensions. Based on407

the multi-scale feature maps, the feature discriminability map attn_map can408

be mathematically represented as follows:409
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attn_map =
1

L

L∑
i=1

resize
(

∥feat[i]∥2
max (∥feat[i]∥2 + ε)

, Himg,Wimg

)
(10)

where ∥feat[i]∥2 represents the L2-norm of the feature map at the i-th scale,410

calculated along the channel dimension for generating a feature map of size H×411

W . The term max (∥feat[i]∥2) denotes the maximum value in the normed feature412

map, which is used to normalize the map. The function resize(·, Himg,Wimg)413

interpolates the normalized feature map to match the dimensions Himg×Wimg of414

the input image. The summation aggregates the resized feature discriminability415

maps from all scales, and the division by L averages the aggregated map.416

In Figure 6, the feature discriminability map extraction of an input image417

highlights how FD-TR effectively focuses on disease-affected regions using multi-418

scale features from the encoder. The map illustrates the DETR-based model’s419

ability to precisely target the main regions showing disease symptoms. This420

demonstrates the model’s robustness and accuracy in detecting various fruit421

diseases.422

Input Prediction

Feature discriminability map

Overlay result

Co-DETR

Figure 6: Visualization of the feature discriminability map prediction process.
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4.6. Implementation Details423

The fruit disease detection framework was developed using the MMDetec-424

tion library v2.25.3, built on PyTorch 1.11.0. To ensure consistent and fair425

experimentation, all detection models in the study utilized ResNet-50 and Swin426

backbone pre-trained on the ImageNet dataset. The training process was con-427

ducted on an Nvidia A100 GPU with 40 GB of memory.428

We integrate our Co-DETR into existing DETR-like pipelines while main-429

taining similar training settings with the baseline models. For K = 2, we im-430

plement both ATSS and Faster-RCNN as auxiliary heads, whereas for K = 1,431

we use only the ATSS head. In addition, the number of learnable object queries432

is set to 300, and the weight coefficients {λ1, λ2} are set to their default values433

of {1.0, 2.0}.434

For all transformer-based experiments (FD-TR and DETR variants), each435

model is trained for up to 15 epochs with validation process perform at the436

end of each epoch. Early stopping is applied to the validation bounding-box437

loss with a patience of three epochs and a minimum improvement threshold438

∆ = 10−3. If the bounding-box loss fails to decrease by at least ∆ for three439

consecutive epochs, training halts and the model reverts to the weights from440

the epoch with the lowest validation loss.441

4.7. Evaluation Protocols442

In this section, we comprehensively evaluate the fruit disease recognition443

framework using several standard metrics, including mAP, precision, and recall.444

These metrics are computed based on the three elements of the confusion matrix:445

true positive (TP), false positive (FP), and false negative (FN). Precision reveals446

the ratio of correctly predicted positive instances out of all predicted positives,447

while recall captures the proportion of true positives among all actual positives448

in the dataset. The formulation of these metrics is as follows:449

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(11)

23



To evaluate the overall detection accuracy of multiple disease classes, a450

standard average precision metric was calculated. In particular, we adopt451

AP@[IoU = 0.50 : 0.95], which measures the detection performance at IoU452

thresholds from 0.50 to 0.95. This threshold is used to evaluate the model’s453

ability to localize fruit diseases by calculating the area under the precision-454

recall curve at the specified IoU threshold. The AP for each class is determined455

from this curve, and the mAP is then computed as the average of the AP values456

on all disease types. The mAP is expressed as follows:457

mAP =
1

N

N∑
i=1

APi (12)

where N represents the number of disease types, and APi denotes the average458

precision for the i-th disease class. APi is calculated based on the precision-recall459

curve for that disease type.460

5. Results461

5.1. Comparison of Transformer Models462

In this experiment, a comprehensive comparison of fruit disease detection463

performance is conducted by applying Co-DETR on various DETR-based mod-464

els, including Deformable DETR [33] and DINO [54]. Moreover, two different465

backbones, Swin Transformer and ResNet-50, are employed and compared, re-466

sulting in a total of four model variants. The models include Co-DETR on the467

Deformable DETR with the ResNet-50 backbone (co_deformable_detr_r50),468

Co-DETR on the Deformable DETR with the Swin backbone (co_deformable_detr_swin),469

Co-DETR on the DINO model with the ResNet-50 backbone using 5-scale fea-470

ture processing (co_dino_5scale_r50), and Co-DETR on the DINO model with471

the Swin backbone using 5-scale feature processing (co_dino_5scale_swin).472

The performance comparison is shown in Figure 7.473

Overall, the co_dino_5scale_swin model demonstrates the highest perfor-474

mance with a detection mAP starting from around 0.6 and steadily improving475
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Figure 7: Comparison of fruit disease detection performance using Co-DETR applied to two

baseline DETR models: Deformable DETR and DINO.

to around 0.81 by the 12th epoch. This indicates that the Swin backbone com-476

bined with 5-scale feature extraction is particularly effective in detecting fruit477

diseases. The co_dino_5scale_detr model also performs well, closely following478

co_dino_5scale_r50 while maintaining a high performance at around 0.79 at479

the 12th epoch. The co_deformable_detr_r50 model shows relatively stable480

performance but with lower performance than the DINO models. In contrast,481

the co_deformable_detr_swin model exhibits significant fluctuations in its per-482

formance, particularly between epochs 5 and 7, where it experiences a sharp drop483

to around 0.25 mAP. However, the model recovers rapidly from epoch 8th and484

reaches a comparable mAP of approximately 0.72 by the 12th epoch. These fluc-485

tuations suggest that while the Deformable DETR architecture may be more486

sensitive to certain training conditions, it is capable of eventually reaching a487
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competitive performance.488

Given that Co-DETR on the DINO model with the Swin backbone demon-489

strated the highest fruit disease detection performance, we selected this configu-490

ration as the default model for subsequent experiments (referred to as FD-TR).491

This extension was chosen because it delivered robust and stable detection ac-492

curacy during training and validation. FD-TR was then used to evaluate the493

effects of additional enhancements, such as data augmentation techniques, hy-494

perparameter tuning, and its deployment in real-world environments.495

5.2. Preprocessing Module Analysis496

This section examines the impact of data augmentation on the proposed497

FD-TR model by comparing its results with the one trained on raw data. As498

shown in Table 5, FD-TR trained with augmented images outperformed the499

one trained on raw data. For example, the mAP increased by 0.05 from 0.76500

to 0.81, indicating better overall accuracy in detection. The data augmenta-501

tion approach also reduced the false positive detection (higher precision) and502

increased the rate of correctly identifying true positives (higher recall).503

Table 5: Comparison of FD-TR model performance on original and augmented data.

mAP Precision Recall

Original data 0.76 0.75 0.78

Data augmentation 0.81 0.79 0.82

The observed performance improvement suggests that data augmentation504

plays a crucial role in boosting FD-TR model’s ability to detect fruit diseases505

with higher detection accuracy. By introducing variations in the training data,506

augmentation not only boosts detection precision but also significantly improves507

the model’s robustness.508

5.3. PD-TR Performance Evaluation509

Figure 8 provides a detailed performance evaluation of FD-TR model, which510

consists of two charts.511
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(a) Evaluation mAP performance (b) Precision-Recall curve

Figure 8: Detailed performance evaluation of FD-TR model using different evaluation metrics.

• The evaluation mAP performance (a) plots FD-TR’s mAP over 12 epochs512

of training. The mAP started at approximately 0.625 and steadily in-513

creased. It peaked at around 0.8 by the 12th epoch. This consistent514

improvement in mAP indicated that the model was learning effectively515

and becoming increasingly better at detecting diseases as training pro-516

gresses. The gradual increase suggested that the model generalized well517

and converged to high performance, especially in the later epochs.518

• The precision-recall curve (b) represents the trade-off between precision519

and recall for different thresholds. This curve can be used to evaluate how520

well FD-TR performs on different confidence levels. Overall, the model521

accurately detected diseases with minimal false positives because the curve522

showed high precision for most recall values. Key metrics like C75, C50,523

and Loc revealed precise localization and detection capabilities, with pre-524

cision values around 0.816 to 0.823, suggesting that the model performed525

well even under challenging IoU thresholds. The model also excelled in526

distinguishing between similar diseases (Sim) and avoiding background527

errors (BG), with a precision near 1.0 in both cases. The curve’s slight528

decline at very high recall indicated that while the model maintained ac-529

curacy on most conditions, it introduced minor false positives when recall530

was pushed to its limit. Finally, a good false negative (FN) showed that531

27



the model had a very low rate of missing diseased fruits.532

Table 6 describes the experimental results of FD-TR framework in detect-533

ing six different fruit diseases, including anthracnose (d1), bacterial fruit blotch534

(d2), broad mite (d3), weevil (d4), thrips (d5), and fungal infection (d6). In535

general, FD-TR framework showed consistent performance in detecting all dis-536

ease classes with an average mAP of 0.81, precision of 0.79, and recall of 0.82.537

The model achieved the highest performance for detecting d3 and d6 with the538

mAP scores of 0.88 and 0.86, respectively. These classes also obtained strong539

precision (0.85 and 0.84) and recall (0.89 and 0.88). On the other hand, the540

detection performance for d2 and d5 was slightly lower, with mAP values of541

0.74 and 0.77. The low detection performance of d2 and d5 could be due to sev-542

eral factors: 1) fewer labeled instances in the training data, which limited the543

framework’s ability to extract distinct features for these diseases, and 2) visual544

similarities between d2 and d5 made it challenging for the model to effectively545

differentiate between these diseases and others.546

Table 6: Evaluation results of the proposed model on different fruit disease classes.

d1 d2 d3 d4 d5 d6 Average

mAP 0.78 0.74 0.88 0.83 0.77 0.86 0.81

Precision 0.76 0.73 0.85 0.8 0.77 0.84 0.79

Recall 0.79 0.77 0.89 0.82 0.79 0.88 0.82

5.4. Analysis of the Feature Discriminability Analysis547

Table 7 reports the mean and standard deviation of the normalized L2-norm548

discriminability scores for each disease class over the test set. The scores confirm549

that the model concentrates more strongly on classes with more distinct lesion550

features, such as anthracnose, broad mite, and fungal infection.551

Figure 9 provides a detailed description of the proposed framework in ef-552

fectively detecting six distinct fruit diseases. Each row in the figure serves a553
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Table 7: Mean (± std) of feature discriminability scores per disease class.

Disease class Mean (± std) score

(d1) Anthracnose 0.86± 0.05

(d2) BFB 0.65± 0.10

(d3) Thrips 0.72± 0.03

(d4) Weevil 0.68± 0.08

(d5) Broad mite 0.80± 0.01

(d6) Fungal infection 0.83± 0.03

distinct purpose. Row (a) displays the original images of fruits affected by dis-554

eases such as anthracnose, BFB, thrips, weevil, broad mite, and fungal infection.555

The second row (b) demonstrates the model’s detection results by highlighting556

the areas where the model has identified disease presence with BB and predicted557

labels.558

Overall, the model correctly predicted and localized the fruit diseases pre-559

cisely. In order to explain the model’s prediction process, the third row (c) fur-560

ther shows attention-weight visualizations from FD-TR model. The extracted561

attention map reveals where the model is focusing its attention on the images.562

Warmer color areas indicate higher focus, which is typically around spots show-563

ing visible symptoms of the disease. It can be concluded by observing the at-564

tention maps that the model focused on disease regions but also provided visual565

explanations for its predictions. Moreover, the attention analysis also enhanced566

trust and understanding in its diagnostic capabilities.567

Figure 10 demonstrates FD-TR model’s performance on some challenging568

fruit disease detection cases, such as lighting variations, image blurring, and569

low contrast. The top row (a) displays the input images, while the second570

row (b) shows the detection results, including the predicted BB, disease name571

and confidence score. The attention map visualization in the bottom row (c)572

indicates how FD-TR model focuses on specific regions of the image for its573

predictions.574
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(a)

(b)

(d1) 

Anthracnose

(d2) BFB (d3) Thrips (d4) Weevil (d5) Broad 

mite

(d6) Fungal 

infection

(c)

Figure 9: The proposed model’s outputs for each fruit disease, including (a) input images, (b)

detection results, and (c) feature discriminability visualizations.

Figure 10: The proposed model’s outputs for challenging cases, including (a) input images,

(b) detection results, and (c) feature discriminability visualizations.

FD-TR model demonstrates strong disease prediction performance in real-575

world conditions. This is important for practical deployment in agricultural576

environments where image quality may vary. For instance, the model demon-577

strates its robustness by accurately detecting anthracnose (first column) and578

black mold (fourth column) with high confidence scores of 0.94 and 0.77, re-579

spectively. In these cases, the model focuses effectively on the infected areas580

30



with well-defined and concentrated regions in the attention maps.581

In contrast, for more challenging cases such as weevil (second column) and582

broad mite (third column), the attention maps appear more diffuse, with less583

sharply defined focus areas. Factors such as image blurring and uneven lighting584

seem to affect the model’s ability to identify the diseased regions accurately.585

This results in a lower confidence score for weevil detection (0.48), indicating the586

model’s difficulty in isolating the specific features of the disease. Nevertheless,587

FD-TR model manages to generate reasonable predictions.588

5.5. Analysis of the Effectiveness of Customized Components to the Perfor-589

mance of FD-TR Model590

This section reports the effectiveness of important components of the pro-591

posed fruit disease detection model’s performance. Table 8 summarizes the592

ablation study’s results of each component of FD-TR model.593

Table 8: Ablation analysis for evaluating the effects of different components on the perfor-

mance of FD-TR model.

Configuration CIoU+L1 loss LAMB optimizer BatchFormerV2 mAP

Baseline – – – 0.812

+ CIoU only ✓ – – 0.847

+ LAMB only – ✓ – 0.818

+ BatchFormerV2 only – – ✓ 0.853

+ CIoU & LAMB ✓ ✓ – 0.834

+ CIoU & BatchFormerV2 ✓ – ✓ 0.882

+ LAMB & BatchFormerV2 – ✓ ✓ 0.838

Full integration ✓ ✓ ✓ 0.894

The baseline configuration, without any of the proposed components, achieved594

an mAP of 0.812. When added individually, CIoU+L1 loss improved the mAP595

to 0.847, which demonstrated its significant contribution to the model perfor-596

mance. The LAMB optimizer showed a marginal improvement to 0.818, while597
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BatchFormerV2 alone boosted the mAP to 0.853. Further analysis of pairwise598

combinations revealed additional insights. The combination of LAMB optimizer599

with CIoU+L1 loss or BatchFormerV2 yielded lower mAP compared to using600

CIoU+L1 loss or BatchFormerV2 alone. However, these configurations achieved601

an average of 13% faster convergence and reduced training time. Meanwhile,602

the integration of both CIoU+L1 loss with BatchFormer V2 led to a substan-603

tial increase to 0.882, which suggested a stronger interaction between these two604

components. Finally, the full integration of all three components achieved the605

highest performance at 0.894, which highlighted their effectiveness on enhancing606

the model’s capabilities.607

5.6. Comparison with Other Models608

Table 9 presents a performance comparison between the proposed FD-TR609

model and five other state-of-the-art detection models (YOLOv8 [60], SSD [51],610

DETR [32], Deformable DETR [33], DINO [54]). When evaluated on the val-611

idation dataset, FD-TR consistently outperformed the others on all metrics.612

Specifically, FD-TR significantly outperformed the next best model by 9% with613

an mAP of 0.89. In addition, with high precision and recall values, FD-TR614

demonstrated its ability to accurately identify and localize objects. In contrast,615

SSD exhibited the lowest performance, with an mAP of 0.69, and a precision616

and recall of 0.66 and 0.70, respectively.617

Table 9: Model performance evaluation between the proposed model and five state-of-the-art

DL models on the validation dataset.

Model name mAP Precision Recall

SSD [51] 0.69 0.66 0.70

YOLOv8 [60] 0.8 0.81 0.83

DETR [32] 0.72 0.71 0.73

Deformable DETR [33] 0.74 0.74 0.77

DINO [54] 0.75 0.74 0.76

FD-TR (Ours) 0.89 0.86 0.87
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Moreover, while other transformer-based models like DETR, Deformable618

DETR, and DINO demonstrated higher performance over SSD, they were con-619

sistently outperformed by FD-TR. For example, Deformable DETR showed an620

mAP of 0.74, precision of 0.74, and recall of 0.77, while DINO achieved slightly621

better precision and recall but a comparable mAP. YOLOv8, well-known for622

its performance, performed well with an mAP of 0.80 but was outperformed by623

FD-TR in all metrics. The results highlight that FD-TR model provides the624

most accurate and reliable predictions for fruit disease detection due to several625

enhancements such as the Co-DETR scheme and effective integration of other626

components.627

5.7. Comparison on Various Benchmark Datasets628

Table 10 describes the performance of FD-TR on four publicly available629

datasets compared to the baseline model (Co-DETR). This table includes two630

agricultural datasets (PlantVillage [61] and Pest-D2Det [62]) and widely used631

general benchmarks (COCO [52] and VOC2012 [63]). The variation in domain632

complexity, class count, and dataset size provides a comprehensive evaluation633

of the model’s adaptability.634

Table 10: FD-TR performance and gains compared to baseline methods. Note: pp stands for

absolute gain in percentage points

Dataset Domain #

classes

# im-

ages

Baseline mAP FD-TR

mAP

pp (%)

PlantVillage Agriculture 38 54,308 0.407

(YOLOv8 [64])

0.594 18.7

Pest-D2Det Agriculture 10 9,472 0.704

(D2Det [65])

0.731 2.7

COCO General 80 118,287 0.659

(Co-DETR [22])

0.589 -7

VOC2012 General 20 11,540 0.804

(CoupleNet [66])

0.812 0.8
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In the agricultural domain, FD-TR demonstrates significant advancements,635

particularly on PlantVillage, where it achieves an mAP of 0.594, an 18.7%636

gain over the YOLOv8 baseline (0.407). This improvement highlights FD-TR’s637

effectiveness in handling high-class diversity (38 classes) and complex disease638

manifestations. Similarly, on Pest-D2Det, FD-TR obtains an mAP of 0.731, a639

2.7% increase over the D2Det baseline (0.704), which confirms its strength in640

pest detection tasks with fewer classes (10). These results indicate that FD-641

TR performs well in agricultural context, where precise feature learning and642

optimization are critical for real-world applications like crop monitoring.643

For general-domain datasets, FD-TR exhibits robust but context-dependent644

performance. On VOC2012 (20 classes), it achieves an mAP of 0.812, a modest645

0.8% improvement over the baseline CoupleNet (0.804). However, on COCO646

(80 classes), FD-TR records an mAP of 0.589, approximately 7.0% below Co-647

DETR’s reported 0.659. This gap does not undermine FD-TR’s efficiency but648

rather reflects key architectural and training differences. Co-DETR leverages649

a large ViT-Large backbone and extensive pre-training on Objects365 (opti-650

mized for large-scale benchmarks like COCO). In contrast, FD-TR prioritizes651

lightweight efficiency using Swin as backbone, and targets agricultural special-652

ization without target pre-training. FD-TR’s modifications (BatchFormerV2 for653

enhanced feature representation, CIoU for improved box learning, and LAMB654

for training stabilization) emphasize domain-specific adaptability over maximiz-655

ing COCO accuracy. Despite the lower score, FD-TR remains competitive with656

many transformer-based detectors and aligns with its goal of balancing per-657

formance, efficiency, and specialization. Overall, these results confirm FD-TR’s658

contributions, particularly in agricultural contexts, while maintaining versatility659

across domains.660

5.8. Real-world Robustness Analysis661

To evaluate the model’s ability to distinguish healthy fruits, which is a crit-662

ical requirement for real-world agricultural applications, an independent test663

dataset comprising 500 images of healthy fruits was collected. These images664
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were curated from a publicly available agricultural image repository and veri-665

fied by domain experts to confirm the absence of disease symptoms. This dataset666

was excluded from training and reserved solely for evaluating the model’s per-667

formance in real-world scenarios. An image was classified as “healthy” if no668

disease-related BB were predicted. The model correctly identified 431 out of669

500 healthy images, leading to a false positive rate of 13.8%. This demonstrates670

that FD-TR can effectively differentiate healthy fruits from unhealthy ones in671

most cases. Figure 11 highlights three failure modes where natural fruit fea-672

tures were mistakenly classified as disease symptoms. In these cases, the model673

misinterpreted natural variations in fruit appearance, such as blemishes, color674

gradients, or developmental traits, as pathological indicators:675

• Case (A): A healed scar on a citrus fruit (red arrow) was misclassified as676

a fungal infection (confidence: 0.47). The model failed to distinguish the677

scar’s shallow, textured appearance from active fungal lesions.678

• Case (B): A young dragon fruit exhibiting natural tip browning (red arrow)679

was incorrectly flagged as infected with BFB, despite lacking characteristic680

water-soaked lesions.681

• Case (C): A faint reddish patch on a young fig (red arrow) was predicted682

as a fungal spot, even though the coloration was uniform and confined to683

healthy epidermal tissue.684

These examples revealed that the model’s false positives occurred not from685

complex background clutter or extreme lighting artifacts, but from everyday686

morphological and variations traits of healthy fruits that were not included in687

the training set. Such improvements would enhance the model’s robustness to688

real-world variability and reduce overfitting to disease-centric features.689

6. Discussion690

FD-TR model improves fruit disease detection by combining the Co-DETR691

training scheme with the DINO transformer model, multi-scale feature extrac-692
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Figure 11: Samples of false positive prediction by the model for healthy fruit images.

tion, and attention mechanisms. Key model customization, including CIoU loss693

for precise BB, the LAMB optimizer for faster convergence, and BatchFormerV2694

for scalable training, enhanced detection performance and efficiency for six fruit695

disease classes. FD-TR’s end-to-end design and integrated data augmentation696

improved robustness under diverse real-world scenarios, such as lighting and697

angles.698

The experiment results showed that targeted customization improved de-699

tection mAP from 0.81 to 0.89. FD-TR also outperformed YOLOv8 (0.80)700

and Deformable DETR (0.74). With precision and recall rates of 0.86 and701

0.87, respectively, it demonstrated robust generalization across diverse disease702

symptoms, scales, and environmental conditions. These capabilities are cru-703

cial for real-world agricultural settings, where early and accurate detection is704

crucial for effective intervention and crop protection. Furthermore, its attention-705

based interpretability via feature discriminability scores and deformable atten-706

tion weights provided transparent insights into decision-making. The evaluation707

on healthy fruit images, as introduced in Section 5.8, demonstrated the model’s708
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potential to operate effectively in real-world settings where both diseased and709

healthy fruits are present. Although, a false positive rate of 13% on healthy710

samples was promising, the misclassifications highlighted a limitation in the711

current training data, which lacked explicit healthy examples.712

7. Conclusions713

This research introduces an enhanced end-to-end transformer-based fruit714

disease recognition model that can be applied to real-life disease management715

systems. The dataset used to train the model consists of 81,000 images of716

six different fruit diseases. The proposed FD-TR model demonstrates high717

detection performance on the dataset compared to state-of-the-art models such718

as YOLOv8, DINO, and Deformable DETR. FD-TR is based on the DINO719

transformer model with an improved Co-DETR training scheme and additional720

components like CIoU loss, the LAMB optimizer, and BatchFormerV2. These721

improvements contribute to the model’s improved detection capabilities and722

faster convergence during training. Therefore, FD-TR model not only improves723

the accuracy of predictions but also achieves robust performance in various724

experiments.725

Moreover, FD-TR model’s ability to maintain high performances on diverse726

testing scenarios demonstrates its generalization ability and reliability. Even in727

challenging cases, such as images affected by poor lighting or blurring, the model728

provides correct and robust predictions. The attention mechanism of the trans-729

former allows the model to focus on relevant disease features, which reduces false730

predictions. In addition, the unique multi-scale attention map extracted from731

the transformer offers experts/farmers valuable insights into how the model de-732

tects and highlights disease-related areas. FD-TR model represents a significant733

advancement in automated disease detection and offers substantial potential to734

improve agricultural productivity and disease management in modern farming.735

While FD-TR model demonstrates strong performance in detecting fruit dis-736

eases, several limitations persist. One of the main limitations is the reliance on737
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a dataset with a limited number of disease classes, which fails to capture the full738

diversity of fruit diseases and environmental conditions. Moreover, the model’s739

performance could be further optimized in challenging environmental conditions,740

where it occasionally struggles to detect diseases accurately. In the future, the741

dataset can be expanded to include more diverse conditions and disease types to742

improve the model’s generalizability. In addition, techniques like multi-modal743

data integration, which analyze data from sensors such as infrared cameras or744

spectroscopy, can be considered for further development and improvement. Fi-745

nally, the model optimization on edge/mobile devices is a critical future work746

to enable real-time, on-field disease detection, especially in resource-constrained747

environments. This would involve exploring lightweight backbones and model748

compression techniques to reduce computational demands for edge devices.749
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