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ABSTRACT Sign language utilizing hand gestures for visual mode of communication, body actions, and
facial expressions. Due to the increasing incidence of hearing deficiencies, the field of Continuous Sign
Language Recognition (CSLR) has seen a considerable increase in research, which involves identifying
consecutive signs in video streams without previous information of their sequential limitations. This survey
reviews CSLR research, presenting deep knowledge into the development of CSLR systems. It critically
analyzes numerous studies, organizing them into a comprehensive taxonomy covering aspects such as sign
language, data collection, input method, gesture signals, identification methods, applied data collections,
and comprehensive efficiency. The article further categorizes deep-learning CSLR models according to
spatial, temporal, and alignment approaches, highlighting their benefits and drawbacks. Furthermore, it
explores various research aspects, such as the challenges of CSLR, the significance of nonverbal elements
in CSLR systems, and the gaps in the body of current research. This classification serves as a helpful
tool for researchers developing and organizing cutting-edge CSLR methods. The study highlights the
effectiveness of deep learning systems capture different sign language signals. On the other hand, several
challenges remain, such as the need for diverse, naturalistic datasets, improved signer diversity, and real-
time CSLR systems. Addressing these gaps will be essential for advancing CSLR’s real-world applications
and developing more robust, efficient models for the future. The conclusions give a wider Comprehension
of sign language recognition and set the groundwork for future studies focused on addressing the current
challenges and issues in this developing area.

INDEX TERMS Continuous Sign Language Recognition, deep learning, Hand Gesture Recognition
(HGR), computer vision

I. INTRODUCTION

S IGN language is an important mode of communication
that utilizes visual cue such as facial expressions and

hand motions [1]. Interpreting these motions from video
sequences and translating them into comprehensible glosses
is known as sign language recognition (SLR). This method
records the signer’s hand and body movements, frequently
capturing their facial expressions [2]. The principal aim of
SLR is to enable effective communication between those who
are deaf Deaf and the wider community by interpreting sign

language in a comprehensible manner for others who are not
familiar with it.

Continuous Sign Language Recognition (CSLR) includes
two main types: isolated SLR, which focuses on recognizing
individual signs from video clips, and CSLR itself, which in-
terprets sequences of signs to produce corresponding glosses
[3]. CSLR is particularly useful in real-world situations as
it accurately identifies the flow of signs in natural conversa-
tions.

A primary challenge in CSLR involves interpreting sign

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3554046

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Khan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. Distribution of CSLR publications by year from 2010 to 2024.

gestures within their contextual framework. Continuous sign
language sentences encompass finger-spelled, static, and dy-
namic signs. Signs written with the fingers are often static
and stationary, while dynamic signs involve hand and body
movements accompanied by various non-manual signals like
facial expressions. Additionally, the variability among sign-
ers in how signs are performed further complicates CSLR
systems.

Weakly supervised learning faces difficulty in CSLR since
it is hard to align video frames exactly with their annota-
tions. When using sign language, Sentences in sign language
are performed constantly and without boundaries. making it
challenging to discern where each sign gesture begins and
ends. Consequently, CSLR systems must learn to identify
these boundaries from the continuous flow of sign language,
which is a significant challenge due to the absence of clear
delineations between signs within sentences [4].

CSLR systems follow four main stages. Initially, the in-
put video stream undergoes preprocessing, which involves
resizing and normalizing video frames. At this point, certain
CSLR systems make use of pose or skeletal data, while others
skip this step if they rely on sensor-based sign-capturing
methods [5]. Following preprocessing, spatial and temporal
features are extracted from the sequence of frames. Tech-
niques including 2D, 3D, Graph Convolutional, and Vision
Transformer neural networks (ViTs) are used in spatial fea-
ture extraction to extract feature representations from sign
frames. Subsequently, temporal learning techniques like Re-
current Neural Networks (RNNs) or Temporal Convolutional
Networks (TConv) are used to understand the temporal dy-
namics of sign gestures. The final stage involves learning the
the position among the video frames and notation glosses,
typically addressed using techniques as Connectionist Tem-
poral Classification (CTC), Dynamic Time Warping (DTW),
and Hidden Markov Models (HMMs). CTC is one of these
techniques that has demonstrated superior results and is
frequently utilized in CSLR studies for sequence alignment
training. [4].

Three different protocols are used to evaluate CSLR sys-
tems: unseen sentences (Unseen-Sent), signer-independent
(Signer-Indep), and signer-dependent (Signer-Dep). The

same signers who were employed in training produce the
sentences on which the models are tested in Signer-Dep
evaluation. This approach can yield high accuracy, but there’s
a risk of overfitting to specific signer characteristics, which
limits generalizability to new signers not included in the
training set.In Signer-Indep assessment, CSLR models are
trained on one set of signers and then evaluated on an
additional set of signers that were not seen during training.
This protocol ensures systems can generalize across diverse
signing styles and appearances, which is essential for creating
inclusive and adaptable CSLR systems. The Unseen-Sent
evaluation assesses the system’s capability to recognize sign
language sentences that were not part of the training dataset.
This challenging evaluation simulates real-world scenarios
where CSLR systems must accurately interpret novel signs
or sentences, providing crucial insights into their robustness
and real-world applicability.

The majority of state-of-the-art (SOTA) models rely sig-
nificantly on a limited number of benchmark datasets, even
with the widespread use of CSLR techniques. These in-
clude the CSL dataset [6], which is used for Chinese sign
language (CSL), and the RWTH-PHOENIX-Weather-2014
(Phoenix2014) dataset [7], which is used for German sign
language (GSL). Other sign language datasets exist but are
not used much in contemporary research, such as Arabic
(ArSL) [8], Greek (GrSL) [9], and Russian (RSL) [10].
Continuous Sign Language Recognition (CSLR) has gained
significant attention from researchers because deep learning
(DL) has advanced so quickly over the past ten years. A
large portion of studies in this area, about 70%, have been
issued within the past seven years, indicating the increasing
interest and progress in CSLR. However, CSLR systems still
have significant scope for enhancement in relation to speech
recognition systems. Existing CSLR systems frequently lack
sufficient vocabulary and are unsuitable for use in real-time
applications or for business use.

The objective of this study is to provide an extensive
evaluation of the literature that highlights the advancements
in CSLR and points out areas that require more investigation.
The following are this review’s main goals:

• Provide an in-depth understanding of CSLR, highlight-
ing its challenges and problem description.

• Present a comprehensive summary of the datasets and
techniques developed throughout the previous 20 years.

• Analyze different characteristics of CSLR, including
techniques, features, input channels, and data collection
approaches.

• Determine the present shortcoming in the literature, and
make recommendations for prospective future studies to
strengthen the validity and usefulness of CSLR frame-
works.

II. CONTINUOUS SIGN LANGUAGE RECOGNITION
Continuous Sign Language Recognition (CSLR) involves
identifying and understanding sign language signals per-
formed in an unbroken stream, without pauses between signs.
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This field has gained significant importance due to the grow-
ing number of individuals with hearing deficiencies whose
main source of communication is sign language. CSLR is
a sequence-to-sequence task, aiming to show a series of
frames x = {x1, x2, . . . , xn} to a sequence of glosses y =
{y1, y2, . . . , ym}, where x and y are not necessarily equal.
The generated glosses must align in order with the signs
shown in the video. So, the challenge involves forecasting
the accurate order of glosses based on a video depicting a
series of gestures. This task encompasses two main steps:
establishing time boundaries from loosely labeled video clips
and recognizing the signs presented

FIGURE 2. A General framework for Continuous Sign Language Recognition
(CSLR).

AThe CSLR framework for applying deep learning has
three main modules: spatial, temporal, and alignment, as
shown in figure 5. The spatial module extracts visual features
and physical time from the video input, captures the sequen-
tial patterns of the sign gestures, and the alignment module
matches the sequences with gloss annotations, producing a
structured output of glosses [11]. The performance evaluation
of Continuous Sign Language Recognition (CSLR) is pri-
marily conducted through the assessment of the Word Error
Rate (WER). This metric quantifies the number of deletions,
insertions, and substitutions required to align the predicted
label sequence with the actual label sequence. A lower WER
indicates a higher degree of accuracy. Traditionally, accuracy
is quantified by calculating the ratio of correctly identified
signs to the total number of signs present within a given
sentence. Furthermore, the Bilingual Evaluation Understudy
(BLEU) metric can serve as a valuable supplementary tool
for assessing CSLR systems by enabling the comparison of
n-grams from generated outputs against those derived from
reference sentences, although BLEU is primarily intended for
translation evaluations.

The tasks of Sign Language Translation (SLT) and Cross-
Modal Sign Language Recognition (CSLR) are intercon-
nected in the fields of computer vision and Natural Language
Processing (NLP). CSLR systems output a sequence of sign
labels that represent the order of signs demonstrated in the
video, which may not align with the grammatical structure of
natural language sentences [4]. Conversely, SLT builds upon
the output of the Conversational Sign Language Recognition

(CSLR) system by converting the identified signs into spoken
or written natural languages, such as English. Effective SLT
necessitates a comprehension of the context, grammar, and
semantics of sign language, which renders it a more complex
challenge compared to CSLR. SLT is combined with CSLR
through two primary methods: sign2gloss2text [12], [13] and
sign2text [14]. In the sign2gloss2text method, a CSLR model
produces intermediate glosses, The SLT system employs spe-
cific methodologies to generate coherent and grammatically
accurate text in the target language. Conversely, the sign-to-
text approach eliminates the glossing phase, opting instead to
translate expressions from sign language directly into natural
language text.

TABLE 1. Input Modalities for Continuous Sign Language Recognition
(CSLR).

Modality Description References
RGB High-res gesture representation;

feature extraction; often combined
with depth and skeleton.

[14, 15, 16, 17, 18, 6, 19, 20]

Skeleton Encodes joints; no background re-
moval needed; effective in cluttered
scenes.

[21, 24, 25, 26, 27, 28, 29]

Depth Shows distance from objects; en-
hances RGB data representation.

[30, 31, 32, 33, 34, 35]

Pose Key Points Models joints for GCNs; can be
heatmaps; identifies key regions.

[13, 28, 36, 37, 38, 39]

Optical Flow capture motion patterns; improves
accuracy with RGB data.

[40, 41, 32]

A. INPUT MODALITIES FOR CONTINUOUS SIGN
LANGUAGE RECOGNITION (CSLR)
Researchers have employed three primary input modalities
for Continuous Sign Language Recognition (CSLR): RGB,
depth, and skeleton information. RGB is the most commonly
used modalityBecause of its superior clarity and intricate
visual representation of sign movements [15]–[21], progress
in computer vision and deep learning (DL) methodologies
has facilitated the extraction of valuable features from RGB
images. While RGB data serves as the principal modality, the
integration of depth and skeletal information has the potential
to enhance the performance of CSLR.

Skeletal or human posture information is the second most
commonly employed modality in CSLR research. This type
of data captures joint trajectories to create an abstract skeletal
depiction of the signer, removing the necessity for back-
ground elimination and hand tracking, which are typical
pre-processing steps for RGB images. Posture features have
the capability to effectively address occlusions and clut-
ter present in RGB images. Skeleton data can be acquired
through specialized sensors or extracted from RGB imagery.
Kinect and Leap Motion Controller (LMC) are common
devices for capturing skeleton data. Recent high-accuracy
pose estimation models like MediaPipe [22], OpenPose [23],
and MMpose [24]provide more detailed pose features than
sensor-based systems and are lightweight enough for mobile
applications. OpenPose is particularly popular in CSLR liter-
ature [25]–[30].
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Depth information, which indicates the distance between
objects in an image and the capturing device,is often used
alongside RGB data to provide a more comprehensive repre-
sentation of sign gestures. Although its use has declined in
recent years, depth data remains a valuable complementary
modality in some CSLR studies [31]–[34]. Recent research
continues to explore its potential, as seen in recent studies
from 2023 and 2024 [35], [36].

CSLR researchers have employed various methods to uti-
lize estimated human pose key points. For instance, [29]
modeled the key points as a graph and processed through
a Graph Convolutional Network (GCN), while others [37]
used raw 3D pose coordinates. Another approach involved
representing key points as heatmap images to reduce noise
[14]. Some researchersutilized pose data to detect facial
and hand areas, generating cropped images for vision-based
recognition systems [38]–[40]. In addition to these primary
modalities, optical flow has been used to describe motion
patterns in consecutive frames. Studies have shown that com-
bining optical flow with RGB data can improve recognition
accuracy by capturing dynamic gesture movements more
effectively [41]–[43].

FIGURE 3. A General framework for Continuous Sign Language Recognition
(CSLR).

These studies underscore the importance of combining
multiple modalitiesto improve the performance and re-
silience of CSLR systems. The combination of RGB, depth,
and skeletal data helps in capturing the complex dynamics
of sign language more effectively, leading to more accurate
recognition outcomes.

III. ACQUISITION DEVICES
Sign language recognition (SLR) approaches can be cate-
gorized based on the vision- orVision-based approaches use
cameras to gather data, depicting signs as videos or images,
while data acquisition can also be achieved through sensor-
based devices. Studies have demonstrated the effectiveness
of vision-based methods in recognizing sign language us-
ing deep learning techniques such as convolutional neural
networks (CNNs) [9], [12], [20], [43]–[51]. The use of
advanced camera systems like the Microsoft Kinect, which
provides RGB, depth, and skeleton data, has enabled the
capture of detailed hand and body movements [52]–[56].
Vision-based approaches have also been enhanced through
the integration of transfer learning and multi-modal systems

[57]–[60]. Methods utilizing sensors incorporate tools like
data gloves and armbands equipped with sensors to track
and gather sign language information [61]–[64]. In contrast,
vision-based methods utilize cameras to capture signs as
images or videos. Additionally, sensor-based methods uti-
lize data gloves and armbands for tracking and recording
sign data. The advantage of sensor-based Sign Language
Recognition (SLR) techniques is that they eliminate the
requirement for a picture pre-processing process, leading
to lower computational demands.Before 2007, most stud-
ies preferred collection of data through sensors due to the
challenges of vision-based recognition. which often required
Comprehensive feature extraction and faced challenges such
as occlusions, varying illumination, complex backgrounds,
and different viewpoints. However, sensor-based approaches
have high costs and practical limitations, Since the signer is
required to wear the sensors, their use in practical situations
is limited. In contrast, vision-based methods are more afford-
able and user-friendly, with cameras being widely available
in households. According to a survey, 82% of studies on
Continuous Sign Language Recognition (CSLR) used vision-
based approaches, while 18% employed sensor-based meth-
ods

A. SENSOR-BASED METHODS
There have been various studies recognizing sign language
through the use of sensors such as sensor gloves, wristbands,
and smartwatches. Examples of sensor devices used to rec-
ognize sign language performed by users are illustrated in
Figure N. According to Table N, which classifies sensor-
based CSLR studies [65]–[72] it can be observed that many
of these studies relied on gloves equipped with sensors to
recognize the user’s sign language. Recently, researchers
studying sensor-based CSLR have been exploring methods
to extend from wired systems to wireless devices using
WiFi or Bluetooth signals [73].This section comprehensively
discusses and analyzes sensor-based devices used in CSLR.

a: Data Gloves
Sensors affixed to the gloves are utilized to monitor move-
ments. The information provided by these sensors encom-
passes the movements, orientation, and positional data of the
user’s hands and fingers.Flex sensors on each finger of the
glove calculate the joint flexion, and sensors located in the
glove’s centre calculate the hand’s position and orientation.
The reliability of the data provided by the data glove can vary
significantly depending on how well the glove size matches
the user’s hand size. Initial research [74] collected CSLR
data using sensors attached to a single glove; however, due
to the experimental limitation that most sign languages are
two-handed, subsequent studies integrated data collection for
both hands. The Cyberlove, like the Data Glove, is another
type of device that tracks the user’s hand using sensors.
Several studies have used the Cyber Glove for CSRL [65],
[67], [68], [75] . The Cyber Glove offers improved hand-
tracking accuracy and convenient attachment compared to the
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Data Glove, but it has the disadvantage of being high-cost for
commercial use. The DG5 VHand is a low-cost alternative
that includes multiple flex sensors and a 3D accelerometer
to detect the orientation and movement of the hand. This
device has demonstrated its utility in several CSLR systems
[69], [72], [76]. In addition to the aforementioned devices,
due to the high cost associated with actual application fields,
custom sensor gloves have been developed for experimental
and research purposes at a lower cost.These custom sensor
gloves are designed to replicate the functionality of high-end
devices while being accessible for academic and experimen-
tal use. They integrate advanced sensor technologies, such as
strain sensors and 3D-knitted electronics, to provide accurate
hand gesture recognition without the financial burden of
commercial products. Researchers have utilized these gloves
in various fields, including sign language translation, post-
operative rehabilitation, and virtual reality, to enhance the
interaction between humans and machines. The adaptability
and lower cost of these custom gloves make them ideal for
testing and prototyping new interaction methods, enabling a
broader range of applications in both healthcare and technol-
ogy sectors [77]–[81].

FIGURE 4. Types of sensor devices applied in the collection of sign language
data (a) Myo armband [82] (b) Data gloves [81] (c) Ultraleap Motion [83] (d)
SoundWatch [84].

b: Smartwatches and Armbands
Smartwatches, as embedded-system wrist-worn wearable de-
vices, are designed to capture users’ biometric signals, infer
health conditions, and provide timely notifications. These
smartwatches are equipped with sensors for detecting physi-
cal activities, such as 3D accelerometers and 3D gyroscopes,
enabling the development of various smart applications [85].
However, similar to how spoken languages exhibit differ-
ences in articulation, pronunciation, and intonation among
speakers, sign language users also demonstrate significant
variations in their movements, such as elevation and rotation.
These variations can lead to substantial differences in the
data collected. Consequently, sensors like accelerometers and
gyroscopes included in smartwatches have limitations when
used for continuous sign language recognition (CSLR) [86].

Recent research has explored various approaches to ad-
dress these challenges. For example, [87]proposed a frame-
work for translating American Sign Language (ASL) video
data into corresponding IMU data to enhance CSLR perfor-
mance . Similarly, Caballero-Hernandez et al. (2023) devel-
oped an IoT-based system for translating Mexican Sign Lan-
guage (MSL) into Spanish using machine learning, achieving

high accuracy in gesture recognition [88]. Gu introduced
a method for collecting an ASL dataset using a wearable
inertial motion capture system, achieving high accuracy in
sign language recognition and translation [89].

Additionally, Carlsson and Samuelsson developed an ap-
plication for the Apple Watch that translates Swedish sign
language into text and sound. This application leverages
the watch’s accelerometer, gyroscope, and rotation rate sen-
sors, employing machine learning models to achieve signif-
icant accuracy in both letter and word detection [90][6].Re-
searchers also the use of smartwatches for augmentative and
alternative communication (AAC), focusing on discreet and
effective communication for individuals with language im-
pairments [91].In addition to sensor-equipped gloves, band-
type devices with sensors that can be attached to the arm are
also another option for capturing user movements [82], [92],
[93]. Electromyography (EMG) sensor [82], which detect
muscle movements, can be attached to these arm bands
to capture specific movements by detecting muscle activity
during the performance of these movements. However, EMG
sensors can be influenced by physiological factors such as
body temperature, experimental environment, volume, and
body fluid levels, making it difficult to obtain accurate data
due to noise when detecting adjacent muscle activity [92].

c: Motion Capture Devices
Sensors worn directly on the user’s body must be worn
while performing sign language, which presents limitations
in terms of convenience and usability. Motion capture tech-
nology, which can capture user movements without the need
for wearing cumbersome sensors, has been proposed to ad-
dress these issues. The Leap Motion Controller (LMC) is a
motion capture device that uses two infrared (IR) cameras to
capture the positional information of a person’s hands and
fingers. LMC has been used for CSLR in studies by Lang
et al. [94], Fang et al. [25], Mittal et al. [28], and Akkar
et al. [95]. However, LMC can fail to accurately capture
hands when performing specific actions at certain angles. For
instance, if a finger that needs to be captured at a specific
angle is obscured by another finger, LMC cannot detect the
obscured finger, making it difficult to determine whether
the finger is bent or extended, resulting in a confused state.
Moreover, while LMC is not directly connected to the body
of users, it captures the user’s body through infrared cameras,
requiring the user to be within the camera’s effective range.
Since infrared cameras use a wide field of view to capture the
target, there can be noise caused by surrounding objects or
other people. To mitigate these issues, LMC should be used
in an isolated environment to avoid capturing other objects
and people, and additional preprocessing is necessary for data
that includes noise.

d: Signal-based methods.
Gestures in sign language can be captured by analyzing
the impact on surrounding Wi-Fi signals. Zhang et al. [73]
utilized the Channel State Information (CSI) of Wi-Fi signals
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to collect American Sign Language sentences using a laptop
as a transmitter and three laptops as receivers. The experi-
menter performed sign language between the transmitter and
receiver laptops, achieving an average recognition accuracy
of approximately 70%. However, the experimenter had to
be positioned near the receivers and within a maximum
range of 3 meters, which presents environmental limita-
tions. Meng et al. [96] argued that recent studies on Sign
Language Recognition primarily focus on three categories:
computer vision-based, wearable sensor-based, and Wi-Fi
signals-based methods. These methods are not user-friendly
for everyday use, have significant noise, and are suscepti-
ble to signal interference. To overcome these limitations,
Meng proposed using radio frequency identification (RFID)
readers and tags with directional antennas, which do not
interfere with each other’s signals, to utilize radio frequency
signals for sign language recognition. The proposed system
demonstrated a high recognition accuracy ranging from 96%
to 98.11%.The generalizability of the proposed framework
has not been assessed in a signer-neutral context. An al-
ternate method involves using Doppler radar to recognize
sign language by evaluating the frequency changes of signals
reflected from the target to calculate velocity data. This radar
can achieve higher accuracy by overcoming basic noise in
the detected movements. Ye et al. [97] used micro-Doppler
signatures to recognize sign language, with the experimenter
performing movements within 10 cm of the radar. Unlike
previous studies, the data collected with this device was
limited to the signal hand, restricting the system to signal
hand sign language.

B. VISION-BASED DATA
Vision-based continuous sign language recognition (CSLR)
uses video footage as the main source for capturing signing
gestures [98]. High-quality cameras with a high frame rate
are essential to accurately record the fast and intricate move-
ments of sign language. In many households,Webcams and
smartphone cameras offer a practical solution for capturing
sign language. The popularity of high-resolution, 4K cameras
in the latest smartphones has increased among researchers for
capturing detailed sign language gestures, as demonstrated
by Mukushev et al. [10]. Additionally, the Microsoft Kinect
is widely used due to its ability to provide RGB, depth, and
skeleton data through its dual cameras and infrared sensor.
Researchers like Huang et al. [6] and Jebali et al. [32] have
extensively used this combination of data types to develop
comprehensive multi-modal CSLR datasets. Kagirov et al.
[99], Ganesan et al. [100],Aloysiuset al. [101],Srivastava et
al. [102] and Padmavathi et al. [103] have also contributed to
the literature, by utilizing these technologies.

C. SENSOR-BASED VS. VISION-BASED METHODS
Sensor-based methods utilize specialized hardware such as
data gloves, EMG sensors, or inertial measurement units to
capture precise hand movements and muscle activity. These
systems excel in controlled environments where occlusion

or background interference is minimal. However, their high
costs and the requirement for wearable devices often limit
their scalability for broader adoption. For example, bending
sensor gloves capture the degree of finger curvature effec-
tively but struggle to differentiate gestures with similar cur-
vature patterns. In contrast, vision-based systems use cam-
eras to acquire RGB or depth data, enabling non-intrusive,
scalable solutions. These systems benefit from widespread
hardware availability and advancements in deep learning
for gesture recognition. However, they often require large
datasets and face challenges such as occlusions, variable
lighting, and background clutter, which can reduce their per-
formance in uncontrolled environments [104], [105], [106].

D. HYBRID APPROACHES
Hybrid methods combine sensor-based and vision-based
modalities, leveraging the strengths of both to address their
individual limitations. For instance, a system that fuses bend-
ing sensor data with RGB video has been shown to improve
recognition accuracy, increasing performance from 68.34%
with vision-only data to 84.13% when both modalities are
integrated [104]. Another example involves the combination
of MediaPipe holistic landmarks with LSTM models and
YOLOv6, achieving 96% accuracy for static gestures and
92% for continuous gestures, demonstrating the effectiveness
of multimodal fusion in recognizing complex sign sequences
[107]. Additionally, error-elimination techniques have been
implemented in hybrid systems, such as merging data from
gloves and cameras to compensate for inaccuracies inherent
in each modality, further enhancing robustness in dynamic
and uncontrolled settings [105] [106]. These approaches have
also found applications in AR and VR systems, particularly
for immersive sign language learning environments.

IV. METHOD AND MATERIAL
A. CONTINUOUS SIGN LANGUAGE RECOGNITION
(CSLR) DATASETS
The development of an intelligent Sign Language Recogni-
tion (SLR) system depends heavily on the presence and use
of well-annotated datasets. SLR datasets are commonly clas-
sified as datasets for isolated and continuous sign language.
Isolated sign datasets typically have the graphical informa-
tion like videos or images capturing separate signs. These
datasets give importance to discrete signs without context
or continuous conversation and are used for training and
evaluating systems that recognize isolated signs. On the other
hand, CSLR data feature signs performed in a continuous
flow, forming sentences without breaks and are essential for
the development of Continuous Sign Language Recognition
(CSLR) systems.

Isolated sign datasets are increasingly gaining prominence
in various fields because recording isolated signs is sim-
pler and is not essential for ex- tensive sign language ex-
perience. Continuous signing, however, is more complex
and requires skilled signers. Due to the scarcity of CSLR
datasets, scholars usually used their datasets of small size
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prepared by themselves for training and evaluation, Several
studies emphasize that larger datasets improve model gen-
eralization. The RWTH-PHOENIX-Weather-2014-T dataset,
for instance, has been widely used to enhance recognition
accuracy. However, empirical studies show varying impacts
of dataset size on generalization. For example, Koller et
al. [108] observed diminishing returns in performance gains
beyond a certain dataset size, indicating that simply in-
creasing data may not always be beneficial. Additionally,
data enhancement methods, such as augmentation techniques
(e.g., frame interpolation, random cropping, and motion
blurring), impact model performance differently. Wang et
al. [109] demonstrated that applying temporal augmenta-
tion significantly improved model robustness, while spatial
transformations had minimal impact. These findings suggest
that not all data enhancement methods contribute equally
to generalization, warranting a more detailed analysis of
augmentation strategies in CSLR. posing challenges for inter-
model performance evaluation. Several crucial factors should
be consid- ered for SLR datasets:

• Vocabulary Size: The dataset should have a broad vo-
cabulary to enable application across various domains.

• Number of Signers: Including a diverse range of sign-
ers aids in the creation of signer-independent CSLR
systems. Variability in appearance, signing speed, and
handedness contributes to the development of robust
models that generalize well to new signers.

• Number of Samples per Sign or Sentence: It’s es-
sential to have an adequate number of samples, When
signers are few, it’s important to improve variety to
avoid overfitting.

• Dynamic Signs: In contrast to static signs, which are
frequently used for alphabet letters or signs not present
in the language. Additionally, the dataset must incorpo-
rate dynamic signs that require movement.

With the previously mentioned standards, CSLR datasets
must contain a significant number of naturally performed
sentences covering a diverse vocabulary. These sentences
should flow naturally without undue pauses or explicit seg-
mentations between signs, as the model is expected to au-
tomatically handle alignment and segmentation. The dataset
must encompass a variety of sign formats, including static,
dynamic, and finger-spelled signs, as well as sentences of
varying lengths. Furthermore, gloss annotations are required
to train the algorithm to detect sentences in sign language. In-
cluding natural language translations for each sentence would
also be beneficial, as it would enable further investigation
into the linguistic features of sign communication and the
development of automated translation frameworks designed
to convert sign language expressions into verbal language.

Dataset size plays a critical role in determining the
model’s ability to generalize effectively to unseen data.
Larger datasets, such as the RWTH-PHOENIX-Weather-
2014-T dataset [7], typically contain diverse examples and
are better suited for training deep learning models. However,

creating large datasets is resource-intensive. To address lim-
itations posed by small datasets, researchers often employ
data augmentation techniques such as flipping, cropping,
scaling, and introducing noise. Additionally, synthetic data
generation using Generative Adversarial Networks (GANs)
and virtual signer models has shown promise in mimick-
ing real-world signing conditions, enhancing generalization
while minimizing annotation costs [42, 60]. However, over-
reliance on synthetic data risks introducing biases or artifacts
that may not align with natural signing, underlining the need
for a balanced approach

A thorough comparison of publicly available Continuous
Sign Language Recognition (CSLR) datasets is provided in
Table 3, which evaluates the datasets based on a number of
criteria,including sign language, vocabulary size, sentence
count, signer count, modality, and domain. The dataset that
we used includes coverage for the following languages: Ara-
bic, Greek, Russian, Chinese, German, and American. Tran-
sitioning from controlled to real-world environments intro-
duces significant challenges for CSLR systems. Controlled
datasets like the CSL dataset [6] provide uniform lighting,
consistent backgrounds, and signer postures, ensuring data
quality but often lack variability. Real-world datasets, such
as FluentSigners-50 [10], capture signing in diverse environ-
ments with varying lighting, dynamic backgrounds, and emo-
tional expressions, enabling better generalization. Domain
adaptation techniques and multi-modal datasets that combine
RGB, depth, and infrared data are crucial to bridge this gap.
For example, Scene-PHOENIX [104] enriches realism by
incorporating artificial backgrounds, and adversarial training
methods have been proposed to simulate environmental vari-
ability, improving robustness against real-world complexities
[105].

Figure 5 illustrates the distribution of CSLR research
across various sign languages, which illustrates the preva-
lence of these languages in the field. The Phoenix2014
dataset, which focuses on German Sign Language (GSL),
boasts the largest vocabulary, comprising approximately
2048 signs [7]. In contrast, both the CSL dataset [6] and
the FluentSigners-50 dataset [10]feature the highest num-
ber of signers, with 50 signers each. Over time, there has
been an increase in the number of video samples, with the
FluentSigners-50 dataset [10] currently holding the largest
collection, totaling about 43,250 videos. The SIGNUM
dataset [110], created in 2007, contains around 19,000 GSL
sentences recorded in a controlled environment across gen-
eral domains.In 2012, Forster et al. introduced the RWTH-
PHOENIX-Weather-2012 [104], which was the largest pub-
licly available dataset for CSLR at that time, specifically
for German Sign Language (GSL). This dataset features a
vocabulary of around 1,389 signs and includes 6,841 sen-
tences. This dataset was expanded in 2014 (Phoenix2014)
[7], and the vocabulary size is doubled. Due to its real-
life weather forecast recordings, the Phoenix2014 dataset
presents challenges. It has an out-of-vocabulary (OOV) rate
of 0.54%, with 30% of the vocabulary being represented
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TABLE 2. Summary of Acquisition Devices for Continuous Sign Language Recognition (CSLR).

Category Description References
Vision-based Methods Cameras capture signs as videos or images; effective with CNNs and advanced systems

like Kinect; integrates transfer learning and multi-modal systems.
[9, 42, 43, 44, 11, 45, 46, 19, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59]

Sensor-based Methods Devices like data gloves, wristbands, and smartwatches track sign language; bypass image
pre-processing, reducing computational demands; high costs and practical limitations;
examples include Data Glove, Cyber Glove, DG5 VHand, and custom gloves.

[60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 76, 77, 78, 79, 80]

Motion Capture Devices Capture movements without sensors; examples include Leap Motion Controller (LMC)
with infrared cameras; issues with accuracy at certain angles and potential noise.

[91, 24, 27, 92]

Signal-based Methods Analyze impacts on Wi-Fi signals or use radio frequency; examples include Wi-Fi CSI,
RFID systems, and Doppler radar; challenges with signal interference and environmental
limitations.

[72, 93, 94]

Vision-based Data Uses video footage with high-quality cameras; popular technologies include webcams,
smartphones, and Kinect; recent research utilizes high-resolution cameras and multi-modal
datasets.

[95, 10, 7, 31, 96, 97, 98, 99, 100]

only once in the training dataset. make it difficult to use.
Additionally, the dataset includes Phoenix2014SI, which is
a signer-independent split, while signer-5 is not incorporated
in the testing phase. The RWTH-PHOENIX-Weather-2014-
T (Phoenix2014T) dataset features enhanced annotations,
including gloss and German translations, which apply to both
Continuous Sign Language Recognition (CSLR) and Sign
Language Translation (SLT). Improvements have also been
made to the dataset’s annotations and sentence segmentation.

The CSL dataset [6], released in 2018, has been widely
used in recent research. Created in a controlled laboratory
setting, It comprises approximately 100 sentences captured
from 50 signers. The dataset is provided in two versions:
The CSL dataset comprises two distinct splits for evaluation
purposes. CSL Split I is designed for signer-independent
assessment and features videos from 40 unique signers in
the training set, as well as 10 signers in the testing set. In
contrast, CSL Split II is focused on testing previously unseen
sentences, encompassing 6% of sentences that were not uti-
lized during training. Despite the involvement of numerous
signers, the CSL dataset is limited to 100 unique sentences
and 178 distinct signs.To overcome these limitations, a new
dataset called CSL-Daily [40]was introduced.Ten signers
recorded 2000 signs and 6598 words in a lab setting for
this dataset.FluentSigners-50 [10] was not prepared in a
controlled environment, in contrast to other datasets. Rather,
it used public to record movies in diverse real-world environ-
ments with a variety of gadgets, including webcams and cell-
phones. This variance in recording settings can help CSLR
systems become more generalizable and perform better at
identifying everyday sign movements.

In a comparable way, the Scene-PHOENIX dataset [111]
added several artificial backgrounds to the Phoenix2014
dataset in order to improve the realism of CSLR. This method
can be used to generate more realistic data from other lab-
recorded CSLR datasets. Additionally, some datasets (Duarte
et al. [112]; Huang et al. [6]; Luqman [8]) provide depth
and skeleton information alongside RGB data. By providing
a more diverse range of features for models to train from,
multi-modal data sources allow for the extraction ofenhanced
distinguishing characteristics that can better represent the
nuances of sign language and enhance recognition perfor-

mance. Fig. 3 shows examples of several dataset types,
such as lab-created (CSL), real-world (Phoenix2014), and
crowd-sourced (FluentSigners-50).The creation of multiple
significant datasets in recent years, each intended to address
distinct sign language processing issues, has greatly helped
the area of Continuous Sign Language Recognition (CSLR).
The King Saud University Saudi-SSL (KSU-SSL) dataset is
notable for being the biggest Saudi Sign Language (SSL)
dataset, with 293 signs, 33 signers, and 145,035 samples
spread across 10 domains [113]. Intending to promote com-
munication between the deaf and hearing communities, this
dataset serves as a foundation for CSLR research in Arabic
sign languages.

FIGURE 5. Sample images from the CSLR dataset illustrating diverse hand
gestures and signs performed by different individuals.

A significant advancement in the field is the Continuous
Word-Level Sign Language Recognition technology..Dataset
created for Indian sign language [114], containing 80 static
signs. This dataset, coupled with advanced machine learning
models like YOLOv4 and Support Vector Machines (SVM),
enables highly accurate real-time gesture recognition.Zhou et
al. [115] introduced the CSL-Daily dataset, a large-scale Chi-
nese Sign Language corpus focused on daily life scenarios,
covering topics like family life, medical care, and shopping.
The dataset includes videos recorded by 10 native signers,
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with annotations for over 2,000 sign glosses and correspond-
ing spoken language translations. The dataset is captured
in 1920×1080 resolution at 30 FPS, and a sign dictionary
(SignDict) is also provided for tasks such as sign spotting
and isolated sign language recognition (SLR).Starner et al.
[116]introduced the PopSign ASL v1.0 dataset, comprising
over 210,000 examples of 250 isolated American Sign Lan-
guage (ASL) signs, collected via smartphone cameras from
47 Deaf signers, with the aim of advancing real-time sign
language recognition in educational gaming

Further expanding the diversity of sign language resources,
the LSA64 Dataset [117] offers 3,200 videos of 64 dis-
tinct signs from Argentinian Sign Language (LSA), recorded
by 10 subjects.The use of colored gloves enhances hand-
tracking and segmentation, making this dataset valuable for
machine learning tasks focused on recognition. Additionally,
YouTube-ASL [124] presents a large-scale, open-domain
dataset of American Sign Language (ASL), comprising over
984 hours of video and featuring more than 2,500 unique
signers. This dataset provides a significant boost to ASL-
to-English translation systems, offering a large corpus for
pretraining and evaluation, including zero-shot translation
capabilities. Collectively, these datasets are invaluable for
advancing CSLR research, facilitating more accurate and
inclusive communication technologies for deaf communities
worldwide.

B. CSLR APPROACHES
The literature on continuous sign language recognition
(CSLR) extensively explores different techniques, which can
be broadly categorized into traditional methods and deep
learning (DL)-based methods. Traditional techniques involve
manual feature extraction from sign gesture videos or images,
while DL-based methods autonomously acquire the required
features directly from the data, resulting in a more flexible
and adaptive feature representation.

1) Deep learning approaches
Since 2015, the majority of research in Conversational
Speech Language Recognition (CSLR) has shifted from
hand-crafted features to a focus on deep learning methods
for feature extraction. The advent of Convolutional Neural
Networks (CNNs) led researchers to employ deep CNN
architectures for improved frame-level feature extraction,
resulting in significant improvements in CSLR model per-
formance. These extracted features were then utilized in
various temporal learning models, such as Hidden Markov
Models (HMM) and Recurrent Neural Networks (RNN).
Recently, there has been a growing interest in exploring alter-
native techniques for CSLR, including Graph Convolutional
Networks (GCN) and Transformers.We organize and assess
CSLR-based research publications on popular architectures,
including CNN-HMM, in the subsections that follow. [47],
[126], [127], CNN-RNN [25], [42], [92], [128], Transformer
networks [20], [129], [130] 3D CNN [43], [131], [132],
and GCN [29]. While traditional deep learning models have

shown strong performance in CSLR, their computational
complexity can hinder real-time applications. Recent studies
have explored lightweight architectures to address this limi-
tation.Recent advancements have explored the feasibility of
lightweight models for real-time Continuous Sign Language
Recognition (CSLR), demonstrating that efficient architec-
tures can achieve low-latency inference while maintaining
competitive accuracy. For instance, Liu et al. [133] proposed
RealTimeSignNet, a lightweight 3D deep learning network
designed specifically for real-time sign language recognition,
optimizing computation cost without compromising recogni-
tion accuracy (Liu et al., 2025). Similarly,Mnif et al. [134]
introduced a lightweight CNN model for hand gesture clas-
sification, achieving rapid inference (10.2s training time) and
efficient edge computing performance, proving the viabil-
ity of lightweight architectures in CSLR applications.These
studies provide empirical evidence supporting the claim that
lightweight models and computationally efficient methods
can enhance real-time CSLR performance. However, despite
these promising findings, further comparative analyses across
different architectures are necessary to fully understand the
accuracy-speed trade-off in real-world settings. Future work
should benchmark various lightweight models under stan-
dardized real-time constraints to solidify their role in CSLR
applications.

Table 8 provides a overview of the examined deep
learning-based CSLR methods.

2) CNN and RNN
The challenges associated with Hidden Markov Models
(HMMs) in effectively capturing the broader context of sign
language sentences highlight an opportunity for improve-
ment. This recognition has led to the implementation of
Recurrent Neural Networks (RNNs) in Continuous Sign Lan-
guage Recognition (CSLR), enhancing the model’s ability
to interpret complex sign language expressions more accu-
rately. RNNs, adept at handling long-range dependencies in
sequences, have introduced new capabilities in this field. The
introduction of Long Short-Term Memory (LSTM) networks
has been instrumental in addressing challenges such as the
problem of vanishing gradient in conventional RNNsThe use
of bidirectional RNNs, in particular bidirectional LSTMs
(BLSTMs), is noteworthy has enabled bidirectional infor-
mation flow in a sequence, allowing for the modeling of
more intricate relationships in CSLR. The pioneering work
of [135] introduced the application of BLSTMs to CSLR,
proposing a CNN-BLSTM model

combined with Connectionist Temporal Classification
(CTC).Recent research has focused on various strategies to
enhance the performance of CNN-BLSTM models. One no-
table approach is the introduction of SubUNets by Camgoz et
al. [137]. This methodology demonstrates the effectiveness of
training two SubUNets utilizing both segmented hand images
and complete-frame visuals, significantly improving the per-
formance of Continuous Sign Language Recognition (CSLR)
[151] . . [138] presented an iterative training technique to
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TABLE 3. Overview of Sign Language Datasets.

Dataset Year Language Vocab. Participants Instances Modality Domain
Purdue RVL-SLLL [118] - ASL 104 14 2,576 RGB Emergency
RWTH-BOSTON-104 [119] 2007 ASL 104 3 843 RGB General Use
SIGNUM [110] 2008 German 450 25 19,500 RGB General Use
Assaleh [120] 2010 Arabic 80 1 760 RGB General Use
RWTH-PHOENIX-Weather [121] 2012 German 1,081 7 2,640 RGB Weather
RWTH-PHOENIX-Weather-2014 [7] 2014 German 2,048 9 6,841 RGB Meteorology
RWTH-PHOENIX-Weather-2014-T [45] 2018 German 1,066 9 8,257 RGB Meteorology
CSL [6] 2019 Chinese 178 50 25,000 RGB, Depth, Skeleton General Use
TheRuSLan [99] 2020 Russian 164 13 N/A RGB, Depth Supermarket
ArSL for Deaf Drivers [122] 2021 Arabic N/A 3 N/A RGB Driving
LMSLR [29] 2021 Chinese 298 10 10,000 Skeleton General Use
Continuous GrSL [9] 2021 Greek 310 7 10,295 RGB, Depth Public Services
CSL-Daily [115] 2021 Chinese 2,000 10 21,000 RGB Daily Life
How2Sign [112] 2021 ASL N/A 11 2,456 RGB Various
ArabSign [8] 2022 Arabic 95 6 9,335 RGB, Depth, Skeleton General Use
FluentSigners-50 [10] 2022 Kazakh-Russian 278 50 43,250 RGB General Use
ASL-Homework [123] 2022 ASL N/A 45 935 RGB, Depth General Use
Scene-PHOENIX [111] 2022 German 2,048 9 6,841 RGB Weather
KSU-SSL [113] 2023 Saudi Sign Language 293 33 145,035 RGB Multiple Fields
CSL-Daily [115] 2023 Chinese 2,000 10 21,000 RGB Daily Life
LSA64 [117] 2023 Argentinian Sign Language 64 10 3,200 RGB General Use
PopSign ASL v1.0 [116] 2024 ASL 250 47 210,000 RGB Educational
YouTube-ASL [124] 2024 ASL N/A 2,500 984 hours RGB Translation
ArSL Multimodal Dataset [125] 2024 Arabic N/A 2 262 RGB, Audio Religious

TABLE 4. Summary of Deep Learning-based Methods for CSLR.

Year Study Approach Dataset
2012 Gweth et al. [136] MLP-HMM SIGNUM
2017 Koller et al. [135] CNN-BLSTM-HMM Phoenix2014 SI
2017 Koller et al. [135] CNN-BLSTM-HMM SIGNUM
2017 Camgoz et al. [137] CNN-BLSTM Phoenix2014
2017 Cui et al. [138] CNN-BLSTM Phoenix2014
2018 Huang et al. [6] 3D-CNN with Attention CSL Split I
2019 Cui et al. [42] CNN-BLSTM SIGNUM
2019 Zhang et al. [129] 3D-CNN-Transformer Phoenix2014
2019 Pei et al. [139] 3D-CNN-BGRU Phoenix2014
2019 Zhou et al. [140] 3D-CNN-GRU Phoenix2014
2019 Wei et al. [141] W3D-CNN-BLSTM with N-Grams CSL Split II
2020 Pu et al. [128] CNN-BLSTM Phoenix2014 SI
2020 Cheng et al. [142] Fully Connected Network (FCN) CSL Split I
2020 Papastratis et al. [49] CNN-1D-CNN-BLSTM CSL Split I
2020 Tateno et al. [82] LSTM Private Dataset
2021 Papastratis et al. [143] Generative Adversarial Networks (GAN) GrSL-SD
2021 Adaloglou et al. [9] EnStimCTC (CNN-1D-CNN) GrSL-SD
2021 Adaloglou et al. [9] EnStimCTC (I3D-BLSTM) GrSL-SI
2021 Min et al. [46] CNN-1D-CNN-BLSTM CSL Split I
2021 Hao et al. [144] CNN-1D-CNN-BLSTM Phoenix2014T
2022 Zhu et al. [145] CNN-1D-CNN-Transformer Phoenix2014
2022 Aditya et al. [37] CNN-Attention-BLSTM Phoenix2014
2023 Hu et al. [146] CNN-1D-CNN-BLSTM CSL Split I
2023 Jiao et al. [26] Co-Sign (GCN-1D-CNN-BLSTM) CSL-Daily
2023 Zheng et al. [147] CNN-Attention-BLSTM Phoenix2014
2023 Xie et al. [50] Fully Connected Network (FCN) CSL Split I
2023 Cui et al. [148] Spatial Transformer (ViT-Transformer) Phoenix2014
2023 Chen et al. [14] Two-Stream SLR (3D-CNN) Phoenix2014
2024 Hu et al. [18] PA-CMA (CNN-1D-CNN-BLSTM) CSL Split II
2024 Hu et al. [149] AdaSize (CNN-1D-CNN-BLSTM) CSL Split I
2024 Zuo et al. [150] SRM (CNN-Transformer) CSL Split I
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improve feature extraction in CSLR. The network-like ap-
proach was trained using expectation maximization in this
manner, and the feature extractor was then optimized using
the pseudo labels that the network produced. When evaluated
against their previous framework, Deep-Sign [126], on the
Phoenix2014 dataset, the resulting system, ReSign [135],
integrated CNN-BLSTM with HMM and obtained a 12%
reduction in Word Error Rate (WER). Camgoz et al. [137]
made significant strides in the field with their introduction
of SubUNets, which effectively combine Bidirectional Long
Short-Term Memory networks (BLSTMs) with 2D Convo-
lutional Neural Networks (CNNs). Their research highlights
a promising approach, showing that training two separate
SubUNets—one focused on cropped hand images and the
other on full-frame images—can lead to optimal perfor-
mance. Furthermore, in 2020, Pu et al. [128] contributed
to the ongoing development in this domain by introducing
Cross Modal Augmentation (CMA). This innovative tech-
nique allows for the generation of pseudo text-video pairs
through strategic operations such as deletion, substitution,
and addition, thereby enhancing both the text labels and their
corresponding video frames. These advancements pave the
way for further exploration and improvement in multimodal
approaches. However, this method involved manual efforts
to create pseudo labels. Hu, Pu, et al. [18] improved Prior
Aware CMA (PA-CMA), which made use of a language
model to automatically provide pseudo labels, in order to
expedite this procedure. Furthermore, Cui et al. [42] pro-
posed employing gloss-level alignment proposals for training
the feature extractor, which resulted in a 4% WER decrease
on the Phoenix2014 dataset in comparison with the ReSign
model. Chinese Sign Language (CSL) and German Sign
Language (GSL) have been the main subjects of several
CSLR models. Recent studies have highlighted the effective-
ness of various sign languages, including those with limited
proprietary datasets such as Japanese Sign Language (JSL),
in the realm of research that employs Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
[152]. The integration of CNN and RNN architectures has
demonstrated significant promise in modeling sensor data
acquired from devices such as the Leap Motion Controller
(LMC) [25] and sensor gloves [92], in addition to vision-
based techniques. Sharma et al. [92] investigated the effi-
cacy of pre-training Continuous Sign Language Recognition
(CSLR) models on datasets focused on isolated sign language
recognition. Meanwhile, Fang et al. [25] introduced a hierar-
chical bidirectional RNN (HB-BRNN) specifically designed
to model skeletal data effectively. It’s crucial to remember
that this method was only tested on a tiny, private sample of
40 Indian Sign Language (ISL) expressions.

C. BODY POSE AS A NON-MANUAL CUE
Body pose has emerged as a critical non-manual cue in
various fields such as human-computer interaction, emotion
recognition, and gesture analysis. It provides essential infor-
mation about an individual’s posture, movement, and overall

intention, contributing significantly to the understanding of
non-verbal communication. Researchers have explored body
pose as an independent feature, focusing on the estimation of
upper body pose, which includes the arms, shoulders, and
torso. Studies such as Brock et al. [152], Jiao et al. [26],
Ko et al. [27], and Wang and Zhang [29] have investigated
methods for accurately detecting and analyzing the upper
body pose. These works show that upper body posture can be
used to infer activities, emotions, and interactions, enhancing
systems that depend on understanding human behavior.

In addition to the upper body, body pose is often inte-
grated with other cues, such as hand gestures, to improve
the precision and context of recognition systems. Research
by Cui et al. [42], Forster et al. [153], and Gweth et al.
[136] examines how hand movements, within a full-body
frame, add important context to pose estimation, especially
for gesture recognition applications. This combination of
body pose with hand gestures is crucial for understanding
complex actions, where the position and movement of the
hands are intricately linked with the overall body posture.

Moreover, full-body pose estimation has garnered atten-
tion, with studies like Aditya et al. [37], Chen et al. [14],
Wei and Chen [154], Li and Meng [155],and Zuo and Mak
[150] focusing on the holistic analysis of body pose. These
works aim to capture the full-body movement dynamics, not
only the upper body, to interpret complex gestures and human
behaviors. Full-body pose systems can detect subtle motions
that might be missed in isolated hand or head pose recog-
nition, thus providing a more comprehensive understanding
of the individual’s actions.Body pose is frequently combined
with facial expressions, mouth movements, or gaze direction
to enhance gesture and emotion recognition systems. Notable
works, such as those by Forster et al. [153], Koller, Forster,
and Ney [7], and Zhang et al. [34], explore the integration
of body pose with facial features to improve the accuracy of
systems designed for non-verbal communication recognition.
The synergy between body and facial cues can help systems
discern emotions or gestures more accurately, offering a
richer analysis of human behavior. Furthermore, integrat-
ing body pose with gaze and head movements, as studied
by Jebali et al. [32] and von Agris et al. [156], provides
valuable contextual information that is especially important
for applications like sign language recognition, human-robot
interaction, and advanced emotion detection systems.

D. TRANSFORMER-BASED NETWORKS
Transformers [157] have fundamentally transformed the field
of machine learning through their introduction of the self-
attention mechanism. Various CSLR frameworks have uti-
lized Transformers for sequence learning [20], [38], [145],
[150], [158]integrated 3DRes-Net into an encoder-decoder
architecture for Transformers, demonstrating the ability of
Transformers to learn in series. Stochastic Fine-Grained La-
beling (SFL) was introduced by Niu and Mak et al. [130]
o optimize the alignment of sequences within a ResNet-
Transformer framework. Zuo and Mak et al. [159]proposed
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a refined self-attention technique called the Local Context-
Aware Transformer Encoder (LCTE), which substanially im-
proved the per formance over traditional Transformers.

Multi-modal Transformer-based models have also been
explored. Slimane and Bouguessaet al. [20] used a 2D CNN-
Transformer to encode both cropped hand and full-frame im-
ages. Alternately, in the C2SLR VGG11-Transformer model,
posture heatmaps were employed to impose spatial attention
[39]. On the CSL signer-independent dataset, this framework
was further improved using the Signer Removal Method
(SRM), yielding new state-of-the-art results [150]. The multi-
modal SignBERT [38] encoded frames alongside cropped
hand images using a ResNet-BERT model.

Recent studies have investigated leveraging textual in-
formationfor CSLR model training. Guo et al. [158] im-
plemented a BERT language model trained with gloss se-
quences to enhance a contextual module built with BLSTM.
Similar to this, Zheng et al. [147] used gloss sequences to
pre-train a language model that merges self-attention with
BLSTM to strengthen contextual encoding and alignment,
although this approach resulted in a modest performance gain
of about 0.6 WER.The sign2gloss2text technique employs
transformers to facilitate spoken language translations uti-
lizing gloss predictions derived from the Continuous Sign
Language Recognition (CSLR) module, which are subse-
quently integrated into a Sign Language Translation (SLT)
module. This approach has been implemented in combined
CSLR-SLT systems, as noted in the work by Papastratis et
al. [143]. In SLRGAN [143], for example, a GAN is used
to produce glosses, which a Transformer model eventually
translates into text. Vision Transformers (ViT) treat images
as sequences of patches, adding positional encodings, and en-
coding these sequences with standard Transformer encoders
[155]. Research on CSLR has revealed a limited focus on the
utilization of Vision Transformers (ViTs) for visual feature
extraction. A noteworthy contribution is presented by [148],
which developed a two-stream model that utilizes a pre-
trained ViT to extract visual features from RGB frames.
This model integrates an Attention-Enhanced Multi-Scale
3DGCN (AM3DGCN) to encode OpenPose features, result-
ing in Word Error Rates (WERs) of 1.9% on the CSL and
Phoenix2014T datasets. They presented the Spatial Temporal
Transformer (ST-Transformer), a fully Transformer-based
framework that achieved a new state-of-the-art result on the
CSL dataset with a 1.2% WER. Zhang et al. [13] attained
notable word error rates (WERs) of 17.7% and 18.9% on the
Phoenix2014 and Phoenix2014T datasets, respectively. They
have further developed previous methodologies by introduc-
ing the Cross-modal Contextualized Sequence Transduction
(C2ST) framework. This advanced architecture proficiently
integrates textual information obtained from gloss sequences
utilizing the BERT language model, thereby improving both
contextual understanding and sequence transduction capabil-
ities across diverse modalities.

Recent advancements in continuous sign language recog-
nition (CSLR) aim to improve the extraction of complex

temporal information in sign language videos, which involve
fluent transitions and varying temporal scales. Huang et
al. [160] propose a dual-stage temporal perception module
(DTPM) that combines temporal convolutions and trans-
formers to address these challenges by capturing richer and
more comprehensive temporal features through a hierarchical
structure. Alyami et al. [161] focused on isolated Arabic sign
language recognition using a Transformer-based model and
landmark keypoints, achieving high accuracy of 99.74% in
signer-dependent and 68.2% in signer-independent modes on
the KArSL-100 dataset. Liu et al. [162] proposed the Adap-
tive Video Representation Enhanced Transformer (AVRET)
to address issues with temporal correspondence and weakly
supervised sequence labeling in end-to-end sign language
translation, achieving competitive performance on the CSL-
FocusOn, PHOENIX14T, and CSL-Daily datasets.

Transformer-based models have demonstrated state-of-
the-art performance in CSLR due to their ability to capture
long-range dependencies and process sequential information
efficiently. However, when compared with traditional CNN-
RNN architectures, Transformers come with higher com-
putational costs, which can hinder real-time applications.
Studies such as Du et al. [163] have shown that while
Transformers achieve higher recognition accuracy, CNN-
RNN hybrids remain more computationally efficient, making
them suitable for low-power devices. Additionally, Ranjbar
and Taheri et al. [164] introduced a hybrid CNN-Transformer
model that combines the strengths of both architectures, out-
performing standalone models in CSLR tasks .Furthermore,
lightweight architectures have gained attention as alternatives
to computationally expensive Transformer models. Liu et
al. [133] proposed RealTimeSignNet, a 3D deep learning
network optimized for CSLR, demonstrating faster inference
while maintaining competitive accuracy (Liu et al., 2025).
Similarly, Mnif et al. [165] developed a lightweight CNN
model that achieved high efficiency in CSLR tasks (Mnif
et al., 2024). Lastly. Camgöz et al. [12] explored Neural
Sign Language Recognition, comparing CNN-RNN models
with Transformer-based approaches, concluding that while
Transformers provide greater flexibility in learning represen-
tations, RNN-based models still hold advantages in efficiency
and training stability.

These comparative studies highlight the trade-offs be-
tween different CSLR architectures, demonstrating that while
Transformers improve accuracy, CNN-RNN hybrids and
lightweight models remain viable solutions for real-time
performance. Future research should focus on benchmark-
ing these models on standardized datasets, evaluating both
recognition rates and computational efficiency to determine
the most suitable architecture for CSLR applications.

E. TRADITIONAL APPROACHES
Before 2015, most research on CSLR [68], [74], [166]–[170],
focused on traditional methods, as outlined in Table 4. These
studies commonly used handcrafted features like Histogram
of Oriented Gradients (HOG) [171], and Fourier descriptors
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[172]. The sequence of signs was primarily modeled using
Hidden Markov Models (HMM) [166] and Dynamic Time
Warping (DTW) [67].

1) Dynamic Time Warping (DTW)
A dynamic programming approach called dynamic time
warping (DTW) is used to compare sequences with varying
durations and speeds. DTW has been applied in various
CSLR studies [85], [173], [174]. For example, [70] employed
a CyberGlove for data collection and modeled the data using
DTW. Additionally, DTW has been used to vision-based
CSLR systems. Dynamic programming was used by Yang
et al. [168]to apply a level building (LB) strategy for seg-
menting signs in American Sign Language (ASL).Yang and
Lee (2011) improved this strategy even further by combining
DTW with layered dynamic programming. [169] achieved
better performance by combining the Level Building method
with HMM rather of DTW in a different research. In Zhang
et al.’s [175] framework,HMM is used for classification,
and DTW is utilized for segmentation. in order to fully
use the advantages of both DTW and HMM. In citehas-
san2019multiple,zadghorban2018algorithm,hassan2016user,
K-Nearest Neighbor (KNN)

was utilized as an alternative for classifying sentences seg-
mented by DTW. However, despite its effectiveness, DTW
is sensitive to variations in signing speed and has difficulty
handling large vocabularies and unseen sentences [4].

Traditional techniques in CSLR literature also include
graph modeling [177] and Conditional Random Fields (CRF)
[185]. Graph modeling has been used for recognizing sen-
tences in ArSL and ISL , When the phrases are shown
as connected graphs and the detection is performed via a
graph matching technique. To effectively capture the tem-
poral dependencies inherent in sign language movements,
Conditional Random Fields (CRFs) have been employed in
Continuous Sign Language Recognition (CSLR) for prob-
abilistic modeling [75]. The capability of CRFs to profi-
ciently model both local and global contexts within sign
language underscores their significance in advancing the field
of sign language recognition,they provide a strong substitute
for HMMs. Large vocabulary sets, however, may provide
challenges for CRF-based CSLR systems, which also need
a substantial amount of annotated data.

2) Hidden Markov Model (HMM)
The effectiveness of Hidden Markov Models (HMM) in
audio recognition motivated scholars to explore their appli-
cation in Continuous Sign Language Recognition (CSLR)
[4]. HMM, a probabilistic model, is used in CSLR to de-
termine the most likely sequence of signs corresponding to
a sentence. The first application of HMM for CSLR can
be traced back to Liang and Ouhyoung [74], who used it
with a DataGlove to identify 196 phrases in Taiwanese Sign
Language (TSL). A similar methodology was used in later
research [65], [68], which employed HMM to analyzesign
data collected using gloves. with sensors.By using colored

gloves, Bauer et al. [166] were able to enhance hand tracking
and detection.

Several hidden Markov model (HMM)-based continuous
sign language recognition (CSLR) systems have been de-
veloped for various sign languages, leveraging the proven
efficacy of HMMs in vision-oriented approaches. These in-
clude Italian Sign Language (ItSL) by Infantino et al. [65],
[68], Spanish Sign Language (SSL) by Cortés et al. [41],
Arabic Sign Language (ArSL) by Assaleh et al. [120], and
Taiwanese Sign Language (TSL) by Yu et al. [178]. How-
ever, many of these models were trained on limited datasets
with restricted vocabularies. Dreuw et al. [182] introduced
RWTH-BOSTON-104, the first public CSLR dataset, featur-
ing 104 American Sign Language (ASL) signsThrough the
combination of HMM models trained on hand movement
paths and speeds, a word error rate (WER) of 17.9% was
achieved. In a later study, including depth data, a WER of
19.6% was reported Dreuw, Steingrube, et al. [31]. Sub-
sequently, two public datasets for German Sign Language
(GSL) were released: SIGNUM and Phoenix2014.Koller,
Forster, and Ney [7] introduced the Phoenix2014 dataset
for GSL, obtaining a 53% WER by utilizing HMM with
maximum likelihood linear regression. In a multi-stream
HMM framework, HMMs were also extended to represent
non-manual and manual factors, like body stance and facial
expressions [153], therefore increasing recognition accuracy.
Jebali et al. [32] achieved a notable accuracy of 95.1% in
the recognition of phrases in French Sign Language (FSL)
by employing the Kinect sensor along with LMC for fea-
ture extraction; however, it is important to note that their
dataset was limited to just 33 distinct signs. Researchers
have proposed an intriguing approach to improve recogni-
tion rates—segmenting signs into smaller, manageable sub-
units—especially as the vocabulary of sign languages con-
tinues to grow [176], [180], [186].

Taking cues from the progress made in the field of
speech recognition, several Hidden Markov Models (HMM)
have been developed to identify these subunits, making use
of techniques like K-means clustering to refine the pro-
cess [180]. However, the inherent independence assumption
of HMMs presents a significant challenge. This limitation
makes it difficult to effectively capture the rich and complex
features, as well as the broader contextual elements, of sign
languages, consequently hindering the overall accuracy of
Continuous Sign Language Recognition (CSLR).

3) Other Traditional Techniques
In the field of Continuous Sign Language Recognition
(CSLR), several conventional methodologies have been de-
veloped, including the application of Conditional Random
Fields (CRF) [185]. Graph-based modeling has been em-
ployed to recognize sentences in Indian Sign Language (ISL)
[187], wherein sentences are represented as interconnected
graphs. This representation facilitates the identification of
signed sentences through graph matching techniques. To
better capture the temporal dynamics inherent in sign lan-

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3554046

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Khan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Summary of Traditional CSLR Approaches.

Year Reference Method Dataset
2021 Jebali et al. [32] Hidden Markov Model (HMM) Set of 33 signs
2019 Hassan et al. [72] k-Nearest Neighbors (KNN) Collection of 80 signs and 40 sentence examples
2019 Elakkiya and Selvamani et al. [176] HMM Phoenix2014 dataset
2017 Hassan et al. [76] KNN-based approach 80 distinct signs, 40 sentences
2017 Ekiz et al. [85] DTW, Logistic Regression 13 sentence gestures
2016 Yang et al. [30] HMM-based technique 20 sentence-based signs
2016 Li et al. [71] HMM Dataset of 510 signs and 1,024 sentences
2015 Tripathi and Nandi et al. [173] Dynamic Time Warping (DTW) 11 sentence gestures
2015 Tubaiz et al. [69] KNN Dataset of 80 signs and 40 sentences
2015 Koller, Forster, and Ney et al. [7] HMM Phoenix2014 dataset
2015 Koller, Forster, and Ney et al. [7] HMM SIGNUM dataset
2014 Kong and Ranganath et al. [75] CRF-SVM hybrid model 107 signs and 74 sentences
2014 Zhang et al. [174] DTW combined with HMM 180 sentence gestures
2013 Tolba et al. [177] Graph Matching Dataset with 100 signs, 30 sentences
2013 Forster et al. [153] Multi-stream HMM SIGNUM dataset
2011 Yu et al. [178] HMM 40 signs, 3 sentence examples
2011 Sarkar et al. [179] HMM-based segmentation 25 sentences
2010 Yang et al. [169] DTW Perdue dataset with 10 sentences
2010 Roussos et al. [180] K-means clustering 400 signs and 843 sentence dataset
2009 Dreuw, Steingrube, et al. [31] HMM, Principal Component Analysis (PCA) RWTH-BOSTON-104 dataset
2009 Kelly et al. [181] Multi-channel HMM 160 sentence gestures
2007 Dreuw et al. [182] HMM-based method RWTH-BOSTON-104 dataset
2007 Yang et al. [168] Dynamic Programming (DP) 25 sentence gestures
2006 Vassilia and Konstantinos et al. [183] HMM 71 distinct signs
2006 Guilin et al. [68] HMM-based approach 543 sentence gestures
2006 Cortés et al. [41] HMM Dataset of 33 signs
2004 Gao et al. [67] DTW 1,500 sentence examples
2002 Fang et al. [66] SRN-HMM hybrid Dataset of 100 sentences
2002 Bauer and Kraiss et al. [170] HMM, K-means clustering Dataset of 12 signs
2001 Wang et al. [65] HMM-based method 100 sentence gestures
2001 Vogler and Metaxas et al. [184] Parallel HMMs 22 signs
2000 Bauer et al. [166] HMM Dataset containing 97 signs

guage gestures, CRFs are utilized as a probabilistic mod-
eling approach within CSLR [185]. Due to their capability
to model both local and global contexts in sign language,
CRFs present a viable alternative to Hidden Markov Models
(HMM). Nonetheless, CRF-based CSLR systems necessitate
considerable amounts of annotated data and may encounter
challenges when processing extensive vocabularies of signs.

F. CSLR CHALLENGES
Sign Language Recognition (SLR) presents significant intri-
cacies and challenges, particularly with regards to capturing
features from multiple sources concurrently.Sign language
encompasses gestures from various body parts, including
hand movements and facial expressions, necessitating a ro-
bust SLR system capable of effectively capturing and inte-
grating both manual and non-manual features.

Another substantial challenge pertains to ensuring signer
independence. Variations in physical attributes, such as skin
tone, body morphology, and stature, in addition to differences
in sign execution due to factors like hand dominance, signing
speed, and skill level, contribute to substantial individual di-
vergences. These variations pose difficulties for SLR systems
to generalize effectively to new signers, particularly in real-
time applications.

In comparison to finger-spelled or isolated SLR systems,
Continuous Sign Language Recognition (CSLR) presents

even more formidable challenges, incorporating additional
computational and linguistic complexities. Beyond the chal-
lenges mentioned earlier, we highlight some of the key com-
plexities specific to CSLR in the following discussion:

• The appearance of a sign can change depending on the
signs that come before and after it, which complicates
recognition. Signs may look different based on their
context, leading to variability in how they are perceived
and recognized.

• Recognizing a sequence of signs requires understanding
the relationships between signs over time. Some sys-
tems treat each sign independently, which can result in
errors. More advanced models aim to capture how signs
interact with each other to improve accuracy.

• Finding the start and end points of each sign in contin-
uous signing is challenging because there are no clear
breaks between signs. Some methods attempt to sepa-
rate the signs before recognition, but this depends on
how well the signs are divided. Techniques like Hidden
Markov Models (HMM) and Connectionist Temporal
Classification (CTC) can align signs automatically with-
out needing explicit separation. However, accurately
segmenting continuous signs remains a persistent chal-
lenge due to transitions and overlaps between signs that
blur boundaries. Active learning approaches can iden-
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tify ambiguous or uncertain segments for annotation,
thereby reducing manual effort while improving seg-
mentation accuracy. Additionally, crowdsourcing offers
a scalable solution to generate diverse and comprehen-
sive annotations for these complex datasets.

• In real conversations, finger-spelled signs are sometimes
used alongside regular signs. These finger-spelled signs
are short and less dynamic, which makes recognizing
them along with other signs more challenging. Transi-
tions or finger movements can further complicate the
recognition process.

• When transitioning between signs, additional move-
ments that are not part of the actual signs can occur.
These transitions can make it difficult to determine
where one sign ends and another begins. Some systems
are specifically designed to detect these transitions,
while others incorporate them into the overall recogni-
tion process.

Addressing these challenges is essential for advancing CSLR
systems beyond controlled research environments into real-
world applications. While deep learning advancements have
improved recognition accuracy, several fundamental gaps
remain, particularly in dataset diversity, signer independence,
and real-time performance. The next section explores these
research gaps and outlines potential future directions to en-
hance CSLR models.

V. RESEARCH GAPS AND FUTURE DIRECTIONS
Despite recent advancements in CSLR, several challenges
remain unaddressed, limiting the practical deployment of
these systems. Key limitations include data scarcity, model
generalization, and computational efficiency. This section
categorizes these research gaps into three key areas: data,
model, and computational constraints. The recent progress in
deep learning-based continuous speech recognition (CSLR)
systems has led to notable enhancements in accuracy. Despite
these advancements, there are several persistent challenges.
This section delineates the current constraints, divided into
data-related and model-related challenges.

A. DATA-RELATED CHALLENGES
Dataset-related constraints further compound the complexity
of CSLR. While advancements in deep learning have im-
proved recognition accuracy, current datasets still suffer from
limitations that hinder the generalizability of CSLR models.

• The importance of diverse and comprehensive datasets
in the field of sign language recognition cannot be over-
stated. Most datasets are recorded in controlled settings
with fixed environments, which limits the system’s per-
formance in real-world scenarios. This restriction high-
lights the critical need for more data from naturalistic,
unconstrained environments with variable backgrounds,
lighting, and angles. Such diverse data is essential for
enabling sign language recognition models to perform
effectively in real-world situations.

• Another area of concern is that existing datasets cover
only a small range of sign languages, leaving many
languages unrepresented. This limitation underscores
the necessity for a broader range of datasets, particularly
for underrepresented languages, in order to enhance the
generalizability of sign language recognition models.
Additionally, the alignment of gloss annotations across
languages is a significant challenge. Standardized gloss
annotations and the use of multilingual datasets can
facilitate cross-lingual generalization and support the
development of models capable of recognizing signs
across diverse linguistic contexts. By incorporating
more languages into the datasets, these models can
become more inclusive and accessible to a wider range
of sign language users.

• Furthermore, considering that sign language recogni-
tion models are expected to operate on mobile de-
vices, datasets recorded from selfie-view perspectives
on smartphones and tablets are essential. This ap-
proach ensures that the models developed are robust
and device-friendly, allowing for practical and seamless
integration into everyday mobile usage.

• In addition, the current datasets, such as Phoenix2014,
have a narrow vocabulary and are domain-specific (e.g.,
weather forecasts). To make sign language recognition
more applicable to diverse real-world contexts, datasets
need to include signs from various topics and domains.
This expansion will enable the development of models
that can effectively recognize signs across a wide range
of subjects, furthering the practical utility of sign lan-
guage recognition in everyday life.

B. MODEL-RELATED CHALLENGES
• The existing models encounter difficulties when applied

to new signers, primarily due to the limited diversity
of signers in the available datasets. It is imperative
to enhance signer diversity through data augmentation
and explore signer-independent methods, such as pose-
based techniques.

• The integration of information from multiple modalities
(e.g., RGB, depth, skeletal data) has the potential to en-
hance accuracy but comes with increased computational
demand. Therefore, future research should prioritize the
development of more efficient approaches to fuse these
data types without excessively complicating the system.

• Training models to simultaneously perform related tasks
(e.g., sign language recognition and translation) has the
potential to improve model performance through shared
representations, thereby enhancing both recognition and
translation accuracy.

• Non-manual cues, including facial expressions and eye
movements, play a crucial role in sign language recogni-
tion. Despite their significance, these features are often
underutilized in current systems. Further research is
essential to effectively incorporate these cues.

• Interest in the development of real-time isolated sign
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language recognition (SLR) has grown significantly,
with several studies [172], [188] focusing on this area.
However, research on real-time Continuous Sign Lan-
guage Recognition (CSLR) has been relatively limited.
This is mainly due to the challenges associated with
developing real-time and online CSLR systems, which
require low latency and high performance. In response
to these challenges, there is a need for the creation of
lightweight and efficient models [17], [149] capable of
meeting the demands of real-time applications.

• Sign language recognition (SLR) encompasses not only
a visual task but also involves language understanding.
It is imperative to conduct more studies to integrate
advanced language modeling techniques to enhance
overall recognition and translation quality.

• The development of systems that can adapt based on
user feedback during sign recognition has the potential
to significantly enhance accuracy and robustness over
time, especially in real-world applications.

C. COMPUTATIONAL-RELATED CHALLENGES
• Computational efficiency is a vital aspect, particularly

in real-time and resource-constrained scenarios such as
mobile and embedded systems. Many existing CSLR
models demand substantial computational resources,
making them less practical for devices with limited
processing power or memory. Addressing this challenge
is crucial for enabling wider adoption in everyday appli-
cations.

• Lightweight models that achieve a balance between
high performance and reduced complexity are essential
for real-time applications. Techniques such as model
quantization, pruning, and knowledge distillation have
shown promise in this area, as they significantly reduce
model size and enhance inference speed while maintain-
ing accuracy.

• Architectures optimized for low-latency scenarios, such
as transformer-based models and attention mechanisms,
offer further potential to improve computational effi-
ciency. These designs need to be adapted to minimize
the trade-offs between speed and accuracy, ensuring
seamless integration into real-time systems.

• Training pipelines also require optimization to lower
computational demands. Approaches like distributed
training, adaptive learning rates, and efficient data aug-
mentation can enable researchers to experiment with
complex models more feasibly, even on constrained
resources.

• Finally, integrating energy-efficient techniques into
model design and execution can support sustainable,
long-term operation on battery-powered devices. This
approach ensures that CSLR systems are not only
computationally efficient but also environmentally con-
scious in their deployment.

VI. CONCLUSION
The field of Computer-assisted Sign Language Recognition
(CSLR) has been experiencing a surge in interest due to the
continuous advancements in machine learning and related
technologies. This surge is evident in the increasing number
of research studies and the development of new models and
frameworks aimed at improving sign language recognition
capabilities. As part of this ongoing progress, a thorough
review has been conducted to outline the achievements in
the field and to identify critical areas that require further
attention and development.One of the persistent challenges
in CSLR is the need to address co-articulation effects and
detect sign boundaries effectively. These challenges have
been known to hinder the development and accuracy of sign
language recognition systems. Additionally, the review of
publicly available datasets has highlighted limitations in the
diversity of languages represented, which in turn constrains
the creation of models capable of generalizing across various
sign languages and contexts.

Furthermore, a wide range of studies organized into dif-
ferent categories has covered various aspects of CSLR,
including data acquisition, recognition methods, and input
modalities. Despite the recent introduction of deep learning
(DL)-based frameworks, many models still operate within
restricted environments, limiting their practical applicability.
While there has been a shift towards vision-based approaches
in recent times, and the potential of multi-modal CSLR sys-
tems, there has been a noted lack of effective incorporation
of linguistic knowledge in many of the systems, which could
significantly enhance recognition performance.

Most recent models in CSLR utilize standard spatial and
temporal feature extraction techniques, but they encounter
limitations such as overfitting, especially when relying on
alignment methods. Addressing these challenges through
improved training strategies remains a critical focus for re-
searchers in the field. It is important to ensure that the models
are robust and capable of generalizing across different sign
languages and contexts. The field of CSLR is evolving, and
there are several promising directions for future exploration.
These directions include the exploration of multi-modal fu-
sion, integrating vision-language techniques, and adapting
systems for complex environments, such as multi-person
scenarios. Furthermore, research may expand into adjacent
areas like finger-spelling and sign language translation, as
well as exploring new developments in sign language genera-
tion.In summary, the field of CSLR is dynamic, with ongoing
advancements and promising avenues for further exploration.
It is clear that researchers and developers are committed to
overcoming the existing challenges and making significant
strides to make the better the accuracy and applicability in
the recognition of sign language systems.
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