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A B S T R A C T

The sanitary sewer is a crucial underground infrastructure of any country that collects wastewater and carries
it to the treatment plant. The damage triggered by various factors, such as external interference, long-term
corrosion, and uneven distribution of pressure, could lead to various types of defects inside the sewer pipe.
Previous studies primarily relied on human visual perception to evaluate the sewage system, which was
tedious, time-consuming, and costly. As a result, an efficient and robust sewer defect localization framework
was proposed in this manuscript. The main contributions include (1) a novel sewer defect detection system
motivated by the state-of-the-art detection transformer (DETR) architecture, which views object localization as
a set prediction topic; (2) a defect severity analysis approach based on the transformer’s self-attention operation
to analyze defect zone of influence and defect grade; and (3) a manually validated sewer defect localization
dataset that contains 10 types of commonly appeared sewer defects. The experimental results suggested that
the proposed system outperformed the previous standard object detection approaches with the highest mean
Average Precision (mAP) of 60.2% on the collected dataset.
1. Introduction

The sanitary sewer system is a fundamental public infrastructure
used to stimulate economic development. Although each sewer system
has an anticipated life span if maintained appropriately, the damage
still follows an unexpected trend line, leading to unpredictable inci-
dents [1]. In addition, it is challenging to manage the sewer system
when there is an increasing trend for a clean environment and tight
budgets. Therefore, periodical maintenance of the sewer pipelines has
long been one of the primary municipality issues. The structure of a
sewer pipe could deteriorate quickly because of the harsh environ-
ments, which lead to aging, damages, and corrosion that significantly
affect its functional operation [2]. Not only can this cause severe
consequences, but it also requires high repair costs and a huge labor
force [3]. Some defect examples are presented in Fig. 1(b).

Previously, a periodical investigation can fall into either in-field
coder or office-based coder. In the earlier case, defects are coded
during the inspection, whereas in the latter case, they are coded af-
ter CCTV videos were completely recorded. This study follows the
office-based coder approach, which has four main processes: (1) closed-
circuit television (CCTV)-based sewer image/video acquisition, (2) de-
fect detection, (3) in-depth analysis, and (4) rehabilitation [4]. Among
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those steps, defect detection and in-depth analysis are the primary
objectives of this work because they are considered subjective, time-
consuming, and costly. In addition, the in-depth defect analysis is still
particularly challenging because defect features from any category but
with different severity degrees are comparatively similar. As a result,
until now, defect inspection and in-depth analysis were performed
mainly by trained operators in most sewer inspection companies [5].
Another drawback of CCTV sewer inspections is inconsistency in de-
fect reporting. While these inconsistencies can be alleviated through
training and the use of standardized reporting formats, such as the
Pipeline Assessment Certification Program (PACP) [6], the operator’s
skills, experience, and biases can greatly influence the final report.
All things considered, it is important to introduce an efficient sewer
defect detection framework that offers various solutions to solve the
aforementioned problems.

Computer vision (CV) and artificial intelligence (AI) have witnessed
immense development, which has been extensively applied in a variety
of disciplines, such as agriculture [7], structural inspection [8,9], and
autonomous driving [10]. Even though the traditional vision-based
approaches, which were usually applied to the small datasets, achieved
good performance, they performed poorly during the testing time when
vailable online 10 February 2022
950-0618/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.conbuildmat.2022.126584
Received 25 November 2021; Received in revised form 18 January 2022; Accepted
 21 January 2022

http://www.elsevier.com/locate/conbuildmat
http://www.elsevier.com/locate/conbuildmat
mailto:hmoon@sejong.ac.kr
https://doi.org/10.1016/j.conbuildmat.2022.126584
https://doi.org/10.1016/j.conbuildmat.2022.126584
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conbuildmat.2022.126584&domain=pdf


Construction and Building Materials 325 (2022) 126584L.M. Dang et al.
Fig. 1. Visualization of the defect inspection process. (a) demonstrates the two main tools that are utilized to collect the inspection videos and (b) shows some defects that
appear in a sewer pipe. Note: Defect types that are displayed are as follows. Red: protruding lateral, yellow: displaced joint, orange: surface damage, and gray: debris silty. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the dataset was slightly different from the training dataset since the
traditional vision-based models selected and extracted the hand-drafted
features manually [11,12].

In recent decades, convolutional neural network (CNN) models have
demonstrated remarkable performances in most common CV problems,
including classification [8], object detection [13,14], and segmenta-
tion [15,16], which outperformed the previous machine learning (ML)
methods by a significant margin. Moreover, the current deep learning-
based object detection approaches usually extract abstract and coarse
features, which are semantically robust.

Most recently, a new end-to-end detection transformer, which was
named DETR [17], was proposed. It demonstrated better than the
latest one-stage and two-stage object detectors, including You Only
Look Once (YOLO) [18], region-based convolutional neural networks
(RCNN) [19] on common objects detection datasets. DETR streamlined
the previous detection pipeline by removing several time-consuming
parts, such as anchor creation or non-maximum suppression algorithm
that specifically encode the human’s former knowledge about the task.
The DETR model considers the object detection topic as a direct bound-
ing box prediction task using the encoder–decoder architecture [20].
DETR learns a bipartite match between queries and ground truths (GTs)
by introducing a custom loss function, which involves the Bipartite
matching loss and Hungarian loss. DETR obtained comparable results
to other standard detection models on the Common objects in context
(COCO) dataset [21], and notably better performance on the large
objects. Compared to the common object detection task, a compre-
hensive analysis of localized objects is challenging. For instance, it is
challenging to analyze the severity of defects that belong to the same
class because they are pretty similar.

In this study, we demonstrate a novel way to effectively recognize
the defect severity of the localized defects based on customizing DETR.
The self-attention weights of the last encoder and decoder layers from
the DETR model are extracted, which are then used to construct the
mean feature map. Finally, the defect damage degree and zone of
influence are calculated using the generated mean feature map. In
summary, the main contributions of the study are described below.

• A novel sewer defect localization and defect severity analysis
framework, which achieve high object localization accuracy.
2

• Various module of the original transformer-based DETR structure
is changed to facilitate the sewer defect detection topic.

• The experimental results revealed that the proposed model was
more stabilized and achieved higher performance than the origi-
nal model. In addition, it was applied to practical applications for
automatic sewer pipe inspection in Korea.

• Defect severity analysis using attention features extracted from
the transformer-based model. The suggested framework is the first
to apply the transformer architecture to detect and analyze the
severity of the sewer defect.

The rest of the manuscript is outlined as follows. Section 2 com-
mits to performing a literature review. Section 3 explains details the
sewer pipe defect detection and defect severity analysis. The manually
collected and evaluated sewer defect detection dataset is mentioned
in Section 4. Several experiments are carried out in Section 5 to
thoroughly evaluate the suggested framework. Finally, we summarize
the study and discuss the future work in Section 6.

2. Literature review

2.1. Pre-processing

Raw CCTV videos collected by the robot usually have two primary
problems, including uneven brightness and fog, so it is crucial to handle
them appropriately to reduce the negative impacts and enhance the
detection rate [4].

Contrast enhancement is an image processing method that aims
to intensify a raw image’s contrast in order to cope with the uneven
brightness issue. Among the contrast enhancement approaches, his-
togram equalization is a standard approach that has been applied for
a long time to improve image contrast because it is straightforward
and can achieve maximum efficiency. However, most previous contrast
enhancement approaches showed relatively low structural similarity
index measure (SSIM) [22]. As a result, Abdullah et al. suggested
a novel image contrast enhancement algorithm named dynamic his-
togram equalization (DHE) [22], which efficiently improved the image
quality and reduced noise without missing any important information.
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Various defogging models have been represented to cope with the
foggy environment inside the sewer pipes. For instance, a well-known
and efficient dehazing approach called dark channel prior (DCP) was
usually implemented to perform defogging [23]. However, DCP per-
formed poorly on the low contrast or low-resolution images [24].
Therefore, many deep learning-based defogging approaches have been
studied recently. Shao et al. proposed a different dehazing strategy
than the existing methods, consisting of an image translation phase and
two image dehazing phases [25]. The proposed method offered a good
generalization by incorporating the hazy image into the dehazing train-
ing. The results collected from various experiments demonstrated that
domain adaptation defogging outperformed the current state-of-the-art
approaches.

2.2. Sewer defect detection

2.2.1. Traditional approaches
Before the popularity of deep learning, traditional CV and image

processing approaches were mainly adopted to deal with the vision
tasks, because they delivered good performance on the task under
consideration [26,27].

For example, Halfawy et al. suggested a framework for automated
tree root intrusion inspection for sewer inspection videos by training
the support vector machine (SVM) using the histograms of oriented
gradients (HOG) [26]. HOG was first implemented to obtain the po-
tential defect region of interest (ROI) from a list of training sewer
images. SVM was then trained on the extracted HOG features to clas-
sify whether a test sample is positive (have defect) or negative (no
defect). Ye et al. used the features extracted from Daubechies wavelet
transform, lateral Fourier transform, texture features, and Hu invari-
ant moment, to train the SVM model to categorize 7 categories of
sewer cracks [3]. The experimental results revealed that the overall
classification accuracy was 84.1%. Moradi et al. introduced a novel
real-time sewer defect detection system from the inspection CCTV
videos that extracted the spatio-temporal features to train the hidden
Markov model (HMM) [11].

Most of the mentioned research from the traditional approach man-
ually extracted essential features from the training dataset and then
fed them into ML models to perform defect analysis. Although each
research addressed part of the problem, sewer defects were usually
missed because the traditional systems were trained on relatively small
datasets, relied entirely on the hand-crafted features, and were affected
by the relatively complicated environment inside the sewer pipes.
In addition, previously developed features like scale-invariant feature
transform (SIFT) and HOG were incapable of comprehensively repre-
senting such defects [26]. Consequently, it is a significant challenge for
traditional approaches to achieving satisfactory performance and solid
robustness.

2.2.2. Deep learning-based approaches
Over the last few years, deep learning has become increasingly

known to the research community for its remarkable performance [15,
28,29]. In the area of some practical engineering problems that require
precise precision, such as civil infrastructure inspection [4], CNN ar-
chitectures have been proved to offer remarkable performances and
excellent robustness as well [30]. As a result, they have been gradu-
ally implemented for sewer defect detection [8]. Compared with the
traditional approaches, the feature engineering process is performed
automatically by the deep learning models during the learning process.

Following the development trend of the object detection topic, one-
stage detectors, such as YOLO [18], and two-stage detectors, such as
RCNN, are usually utilized to perform sewer defect detection [31]. For
instance, Wang et al. introduced a robust sewer defect detection and
tracking framework using metric learning [32]. The tracking module
was carried out by performing a Kalman filter using two input sources,
3

which include (1) detected objects from the faster-RCNN framework
and (2) the extracted appearance features from the metric learning.
The experimental results confirmed that the framework could track the
sewer cracks in the inspection videos with a robust IDF1 score of about
57%.

Similarly, Cheng and Wang et al. introduced an automated sewer
crack detection method based on faster R-CNN, which was trained
on 3000 defect images with 4 defect classes [5]. The authors showed
that adjusting the hyperparameters, including kernel dimensions and
stride values, enhanced the detection rate, with the final mean average
precision (mAP) of 83%. Recently, Yin et al. suggested a novel sewer
defect detection framework that accepted inspection videos as the input
and showed defect frames as the output [28]. The YOLOv3 model was
trained and evaluated on a dataset that contained 4056 images for 6
defect types, which include broken, fracture, deposits, root, hole, and
crack. The proposed framework showed a high F1 score of 0.882 and
mAP of 85.37% on the testing set.

The popular object detection approaches typically involve a hand-
crafted post-process, such as non-maximum suppression (NMS) [33], to
eliminate the detected bounding boxes with low detection probability.
Although many variants of the NMS have been proposed in order
to partly address the remaining problems of the NMS, such as soft-
NMS [34], harmony search-based NMS [35], NMS must be employed
independently and cannot be employed in an end-to-end way because
its procedure involves no image and network features.

The drawbacks of NMS and the recent introduction of the trans-
formers, which demonstrated state-of-the-art performances on common
natural language processing (NLP) topics [36], motivated the introduc-
tion of a novel transformer-based object detection, named DETR [17].
DETR utilized the encoder–decoder structure of the transformer model
and could construct context features and discard duplicates essen-
tially. DETR achieved relatively high performance in the COCO object
detection benchmark dataset due to the introduction of a set-based
Hungarian loss function that requires unique predictions for every
ground-truth bounding box via bipartite matching without the need for
NMS. As a result, this paper aims to optimize the DETR performance
for sewer defect detection.

3. Sewer defect detection dataset

The CCTV videos are recorded at different concrete sewer util-
ity holes across South Korea. The robots are equipped with a high-
resolution 1/3-in. SONY Exmor CMOS camera can rotate 360◦ and
support up/down tilt. The robot’s head is equipped with a powerful
light-emitting diode (LED) bulb to capture the images/videos under the
dark environment inside the sewer pipes. The recorded CCTV videos
are at 30 frames per second (FPS), and each inspection duration ranges
from 3 to 20 min.

Most of the previous studies, even the latest ones, worked on
less than 6 types of sewer defects, such as (fractures, root intrusions,
and lateral connection) [32], (crack, fracture, collapse, broken, and
hole) [16], (crack, deposit, root, crack & deposit, crack & root, and
deposit & root) [15]. As illustrated in Fig. 2, this study investigates 10
defect types, which outnumbers most of the previous research in terms
of the number of defect types.

A detailed definition of each defect class is defined as follows.

• Broken pipe (BK): a severe type of defect, which indicates that the
pipe’s internal structure was partly or fully collapsed. As a result,
timely maintenance by the experts is required.

• Longitudinal crack (LC): a diagonal or vertical crack appears on
the sewer wall that results from settling in the concrete founda-
tion as concrete shrinks during curing.

• Circumferential crack (CC): any damage that appears parallel to
the channel axis caused by pressure from the outside of the walls.
It is considered more severe than the longitudinal crack, because

it can lead to a permanent failure in the pipe foundation.
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Fig. 2. Sample images for the ten defect types, which are included in the proposed sewer defect detection dataset. Note: Defects are highlighted in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
• Debris silty (DS): gravel and seals left in the sewer pipe. Moreover,
the sediments of grease or other obstacles also belong to this type
of defect.

• Displaced joint (DJ): minor displacement in the pipe joints.
• Faulty joint (FJ): physical deterioration in the pipe joints.
• Separated joint (SJ): major displacement in the pipe joints.
• Protruding lateral (PL): a connecting pipe part protrudes from the

primary sewer pipe.
• Surface damage (SD): minor damage on the sewer’s surface, defec-

tive pipe, brittleness, erosion by abrasion, or chemical corrosion.
• Root intrusion (RI): roots intrude into a sewer pipe network and

cause a sewer line back-up.

A group of 11 experts from a deep inspection company1 was in-
volved in a two-month labeling process, and each person labeled about
70 images per day on average. The annotation tool used in this process
was a standard open-source graphical image annotation tool named
labelImg,2 which was developed using Python and Qt5, allowing the
experts to precisely label different types of defects. Fig. 3 describes
the number of images, which were labeled for each class. From the
collected defect dataset, containing a total of 47,100 images, 80% of
the data (37,680 images) was selected randomly as the training dataset,
while the other 20% of the data (9420) was used as the testing dataset.
Finally, 10% of the training data (3768) was selected as a validation
dataset.

4. System overview

Fig. 4 explains the main processes of the automatic sewer pipe
defect detection system, called DefectTR.

• Pre-processing phase. The extracted frames from the sewer inspec-
tion videos host a set of problems, including uneven brightness
and a foggy environment. It is essential to balance the image
brightness and remove possible noise to improve the quality of the
input data for crack detection and defect severity analysis. As a
result, data pre-processing is crucial to ensure the defect detection
framework’s performance even if the captured video’s quality is
poor.

1 http://www.deepinspection.ai/.
2 https://github.com/tzutalin/labelImg.
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• Transformer-based defect detection. The previous object detection
models, such as YOLO, single-shot detector (SSD), and RCNN,
are complicated, do not generalize well with limited parameters,
and do not have a straightforward procedure for the training and
testing processes as existing classification models.
This paper implemented the state-of-the-art detection transformer
object (DETR) [17], to perform sewer defect detection. The model
does not demand prior knowledge about anchors or handcrafted
methods like NMS. In addition, we replace the existing CNN
backbone with the backbone trained by [37] to allow the DETR
to extract defect-related deep, coarse features effectively. The
performance of the mentioned DefectTR is proven by a series of
experiments that will be explained in Section 6.

• Defect severity analysis. Sewer defect detection is a common
object detection task that localizes defects that appear inside an
input image. On the other hand, defect severity analysis, which
involves recognizing detailed information related to the detected
defects, such as zone of influence and defect grade, is a practical
and challenging problem because there exists no reliable source
evidence to determine if a crack is minor or severe using the
detected bounding boxes.

5. Methodology

5.1. Image pre-processing

First of all, DHE [22] is carried out to improve the image contrast
of the collected raw images in order to reduce the uneven brightness
issue, owing to its high performance and computational efficiency. DHE
has three main processes, which include histogram partitioning based
on local minima, sub-histogram gray level ranges assignment, and his-
togram equalization. Compared to the previous contrast enhancement
approaches, DHE enhanced the image without losing image details.

Besides, high humidity and strong water vapor inside the sewer
pipes can easily cause the lens of the CCTV cameras to be blurred,
which is unavoidable during the data collection process. Therefore, a
pretrained encoder–decoder-based denoising model, which was called
gated context aggregation network (GCANet) [38], was adopted to
appropriately denoise the CCTV videos before feeding them into the
proposed framework. All training parameters were set as recommended
in the original paper [37]. It predicts the residual feature maps of the
hazy and the target images in an end-to-end approach. The encoder
path has three convolution blocks, whereas the decoder path contains

http://www.deepinspection.ai/
https://github.com/tzutalin/labelImg
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Fig. 3. Descriptions for the number of training/testing images for each class of the defect in the proposed dataset.
Fig. 4. Detailed description of the proposed sewer defect detection system (DefectTR). Note: There are 4 main steps: (1) pre-processing, (2) DefectTR model, (3) attention weights
analysis, and (4) defect severity analysis.
two convolution blocks and one deconvolution block. Moreover, mul-
tiple smoothed dilated Resblocks were added between the encoder
and the decoder to extract more context features without gridding
artifacts. Finally, an additional gate fusion subnetwork is implemented
to combine the extracted features of distinct levels. GCANet was proved
to perform denoising well without prior knowledge and maintained the
image’s initial brightness [38].

Fig. 5 shows the pre-processing results of some random images
selected from the proposed dataset. By feeding the input images into
the DHE and GCANet models, the outputs show a huge improvement
in the image quality compared to their original version. For instance, it
is a challenge to observe the defect in the original low-light example.
However, the pre-processed image delivers a significant improvement
5

in the image brightness, which enables the observation of what types
of defects appear in the image. On the other hand, the pre-processing
module shows that it does not affect images with sufficient brightness
and have no noise.

5.2. Transformer-based defect detection

5.2.1. Attention in transformers
For the transformer, although the encoder and decoder have many

submodules, the most crucial component is the multi-head attention
that contains multiple self-attention heads, which offers the trans-
former the ability to learn various relationships and variations for
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Fig. 5. Visualization of the images before and after applying the pre-processing module, which involves contrast enhancement (DHE model) and dehazing (GCANet model).
each word [36]. The encoder contains the self-attention module, which
forces the input sequence to pay attention to itself, whereas the self-
attention of the decoder helps the target sequence pay attention to it-
self. Moreover, the decoder contains an extra encoder–decoder-
attention module to enable the target sequence to pay attention to the
input sequence.

• Self-attention
Self-attention’s main goal is to assure that any element in a
sequence can relate to others while being efficiently computed.
If an input sequence has a length of 𝑇 , the attention of a series
of queries, keys, and values can be computed using the scaled
dot-product attention as the similarity metric as follows.

Attention(𝑄,𝐾, 𝑉 ) = sof tmax

(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 (1)

where 𝑄 indicates a matrix consisting of a set of query vectors
as columns. 𝐾 and 𝑉 are the corresponding matrices of key and
value vectors, respectively. With 𝑑𝑘 is the hidden dimensionality
for keys. Downscaling by

√

𝑑𝑘 discourages sof tmax(𝑄𝐾𝑇 ) from
taking large values, which may lead to the computation of re-
spective small gradients, and eventually causes the optimization
to stop.

• Multi-head (MA) attention
The transformer structure contains multiple attention heads, each
of which refers to the attention module that is repeatedly cal-
culated in parallel. The 𝑄, 𝐾, and 𝑉 are split independently
𝑁-ways and fed independently to each separate head. Finally,
these attentions are combined to obtain the final attention score,
called MA attention. The MA attention module is a crucial part of
the transformer structure because it was proved to improve the
multiple relationships encoding performance of the transformer.
The MA attention can be calculated as follows.
MA(𝑄,𝐾, 𝑉 ) = Concat(head1,… , headℎ

)

𝑊 𝑂

where head𝑖 = Attention
(

𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖

) (2)

Each head is computed by multiplying 𝑄, 𝐾 and 𝑉 with corre-
sponding parameter matrices 𝑊 𝑄

𝑖 , 𝑊 𝐾
𝑖 , and 𝑊 𝑉

𝑖 .

𝑊 𝑄
𝑖 ∈ R𝑑model ×𝑑𝑞

𝑊 𝐾
𝑖 ∈ R𝑑model ×𝑑𝑘

𝑊 𝑉
𝑖 ∈ R𝑑model ×𝑑𝑣

𝑊 𝑂
𝑖 ∈ Rnumheads .𝑑ℎ×𝑑model

(3)

where 𝑑𝑞 , 𝑑𝑘 and 𝑑𝑣, is the amount of vectors for 𝑄, 𝐾, and 𝑉
matrices, respectively. Lastly, the computed attention heads are
multiplied with 𝑊 𝑂, which can be computed as follows.

𝑊 𝑂
𝑖 ∈ Rnumheads .𝑑model ×𝑑ℎ (4)

where (𝑑ℎ = 𝑑𝑣∕ℎ) indicates the dimension applied to compute
the attention heads.
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The transformer model has two common issues. Firstly, it requires
a significantly long training process before convergence in order to
allow the attention weights to concentrate on a particular key. Pixels
are usually considered the key elements under concern for CV appli-
cations. However, the number of keys 𝑁𝑘 can become massive if a
high-resolution image is fed into the transformer, leading to slow con-
vergence. Secondly, multi-head attention’s computational and memory
complexity can be very high on numerous query/key pairs.

5.2.2. DETR
Given the feature vectors 𝑥 ∈ R𝐶×𝐻×𝑊 obtained using a CNN

backbone (e.g., ResNet [17]) with 𝐶, 𝐻 , 𝑊 represents output channel,
width, and height. DETR utilizes the encoder–decoder architecture
of the transformer to convert the feature vectors into features of a
collection of object queries. The detection head, which uses a typical
feed-forward neural network (FFN) that has 3 fully connected layers
and a linear projection, is then placed on top of the obtained object
query features. The FFN plays the role of a regression model to get the
bounding box coordinates 𝑏𝑏 ∈ [0, 1]4, where 𝒃𝒃 =

{

𝑏𝑏𝑥, 𝑏𝑏𝑦, 𝑏𝑏𝑤, 𝑏𝑏ℎ
}

represents the normalized center coordinates, height, and width of
the box. On the other hand, the linear projection is used to perform
classification and produce the outputs.

Fig. 6 explains the structure of the proposed DefectTR framework.
For the encoder part of DETR, both query and key matrices are set to
pixels of the activation maps and encoded positional embedding, which
were extracted from the backbone (ResNet). Let 𝐻 and 𝑊 indicate the
activation map’s height and width, the complexity of computing the
self-attention is of 𝑂

(

𝐻2𝑊 2𝐶
)

, which can rise quadratically when the
spatial size increases.

Next, the DETR decoder receives the encoder output and a small
restricted number of learned positional embeddings, which are referred
to as object queries. The decoder has two different attention modules,
which are called cross-attention and self-attention modules. Cross-
attention refers to the attention that is performed on queries generated
by one embedding sequence and the key–value pairs from another
embeddings. On the other hand, self-attention indicates attention that
has values and queries generated from the same embeddings.

DETR has a promising structure that can be implemented to perform
object detection, because it reduces numerous components that require
manual settings. However, some weaknesses exist that can lead to the
application of transformer attention in addressing image feature maps
as key elements. The issues are listed as follows.

• DETR showed relatively poor results in localizing tiny objects.
Although high-resolution feature maps can be extracted to en-
able a better detection rate of small objects, it would make the
computation of the self-attention module grow quadratically.

• DETR demands a significantly longer training scheme in order to
converge compared to modern object detectors. The main reason
is that the attention computation based on image features as
the input is more challenging to train. For instance, the cross-

attention modules are initially of average attention on the entire
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Fig. 6. Full architecture of the defectTR model, which was motivated by the DETR model [17].
Fig. 7. Four colorjitter samples for an input image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
feature maps. However, if the number of epochs is insufficient,
the learned attention maps become sparse and focus solely on the
object extremities.

As a result, Table 1 describes several changes are proposed in order
to address the drawbacks of DETR. The changes are as follows:

• ColorJitter: Color jitter is an augmentation method that randomly
changes the brightness, hue, and saturation of an image. The
value range for these parameters cannot be too large, because it
can potentially introduce noise to the data. As a result, we set
the brightness, contrast, saturation, and hue at the range of [0.6,
1.4], [0.7, 1.3], [0.6, 1.4], and [−0.1, 0.1], respectively. Fig. 7
illustrates some outputs of the colorjitter method.
7

• LeakyReLU activation function: The rectified linear unit (ReLU)
activation usually suffers from the dying ReLU issue, which hap-
pens when the neuron is stuck on the negative side and al-
ways returns 0. Such neurons become unusable because they
are not playing any role in learning the features. As a result,
LeakyRelu [39] was proposed to cope with this issue by eliminat-
ing the zero-slope parts of Relu, which also speeds up the training
process.

• LaProp optimizer: Adam optimizer has undesirable coupling be-
tween momentum and adaptivity, leading to instability and di-
vergence when there is a mismatch between the momentum
and adaptivity parameters [40]. Therefore, LaProp optimizer was
introduced to separate momentum and adaptivity [40]. The ex-
perimental results showed that LaProp achieved faster speed and
better stability than Adam on various benchmark datasets.



Construction and Building Materials 325 (2022) 126584L.M. Dang et al.

5

5

(
e
l
w
𝑊

2

Table 1
Changes that are applied to increase the detection rate of the original DETR model.

Model Augmentation Activation Optimizer Loss Params (× 106)

Original \\ ReLU AdamW GIoU ≳40
DefectTR Color jitter LeakyReLU LaProp [40] CIoU 4.3

Table 2
Defect grade for each type of defect based on the PACP manual.

Korean manual (Our) PAPC Grade

Broken pipe Broken pipe 5
Longitudinal crack Crack (Longitudinal) 2
Circumferential crack Crack (Circumferential) 1
Debris silty Obstacles/Obstructions 3
Displaced joint Joint (Displacement) 2
Faulty joint Joint (Faulty) 2
Separated joint Joint (Separated) 1
Protruding lateral Lateral (Protruding) 3
Surface damage Surface damage 5
Root intrusion Roots (R) 2

• Complete intersection over union (CIoU) loss: generalized inter-
section over union (GIoU) loss [41], which is utilized by the DETR
model, expands the predicted box to fit the ground truth box. This
paper proposes to use CIoU over GIoU because, unlike the GIoU
loss, it matches the predicted box precisely on top of the ground
truth box. CIoU is calculated using three geometric measures,
which include overlapped area, central point distance, and the
aspect ratio. CIoU contains additional training signals (aspect and
center distance), plus the original GIoU for context. CIoU has been
proved to converge faster than GIoU loss [42].

.3. Defect severity analysis

.3.1. Attention weights analysis
During the testing process, for each image, the attention weights

averaged over all heads) from the last encoder and decoder layers were
xtracted and visualized to show which part of the image the model was
ooking at to predict this specific bounding box and class. The attention
eights from the DETR model is a squared matrix of size [𝐻 ∗ 𝑊 ,𝐻 ∗
], so it was reshaped to [𝐻,𝑊 ,𝐻,𝑊 ] for a more interpretable feature

map representation. After that, the mean activation map is calculated
based on the encoder activation map and the decoder activation map.
Finally, the binarization process is implemented on the mean activation
map to get the final binary activation map, which can be used in the
following subsection.

5.3.2. Defect severity analysis
The predicted sewer defect’s severity can be analyzed by evaluating

the zone of influence (ZOI) and the defect grade (from PACP).
Firstly, the mean feature maps can be used for computing the zone

of influence (ZOI). The ZOI can be assessed by computing the total
number of defect pixels in the mean activation map within the localized
bounding box.

After that, a defect grade can be obtained using the PACP scoring
system. For PACP, there are 5 degrees of the defect grade ranging
from 1–5, which represent excellent, good, fair, poor, and immediate
attention, respectively. Our defect grading is based on the standard
grading system introduced by PACP [6] for each type of defect, as
shown in Table 2. Although there are some differences in the naming
of the defect type between our work (Korean manual) and the PACP
manual, the defect types are mostly exchangeable.

Finally, a defect severity can be determined using the computed
8

ZOI information and the grading information obtained from Table 2
as follows.
⎧

⎪

⎨

⎪

⎩

𝐺𝑟𝑎𝑑𝑒 if 𝑍𝑂𝐼 ≤ 0.2
𝐺𝑟𝑎𝑑𝑒 + 1 if 𝑍𝑂𝐼 > 0.2 and 𝑍𝑂𝐼 ≤ 0.3
𝐺𝑟𝑎𝑑𝑒 + 2 if 𝑍𝑂𝐼 > 0.3

(5)

The ZOI is a crucial information to decide whether the degree of
the defect grade should be increased or kept unchanged. It is inspired
by the PACP manual, which assigned higher grade to a defect when it
makes up more than 20% of the entire image.3

6. Experimental results

In this section, various experiments are carried out on the collected
dataset to assess DefectTR’s performance under various testing scenar-
ios thoroughly. First of all, Section 6.1 represents the evaluation metrics
that were adopted to evaluate different aspects of the introduced
model’s performance. Next, Section 6.2 describes the hardware and
the environment where the model was implemented. Moreover, the
hyperparameters of various models are also explained in this section.
Section 6.3 offers a group of experiments implemented to assess differ-
ent aspects of the proposed model. The first experiment in Section 6.3.1
was carried out to check the effectiveness of the pre-processing part in
improving the defect detection performance. The proposed DefectTR’s
performance was then explained in Section 6.3.2. In addition, the
detailed comparison between DefectTR and other models was described
in Section 6.3.4. Finally, we also show the qualitative evaluation of the
proposed model on the ten defect classes and explain some challenging
cases in Section 6.3.6.

6.1. Evaluation metrics

During the assessment of the proposed sewer defect detection sys-
tem’s performance, three main elements of the confusion matrix, which
include the true positive (TP), false negative (FN), and false positive
(FP), are computed to enable the computation of mAP, precision, and
recall. For the COCO benchmark dataset, the mAP over various IoU
thresholds (the minimum IoU ranges to decide a predicted bounding
box is a match) is considered the standard evaluation metric and is
calculated for all defect classes. For example, mAP@[.5:.95] points out
the average mAP over the IoU values ranging from 0.5 to 0.95 with a
default step size of 0.05.

𝑚𝐴𝑃 = 1
𝑁classes

∑

𝑖
𝐴𝑃𝑖 (6)

where 𝑖 is a defect type, and 𝑁classes is the total number of defect types,
which is 10.

In addition, precision and recall are fundamental metrics for sewer
pipe defect localization practically because while precision measures
the wrong detection rate, the recall reports the missing detection. The
calculations of the mAP, precision, and recall are described as follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

6.2. Implementation details

The sewer defect detection framework was constructed and trained
on PyTorch,4 an open-source ML library created especially for the
Python programming language. In order to guarantee the integrity of
the following experiments, all the mentioned deep learning models
were trained using the features from the SewerML pre-trained backbone

3 https://www.oakville.ca/assets/2011%20planning/Pages%20from%
0StormSewerMasterPlanPhase1Rep-Appendices.pdf.

4 https://pytorch.org/.

https://www.oakville.ca/assets/2011%20planning/Pages%20from%20StormSewerMasterPlanPhase1Rep-Appendices.pdf
https://www.oakville.ca/assets/2011%20planning/Pages%20from%20StormSewerMasterPlanPhase1Rep-Appendices.pdf
https://pytorch.org/
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Table 3
The performance of various models before and after applying the pre-processing
module.

Dataset Approach Precision (%) Recall (%) mAP (%)

Original

SSD [43] 49.4 56.3 41.7
YOLOv4 [18] 57.3 60.6 46.8
Faster R-CNN [19] 58.8 62.7 53.4
CenterNet [44] 59.3 64.3 48.7
DETR [17] 56.5 66.1 54.5
DefectTR (Ours) 58.7 68.2 55.9

Pre-processing

SSD [43] 53.1 55.3 43.9
YOLOv4 [18] 57.9 65.7 47
Faster R-CNN [19] 57.5 63.2 56.2
CenterNet [44] 59.7 60.1 51.9
DETR [17] 61.2 69.3 54.2
DefectTR (Ours) 65.4 69.7 60.2

network (ResNet-50) [37]. Notably, the stochastic gradient descent
optimization function with the learning rate begins with 0.1, and
the momentum of 0.9 is applied to train the backbone. The learning
decreased to 0.0001 after 20k iterations. The batch size during the
raining process of these models was fixed to 4.

For DETR and DefectTR models, the number of encoding and decod-
ng layers was fixed to 6. The number of attention heads inside DETR’s
ttentions was set as 8. Parameters of DefectTR ’s encoder were shared
mong various feature levels. The number of object queries was kept
t 100 as the DETR model. Other hyper-parameter settings and training
trategies are similar to DETR [17], except that CIoU was used for the
atching cost instead of GIoU as reported in the original work. The
odels were trained for 25 epochs, and the initial learning rate of 1𝑒−4

was decayed at the 10th epoch by a factor of 0.001. Following DETR,
the models were trained using an Adam optimizer with a base learning
rate of 2 × 10−4, 𝛽1 = 0.9, 𝛽2 = 0.999, and weight decay of 10−4. The
learning rate of the linear projection are multiplied by a factor of 0.1.
The training and inference processes were conducted on an Nvidia Tesla
V100 32 gigabyte.

6.3. Defect detection performance analysis

6.3.1. Image pre-processing results
The performances of SSD [43], YOLOv4 [18], Faster R-CNN [19],

CenterNet [44], DETR [17], and DefectTR (ours) on the collected
dataset with and without the proposed pre-processing process are
compared to confirm the crucial role of the pre-processing module in
improving the sewer defect detection performance. All of the men-
tioned models are well-known object detection models. Therefore, they
can be directly adapted to the defect detection topic by using the
proposed ten-class sewer defect dataset, which was labeled following
the scheme of the COCO benchmark.

Table 3 reports the performance of 6 models with and without
the pre-processing module. The detection models trained with the pre-
processed images achieved higher precision, recall, and mAP than those
trained using the raw images. The mAP value increased by 1%–4%
for each model after implementing the pre-processing module. For our
model, in particular, the pre-processing module advanced the mAP
from 55.9 to 60.2. In summary, the pre-processing module is crucial,
especially for the videos recorded by CCTV, to enhance sewer defect
detection’s performance.

6.3.2. DefectTR’s performance evaluation
Initially, DefectTR’s performance was primarily assessed using the

collected dataset.
Fig. 8 presents the class error and mAP values of the training pro-

cess. The proposed model’s training and validation class error reduced
significantly after epoch 10th to about 0.15 and 0.10, respectively. The
class error values decrease gradually and stop at 0.12 for the training
and 0.08 for validation at epoch 25. The mAP value increases sharply
to over 0.57 at epoch 10. It then rises steadily and stops at about 0.6
9

at the end of the training process
Table 4
Ablation study of the DefectTR model.

ColorJitter Laprop LeakyRelu CIoU mAP

Model A � 56.2
Model B � � 56.2
Model C � � � 57.8
Model D � � � � 60.2

Table 5
Final performance in terms of mAP, precision, and recall of the proposed model on
each type of defect.

BK LC CC DS DJ FJ SJ LP SD RI

mAP 49.7 67.8 70.2 72.7 50.2 57.1 56.1 65.7 52.7 59.3
Precision 58.2 73.9 80.5 78.1 54.2 59.7 59.3 75.4 54.9 60.3
Recall 59.7 80.5 82.2 75.4 60.1 67.4 65.2 79.8 61 66.3

6.3.3. Ablation study
This section first performs a thorough ablation study to analyze sev-

eral parts of the DefectTR model. All the experiments were conducted
on the collected sewer defect detection dataset. The experimental re-
sults are described in Table 4

The baseline (model A) is configured to be closely similar to the
original DETR model without any modification of the model’s compo-
nents, but with an additional ColorJitter augmentation method. Model
A achieved the mAP of 56.2%, which is 5% better than the original
DETR model. After that, the Laprop optimizer is applied instead of the
Adam optimizer (model B). The model showed that it converged 30%
faster (150 iterations) than the Adam optimizer (200 iterations), which
greatly improved the network training speed. With the utilization of
the LeakyRelu activation (model C) and the additional changes from
model A and model B, mAP was improved by 1.6 to 57.8 compared to
the baseline model A. Finally, mAP reached 60.2 (model D) when the
CIoU was implemented to compute the bounding loss instead of the
original GIoU. It is concluded that with some chances of the network
component, the DefectTR model obtained the highest mAP of 60.2
compared to mAP of 55.7 from the DETR model.

Table 5 describes the mAP, precision, and recall of the proposed
model on each class of the defects on the testing dataset. In general,
the mAP of over 65% indicates the model works well on LC, CC, DS,
and LP defect class. The highest mAP of 72.7% was obtained for the DS
class. However, the model performed poorly on two particular classes,
BK, DJ, and SD, with low mAP values of 49.7%, 50.2%, and 52.7%,
respectively. The reason that led to low performance for BK and SD
was that these two classes were similar, and in most cases, BK can be
considered SD that was damaged severely. The DJ class is quite similar
to FJ and SJ class, so sometimes, the model misrecognizes DJ as FJ or
SJ, leading to poor performance detection on the DJ class.

6.3.4. Comparison study for DefectTR
The primary objective of this experiment is to show the advantage

of the presented model over existing models, which include SSD [43],
YOLOv4 [18], Faster R-CNN [19], CenterNet [44], and DETR [17], us-
ing the collected defect dataset. Table 6 summarizes their performances
in terms of precision, recall, mAP, and inference time. Among the
models, DefectTR appropriately detected different defect types with the
best mAP of 60.2%, which was 16.3% higher than the SSD model [36].
As indicated in [17], the inference speed of the transformer-based
model was usually lower than that of one-stage detectors. The inference
speed of the DefectTR model was 85 ms per image, while the SSD model
achieved the fastest inference time at 35 ms per image.

6.3.5. Defect severity analysis
In addition to defect localization, the proposed framework can auto-

matically analyze the severity and ZOI of the detected defects. For this

purpose, we extracted the attention weight feature map of the encoder
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Fig. 8. Class error and mAP curves of the proposed DefectTR model.
Fig. 9. Sample visualization of the defect severity analysis from the DefectTR system. Note: the first column shows input images contained defects; the second column presents
the predicted labels, bounding boxes, and their probabilities using the DefectTR model; the third column shows the visualization of the encoder and decoder attention weights;
the fourth column offers the ZOI and severity of the detected defect using the attention weights.
Table 6
Performance of DefectTR compared to the other approaches.

Model Precision (%) Recall (%) mAP Inference time (ms)

SSD [43] 53.1 55.3 43.9 36
YOLOv4 [18] 57.9 65.7 47 48
Faster-RCNN [19] 57.5 63.2 56.2 1000
CenterNet [44] 59.7 60.1 51.9 128.2
DETR [17] 61.2 69.3 54.2 83
DefectTR (Ours) 65.4 69.7 60.2 85

and decoder. After that, the mean attention weight feature map was
calculated. The ZOI was then calculated based on the mean attention
weight feature map. Finally, the defect severity was determined using
ZOI. A set of sample cases from this section is described in Fig. 9.

6.3.6. Qualitative evaluations
This section quantitatively examines the outputs (detection and

defect severity) of the proposed DefectTR structure for each defect type,
as displayed in Figs. 10 and 11. Fig. 10 shows that the DefectTR model
correctly detected each type of defect and offered additional defect
severity information. The mean attention weight feature map overlays
the original image to show the whole defect severity analysis process
through computing the ZOI. Overall, the model attention focused cor-
rectly on the correct part of the defect in order to determine the defect
10
type. Fig. 10b (row 2, column 3) demonstrates that the model correctly
predicted two instances of the root intrusion class as two different
objects.

Fig. 11 further shows the model’s robustness on challenging cases. In
the first case, the image contains various defects. The model accurately
localized all the defects and provided correct defect severity informa-
tion. Although the second image is both blurry and contains multiple
defects, the model efficiently detected all of them due to the support of
the pre-processing module.

7. Conclusions and future works

This paper introduces a novel transformer-based sewer defect detec-
tion for sewer inspection videos. First of all, a total of 47,100 images for
10 types of defects are extracted from a collection of CCTV videos. After
that, the corresponding annotations are manually labeled by experts.
Various changes, which include colorjitter augmentation, LeakyRELU
activation, LaProp optimizer, and CIoU loss, are introduced in order
to improve the performance of the original DETR model. In addition,
most of the previous defect detection studies can only localize sewer
defects. However, this study proved that attention weights, a unique
feature of the transformer model, can be utilized to analyze the severity
of detected defects to either minor or severe.

The obtained results from various experiments showed that the
proposed framework robustly detected 10 types of sewer defects with
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Fig. 10. The complete output of the proposed framework for each type of defect contains all necessary information, including input image, localized defect, attention weights
visualization, ZOI information, and defect grade.
Fig. 11. Outputs of the proposed DefectTR model for challenging cases.
the highest mAP of 60.2%, which outperformed existing standard
object detection models. Moreover, mAP value of the proposed model
improved significantly from 56.2% to 60.2% compared to the original
DETR model. Finally, the proposed framework showed that it could
assess the defect severity effectively.

Even though the collected defect dataset proposed in this work
contains 10 common types of sewer defects, more defect types can
be added for more precise defect label identification, such as lining
crack, permanent obstruction, hole, and water intrusion. In addition,
the remaining life of a sewer pipe can be predicted if some sensors
are utilized along with the CCTV, which would significantly reduce the
time required to manually analyze each defect to decide the sewer’s
11
remaining life. Finally, the proposed sewer defect detection frame-
work can be optimized in terms of robustness and time efficiency for
real-world applications.
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