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ARTICLE INFO ABSTRACT
Keywords: Plant diseases have a significant impact on both the gquantity and quality of crop yields. Therefore, the timely
Plant disease

detection of these diseases is crucial for facilitating early treatment. Given that most plant diseases affect
leaves and fruits, visually inspecting plants for disease symptoms has become increasingly vital to minimize
potential damage. In the field of precision agriculture, achieving accurate and rapid automated identification
of plant diseases has become essential. To address this challenge, various computer vision and deep learning-
based models have been employed. Thanks to their impressive performance, deep learning has emerged as the
preferred method for plant disease detection. In this context, we present an effective plant disease identification
framework based on a transformer structure, designed to capture long-range features. Additionally, we suggest
enhancements such as BatchFormerV2, the layer-wise adaptive moments optimizer for batch training (LAMB),
and complete intersection over union (CloU) loss to the original model. These additions enrich the model’s
ability to learn fine-grained features and stabilize the training process. Importantly, the proposed model is
interpretable, as demonstrated by the analysis of attention weights to make the prediction process transparent
and comprehensible. The proposed model outperforms previous convolutional and vision transformer-based
models. The model achieves the highest mAP value of 56.3 on the large-scale plant disease dataset used in
this study.

Precision agriculture
Image processing
CNN

Deep learning
Machine learning

1. Introduction considering the vastness of crop fields, it is impractical for experts

to comprehensively examine each individual plant for disease symp-

The Food and Agriculture Organization (FAO) of the United Nations
predicts that the global population will exceed 9.1 billion by 2050,
which requires at least a 70% increase in food production to tackle the
pressing challenges of food insecurity and malnutrition (FAO, 2009).
However, increasing food productivity faces numerous challenges, in-
cluding the effects of climate change, limited agricultural land, and
the availability of clean water sources. Additionally, plant diseases

toms (Dang et al., 2024). Recognizing the significance of early-stage
disease detection, there is a pressing need to develop automated recog-
nition systems capable of accurately and promptly monitoring crop
health. Such systems provide crucial information for farmers’ decision-
making. Faced with these challenges, the research community has
gradually shifted its focus towards computer-aided methods in order

significantly impact both the quantity and quality of crops, resulting in
severe economic consequences such as escalating food prices for con-
sumers and falling farmer income. These damages can aggravate food
shortages, hunger, and even starvation, particularly in underdeveloped
regions with limited access to preventive measures.

Traditionally, the identification and diagnosis of plant diseases
heavily relied on experienced professionals who conducted manual
inspections. However, this approach has been proven to be both time-
consuming and labor-intensive (Jogekar and Tiwari, 2021). Moreover,

to simplify disease detection tasks and establish practical and efficient
plant disease detection systems.

In recent decades, the use of image processing and machine learning
(ML) algorithms has witnessed a huge surge across various domains, in-
cluding agriculture. For example, in a research conducted by Padol and
Yadav (2016), leaf diseases in grape plants were successfully identified
and classified using the support vector machine (SVM) algorithm. The
authors performed disease segmentation using K-means clustering to
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locate the affected areas, and then extracted color and texture features
to train the SVM model. The experimental results demonstrated an
accuracy rate of 88.89% in detecting and classifying the diseases. Das
et al. focused on identifying various types of leaf diseases by extracting
and combining various texture features using the Haralick algorithm to
improve the disease detection performance (Das et al., 2020). Different
ML models, including SVM, logistic regression, and random forest, were
trained using the optimized texture features. The experimental results
revealed that SVM outperformed other algorithms with an accuracy of
87.6%. However, the extraction of handcrafted features requires prior
knowledge of the data, introducing bias into the process. While tra-
ditional ML approaches have shown promising plant disease detection
performance on small-scale datasets, they often struggle with noise and
complex backgrounds, resulting in relatively lower accuracy. Addition-
ally, distinguishing between robust and discriminative information for
effective recognition tasks becomes problematic due to the abundance
of extracted features.

In recent years, deep learning (DL) architectures have been proven
to be highly effective substitutes for traditional ML algorithms. Their
popularity has soared due to their remarkable capabilities across var-
ious domains. Convolutional Neural Networks (CNNs) have demon-
strated outstanding performance in various computer vision (CV) do-
mains, including image classification (Li et al., 2020), segmentation
(Douarre et al., 2019), and object detection (Dang et al., 2020). Mo-
tivated by state-of-the-art performances achieved by both one-stage
models like Single Shot MultiBox Detector (SSD) and You Only Look
Once (YOLO), as well as two-stage models like Region-based Convolu-
tional Neural Network (R-CNN), researchers have increasingly adopted
CNN-based models for the accurate identification and localization of
plant diseases. For instance, Xie et al. addressed the lack of a real-time
detection system for detecting grape leaf diseases, a factor detrimen-
tally affecting grape yield (Xie et al., 2020). The authors introduced
a real-time detection system based on improved deep CNN, utilizing
a manually collected and processed grape leaf disease dataset. The
proposed Faster DR-IACNN model, which uses Faster R-CNN and in-
corporates Inception-vl, Inception-ResNet-v2 modules, and SE-blocks,
achieved an impressive performance of 81 mAP on the grape dataset
and an inference speed of 15 frames per second (FPS). The authors
suggest that the proposed framework offers a viable solution for di-
agnosing grape leaf diseases and has implications for detecting other
plant diseases. In another work, Albattah et al. proposed a robust plant
disease classification framework using a custom CenterNet model with
DenseNet-77 for deep keypoints extraction (Albattah et al., 2022). Per-
formance assessment using the PlantVillage Kaggle database confirmed
the method’s superiority in detecting and classifying plant diseases
compared to other approaches with the highest mAP of 99 and fastest
testing time of 0.21 s per image. Current DL-based one-stage and
two-stage detection structures heavily depend on manually designed
parameters like proposals and anchors during the training process. Fur-
thermore, extra post-processing steps are necessary to reduce duplicate
predictions (Khan et al., 2022).

Taking inspiration from the influence of Transformer in natural
language processing (NLP), researchers have made several adapta-
tions to the Transformer architecture to extend its application to com-
puter vision (CV) tasks. Notably, the end-to-end DEtection TRansformer
(DETR) has been developed for object detection (Carion et al., 2020),
which eliminates the requirement for laborious hand-crafted compo-
nents found in conventional one-stage and two-stage detection models.
Following the introduction of DETR, various extensions such as De-
formable DETR (Zhu et al., 2020), DAB-DETR (Liu et al., 2022), and
DN-DETR (Li et al., 2022) have been proposed to enhance the original
model’s performance. Although these extensions have demonstrated
exceptional capabilities in CV tasks, they still lag behind equivalently
sized CNN counterparts (Khan et al., 2022). For instance, the most
successful DETR-based models currently achieve less than 50 AP on
COCO. Additionally, the scalability of such DETR-based models remains

an area that requires further investigation. Even in the domain of plant
disease identification, transformer-based architectures have displayed
inferior performance when compared to CNN-based models (Thakur
et al., 2021). Consequently, the recent introduction of DETR with Im-
proved deNoising anchOr box (DINO) has addressed lingering concerns
associated with DETR-related architectures (Zhang et al., 2022). DINO
has demonstrated outstanding scalability, setting a new benchmark
with a remarkable 63.3 AP on the COCO dataset.

Motivated by the achievements of the DINO model, this research
suggests a robust transformer-based system for the identification of 12
different plant diseases. The approach involves improving the original
DINO model through fine-tuning and training on a large-scale dataset
consisting of over 121,466 images captured by smartphones. Further-
more, the study extracts and visualizes mean feature maps using the
DINO’s attention weights from the decoder’s final layers, effectively
facilitating the interpretation of the model’s predictions.

The rest of this paper is structured as follows. Section 2 describes
the plant disease dataset used in this research. Section 3 outlines the
proposed automated plant disease detection framework. A detailed de-
scription of each component of the framework is discussed in Section 4.
The experimental results of the introduced framework are provided
in Section 5. In Section 6, we delve into the main contributions and
implications arising from this study. Lastly, Section 7 concludes the
study and offers potential directions for future research.

2. Plant diseases detection data set

Earlier studies on plant disease identification have been limited
in their scope, often relying on small-scale datasets. As indicated in
Table 1, the majority of these datasets were primarily designed for plant
disease classification tasks. With the exception of the PDD271 dataset
introduced by Liu et al. (2021), the remaining datasets contain fewer
than 100,000 images. Despite being the most comprehensive in terms of
disease classes, the current benchmark PlantVillage dataset comprises
merely 54,305 images (Hughes et al., 2015).

In contrast, this study distinguishes itself by utilizing a large-scale
plant disease detection dataset comprising approximately 121,466 im-
ages across 12 distinct classes of plant diseases, surpassing the diver-
sity and quantity of most previous datasets (NIA, 2023). The dataset
spans six different plant species, namely cucumber, strawberry, grape,
tomato, chili pepper, and paprika. Provided for research purposes by
the National Information Society Agency of Korea (NIA),' this com-
prehensive dataset significantly enhances the study’s robustness and
practical applicability. The data collection was a collaborative effort,
primarily coordinated by the Farm Hannong Company Limited® in
partnership with various organizations. Notable contributors included
Nonghyup University® for tomato data collection, Yonam College* for
paprika data collection, Gyeongsangbuk-do Agricultural Research &
Extension Services® for grape and chili pepper data collection, and
Jeonbuktechnopark® for data refinement and processing tasks.

2.1. Plant disease dataset collection

The dataset for plant disease detection was captured using the
Canon EOS 60D, an advanced digital single-lens reflex (DSLR) camera
renowned for its exceptional features. Equipped with an APS-C-sized
18-megapixel CMOS sensor, this camera strikes a perfect balance be-
tween high resolution and impressive low-light performance. Its 9-point

https://www.nia.or.kr/site/nia_kor/main.do.
https://www.farmhannong.com/eng/main/index.do.
http://nonghyup.ac.kr/e_main.asp.
http://eng.yonam.ac.kr/mbshome,/mbs/eng/index.do.
https://www.gba.go.kr/english/index.do.
https://www.jbtp.or.kr/eng/index.jbtp.
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Table 1

Detailed deseriptions of some well-known plant disease datasets.
Research Year Task # species # classes # images
Plant Pathology 2021 (FGVCS) (Thapa et al., 2020) 2021 Classification Apple 12 23,000
PDD271 (Liu et al., 2021) 2021 Classification 42 271 220,592
PlantDoc (Singh et al., 2020) 2020 Classification 13 27 2598
SAMIR (2018) 2018 Classification 14 38 87,000
PlantVillage (Hughes et al., 2015) 2015 Classification 14 38 54,305
CropDisease dataset (This study) 2023 Detection 6 12 121,466

(d5) anthracnose

o e

(d9) botrytis cinerea

(d10) powdery mildew

(d8) powdery mildew
Paprika Ut icH

(d11) powdery mildew

(d12) damping off

Fig. 1. Depiction of the 12 main classes of plant disease from the plant disease detection dataset. Note: The plant disease detection dataset illustrates the 12 primary classes of

plant diseases, with the defect regions highlighted by red bounding boxes.

cross-type autofocus (AF) system ensures precise and swift focusing,
particularly when utilizing the viewfinder, and the inclusion of Al Servo
AF enables continuous tracking of moving subjects. Each image within
the dataset boasts dimensions of 5184 by 3456 pixels, showcasing the
camera’s remarkable image quality. For visual reference, please refer to
Fig. 1, which presents illustrative sample images for each class of the
plant disease identification dataset.

Plants exhibiting symptoms of disease, such as discoloration, le-
sions, or other abnormalities were visually inspected in controlled
environments like outdoor fields and greenhouses. Annotations were
made at the level of individual lesions or affected areas. Each lesion
was carefully examined, and its characteristics, such as size, shape, and
color, were considered for disease identification. The annotation cri-
teria were established based on well-defined characteristics associated
with each disease is provided as follows.

« Anthracnose (d1 and d5): a fungal disease that affects a wide
range of plants. It is caused by various species of fungi in the
genus Colletotrichum (Soytong et al., 2005). Anthracnose com-
monly manifests as dark, sunken lesions on leaves, stems, fruits,
or flowers. These lesions may expand and develop distinctive
spore-producing structures. The disease can cause defoliation,
premature fruit drop, and overall plant decline.

Powdery mildew (d2, d3, d8, d10, and d11): a fungal disease
caused by different species of the order Erysiphales (Panstruga
and Schulze-Lefert, 2002). It affects a wide range of plants, includ-
ing ornamentals, fruits, and vegetables. The disease appears as a
white or grayish powdery coating on the surfaces of leaves, stems,
flowers, and fruits. It can cause stunted growth, leaf curling, and
reduced photosynthesis. Powdery mildew thrives in warm and
humid conditions, spreading through airborne spores.

+ Botrytis cinerea (d4, d6, d7, and d9): Botrytis cinerea, also known
as gray mold, is caused by the fungus Botrytis cinerea (Williamson
et al.,, 2007). The disease causes a grayish-brown fuzzy mold to
develop on infected plant parts, including flowers, leaves, and
fruits. It thrives in cool, humid conditions and can spread rapidly,
leading to severe decay and loss of the affected plant tissues.
Damping off (d12): Damping off is a common fungal disease
that primarily affects young seedlings and is caused by vari-
ous fungi, including species of Pythium, Rhizoctonia, and Fusar-
ium (Lamichhane et al., 2017). It typically occurs in excessively
moist or poorly drained soil. Damping off causes the seedlings to
become weak, wilt, and eventually collapse at the soil level. It can
lead to significant losses in nurseries and seedbeds.

The annotation criteria went beyond just the visual aspects of
lesions, incorporating any surrounding symptoms or patterns that could
aid in accurate disease identification. To achieve this comprehensive
annotation, a team of 15 experts from Jeonbuktechnopark participated
in a nine-month image labeling task. Each expert annotated around
50 images daily, ensuring thorough examination of diverse disease
manifestations. This process was facilitated by a custom annotation
tool developed in Python, streamlining the workflow and ensuring
consistency.

Fig. 2 provides a comprehensive view of the dataset, presenting
the total number of images for each plant disease type. The dataset
contains a total of 121,446 annotated images. To facilitate the training,
validation, and testing processes, a data split ratio of 8:1:1 was adopted.
Accordingly, 123,237 images, equivalent to 80% of the original data,
were randomly chosen as the training dataset. The remaining 15,405
images were allocated for validation, while another 15,405 images
were set aside for testing purposes.
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Fig. 2. A bar chart depicting the number of images for each disease class from d1 to d12.
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Fig. 3. Depiction of the main components of the proposed transformer-based plant disease detection framework (PD-TR).

3. System overview

Fig. 3 depicts the main processes of a comprehensive plant disease
identification and analysis framework, abbreviated as PD-TR. In this
context, PD signifies plant disease detection and analysis, while TR
refers to the transformer-based DINO model. The three main processes
are described as follows.

+ Data collection: Given the inherent variability in real-life data, in-
cluding factors like uneven brightness, darkness, haziness, angles,
and noise, the implementation of data augmentation becomes im-
perative. This process involves replicating these conditions within
the dataset, with the aim of increasing the number of images and
ultimately enhance the detection model’s robustness.

Plant disease detection: Although existing one-stage and two-
stage detection models such as RCNN (Bharati and Pramanik,
2020), YOLO (Mathew and Mahesh, 2022), and SSD (Liu et al.,
2016) have demonstrated remarkable performance on well-
known object detection benchmarks like COCO and Pascal VOC,
they face complexity due to the requirement of learnable hyper-
parameters that need to be manually initialized and optimized.

Furthermore, their training process is comparatively complex
when compared to the end-to-end training approach (Carion
et al., 2020). In this research, we implement DINO (Zhang et al.,
2022), a DL-based detection model motivated by the transformer
structure, to efficiently detect various plant diseases. Notably, this
model can be trained in an end-to-end manner.

« Attention weight analysis: Exploring the attention weights of the
trained DINO-based plant disease identification system provides
a more interpretable approach to comprehend the model’s ef-
fectiveness and robustness in identifying disease regions. This
information is particularly important as it enhances confidence
in the model’s predictions (Vaswani et al., 2017). To interpret
the model’s performance and gain a deeper understanding of its
behavior, this study introduces the visualization and analysis of
the attention weights learned by the model.

4. Methodology

4.1. Image augmentation

Within this section, diverse data augmentation techniques were em-

ployed to augment the number of images for each disease class, thereby
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Fig. 4. Sample output i

iling various data wation techni

enhancing both the size and diversity of the dataset. Initially, the
Colorjitter augmentation method was implemented to address the po-
tential impact of weather conditions on image intensity. This technique
involves introducing random adjustments to the brightness, contrast,
saturation, and hue of the raw images, leading to a wide array of output
images. The ranges for adjusting brightness, contrast, and saturation are
confined to positive values, while the hue adjustment range is restricted
to values less than 0.5. In this study, the specific ranges chosen for
contrast, brightness, saturation, and hue are [0, 2], [0.5, 1.5], [0.9,
1.11, and [-0.5, 0.5], respectively. Moreover, to simulate variations in
camera angles and leaf orientations, rotations of 90°, 180°, and 270°,
along with both vertical and horizontal symmetries, were applied.
Gaussian noise was also introduced to emulate equipment-related influ-
ences. As a result, the original dataset underwent a 14-fold expansion,
substantially augmenting its overall quality. Fig. 4 visually demon-
strates the outcomes of the diverse image augmentation techniques
applied to a sample image.

4.2. DINO model

DINO enhances the original DETR architecture by integrating vari-
ous novel components (Zhang et al., 2022). It is composed of a back-
bone, a transformer encoder, and a decoder. The complete workflow is
illustrated in Fig. 5.

Building upon the concepts introduced by DAB-DETR (Liu et al.,
2022), DINO redefines each positional query in the DETR model as a 4D
anchor box that gets updated automatically across decoder layers. Im-
portantly, DINO incorporates both multi-scale features and deformable
attention (Zhu et al., 2020) to further improve performance. As a
result, these updated anchor boxes play a crucial role in shaping
deformable attention in a sparse yet flexible manner. Similar to the
principles outlined by DN-DETR (Li et al., 2022), DINO implements de-
noising training and advances it with contrastive denoising techniques
to accelerate the convergence of training.

Moreover, DINO introduces novel training schemes including a
mixed query selection strategy for initializing positional queries in the
decoder and a look-forward-twice technique to enhance the optimiza-
tion of box gradient back-propagation. DINO stands out for its rapid
training convergence and streamlined predictions, all accomplished
with a modest parameter count compared to other state-of-the-art
DETR-based models.

4.2.1. Attention mechanism

The attention mechanism is a fundamental component of
transformer-based structures. It grants DINO the capability to selec-
tively concentrate on relevant areas of the input data, providing the
ability to learn long-range dependencies and important contextual
information. In its standard form, attention calculates a weighted
summation of the input elements guided by their importance scores,
which are determined by a compatibility function between a query ¢
and a set of key—value pairs (k;,v;) for i = 1,2, ..., N. This process can
be mathematically expressed as follows.

e; = Compatibility(q. k;) (1)
N
attention(Q, K, V) = E Softmax(e;)vy, (2)

i=1

The compatibility function calculates the importance score ¢; for
each key-value pair, indicating how relevant the key-value pair is
to a specific query. Subsequently, the softmax function is applied to
normalize the importance scores into attention weights, guaranteeing
their cumulative value adds up to 1.

In CV tasks, standard attention mechanisms might encounter dif-
ficulties with complex spatial relationships and uneven data distribu-
tions. To tackle these challenges, deformable attention, also referred to
as deformable self-attention, has been introduced as an extension. Orig-
inally proposed by Zhu et al. (2020), deformable attention introduces
learnable offsets and deformable kernels, which allow the attention
mechanism to dynamically adjust attention positions and weights based
on the input context (Dang et al.,, 2022). This enhanced flexibility
enables the model to handle spatial transformations and effectively
capture fine-grained relationships between different elements in the
input data. As a result, the model becomes more resilient and adaptable
to varying spatial structures.

Consider an input feature map denoted as x € R“"*W  where
C represents the number of channels, and # and W indicate the
height and width of the map, respectively. Within this context, a query
element g is defined, comprising a content feature z, € R” and a
reference point index p, € R?. The concept of deformable attention,
as outlined by Zhu et al. in Zhu et al. (2020), can be expressed using
the following equation:

M K

DeformAtin (z,, Py x) = Y\ Wi | D Apgse - Whx (Pg + Ay 3
m=1 k=1
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Fig. 5. Ilustration of the primary parts of the PD-TR plant disease identification system.

where M denotes the total attention heads, k represents the sampled
keys, and K denotes the total count of sampled keys. The parameter
Ap,g signifies the sampling offset, which measures the deviation of the
sampling point from the reference point p, in the mth attention head.
Furthermore, A, indicates the attention weight of the kth sampling
point in the mth attention head. It represents the importance of the
sampled key in relation to the query element g. The matrices W), and
W/ are linear transformation matrices used to project the input feature
map x in order to capture different aspects of the deformable attention
mechanism.

4.2.2. Contrastive deNoising training (CDT)

DETR is particularly sensitive to classifying as negative in scenarios
where anchor regions contain no objects, and it often encounters diffi-
culties in accurately identifying objects when they overlap (Khan et al.,
2022). These challenges can profoundly influence the model’s overall
performance, and therefore become a prominent concern. DINO takes
a significant step in mitigating this issue through the implementation
of the Contrastive DeNoising (CDN) technique (Zhang et al., 2022).

The CDN technique involves generating both Positive and Negative
Query sets, which are subsequently fed into the decoder. The Positive
Query set indicates image regions containing the true ground truth
bounding boxes (BB) of objects, whereas the Negative Query set char-
acterizes background areas outside of these objects (Banerjee et al.,
2023). When N objects were involved, the generation of 2 X n noise
queries (samples) enables efficient handling of instances where objects
overlap. The positive query undergoes Generalized Intersection over
Union (GIOU) loss, whereas the negative query is subjected to focal
loss. Therefore, the CDN-equipped decoder assesses the presence of
objects for noise sample queries while simultaneously denoising during
the process of BB center coordinates prediction. The key steps involved
in CDT are as follows:

+ Generation of negative BB: To introduce noise, the ground truth
BB is intentionally corrupted, resulting in the generation of noisy
BB predictions. This process involves applying random transfor-
mations or perturbations to the anchor box parameters. These
negative samples lack a meaningful connection to the actual ob-
jects and are used as dissimilar examples for contrastive learning.
Pair creation: For each ground truth object, a pair of BB is
created, containing one with positive predictions and another
with negative predictions.

Contrastive loss: The primary objective of CDT is to increase
the similarity between positive BB predictions while reducing
the similarity between positive predictions and their correspond-
ing negative ones. This contrastive loss function encourages the

model to effectively differentiate between positive and negative
BB predictions. This CDN training process is repeated over several
epochs, allowing the model to gradually become more robust to
noise and enhance its accuracy in predicting BB.

4.2.3. Mixed query selection (MQS)

The Deformable DETR model implemented top-K features to en-
hance both positional and content queries. However, the chosen fea-
tures were preliminary content features that lacked subsequent pro-
cessing. This characteristic could potentially introduce ambiguity and
misinterpretation into the decoder’s operation (Zhang et al., 2022).
In contrast, the MQS technique, employed in the DINO model, serves
as a method for initializing anchor boxes as positional queries in
the decoder. This approach involves handpicking initial anchor boxes
from the encoder’s output while maintaining the flexibility for content
queries to be learned. This strategic initialization guides the initial
decoder layer to prioritize the inherent spatial context in the data.
As a result, the model’s performance is significantly enhanced by this
approach (Zhang et al., 2022).

4.2.4. Look forward twice box prediction

An iterative process for box refinement was implemented in the
Deformable DETR model, but this approach posed challenges to gradi-
ent backpropagation, potentially affecting training stability (Zhu et al.,
2020). This technique was termed “look forward once,” as it involved
updating the parameters of layer i solely through the auxiliary loss of
boxes b;.

The DINO model introduced a novel technique for box prediction
called “look forward twice” (Zhang et al., 2022). This concept is based
on the idea that improved box information from a subsequent layer
can effectively refine box predictions from preceding layers. In this
strategy, the parameters of layer — i are affected by the losses of both
layer — i and layer — (i + 1). The incorporation of the “look forward
twice” technique accelerates training convergence speed and leads to
substantial performance improvements. For a given input box b,_, at
the (i — 1)th layer, the final predicted box bﬁpmﬂ} is derived through the
following process:

Ab; = Layer; (b;_,) .
b; = Detach () ,

b = Update (b,_,. Ab;)

ed)
bP = Update (b]_,.4b,) .
where b/ represents the undetached version of b;,. The term Update(:,-)
refers to a function responsible for refining the box b,_; using the

predicted box offset Ab,. We adopt the same box updating approach
as described in Deformable DETR (Zhu et al., 2020).
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Table 2
Detailed description for model customization.
Model Auxiliary Activation Loss Optimization
algorithm
DINO ReLU GloU Adam
PD-TR BatchFormerV2 LeakyReLU CloU LAMB

(Hou et al, 2022)

4.3. Model customization

While DINO can be trained to perform plant disease detection,
its performance can be affected by certain components. To improve
DINO’s effectiveness in plant disease detection, various enhancements
were made to the PD-TR model’s architecture and optimization pro-
cess, which are outlined in Table 2. These adjustments were care-
fully selected based on their demonstrated effectiveness in improving
transformer-based models for CV tasks.

+ Leaky Rectified Linear Unit (LeakyReLU): In the context of DINO,
the default ReLU activation can sometimes lead to the “dying”
ReLU problem, where certain neurons become inactive for spe-
cific inputs and disrupt the gradient flow during training (Lu
et al., 2019). To tackle the problem, this study suggests replacing
the ReLU activation with LeakyReLU activation, which introduces
a small negative slope to negative inputs. This adjustment effec-
tively mitigates the “dying” ReLU issue, resulting in a more stable
training process. Incorporating LeakyReLU not only introduces
additional non-linearity but also diversifies the model’s outputs,
thereby enhancing its overall expressive capabilities.
BatchFormerV2: Hou et al. introduced a module known as Batch-
FormerV2 (BF), which, despite its simplicity, has proven highly
effective in enabling transformer-based models to capture re-
lationships among samples in each mini-batch. In the conven-
tional approach, Transformer blocks are generally applied to
pixel/patch-level feature maps (Hou et al., 2022). However, BF
transformer blocks operate on feature maps with a length equiva-
lent to the batch size. By incorporating the BF module, the PD-TR
model adopts a two-stream pipeline with shared training weights.
Both streams channel their outputs into the same transformer
decoder. This two-stream approach ensures that all shared blocks
are trained using shared weights during training. The original
blocks can still function effectively without BF, avoiding any
additional inference burden during testing. The integration of
the BF module into various vision transformer models, including
DETR (Carion et al., 2020) and Deformable-DETR (Zhu et al.,
2020), consistently and significantly enhances performance, lead-
ing to improvements in the MSCOCO benchmark mAP results of
over 1.3.

Complete Intersection over Union (CloU) loss: The Generalized
IoU (GIoU) loss is an extension of the standard IoU implemented
in DINO for box regression. It considers both the overlapping area
between the predicted BB and the ground truth BB, as well as
the non-shared areas (the union) (Rezatofighi et al., 2019). In
this study, the CloU was used in conjunction with L1 to com-
pute box regression reconstruction loss. CloU is an improvement
over GloU, which further incorporates additional terms to con-
sider localization accuracy and aspect ratio consistency between
the ground truth and predicted BB. This enhancement has been
shown to result in faster convergence and higher detection rates
compared to the GIoU loss.

a (p.p*)
-2

Ec,d,=l—faU+{—+aV 4)

where p and p* represent the central points of ground truth
and predicted BB, respectively. ¢ is the minimum enclosing box

that contains both ground truth and predicted boxes. d is the
Euclidean distance between the box centers, and V' captures the
aspect ratio consistency. The parameter « serves as a trade-off
parameter in this context.

LAMB optimizer: Although AdamW is generally regarded as the
standard optimizer for various vision transformer-based mod-
els (Khan et al., 2022), Tessera et al. have demonstrated that
instability in the training process can arise when the ratio of
weights’ L2-norm to gradients is high (Tessera et al., 2021).
Therefore, this study opts for an alternative approach, utiliz-
ing the layer-wise adaptive large batch optimization (LAMB)
optimizer. LAMB combines the advantages of both the Adam
and Layer-wise Adaptive Rate Scaling (LARS) optimizers (You
et al.,, 2019). Notably, LAMB employs layer-wise adaptive tech-
niques by utilizing per-dimension normalization based on the
square root of the second moment, in conjunction with layer-wise
normalization. His approach is particularly well-suited for large-
scale distributed training and has proven effective in training
transformer models on extensive datasets.

ny =ﬁ]mrtprevj+ (I _.ﬂl)g:

( | 2
v =ho" "+ (1-B) g
m

1= (s)
U‘,

1= ()’ ®

my
\/U_,+{'

xuJ —x{a— ;—¢.(”xsl}”.) (rt'}+ﬂ.x('))
s

where m, is the first moment estimate at time ¢, while v, corre-
sponds to the second moment estimate at the same time step. The
hyperparameters f§, and f, regulate the momentum and weight
decay effects, respectively. The hyperparameter 4 controls the
level of layer-wise adaptiveness. #, is the learning rate vector at
time 7, and ¢ is the parameter vector at the same time instance.
To prevent division by zero, a small constant ¢ is introduced.
Additionally, r, stands for the update ratio employed in the LAMB
optimizer.
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4.4. Attention weight analysis

After the completion of the training process, the averaged attention
weights from the last layers of the decoder were obtained. These atten-
tion weights serve as indicators of the extent to which each attention
head concentrates on different parts of the image features (Vaswani
et al.,, 2017). Visualization of attention can be done by mapping the
attention weights back to the input image. Regions with higher atten-
tion weights will be highlighted, signifying that the model is focusing
on these areas during prediction. The computation of attention weights,
denoted as W, follows the equation:

W = sofimax(A/sqri(d,)) (6)

where A represents the matrix of attention scores, computed through
the dot product between the queries (Q) and keys (K), while d; is the
dimension of the key vectors. The computation of the attention scores
matrix A can be expressed as:

A=0=x K" (7

Each element w; in the attention weights W represents the atten-
tion weight allocated to the ith region in the image. These weights
values provide insights into how the model prioritizes different regions
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Fig. 6. Depiction of the attention analysis process. Note: The PD-TR's output for each prediction includes the disease type and the corresponding confidence score.

while generating predictions for a specific query region. The attention
weights were extracted in the form of a square matrix with dimensions
of [Hx W, HxW]. To make it easier to visualize the attention weights,
this matrix was reshaped into a [H, W, H, W] format. This map serves
as a valuable tool to assess the disease detection performance and
robustness. In Fig. 6, the attention analysis for a sample input image
is depicted, revealing how the PD-TR effectively focused on the disease
areas through the extracted decoder attention.

4.5. Implementation description

The plant disease detection system was developed using PyTorch
1.6.0, a Python-based ML library. To guarantee consistent and fair
experiments, a pre-trained ResNet-50 backbone trained on the Ima-
geNet dataset was utilized for all the detection models employed in
the experimental section. The training process was performed on two
Nvidia Tesla V100 GPUs, each containing 32 GB of memory. Apart
from the PD-TR model, the other DL models and their associated
hyperparameters were implemented using open-source code provided
by the original research papers.

The transformer-based models implemented in the experimental
results section maintained a consistent configuration with 6 encoding
and decoding layers. Each model contains 8 attention heads with a
hidden feature dimension of 256. Specifically, the DINO and PD-TR
models utilized 900 query slots, while the remaining models utilized
300 query slots. The hyperparameters and training strategies for PD-TR
closely followed those of DINO, differing only in the use of cloU instead
of GloU for BB regression loss, the incorporation of BatchFormerV2, the
adoption of LeakyReLU activation instead of ReLU activation, and the
utilization of the LAMB optimizer as opposed to the AdamW optimizer.
The PD-TR model underwent 35 training epochs, employing the LAMB
optimizer with an initial learning rate of le — 3, f, = 0.9, , = 0.999,
and an epsilon value of le — 6. A standard learning rate scheduler, as
recommended by Zhang et al. (2022), was applied with a polynomial
weight decay formula of 5, = ny x (1 —1/T).

4.6. Evaluation metrics

In this study, the plant disease detection framework’s performance
is assessed and compared evaluation metrics such as mean average
precision (mAP), precision, and recall. These metrics rely on three
fundamental values of the confusion matrix: true positive (TP), false
positive (FP), and false negative (FN). Precision measures the pro-
portion of correct positive predictions among all predicted positive

instances, whereas recall is the proportion of accurate positive predic-
tions to all actual positive instances in the dataset. These metrics can
be mathematically described as follows:

Precision = TP+ 7P
» ®)

Recall = ———

TP + FN

The widely-used mAP is employed as an evaluation metric in object
detection tasks (Zhao et al., 2019). Specifically, we utilize mAP@0.5,
which evaluates the object detection accuracy at a confidence threshold
of 0.50. This evaluation assesses the model’s ability to identify objects
by generating the precision-recall curve under the 0.50 confidence
threshold and computing the average precision (AP) as the area under
this curve. Ultimately, the mAP is determined by averaging the AP
results across all object classes present in the dataset. This can be
described as follows.

l n
mAP:;Z{AP, (9

where n is the total number of disease classes in the dataset and
AP, is the AP for the ith object class, which is computed using the
precision-recall curve for that class.

5. Experimental results
5.1. Class imbalance analysis

This section investigates the effects of the imbalanced raw dataset
on the performance of the proposed PD-TR model. Its performance was
compared with a version of the PD-TR model trained on augmented
data (Section 4.1), addressing the imbalanced distribution.

Table 3 reveals that the model trained on augmented data con-
sistently outperforms the model trained on imbalanced data across
all three metrics. The mAP increases from 54.8 to 56.3, indicating a
better overall balance between precision and recall across all classes.
This suggests that the model is better able to detect instances of both
majority and minority classes after augmentation. This demonstrates
the effectiveness of data augmentation in addressing class imbalance,
enhancing model performance, and improving model generalizability.

5.2. PD-TR performance evaluation
Fig. 7 illustrates a sharp decrease in loss values for training and

validation bounding box regression, reaching approximately 0.066 and
0.05, respectively, by the 10th epoch. Following this initial drop, the
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Fig. 7. Bounding box loss and mAP values visualization of the proposed PD-TR model on the plant disease detection dataset.

Table 3
Performance of the DINO model for the original imbalance data and augmented data
in terms of mAP, precision, and recall.

mAP Precision Recall
Raw data 54.8 0.56 0.49
Augmented data 56.3 0.59 0.53

losses continued to drop gradually and stabilized at 0.054 for training
and 0.045 for validation by the end of the 35th epoch. Simultaneously,
PD-TR’s mAP value rapidly rose to 47 after the 10th epoch, displaying
a gradual increase and eventually leveling off at 56.3.

Table 4 presents the detection performance of the PD-TR model on
12 different plant diseases, denoted as d1 through d12. The evaluation
includes key metrics like mean mAP, precision, and recall.

Overall, the model demonstrates good performance across the eval-
uated plant diseases, with an average mAP of 56.3. The mAP scores
span from 49.7 to 63.2 across different diseases, indicating the model’s
effectiveness in generating accurate BB predictions and label predic-
tions. The best performance can be observed in disease d1, where the
model achieves an mAP value of 63. This indicates that the model
excels in accurately localizing and classifying instances of this par-
ticular disease. On the other hand, the worst performance is evident
in disease d3, with an mAP of 49. This indicates that the model’s
predictions for this disease are comparatively less accurate in terms
of BB localization and class prediction. These lower metrics for d3
signify that the model encounters challenges in accurately detecting
and classifying instances of this particular disease. The poor detection
performance of PD-TR for the d3 class can be attributed to various
factors. The complex structure of strawberry leaves and fruits, coupled
with their diverse color spectrum depending on maturity and growing
conditions, can significantly challenge models in distinguishing healthy
from diseased areas. This challenge is further compounded by the
presence of trichomes, microscopic hair-like structures on the plant
surface, which can mimic early-stage powdery mildew symptoms and
lead to misidentification for the d3 class.

Precision values, ranging from 0.51 to 0.66, depict the model’s
ability to minimize false positive predictions, resulting in more accurate
positive classifications. Similarly, Recall values, ranging from 0.50 to
0.60, demonstrate the model’s ability to capture a significant portion
of actual positive instances within the dataset. Moreover, the presented
model obtained an average mAP value of 56.3, as depicted in Table 4.
The main factor contributing to this performance is the large and
challenging real-life characteristics of the plant disease dataset captured
using smartphones and cameras.

5.3. Detection results and attention weight analysis

Figs. 8 and 9 provide a comprehensive view of the PD-TR model’s
performance across twelve distinct plant diseases, displaying both the
BB predictions and their corresponding confidence scores. The model
demonstrates a high detection performance in identifying each type

of plant disease. Moreover, the mean deformable attention weights of
the PD-TR model offer valuable insights into its ability to focus on the
relevant disease regions.

Of particular note is the model’s competitive performance in detect-
ing powdery mildew (d2, d3, d8, d10, d11) and botrytis cinerea (d4, d6,
d7, d9), which cause characteristic white powdery or gray spots on leaf
and fruit surfaces. The PD-TR model displayed a remarkable capability
in identifying multiple instances of these diseases on a single leaf or
fruit, displaying high confidence in its predictions. This highlights the
robustness and efficacy of the proposed model in addressing complex
scenarios. The visualizations of attention weights further reinforce the
model’s reliability, as they clearly indicate the model’s successful focus
on disease-specific regions within the plants.

In conclusion, the algorithm presented in this paper accurately
detects disease locations and categories, even in scenarios involving
multiple diseases and small disease spots within the image. This per-
formance is accomplished while effectively addressing concerns of false
positives and missed detections, thus highlighting the model’s practical
significance in plant disease detection.

5.4. Ablation study

In this section, an ablation study was conducted to evaluate the
influence of different modules on the performance of the DINO model
in plant disease identification. The results of the experiments are ex-
plained in Table 5.

PD-TR (1) distinguishes itself from the original DINO model by
replacing ReLU activation with LeakyReLU activation, resulting in an
enhanced mAP of 53.6 compared to the initial 51.9. Subsequently, PD-
TR (2) incorporates the CloU loss in place of GIoU loss from PD-TR (1),
further boosting the mAP to 54. Moving on, PD-TR (3) adopts the LAMB
optimizer instead of the AdamW optimizer, leading to a 20% faster
convergence and a shorter training process. Ultimately, PD-TR (4) intro-
duces the BatchFormerV2 module to PD-TR (3), resulting in the highest
mAP of 56.3. These modifications across network components allowed
the PD-TR model to outperform the DINO model by 4.4 in terms of
mAP, confirming the effectiveness of these changes in enhancing the
model’s detection capabilities.

5.5. Comparison with other models

This section is dedicated to evaluating the performance of the pro-
posed PD-TR framework in contrast to other established detection net-
works, which include Mask-RCNN (He et al., 2017), YOLOv5 (Mathew
and Mahesh, 2022), SSD (Liu et al., 2016), DETR (Carion et al., 2020),
DAB-DETR (Liu et al., 2022), DN-DETR (Li et al., 2022), deformable
DETR (Zhu et al., 2020), and the original DINO model (Zhang et al.,
2022). The performance of these models in terms of precision, recall,
mAP, and inference speed, is described in Table 6.

Among the models listed in the table, the PD-TR model presents a
balanced performance across multiple aspects. It achieves the highest
mAP value of 56.3 while maintaining competitive precision and recall
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Table 4
Performance of the PD-TR for each class of plant disease in terms of mAP, precision, and recall.
dl d2 d3 d4 ds de d7 ds d9o dio di1 di2 Average
mAP 63.2 62.4 49.7 57.1 59.2 50.5 56.1 54.3 56.6 58.4 56.2 51.6 56.3
Precision 0.66 0.65 0.51 0.6 0.62 0.52 0.58 0.58 0.59 0.62 0.59 0.55 0.59
Recall 0.6 0.57 0.53 0.55 0.54 0.57 0.53 0.52 0.54 0.56 0.51 0.5 0.53

d4 ds dé

Fig. 8. The PD-TR model's predictions for each plant disease, including (a) the input image, (b) disease detection results, and (c) attention weights visualization. Note: The model

predicted both the disease class and the model’s confidence score in that prediction.

d1o

Fig. 9. The PD-TR models predictions for each plant disease, including (a) the input image, (b) disease detection results, and (c) attention weights visualization. Note: The model

predicted both the disease class and the model’s confidence score in that prediction.

Table 5
Ablation study involving the replacement of various components within the PD-TR
model.

LeakyRELU CloU LAMB BatchFormerV2 mAP
DINO 51.9
PD-TR (1) v 53.6
PD-TR (2) 7 / 54.1
PD-TR (3) 7 / 7 54.1
PD-TR (4) v s v v 56.3

values of 0.59 and 0.53, respectively, making it a reliable choice for
disease detection. Additionally, its relatively fast inference speed of

23 FPS highlights its suitability for real-time applications. It is worth
noting that PD-TR is based on the DINO model, which also performed
well with mAP value of 51.9.

While models like YOLOv5 and Mask-RCNN exhibit competitive
mAP, SSD and DN-DETR lag behind. The DN-DETR model exhibited
the lowest mAP value of 49.4 among the transformer-based models,
coupled with an inference speed of 24 FPS. In summary, the PD-
TR model achieves the highest mAP of 56.3, suggesting its superior
ability to accurately detect plant diseases across different classes, while
YOLOV5 stands out with the highest inference speed of 37 FPS, making
it suitable for real-time applications. The PD-TR model, along with
DETR-based models, offers a commendable inference speed of around
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Table 6
Comparison of the PD-TR model’s performance with the other eight models using the
testing plant disease data.

Model mAP  Precision Recall Inference
speed (FPS)
SSD (Liu et al., 2016) 48.5 0.51 0.43 30
YOLOvS (Mathew and Mahesh, 2022) 49.3 0.52 0.48 37
Mask-RCNN (He et al, 2017) 50.9 0.54 0.52 20
DETR (Carion et al., 2020) 50.2 0.53 0.49 25
DAB-DETR (Liu et al, 2022) 49.8 0.52 0.51 21
Deformable DETR (Zhu et al., 2020) 50.4 0.52 0.53 22
DN-DETR (Li et al., 2022) 49.4 0.51 0.48 24
DINO (Zhang et al., 2022) 51.9 0.55 0.52 23
PD-TR (Ours) 56.3 0.59 0.53 23

23 FPS, indicating its potential for further inference speed improvement
in the future.

6. Discussion

Our objective in this study was to identify the most efficient and
robust model for automated plant disease identification framework. We
examined seven distinct DL-based detection networks using a large-
scale plant disease dataset and assessed their performance based on
three commonly used evaluation metrics: recall, mAP, and precision.
Through a series of experiments, models based on transformer structure
exhibited superior performance compared to other DL detection net-
works when trained on a large-scale dataset. These transformer-based
structures showcased a remarkable ability to capture intricate features
and acquire more refined representations of disease areas. The results
agree with recent studies that have also highlighted the efficiency of
transformer-based structures like DAB-DETR (Liu et al., 2022), DN-
DETR (Li et al., 2022), and DINO (Zhang et al., 2022). Nevertheless, it
is worth noting that transformer-based models do have certain weak-
nesses, such as long training schedules and low inference speeds, which
pose challenges when applied to real-time plant disease detection appli-
cations. Models like YOLOv5 (Mathew and Mahesh, 2022) and SSD (Liu
et al., 2016) are better for scenarios where fast detection is a priority,
favoring speed over absolute performance. Nonetheless, all networks
examined in this study were capable of outputting predictions within a
second during testing, making them suitable for plant disease detection
application.

We then proposed the PD-TR model for plant disease detection
based on the original DINO model. We implemented some changes
to the DINO model (Section 4.3), such as using LeakyReLU activation
instead of RELU activation, replacing GIoU with CloU, incorporat-
ing BatchFormerV2, and applying the LAMB optimizer. While these
changes were not specifically aimed at improving the plant disease
detection topic, they were introduced to further enhance the model’s
performance and robustness. The ablation study in Section 5.4 revealed
that these modifications enhanced the mAP value of PD-TR by 4.4 to
56.3. In particular, these adjustments were easy to deploy and led to
better convergence speed and generalization ability without affecting
the performance.

In the past decade, many studies on DL-based plant disease iden-
tification have demonstrated its superior performance compared to
conventional ML algorithms (Xie et al., 2020; Albattah et al., 2022),
yet the interpretation of these models’ predictions has often been ne-
glected. In agriculture, interpretability plays a pivotal role in enhancing
farmer trust. This study concentrates on highlighting the strengths of
interpretability in plant disease detection framework and underscores
the interpretive potential of transformer structures, which is due to the
transformer architecture. The PD-TR model could extract and visualize
the extracted deformable attention weights from the decoder (Sec-
tion 5.3). This distinctive attribute facilitates analysis of the model’s
outputs, facilitates transparency, and, importantly, contributes to fos-
tering confidence in automated plant disease identification frameworks.

7. Conclusions and future works

This study proposes a comprehensive end-to-end automated plant
disease identification framework based on the transformer architecture
that can be integrated into practical disease identification applications.
The model was trained on a dataset containing 121,446 images repre-
senting 12 distinct plant disease classes. Various improvements were
proposed to improve the performance of the original DINO model,
such as integrating data augmentation and BatchFormerV2 techniques,
adopting the CloU loss, implementing LeakyReLU activation, and using
the LAMB optimizer. The outcomes demonstrate the model’s ability to
achieve a high detection rate and speed in accurately identifying plant
diseases. Moreover, the unique attention weights feature inherent in the
transformer architecture allows experts to gain a deeper understanding
of how the model detects areas of interest associated with diseases.

The proposed framework was effective in detecting twelve distinct
plant disease types, achieving an mAP value of 56.3. This outperforms
the performance of six other state-of-the-art object detection models,
as evidenced by a series of experiments. Furthermore, compared to the
original DINO model, the mAP value witnessed an enhancement from
51.9 to 56.3, thanks to the introduced modifications. Notably, the trans-
former attention weights serve as a valuable tool for comprehending the
model’s decision-making process by highlighting the potential disease
regions that contribute to accurate detection.

While the plant disease dataset used in this study covers twelve
disease classes across six different plants, further expansion of the
disease types could potentially further improve the detection capability.
In addition, the integration of multispectral or hyperspectral data to
capture earlier disease stages invisible to the naked eye will potentially
enable more timely interventions. Given the complicated structure of
transformer-based models, the current limitation in real-time detec-
tion requires attention and future research. Thus, the optimization of
these models to achieve an optimized balance between robustness and
computational efficiency stands as a crucial trend for future research.
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