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Highlights

e A huge fruit disease dataset of 6 different diseases that contains over 81,000 images.
¢ An efficient transformer-based fruit disease detection framework.
e Analysis of the disease region using the transformer’s feature discriminability scores.

e The proposed model outperformed previous state-of-the-art object detection models.
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Abstract

Plant diseases pose a significant threat to fruit production and quality if not
detected and managed promptly. Precise and efficient recognition of these dis-
eases is critical for ensuring plant health and maximizing fruit production. To
tackle this issue, a range of image processing and deep learning techniques have
been preferred for plant disease recognition due to their superior performance.
This paper proposes an end-to-end transformer-based model that improves both
the accuracy and detection rate of fruit diseases. The model is based on a
state-of-the-art transformer model and trained using the Collaborative Hybrid
Assignment (Co-DETR) scheme. Moreover, several targeted modifications to
the original model are conducted to optimize its performance. These modi-
fications enable the model to detect six types of plant diseases with a mean
average precision (mAP) of 0.89 while maintaining efficient training times. The
proposed model consistently outperforms state-of-the-art detection models. In

addition, the model offers interpretability through the visualization of feature
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discriminability scores to ensure that the prediction process is interpretable and
understandable. Finally, the model demonstrates robust performance under
challenging environmental conditions, such as poor lighting and image blurring,
which is essential for real-world applications in disease management and preci-
sion agriculture.

Keywords: image processing, transformer, deep learning, precision

agriculture, fruit disease

1 1. Introduction

2 According to the Food and Agriculture Organization (FAO), global food
s demand is projected to surge by 70% by 2050 as the world population surpasses
+ 9.1 billion [1]. Fruits, as critical sources of essential nutrients, play a pivotal
s role in ensuring food security and combating malnutrition [2]. However, it is
¢ increasingly challenging to achieve and sustain high fruit yields due to factors
7 such as limited farmland, climate change, and the devastating impact of pests
s and diseases [3]. Among these threats; fruit diseases, such as mango scab and
o citrus thrips, often cause catastrophic yield losses and economic devastation
1 when left undetected.

u Traditional fruit disease detection relied on manual inspection, a labor-
12 intensive and error-prone process with delays in identifying early-stage symp-
13 toms [4]. The lag between symptom appearance and detection often results
1 in significant losses. To address these challenges, automated detection systems
15 using machine learning (ML) and deep learning (DL) have emerged as transfor-
16 mative solutions for scalable, accurate, and efficient disease monitoring [5].

17 While early ML approaches utilized handcrafted features, such as color, tex-
s ture, and shape, with classifiers like support vector machines (SVMs) [6] and
1w random forests (RFs) [7], their performance was constrained by domain-specific
20 feature engineering and environmental variability [3]. Recent DL advancements,
2 particularly convolutional neural networks (CNNs), have demonstrated superior

» performance in disease classification [8], segmentation [9], and detection [10, 11].
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23 However, CNN-based models often require manual hyperparameter tuning, like
2« anchors, proposals, and post-processing to reduce redundant predictions [12].
2 Transformers were initially developed for natural language processing (NLP).
s Their self-attention mechanisms [13| enable global context modeling, which ad-
2 dresses CNN limitations in capturing long-range dependencies [12]. For in-
» stance, Longformer [14] introduced sliding window attention to process long
» documents efficiently. Reformer [15] reduced computational complexity using
s locality-sensitive hashing for large-scale NLP tasks. Beyond NLP, the adapt-
a1 ability of transformers was further enhanced by specialized variants customized
» to domain-specific challenges. For example, in finance, transformer variants
13 have been trained to model temporal patterns and forecast price movements
s [16, 17], while in remote sensing and fault detection, they have enabled pre-
55 cise anomaly identification in high-resolution imagery and industrial systems
s [18]. In manufacturing, transformers powered quality inspection and predictive
» maintenance [19]. In protein sequence modeling, Performer with kernel-based
1 attention was introduced to effectively model the scalable protein sequence [20].
s However, their application to fruit disease detection remains underexplored,
w0 with challenges in convergence, data scarcity, and subtle symptom recognition
s in complex agricultural environments [21].

@ To bridge this gap, this study introduces FD-TR, a modified transformer-
i based fruit disease detection model based on Co-DETR training scheme [22].
w« The key contributions of this study are:

n e The proposed model was trained on a large-scale fruit disease dataset of

46 81,000 high-resolution images.

47 e Key modules (e.g., loss, optimizer) of Co-DETR were replaced, and hy-

4 perparameters were fine-tuned to address the unique challenges of fruit
49 disease detection.

50 e Introduction of a feature discriminability score visualization method to
51 enhance model interpretability for real-world deployment.
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52 e The model demonstrated its robustness through systematic evaluation
53 across four benchmark datasets and an additional healthy fruit subset.
54 The outline of the manuscript is as follows. Section 3 provides a compre-

ss hensive description of the fruit disease dataset used in this study. Section 4
ss  discusses in detail each component of the proposed fruit disease detection frame-
s work based on DINO with a Co-DETR training scheme. The results of various
ss  experiments conducted to evaluate the model’s performance are reported in Sec-
so  tion 5. Section 6 discusses the main contributions and experimental results of
0o this study. Finally, Section 7 provides conclusions and outlines future research

e1 directions.

e 2. Related Work

63 Table 1 provides an overview of recent fruit disease detection studies. It
s« highlights the diversity of models used, ranging from CNN models to hybrid
es and transformer-based architectures, applied on various fruit types. While most
s models achieved high accuracy on their respective datasets, the majority were
o7 limited by small sample sizes, limited disease coverage, and lack of real-world
e deployment validation. These limitations emphasized the need for a more gen-

oo eralized, scalable; and interpretable solution.
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Table 1: Summary of recent fruit disease detection studies (2020-2025)

Author(s) Method Dataset Main findings Limitations

& Year

Xie et al. Inception -+ SE- Grape leaf images 0.81 mAP at 15 Computationally

(2020) block (4449 images) FPS intensive architec-

[23] ture

You et YOLO + Deep Strawberry dataset 97.8% overall accu- Complex archi-

al. (2022) Metric Learning (7230 images) racy tecture; lab-based

[24] dataset

Syed et Two-stage CNN Citrus leaf images  94.37% accuracy Limited generaliz-

al. (2022) (598 images) ability

[25]

Huang et EfficientNet- Citrus dataset (800 95.6%  classifica- Ounly 2 citrus dis-

al. (2023) Inception CNN - images) tion accuracy; eases; small, lab-

[26] + U-Net 87.7% severity  based dataset

segmentation

Arifin et ResNetb0 features Citrus dataset  99.69% accuracy Small, imbalanced

al. (2024) + Logistic Regres- (1814 images) dataset; no lesion

[27] sion localization

Sun et YOLOv5 -+ shuffle- Natural orchard 0.93 mAP Manual hyperpa-

al. (2024)  channel blocks images (4252 rameter tuning and

[11] images) post-processing
needed

Aksoy et ResNet152V2 Kaggle apple 92% classification Small dataset (4

al. (2025) (transfer learning)  fruit disease (502 accuracy classes)

[28] images)

Faye et ResNet50 for sever- SenMangoFruitDDS 97.8% accuracy Only on mango;

al. (2025) ity grading (862 images) limited background

[29] variability

He et al. Sparse Attention Passion fruit  90% F1-score Only passion

(2025) YOLOv11 dataset (10,000 fruit; stem-focused

[30] anRotated images) labels; high compu-

tational cost
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w0 2.1. Traditional Machine Learning Approaches

7 Early efforts in fruit disease detection focused on ML models using hand-
= crafted features. For instance, SVMs trained on color and texture features
s achieved moderate success in classifying diseases on fruits [6]. RFs were em-
7 ployed to distinguish apple fruit diseases based on color and texture descriptors
75 [7]. However, these methods struggled with environmental variability and re-

7 quired extensive domain expertise for feature design [3].

7 2.2. Deep Learning-Based Approaches

78 The developments of CNNs revolutionized fruit disease detection. One-stage
7 detectors like You Only Look Once (YOLO) and Single Shot MultiBox Detector
o (SSD), and two-stage frameworks such as Region-based CNN (R-CNN), were
s progressively adopted for precise recognition of fruit diseases [3]. For example,
&2 Sun et al. [11] introduced an innovative method for identifying fruit diseases in
& natural orchard settings using a combination of binocular cameras and DL tech-
s« niques. They implemented a Unimatch stereo-matching algorithm to generate
s depth maps that focused detection on leaves and proposed a lightweight disease
s detection model based on YOLOv5-augmented with shuffle-channel blocks and
&7 attention modules. The experimental results reveal that it outperformed the
82 YOLOv5-s architecture with 0.93 mean average precision (mAP). Syed et al.
» [25] presented a two-stage CNN for citrus disease detection. Firstly, the model
o employed a region proposal network to identify potential diseased areas on citrus
o leaves. After that, it classified these regions into specific disease categories using
o a classifier. The model demonstrated a high detection accuracy of 94.37% for
o3 citrus black spot, citrus bacterial canker, and Huanglongbing. In another study,
o Xie et al. [23] addressed real-time detection of common grape leaf diseases us-
s ing a customized Faster R-CNN with Inception-v1, Inception-ResNet0-v2, and
s SE-block. The model achieved a mAP of 0.81 at a real-time detection speed of
o 15.01 frames per second (FPS). Although these DL models enabled early and
e accurate disease detection, they still required manually fine-tuned hyperparam-

o eters like anchors and proposals during training and additional post-processing
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o algorithms to reduce duplicate predictions [12].

w  2.8. Transformer-Based Approaches

102 Transformers have introduced paradigm shifts in object detection. Vision
s Transformers (ViTs) effectively processed entire images as sequences of patches,
14 which enhanced global context modeling and motivated researchers to extend
s their use to more complex tasks such as object detection [31]. For example,
s Carion et al.[32] proposed detection transformer (DETR), an end-to-end object
w7 detector that directly predicted bounding boxes (BB) and classes via learned ob-
s ject queries. DETR did not require extensive manual tuning and was proved to
1o handle varying object sizes and overlapping objects more effectively. Subsequent
uo  extensions, such as Deformable DETR [33], DN-DETR [34]|, and DAB-DETR
w [35], aimed to improve DETR’s convergence and performance. While these ex-
12 tensions showed better detection performances, they still performed poorer than
us  the CNN counterparts [12]. The recent introduction of a collaborative hybrid
us  assignments training scheme for DETR (Co-DETR) [22] addressed the issue of
us  sparse supervision in DETR models by utilizing multiple auxiliary heads with
us one-to-many label assignments to enhance the learning of both the encoder and
w7 decoder. Co-DETR improved the training efficiency and discriminative feature
ug learning of DETR~based detectors without adding any extra computational cost
o or parameters during inference. The experiment results demonstrated a signifi-
120 cant performance gain on various DETR variants. The integration of Co-DETR
w1 into DINO-Deformable-DETR achieved 66.0% AP on the Common Objects in
12 Context (COCO) test-development set.

s 3. Materials

124 Table 2 highlights the evolution of benchmark datasets in plant disease re-
s search. Earlier datasets, such as PlantDoc [36] and PlantVillage [37], included
s diseases affecting both fruits and leaves on multiple species but did not specifi-

12z cally focus on fruit diseases. In contrast, smaller self-collected datasets, such as
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13 the Pomegranate Fruit Diseases [38] and Citrus Diseases [39], primarily focus on
120 diseases of single fruit types and contain fewer than 3,000 images, which limit
1o their scalability and generalizability.

131 This research stands out by training the proposed model on a large fruit
12 disease identification dataset containing roughly 81,000 images that cover six
s different fruit disease types [40]. Provided by the National Information Society
s Agency of Korea (NIA)!, this extensive dataset exceeds the scope and size of
135 most existing datasets. The collection of data was made possible through the
1 collaboration of Jeju Special Self-Governing Province?, with additional support
w7 from Flexink® and Bgrinfo? for data acquisition, and GDS Consulting® for data
s refinement and processing. The scale and diversity of this dataset significantly

130 contribute to the strength and practical relevance of this study.

Table 2: Descriptions of several widely used plant disease datasets. Note: # stands for the

number of something

Dataset Year Category +# 4 # images
species  classes

PlantVillage [37] 2015  Classification 14 38 54,305
PlantDoc [36] 2020 = Classification 13 27 2,598
Citrus diseases [39] 2024 Classification 1 5 759
Pomegranate fruit 2024 Classification 1 5 5,099
diseases [38]
Fruit disease dataset 2024 Detection 8 6 81,000
j40]

140 For details on the data collection process, including camera settings and

w  acquisition methods, please refer to [40]. Figure 1 presents representative images

1https ://www.nia.or.kr/site/nia_kor/main.do
2https://www.jeju.go.kr/index.htm
Shttps://flexink.com/en/home/home-en/
4http://www.bgrinfo.co.kr/
Shttp://gdsconsulting.co.kr/
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from each class of the fruit disease dataset on eight different plant species,

including banana, fig, lemon, mango, mandarin, olive, passion fruit, and pitaya.

(d1) Anthracnose (d2) BFB

Figure 1: Depiction of the six classes of fruit diseases from the dataset used in this study,

with the affected regions highlighted by red BB.

Fruits displaying signs of disease, such as spots, lesions, or other visible
deformities, are visually inspected in both natural environments like orchards
and controlled settings such as research greenhouses. Annotations are made at
the lesion or affected region level. Each symptom is evaluated using specific
attributes, including texture, spread, and severity, to ensure accurate labeling.
Annotation guidelines follow established diagnostic criteria specific to each dis-

ease, as outlined below.

e Anthracnose (Colletotrichum spp.): Anthracnose affects a wide variety
of plants, including pitaya, passion fruit, and olive [41]. Anthracnose
typically presents small, sunken, dark brown to black lesions on the fruit’s
skin. These lesions may extend and finally lead to significant areas of rot.

The disease can lead to premature fruit drop, leaf loss, and a significant



Journal Pre-proof

156 reduction in overall fruit yield.

157 e Bacterial fruit blotch (Acidovorax citrulli): a serious disease caused by
158 the bacterium Acidovorax citrulli [42]. The disease typically manifests
150 as dark, water-soaked lesions on the fruit’s surface. These lesions often
160 start small but can rapidly expand to cover large portions of the fruit. As
161 the disease progresses, the affected areas may crack and release a sticky,
162 amber-colored bacterial exudate. The lesions can combine and lead to
163 large, irregular blotches that severely influence the fruit’s appearance and
164 marketability. In severe cases, the entire fruit may become soft and rot.
165 e Broad mite (Polyphagotarsonemus latus): Broad mite is a tiny pest that
166 can cause significant damage to various plants. The mites can infest young
167 lemon fruits [43] and cause russeting or scars on the fruit surface. The af-
168 fected fruits may be deformed and dropped prematurely in extreme cases.
169 o Weevil (Curculionoidea): Weevils [44] are small beetles that can cause sig-
170 nificant damage to a variety of plants, including fig. Some weevil species
171 burrow into the fruit and cause internal damage that may not be imme-
172 diately visible from the outside. As a consequence, weevil infestation can
173 lead to premature fruit drop, and the affected fruits may become con-
174 tracted. The entry points created by weevils can also serve as gateways
175 for secondary infections by fungi or bacteria, which can further degrade
176 the fruit’s quality.

177 e Thrips ( Thysanoptera): Thrips feed by piercing the surface of plant tissues
178 and sucking out the contents of the cells [45], which leads to a range of
179 symptoms that can seriously affect the health and yield of the plants. The
180 most common symptom is surface scars, which affect the quality of the
181 fruits.

182 e Fungal infection: Fungal infections can significantly impact the quality,
183 marketability, and production of fruits such as bananas, lemon, mango,
184 and fig [46]. Each type of fruit can be affected by specific fungal pathogens,

10
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185 which lead to distinct symptoms and potential economic losses. For ex-
186 ample, black mildew forms a thin, black layer that can cover significant
187 portions of the fruit’s surface, such as lemon and mango. Although the
188 fungus does not penetrate the fruit, it can lead to an unsightly appearance
189 on the affected fruits. Powdery mildew can appear as a white to greyish
190 powdery growth on the skin of figs. This fungal layer can lead to a rough
101 fruit’s surface and cause the fruit to crack in severe cases.

192 The annotation process focused on capturing both the visual characteristics

13 of lesions and any related symptoms or traits that could improve the disease
s detection performance of the models. A dedicated team of 15 experts from
s MKG Engineering and Construction (MKGENC) were tasked with a five-month
ws image annotation assignment. Each person annotated approximately 55 images
17 per day to ensure that various disease symptoms were labeled precisely. An
18 open-source annotation tool developed in Python was used to facilitate the
1o entire annotation process [47]. Figure 2 provides an overview of the dataset by
200 showing the number of images for each disease class. It includes a total of 81,000
21 labeled images, which were split into 80% for training, 10% for validation, and
22 15% for testing. Therefore, 64,800 images were used for training, while 8,100

203 images were designated for both validation and testing.

200 4. Methods

205 4.1. System Ouverview

206 Figure 3 illustrates the primary steps of the fruit disease detection frame-
27 work, referred to as FD-TR. In this framework, “FD” represents fruit disease
28 detection, while “TR” refers to the transformer-based model. The two core

200 components of the framework are outlined as follows.

210 e Data pre-processing: Real-world data often presents significant variabil-
n ity due to factors such as inconsistent lighting (e.g., shade, overexposure,
212 underexposure), blurriness (caused by camera motion or low-quality op-
213 tics), diverse angles (e.g., oblique views, close-ups), and noise (introduced

11
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Figure 2: A horizontal bar chart revealing the distribution of images per each disease class

from d1 to d6.

214 by sensor imperfections or compression artifacts). Therefore, data aug-
215 mentation is essential to improve the model’s robustness against these
216 real-world challenges and its ability to generalize to unseen data [48]. The
217 data augmentation technique involves artificially replicating these condi-
218 tions within the dataset to effectively increase its size and diversity.

210 e Fruit disease detection: While existing object detection models like Mask-
220 RCNN [49], YOLO [50], and SSD [51] achieved strong performance on
21 benchmarks such as COCO [52] and Pascal VOC [53], they rely on man-
222 ual hyperparameter tuning and multi-stage training. To address these
23 limitations, we propose FD-TR, a transformer-based architecture with ef-
24 ficient end-to-end training. FD-TR focuses on specific parts of the input

12
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Mango

" Passion
s fruit

Figure 3: Description of the primary processes of the proposed fruit disease detection frame-

work (FD-TR).

25 image most relevant for identifying diseases. Moreover, feature discrim-
226 inability scores analysis provides insights into the model’s decision-making
27 process for practical applications [13].

28 4.2. Data Augmentation

229 This section outlines the image augmentation process applied to the fruit
20 disease training dataset to improve the model’s robustness and generalization
an by simulating various real-world conditions. These augmentation methods were
22 performed on the original training set to better represent the variability encoun-
23 tered in real-world agricultural settings. The augmentation techniques expanded
21 the original training set of 64,800 images by five-fold to 324,000 images.

235 This process involved a series of transformations applied to the original im-
26 ages, including random horizontal and vertical flips to replicate different ori-
2w entations of fruits on trees, and rotations at angles of 90°, 180°, and 270° to
23 enhance the model’s invariant to fruit positioning. In addition, color jittering,
20 where the brightness, contrast, saturation, and hue of input images were ran-
a0 domly adjusted within predefined ranges to mimic varying lighting conditions
2n and potential color distortions caused by natural environments. To increase

22 the model’s robustness against the effects of camera noise and environmental

13
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factors, Gaussian noise was introduced to the images. Furthermore, random
cropping and resizing were performed to expose the model to fruits at different
scales and viewpoints. Figure 4 provides a visual representation of the sampled

augmented images obtained through different augmentation techniques.

d

ata
augmentation|

Input image

Figure 4: Output images of applying predefined data augmentation techniques on the original

dataset.

4.8. Co-DETR Framework

Co-DETR introduces a novel collaborative hybrid assignments training scheme
designed to enhance the efficiency and effectiveness of DETR-based detectors.
This scheme relies on versatile label assignment strategies to significantly boost
the encoder’s learning capabilities in end-to-end detection frameworks [22]. Co-
DETR also optimizes the encoder’s learning process by training multiple parallel
auxiliary heads with one-to-many label assignments. In addition, Co-DETR im-
proves the overall detection performance by optimizing the attention learning
of the decoder through customized positive queries derived from the positive
coordinates identified by the auxiliary heads. Figure 5 illustrates the Co-DETR
model, which includes three primary modules: a backbone, a transformer en-

coder, and a decoder.

14
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Figure 5: Illustration of the architecture of the Co-DETR approach.

250 According to the standard DETR protocol, the input image is fed into the
%0 backbone and encoder to extract latent features. Several predefined object
1 queries subsequently interact with the decoder through cross-attention mecha-
»%2  mnisms. Co-DETR improves this process by integrating a collaborative hybrid
%3 assignment learning and a custom positive query generation module, which op-

x4 timize feature learning in the encoder and attention learning in the decoder.

w5 4.3.1. Collaborative. Hybrid Assignments Training

266 To address the insufficient supervision of encoder outputs caused by the lim-
%7 ited positive queries in the decoder of standard DETR architectures, Co-DETR
s integrates multiple label assignment strategies (e.g., Adaptive Training Sample
20 Selection (ATSS), Faster R-CNN) with auxiliary supervision heads. These aux-
oo iliary heads strengthen encoder supervision by refining discriminative learning.
on Specifically, after processing the latent features F, the encoder transforms them
a2 into a feature pyramid Fi, ..., Fy via a multi-scale adapter, where J denotes the
23 number of feature maps with downsampling stride of 22+, Following the ViT-
aa Det framework, Co-DETR constructs its feature pyramid using a single-scale
s encoder feature map, which is upsampled using bilinear interpolation.

276 For example, the feature pyramid is built by sequentially applying upsam-

15
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o pling (stride 2 with 3 x 3 convolution) or downsampling to the encoder’s single-
s scale feature. In multi-scale encoders, only the coarsest resolution features are
29 downsampled to generate the feature pyramid. For each K collaborative heads,
20 the predicted output P, is sequentially propagated through the feature pyramid
s JF1,...,F;. Within the i-th head, module A; computes supervised targets for
22 positive and negative samples, PP, BP*® P**® using the supervised target set

23 G, as follows:

E{POS}7BZ{POS}’PZ_{HEg} _ Ai(th) (1)

284 where pos and neg represent the spatial coordinates classified as positive and
s negative by A;. The index j corresponds to the feature index within the feature
xs  pyramid F;. BP®® denotes the spatial coordinates of the positive samples, while
2w PP and P]°® refer to the supervised targets associated with these coordinates,

28 including both category labels and BB regression offsets.

289 The encoder loss function can be defined as follows:
Lo = Ei(pi{POS}ypi{POS}) + ﬁi(Pi{neg}, Pi{neg}) (2)
200 For negative samples, the regression loss is excluded from consideration.

2 The objective of optimization for the K auxiliary heads is therefore defined as

202 follows:

K

Lenc — Z E?HC (3)

i=1
23 4.8.2. Customized Positive Queries Generation
204 In the one-to-one matching paradigm, each ground-truth box is paired with
25 a single specific query as its supervised target. However, when the number of
206 positive queries is insufficient, this can lead to inefficient cross-attention learning
27 within the transformer decoder. To address this issue, Co-DETR generates a

28 diverse set of customized positive queries. Specifically, in the i-th auxiliary head,

16
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2o the customized positive query Q; € RMi*XC (where M; represents the number

w0 of positive samples) is generated through the following process:

Q; = Linear(PE(pros})) + Linear(E({F.}, {pos})) (4)

301 Here, PE(-) represents positional encoding, which extracts the relevant fea-
sz ture from E(-) based on the spatial positive and negative coordinates (7, F;).

303 Therefore, there are K +1 query groups involved in the one-to-one matching
sa  process, including those with label assignments. The auxiliary label assignment
w5 shares weights with the standard L decoder layers. In the auxiliary branches, all
w6 queries are conditioned on the positive query, eliminating the need for redundant
s matching. The loss for the [-th decoder layer in the i-th auxiliary head is

s formalized as follows:

dec — £(Byy, Po) (5)

30 where £3¢ denotes the loss from the original one-to-one matching branch.

s Finally, the global objective function of Co-DETR is defined as:

L K
Eglobal 4 Z(ﬁ?ec + )\ Zﬁ;ijc + >\2Lenc) (6)
=1 =1
311 Here, A1 and Ay are the coeflicients that balance the different losses.

sz 4.4. Model Customization

313 Although Co-DETR can be applied to state-of-the-art transformer architec-
a4 tures such as DETR with Improved deNoising anchOr box (DINO) [54] and
us  Deformable DETR [33] for fruit disease detection, the performance of these
sis base models remains sensitive to critical factors like label assignment strategies,
sz robustness to complex backgrounds, and adaptability under varying environ-
sis mental conditions. To optimize transformer-based detection for fruit disease
a0 detection, several targeted adjustments were introduced to the original trans-
a0 former models’ architecture and optimization process. These modifications were

s implemented before applying the Co-DETR approach, as outlined in Table 4.
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322 The modifications include integrating BatchFormerV2 to enhance feature
w3 representation through batch-based learning, adopting the LAMB optimizer,
2¢  known for its efficiency in training large-scale models [55], and utilizing the
»s  Complete Intersection over Union (CIoU) loss function instead of the GIoU to
w6 improve localization accuracy. These modifications are expected to improve the
a2z baseline models’ performance and generalization capabilities on the fruit disease

328 domain.

Table 3: Comprehensive explanation of the model fine-tuning process

Model Auxiliary Loss Optimizer
Deformable DETR N/a Hybrid (L1 + GIoU) AdamW
DINO N/a Hybrid (L1 + GIoU) AdamW

FD-TR (This study) BatchFormerV2 [56] - Hybrid (.1 + CloU) LAMB

320 e BatchFormerV2 (BF): Proposed by Hou et al. [56], BF enhances trans-

330 formers’ capacity to model inter-sample relationships within mini batches.
331 Unlike conventional transformer blocks that operate on pixel- or patch-
3% level feature maps, BF processes feature structured by batch size. In
333 FD-TR framework, BF implements a two-stream architecture where both
33 branches share weights and merge into a unified transformer decoder. This
335 design ensures efficiency and coherence during the training process as all
336 shared blocks are consistently trained with the same weights. Moreover,
337 the original transformer blocks retain their full functionality without BF,
338 which minimizes any additional computing during inference. The appli-
339 cation of BatchFormerV2 into various transformer models, such as DETR
340 [32] and Deformable-DETR [33], consistently demonstrated a performance
341 improvement of over 1.3 mAP on the benchmark MS COCO dataset.

302 e Complete Intersection over Union (CIoU): The Generalized IoU (GIoU)
33 extends the standard IoU metric by measuring the overlap between the

344 predicted and ground truth BB while considering areas outside their in-
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a5 tersection [57]. CIoU improves GIoU by introducing additional terms that
346 account for localization precision and aspect ratio alignment. This refine-
347 ment enables better convergence and improved detection accuracy com-
348 pared to GIoU loss. Therefore, CloU and L1 loss are utilized to calculate
349 the box regression reconstruction loss for FD-TR model in this study.
LCI(,Uzl—IoU—i—M—FaV (7)
350 The variable ¢ denotes the diagonal length of the smallest enclosing box
351 that covers both the predicted and ground truth BB, while d represents
352 the Euclidean distance between their center points. p and p9 refer to the
353 central points of the predicted and ground truth BB, respectively. The
354 variable V' measures the consistency of the aspect ratios, and « serves
355 as a trade-off parameter that assigns less weight when the overlap is low
356 and more weight when the overlap is high. The value of « is computed
357 dynamically as:
4 w9t w\” v

V=3 <arctan o arctan E) , a= A=ToU) 70 (8)
358 We compared a dynamically computed « with fixed values o € {0.25,0.5,1.0}
350 on the validation set (Table 4). The dynamic « showed the highest peak
360 validation mAP (0.77), but @ = 0.5 achieved a comparable validation
361 mAP (0.75). To improve reproducibility and make cross-experiment com-
362 parisons more straightforward, we therefore use a = 0.5 in all subsequent
363 experiments. Moreover, fixed « also reduces hyperparameter tuning. If
364 the aim is to maximize single-run peak mAP, dynamic a remains an ap-
365 propriate choice.

366 o LAMB optimizer: While AdamW is commonly considered the default opti-
367 mizer for a variety of vision transformer-based models [12], [58] have iden-

368 tified potential training instability, particularly when there is an increased
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Table 4: Ablation study comparing the dynamic a and fixed candidates {0.25,0.5,1.0}

« values  Mean mAP

Dynamic 0.77

0.25 0.68

0.5 0.75

1 0.7
369 ratio between the L2-norm of weights and gradients. To mitigate this is-
370 sue, this study adopts the Layer-wise Adaptive Large Batch Optimization
an (LAMB) optimizer as an alternative. LAMB combines the strengths of
372 both the Adam and Layer-wise Adaptive Rate Scaling (LARS) optimizers
373 [55]. In particular, the layer-wise adaptive technique from LAMB normal-
374 izes each dimension based on the square root of the second moment, while
375 also applying layer-wise normalization. This method has been proved to
376 be effective for distributed training and has demonstrated effectiveness in
377 transformer models on large-scale datasets.

m; = Blmﬁprev )+ (1—751) 9

v = BovP) 4 (1 — By) g2

my
my = D —
1= (1)
v = —t )
1—(B2)
my
Tt

= \/,U_t—i_e

xﬁl = Igi) —

(=)

rt(i) + )\xgi)

(rt(i) + Axﬂ)

378 where the hyperparameters $; and (o regulate momentum and weight
379 decay, respectively. m; refers to the first moment estimate at time step ¢,
380 and v; indicates the second moment estimate. The parameter A manages
381 the degree of layer-wise adaptiveness, while 7, represents the learning rate

20



Journal Pre-proof

382 vector at time t, and ¢ denotes the parameter vector at the same instance.
383 A small constant € is introduced to prevent division by zero. In addition,
384 ry represents the update ratio used in the LAMB optimizer.

s 4.5. Feature Discriminability Scores Analysis

386 After training, feature discriminability maps are generated by analyzing the
57 multi-scale feature outputs from the DETR-based model [32]. They offer valu-
s able insights into how the model distributes its focus on different regions of
;0 the input image. The feature discriminability scores are obtained by extract-
s0 ing multi-scale features from the model’s final layers. For each feature map,
s the L2-norm is computed across the channel dimension to quantify the activa-
s tion strength at each spatial location, consistent with established visualization
w3 practices for CNN activations [59]. The resulting feature discriminability scores
s are then normalized by their maximum values to ensure consistent intensity of
w5 different scales.

306 To visualize the feature discriminability scores, each normalized feature map
so7  is resized to match the dimensions of the input image using linear interpolation.
s The resized maps from each scale are then aggregated by combining them to-
s gether, followed by averaging to produce a final feature map that integrates in-
wo formation from all scales. This final map highlights the regions that the model
a1 considers most relevant during the prediction process, with higher values in-
w2 dicating areas of greater focus. The output feature discriminability map is a
w3 valuable tool for evaluating the model’s interpretability and its ability to cor-
wa  rectly identify disease-affected regions in the image.

a0 Let feats be a list of multi-scale feature maps, each with dimensions L x B x
ws C x H x W. L is the number of layers or scales, B = 1 is the batch size, C
w7 is the number of channels, and H x W are the spatial dimensions. Based on
ws  the multi-scale feature maps, the feature discriminability map attn _map can

w0 be mathematically represented as follows:
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L ,
1 . ||feat[d]]|2
tt =7 s Himg, Wim 10
i _mep = ) rsie (eClfadils 72y Hone: Wins) 00
410 where |/feat[i]||2 represents the L2-norm of the feature map at the i-th scale,

a1 calculated along the channel dimension for generating a feature map of size H X
sz W. The term max (||feat[i]||2) denotes the maximum value in the normed feature
sz map, which is used to normalize the map. The function resize(-, Himg, Wimg)
a4 interpolates the normalized feature map to match the dimensions Himg X Wimg of
a5 the input image. The summation aggregates the resized feature discriminability
a6 maps from all scales, and the division by L averages the aggregated map.

a17 In Figure 6, the feature discriminability map extraction of an input image
ss highlights how FD-TR effectively focuses on disease-affected regions using multi-
a0 scale features from the encoder. The map illustrates the DETR-based model’s
a0 ability to precisely target the main regions showing disease symptoms. This
o1 demonstrates the model’s robustness and accuracy in detecting various fruit

2 diseases.

Feature discriminability map

Figure 6: Visualization of the feature discriminability map prediction process.
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23 4.6. Implementation Details

w24 The fruit disease detection framework was developed using the MMDetec-
s tion library v2.25.3, built on PyTorch 1.11.0. To ensure consistent and fair
w26 experimentation, all detection models in the study utilized ResNet-50 and Swin
27 backbone pre-trained on the ImageNet dataset. The training process was con-
w28 ducted on an Nvidia A100 GPU with 40 GB of memory.

29 We integrate our Co-DETR into existing DETR-like pipelines while main-
40 taining similar training settings with the baseline models. For K = 2, we im-
s plement both ATSS and Faster-RCNN as auxiliary heads, whereas for K = 1,
2 we use only the ATSS head. In addition, the number of learnable object queries
a3 1s set to 300, and the weight coefficients {A1, A2} are set to their default values
e of {1.0, 2.0}.

435 For all transformer-based experiments (FD-TR and DETR variants), each
a6 model is trained for up to 15 epochs with validation process perform at the
a7 end of each epoch. Early stopping is applied to the validation bounding-box
a8 loss with a patience of three epochs and a minimum improvement threshold
a0 A = 1073. If the bounding-box loss fails to decrease by at least A for three
uo  consecutive epochs, training halts and the model reverts to the weights from

a1 the epoch with the lowest validation loss.

w 4.7. Evaluation Protocols

43 In this section, we comprehensively evaluate the fruit disease recognition
ws framework using several standard metrics, including mAP, precision, and recall.
as  These metrics are computed based on the three elements of the confusion matrix:
ws  true positive (TP), false positive (FP), and false negative (FIN). Precision reveals
w7 the ratio of correctly predicted positive instances out of all predicted positives,
ws  while recall captures the proportion of true positives among all actual positives

4o 1n the dataset. The formulation of these metrics is as follows:

Precision = TP
TP +FP
(11)
Recall = TP
T TP Y FN
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450 To evaluate the overall detection accuracy of multiple disease classes, a
1 standard average precision metric was calculated. In particular, we adopt
w2 APQ[IoU = 0.50 : 0.95], which measures the detection performance at IoU
ss3 thresholds from 0.50 to 0.95. This threshold is used to evaluate the model’s
sse  ability to localize fruit diseases by calculating the area under the precision-
s recall curve at the specified IoU threshold. The AP for each class is determined
a6 from this curve, and the mAP is then computed as the average of the AP values

7 on all disease types. The mAP is expressed as follows:

N
1
mAP = = ZAPi (12)
=1
458 where N represents the number of disease types, and AP; denotes the average

w0 precision for the i-th disease class. AP; is calculated based on the precision-recall

w0 curve for that disease type.

w1 5. Results

w2 5.1. Comparison of Transformer Models

463 In this experiment, a comprehensive comparison of fruit disease detection
s performance is conducted by applying Co-DETR on various DETR-based mod-
ws els, including Deformable DETR [33] and DINO [54]. Moreover, two different
w6 backbones, Swin Transformer and ResNet-50, are employed and compared, re-
w7 sulting in a total of four model variants. The models include Co-DETR on the
we  Deformable DETR with the ResNet-50 backbone (co deformable detr r50),
ws  Co-DETR on the Deformable DETR with the Swin backbone (co_ deformable detr swin),
a0 Co-DETR on the DINO model with the ResNet-50 backbone using 5-scale fea-
a1 ture processing (co_dino_5scale 1r50), and Co-DETR on the DINO model with
w2 the Swin backbone using 5-scale feature processing (co_dino 5scale swin).
s The performance comparison is shown in Figure 7.

a7 Overall, the co_dino_5scale swin model demonstrates the highest perfor-

s mance with a detection mAP starting from around 0.6 and steadily improving
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Comparison of Model Performance (bbox_mAP)
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Figure 7: Comparison of fruit disease detection performance using Co-DETR applied to two

baseline DETR models: Deformable DETR and DINO.

as  to around 0.81 by the 12th epoch. This indicates that the Swin backbone com-
a7 bined with 5-scale feature extraction is particularly effective in detecting fruit
as  diseases. The co dino_5scale detr model also performs well, closely following
a9 co_dino_Bscale rb0 while maintaining a high performance at around 0.79 at
o the 12th epoch. The co deformable detr r50 model shows relatively stable
s performance but with lower performance than the DINO models. In contrast,
w2 the co_deformable detr swin model exhibits significant fluctuations in its per-
s3 formance, particularly between epochs 5 and 7, where it experiences a sharp drop
s to around 0.25 mAP. However, the model recovers rapidly from epoch 8th and
w5 reaches a comparable mAP of approximately 0.72 by the 12th epoch. These fluc-
a6 tuations suggest that while the Deformable DETR architecture may be more

w7 sensitive to certain training conditions, it is capable of eventually reaching a
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s competitive performance.

289 Given that Co-DETR on the DINO model with the Swin backbone demon-
w0 strated the highest fruit disease detection performance, we selected this configu-
w1 ration as the default model for subsequent experiments (referred to as FD-TR).
w2 This extension was chosen because it delivered robust and stable detection ac-
23 curacy during training and validation. FD-TR was then used to evaluate the
ws  effects of additional enhancements, such as data augmentation techniques, hy-

a5 perparameter tuning, and its deployment in real-world environments.

ws  5.2. Preprocessing Module Analysis

197 This section examines the impact of data augmentation on the proposed
w0  FD-TR model by comparing its results with the one trained on raw data. As
w0 shown in Table 5, FD-TR trained with augmented images outperformed the
s0 one trained on raw data. For example, the mAP increased by 0.05 from 0.76
sa to 0.81, indicating better overall accuracy in detection. The data augmenta-
s tion approach also reduced the false positive detection (higher precision) and

ss increased the rate of correctly identifying true positives (higher recall).

Table 5: Comparison of FD-TR model performance on original and augmented data.

mAP Precision Recall

Original data 0.76  0.75 0.78
Data augmentation 0.81  0.79 0.82
504 The observed performance improvement suggests that data augmentation

sos  plays-a crucial role in boosting FD-TR model’s ability to detect fruit diseases
s Wwith higher detection accuracy. By introducing variations in the training data,
sov  augmentation not only boosts detection precision but also significantly improves

ss  the model’s robustness.

soo  5.8. PD-TR Performance Evaluation

510 Figure 8 provides a detailed performance evaluation of FD-TR model, which

su  consists of two charts.
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Figure 8: Detailed performance evaluation of FD-TR model using different evaluation metrics.

512 e The evaluation mAP performance (a) plots FD-TR’s mAP over 12 epochs

513 of training. The mAP started at approximately 0.625 and steadily in-
514 creased. It peaked at around 0.8 by the 12th epoch. This consistent
515 improvement in mAP indicated that the model was learning effectively
516 and becoming increasingly better at detecting diseases as training pro-
517 gresses. The gradual increase suggested that the model generalized well
518 and converged to high performance, especially in the later epochs.

519 e The precision-recall curve (b) represents the trade-off between precision
520 and recall for different thresholds. This curve can be used to evaluate how
521 well FD-TR performs on different confidence levels. Overall, the model
522 accurately detected diseases with minimal false positives because the curve
523 showed high precision for most recall values. Key metrics like C75, C50,
524 and Loc revealed precise localization and detection capabilities, with pre-
525 cision values around 0.816 to 0.823, suggesting that the model performed
526 well even under challenging IoU thresholds. The model also excelled in
527 distinguishing between similar diseases (Sim) and avoiding background
528 errors (BG), with a precision near 1.0 in both cases. The curve’s slight
529 decline at very high recall indicated that while the model maintained ac-
530 curacy on most conditions, it introduced minor false positives when recall
531 was pushed to its limit. Finally, a good false negative (FN) showed that
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532 the model had a very low rate of missing diseased fruits.

533 Table 6 describes the experimental results of FD-TR framework in detect-
s ing six different fruit diseases, including anthracnose (d1), bacterial fruit blotch
35 (d2), broad mite (d3), weevil (d4), thrips (d5), and fungal infection (d6). In
si  general, FD-TR framework showed consistent performance in detecting all dis-
s ease classes with an average mAP of 0.81, precision of 0.79, and recall of 0.82.
s33 ' The model achieved the highest performance for detecting d3 and d6 with the
s30. MAP scores of 0.88 and 0.86, respectively. These classes also obtained strong
se0  precision (0.85 and 0.84) and recall (0.89 and 0.88). On the other hand, the
sa. detection performance for d2 and d5 was slightly lower, with mAP values of
s 0.74 and 0.77. The low detection performance of d2 and d5 could be due to sev-
ses  eral factors: 1) fewer labeled instances in the training data, which limited the
s« framework’s ability to extract distinct features for these diseases, and 2) visual
sss  similarities between d2 and d5 made it challenging for the model to effectively

se6  differentiate between these diseases and others.

Table 6: Evaluation results of the proposed model on different fruit disease classes.

dl d2 d3 d4 db d6 Average
mAP 0.78 0.74 0.88 0.83 0.77 0.86 | 0.81
Precision 0.76 0.73 0.85 0.8 0.77 0.84 | 0.79
Recall 0.79 0.77 0.89 0.82 0.79 0.88 | 0.82

ser 5.4. Analysis of the Feature Discriminability Analysis

548 Table 7 reports the mean and standard deviation of the normalized Ls-norm
ss9  discriminability scores for each disease class over the test set. The scores confirm
ss0 that the model concentrates more strongly on classes with more distinct lesion
ss1  features, such as anthracnose, broad mite, and fungal infection.

552 Figure 9 provides a detailed description of the proposed framework in ef-

3 fectively detecting six distinct fruit diseases. Each row in the figure serves a
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Table 7: Mean (+ std) of feature discriminability scores per disease class.

Disease class Mean (+ std) score
(d1) Anthracnose 0.86 + 0.05
(d2) BFB 0.65£0.10
(d3) Thrips 0.72£0.03
(d4) Weevil 0.68 £0.08
(d5) Broad mite 0.80+£0.01
(d6) Fungal infection 0.83 £ 0.03

s distinct purpose. Row (a) displays the original images of fruits affected by dis-
sss  eases such as anthracnose, BFB, thrips, weevil, broad mite, and fungal infection.
sss  The second row (b) demonstrates the model’s detection results by highlighting
ss7 the areas where the model has identified disease presence with BB and predicted
s labels.

559 Overall, the model correctly predicted and localized the fruit diseases pre-
s0  cisely. In order to explain the model’s prediction process, the third row (c¢) fur-
sse  ther shows attention-weight visualizations from FD-TR model. The extracted
sz attention map reveals where the model is focusing its attention on the images.
sss  Warmer color areas indicate higher focus, which is typically around spots show-
see  ing visible symptoms of the disease. It can be concluded by observing the at-
sss  tention maps that the model focused on disease regions but also provided visual
sss  explanations for its predictions. Moreover, the attention analysis also enhanced
ss7  trust and understanding in its diagnostic capabilities.

568 Figure 10 demonstrates FD-TR model’s performance on some challenging
sso  fruit disease detection cases, such as lighting variations, image blurring, and
so low contrast. The top row (a) displays the input images, while the second
sn row (b) shows the detection results, including the predicted BB, disease name
s and confidence score. The attention map visualization in the bottom row (c)
s3  indicates how FD-TR model focuses on specific regions of the image for its

st predictions.
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(d1) (d2) BFB (d3) Thrips (d4) Weevil (dS) Broad (d6) Fungal
Anthracnose mite infection

Figure 9: The proposed model’s outputs for each fruit disease, including (a) input images, (b)

detection results, and (c) feature discriminability visualizations.

Figure 10: The proposed model’s outputs for challenging cases, including (a) input images,

(b) detection results, and (c) feature discriminability visualizations.

575 FD-TR model demonstrates strong disease prediction performance in real-
st world conditions. This is important for practical deployment in agricultural
s7 - environments where image quality may vary. For instance, the model demon-
ss  strates its robustness by accurately detecting anthracnose (first column) and
so black mold (fourth column) with high confidence scores of 0.94 and 0.77, re-

ss0  spectively. In these cases, the model focuses effectively on the infected areas
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ss1 with well-defined and concentrated regions in the attention maps.

582 In contrast, for more challenging cases such as weevil (second column) and
ses broad mite (third column), the attention maps appear more diffuse, with less
ssa  sharply defined focus areas. Factors such as image blurring and uneven lighting
sss  seem to affect the model’s ability to identify the diseased regions accurately.
sss ' This results in a lower confidence score for weevil detection (0.48), indicating the
sev . model’s difficulty in isolating the specific features of the disease. Nevertheless,

sss F'D-TR model manages to generate reasonable predictions.

sso 5.5, Analysis of the Effectiveness of Customized Components to the Perfor-
590 mance of FD-TR Model

501 This section reports the effectiveness of important components of the pro-
s posed fruit disease detection model’s performance. Table 8 summarizes the

se3  ablation study’s results of each component of FD-TR model.

Table 8: Ablation analysis for evaluating the effects of different components on the perfor-

mance of FD-TR model.

Configuration CIoU-+L1 loss LAMB optimizer BatchFormerV2 mAP
Baseline - - - 0.812
+ ClIoU only v - - 0.847
+ LAMB only - v - 0.818
+ BatchFormerV2 only - - v 0.853
+ CloU & LAMB v v - 0.834
+ CloU & BatchFormerV2 v - v 0.882
+ LAMB & BatchFormerV2 - v v 0.838
Full integration v v v 0.894
504 The baseline configuration, without any of the proposed components, achieved

ss an MAP of 0.812. When added individually, CIoU+L1 loss improved the mAP
so6  t0 0.847, which demonstrated its significant contribution to the model perfor-

sv  mance. The LAMB optimizer showed a marginal improvement to 0.818, while
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sis  BatchFormerV2 alone boosted the mAP to 0.853. Further analysis of pairwise
so0  combinations revealed additional insights. The combination of LAMB optimizer
oo with CloU+L1 loss or BatchFormerV2 yielded lower mAP compared to using
s CloU+L1 loss or BatchFormerV2 alone. However, these configurations achieved
s2 an average of 13% faster convergence and reduced training time. Meanwhile,
03 the integration of both CloU+L1 loss with BatchFormer V2 led to a substan-
04 tial increase to 0.882, which suggested a stronger interaction between these two
es components. Finally, the full integration of all three components achieved the
s highest performance at 0.894, which highlighted their effectiveness on enhancing

sr the model’s capabilities.

o8 5.6. Comparison with Other Models

609 Table 9 presents a performance comparison between the proposed FD-TR
so model and five other state-of-the-art detection models (YOLOvS8 [60], SSD [51],
su DETR [32], Deformable DETR [33], DINO [54]). When evaluated on the val-
sz idation dataset, FD-TR consistently outperformed the others on all metrics.
a3 Specifically, FD-TR significantly outperformed the next best model by 9% with
s1a an mAP of 0.89. In addition, with high precision and recall values, FD-TR
s1s  demonstrated its ability to accurately identify and localize objects. In contrast,
s16  SSD exhibited the lowest performance, with an mAP of 0.69, and a precision

sz and recall of 0.66 and 0.70, respectively.

Table 9: Model performance evaluation between the proposed model and five state-of-the-art

DL models on the validation dataset.

Model name mAP  Precision Recall
SSD [51] 0.69  0.66 0.70
YOLOvS8 [60] 0.8 0.81 0.83
DETR [32] 072  0.71 0.73
Deformable DETR [33] 0.74  0.74 0.77
DINO [54] 0.75  0.74 0.76
FD-TR (Ours) 0.89  0.86 0.87

32



Journal Pre-proof

618 Moreover, while other transformer-based models like DETR, Deformable
sv  DETR, and DINO demonstrated higher performance over SSD, they were con-
20 sistently outperformed by FD-TR. For example, Deformable DETR showed an
s mAP of 0.74, precision of 0.74, and recall of 0.77, while DINO achieved slightly
e better precision and recall but a comparable mAP. YOLOvS, well-known for
e23 its performance, performed well with an mAP of 0.80 but was outperformed by
s« FD-TR in all metrics. The results highlight that FD-TR model provides the
e most accurate and reliable predictions for fruit disease detection due to several
e2s enhancements such as the Co-DETR scheme and effective integration of other

627 components.

e  5.7. Comparison on Various Benchmark Datasets

629 Table 10 describes the performance of FD-TR on four publicly available
0 datasets compared to the baseline model (Co-DETR). This table includes two
en agricultural datasets (PlantVillage [61] and Pest-D2Det [62]) and widely used
e general benchmarks (COCO [52] and VOC2012 [63]). The variation in domain
63 complexity, class count, and dataset size provides a comprehensive evaluation

14 of the model’s adaptability.

Table 10: FD-TR performance and gains compared to baseline methods. Note: pp stands for

absolute gain in percentage points

Dataset Domain # # im- DBaseline mAP FD-TR pp (%)
classes ages mAP

PlantVillage Agriculture 38 54,308 0.407 0.594 18.7
(YOLOVS [64])

Pest-D2Det  Agriculture 10 9,472 0.704 0.731 2.7
(D2Det [65])

COCO General 80 118,287  0.659 0.589 -7
(Co-DETR [22])

VOC2012 General 20 11,540 0.804 0.812 0.8

(CoupleNet [66])
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635 In the agricultural domain, FD-TR demonstrates significant advancements,
s particularly on PlantVillage, where it achieves an mAP of 0.594, an 18.7%
77 gain over the YOLOVS baseline (0.407). This improvement highlights FD-TR’s
o3 effectiveness in handling high-class diversity (38 classes) and complex disease
e0 manifestations. Similarly, on Pest-D2Det, FD-TR obtains an mAP of 0.731, a
0 2.7% increase over the D2Det baseline (0.704), which confirms its strength in
s1  pest detection tasks with fewer classes (10). These results indicate that FD-
s2 TR performs well in agricultural context, where precise feature learning and
«3 optimization are critical for real-world applications like crop monitoring.

64 For general-domain datasets, FD-TR exhibits robust but context-dependent
s performance. On VOC2012 (20 classes), it achieves an mAP of 0.812, a modest
s 0.8% improvement over the baseline CoupleNet (0.804). However, on COCO
sr (80 classes), FD-TR records an mAP of 0.589, approximately 7.0% below Co-
ss  DETR’s reported 0.659. This gap does not undermine FD-TR’s efficiency but
so rather reflects key architectural and training differences. Co-DETR leverages
0 a large ViT-Large backbone and extensive pre-training on Objects365 (opti-
ssr mized for large-scale benchmarks like COCO). In contrast, FD-TR prioritizes
es2  lightweight efficiency using Swin as backbone, and targets agricultural special-
o3 ization without target pre-training. FD-TR’s modifications (BatchFormerV2 for
s« enhanced feature representation, CloU for improved box learning, and LAMB
ess for training stabilization) emphasize domain-specific adaptability over maximiz-
6 ing COCOraccuracy. Despite the lower score, FD-TR remains competitive with
es7  many transformer-based detectors and aligns with its goal of balancing per-
s formance, efficiency, and specialization. Overall, these results confirm FD-TR’s
6o contributions, particularly in agricultural contexts, while maintaining versatility

60 across domains.

o1 5.8. Real-world Robustness Analysis

662 To evaluate the model’s ability to distinguish healthy fruits, which is a crit-
&3 ical requirement for real-world agricultural applications, an independent test

4 dataset comprising 500 images of healthy fruits was collected. These images
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es were curated from a publicly available agricultural image repository and veri-
s fled by domain experts to confirm the absence of disease symptoms. This dataset
s7  was excluded from training and reserved solely for evaluating the model’s per-
es formance in real-world scenarios. An image was classified as “healthy” if no
eo disease-related BB were predicted. The model correctly identified 431 out of
so 500 healthy images, leading to a false positive rate of 13.8%. This demonstrates
sn  that FD-TR can effectively differentiate healthy fruits from unhealthy ones in
o2 most cases. Figure 11 highlights three failure modes where natural fruit fea-
o3 tures were mistakenly classified as disease symptoms. In these cases, the model
e« misinterpreted natural variations in fruit appearance, such as blemishes, color

o5 gradients, or developmental traits, as pathological indicators:

676 e Case (A): A healed scar on a citrus fruit (red arrow) was misclassified as
677 a fungal infection (confidence: 0.47). The model failed to distinguish the
678 scar’s shallow, textured appearance from active fungal lesions.

679 e Case (B): A young dragon fruit exhibiting natural tip browning (red arrow)
680 was incorrectly flagged as infected with BFB, despite lacking characteristic
661 water-soaked lesions.

682 e Case (C): A faint reddish patch on a young fig (red arrow) was predicted

683 as a fungal spot, even though the coloration was uniform and confined to
684 healthy epidermal tissue.
685 These examples revealed that the model’s false positives occurred not from

s complex background clutter or extreme lighting artifacts, but from everyday
ez morphological and variations traits of healthy fruits that were not included in
s the training set. Such improvements would enhance the model’s robustness to

o real-world variability and reduce overfitting to disease-centric features.

e0 6. Discussion

601 FD-TR model improves fruit disease detection by combining the Co-DETR

2 training scheme with the DINO transformer model, multi-scale feature extrac-
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Figure 11: Samples of false positive prediction by the model for healthy fruit images.

3 tion, and attention mechanisms. Key model customization, including CIoU loss
s« for precise BB, the LAMB optimizer for faster convergence, and BatchFormerV2
s for scalable training, enhanced detection performance and efficiency for six fruit
s disease classes. FD-TR’s end-to-end design and integrated data augmentation
sv improved robustness under diverse real-world scenarios, such as lighting and
s angles.

699 The experiment results showed that targeted customization improved de-
70 tection mAP from 0.81 to 0.89. FD-TR also outperformed YOLOv8 (0.80)
71 and Deformable DETR (0.74). With precision and recall rates of 0.86 and
2 0.87, respectively, it demonstrated robust generalization across diverse disease
703 symptoms, scales, and environmental conditions. These capabilities are cru-
704 cial for real-world agricultural settings, where early and accurate detection is
s crucial for effective intervention and crop protection. Furthermore, its attention-
06 based interpretability via feature discriminability scores and deformable atten-
77 tion weights provided transparent insights into decision-making. The evaluation

708 on healthy fruit images, as introduced in Section 5.8, demonstrated the model’s
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0 potential to operate effectively in real-world settings where both diseased and
70 healthy fruits are present. Although, a false positive rate of 13% on healthy
u samples was promising, the misclassifications highlighted a limitation in the

72 current training data, which lacked explicit healthy examples.

ns 7. Conclusions

714 This research introduces an enhanced end-to-end transformer-based fruit
75 disease recognition model that can be applied to real-life disease management
ne systems. The dataset used to train the model consists of 81,000 images of
77 six different fruit diseases. The proposed FD-TR model demonstrates high
78 detection performance on the dataset compared to state-of-the-art models such
7o as YOLOvS, DINO, and Deformable DETR. FD-TR. is based on the DINO
720 transformer model with an improved Co-DETR training scheme and additional
1 components like CloU loss, the LAMB optimizer, and BatchFormerV2. These
72 improvements contribute to the model’s improved detection capabilities and
73 faster convergence during training. Therefore, FD-TR model not only improves
724 the accuracy of predictions but also achieves robust performance in various
725 experiments.

726 Moreover, FD-TR model’s ability to maintain high performances on diverse
27 testing scenarios demonstrates its generalization ability and reliability. Even in
28 challenging cases, such as images affected by poor lighting or blurring, the model
79 provides correct and robust predictions. The attention mechanism of the trans-
70 former allows the model to focus on relevant disease features, which reduces false
7 predictions. In addition, the unique multi-scale attention map extracted from
72 the transformer offers experts/farmers valuable insights into how the model de-
73 tects and highlights disease-related areas. FD-TR model represents a significant
74 advancement in automated disease detection and offers substantial potential to
s improve agricultural productivity and disease management in modern farming.
736 While FD-TR model demonstrates strong performance in detecting fruit dis-

7z eases, several limitations persist. One of the main limitations is the reliance on
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s a dataset with a limited number of disease classes, which fails to capture the full
79 diversity of fruit diseases and environmental conditions. Moreover, the model’s
70 performance could be further optimized in challenging environmental conditions,
w1 where it occasionally struggles to detect diseases accurately. In the future, the
2 dataset can be expanded to include more diverse conditions and disease types to
73 improve the model’s generalizability. In addition, techniques like multi-modal
74 data integration, which analyze data from sensors such as infrared cameras or
us spectroscopy, can be considered for further development and improvement. Fi-
76 nally, the model optimization on edge/mobile devices is a eritical future work
7 to enable real-time, on-field disease detection, especially in resource-constrained
s environments. This would involve exploring lightweight backbones and model

9 compression techniques to reduce computational demands for edge devices.
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