
Transformer-based Detection of Abnormal Rice Growth

using Drone-based Multispectral Imaging

Yanfen Lia,1, L. Minh Dangb,c,d,1, Hanxiang Wanga,∗, Muhammad Fayaze,
Sufyan Danishe, Junliang Shanga, Hyoung-Kyu Songd, Hyeonjoon Moone,∗

aSchool of Computer Science, Qufu Normal University, Rizhao, China
bInstitute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam

cFaculty of Information Technology, Duy Tan University, Da Nang, 550000, Viet Nam
dDepartment of Information and Communication Engineering and Convergence

Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea
eDepartment of Computer Science and Engineering, Sejong University, Seoul 05006, South

Korea

Abstract

Rice is a vital staple food for global food security and a primary income source

for millions of farmers worldwide. However, abnormal rice growth poses a serious

threat to both yield stability and grain quality, undermining agricultural produc-

tivity. Early detection of such anomalies is therefore essential to mitigate yield

losses. However, existing methods either targeted only one symptom at a time,

or failed to generalize under various �eld conditions. Moreover, lightweight real-

time inference is needed for on-board UAV deployment, yet most high-accuracy

models incur prohibitive computational cost. In this study, we propose ARG-

TR model, a lightweight transformer-based semantic segmentation framework

built on the SegFormer architecture, which utilizes long-range dependencies to

identify complex growth anomalies. The model is trained and validated on a

large-scale, drone-captured multi-spectral dataset. By integrating a hierarchi-

cal transformer encoder with a lightweight decoder, ARG-TR achieves rapid

convergence during training and demonstrates strong generalization to unseen

data. The experimental results on a challenging dataset of abnormal rice growth
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patterns show that ARG-TR achieves a robust Intersection over Union (IoU)

of 64.8, which outperforms state-of-the-art baselines such as MaskFormer and

KNet in both accuracy and computational e�ciency.

Keywords: abnormal growth, rice, transformers, semantic segmentation,

lodging

1. Introduction1

The Food and Agriculture Organization (FAO) of the United Nations (Food2

& of the United Nations, 2025) projects that the global population will reach3

9.2 billion by 2050. To meet the food demands of this growing population,4

global agricultural production must increase by 60�70% from current levels, as5

emphasized in multiple FAO reports (Samal et al., 2022; Stankus, 2021). Rice,6

a staple food for over half the world's population, predominantly in Asia, plays7

a critical role in global food security (Bin Rahman & Zhang, 2023). However,8

it is increasingly challenging to achieve the required production target due to9

abnormal growth patterns in rice, which manifest through various symptoms10

including stunted growth, delayed �owering, malformed grains, lodging, missing11

plants, and disease-speci�c damages, such as rice blast disease. These abnormal-12

ities stem from biotic (e.g., diseases, pests) and abiotic stressors (e.g., nutrient13

de�ciencies, environmental pressures) (Dang et al., 2024), which disrupt nor-14

mal crop development by reducing photosynthetic e�ciency and compromising15

plant components (Rezvi et al., 2023). For example, rice blast disease (Magna-16

porthe oryzae) destroys photosynthetic tissues, while pest infestations weaken17

vital components, directly compromising both yield quantity and quality. These18

issues threaten to destabilize rice production if left untreated, undermining food19

security, farmers' livelihoods, and economic stability in rice-dependent regions.20

Therefore, it is urgent to address abnormal rice growth through targeted mitiga-21

tion strategies to safeguard sustainable rice production and global food security.22

Traditionally, abnormal rice growth detection and diagnosis relies heavily23

on manual �eld inspections by agricultural experts. However, this approach is24
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labor-intensive, time-consuming, and impractical for large-scale monitoring due25

to the massive size of rice �elds. Inspecting individual rice plants for subtle26

growth anomalies on vast areas is logistically unfeasible. To address these chal-27

lenges, automated inspection systems are critical for enabling timely, �eld-scale28

assessment of crop health. Unmanned aerial vehicles (UAVs), equipped with29

RGB, multispectral, or thermal imaging sensors provide a viable solution for30

early-stage anomaly detection (Dang et al., 2020). By capturing high-resolution31

aerial imagery, UAVs o�er a bird's-eye view that reveals subtle stress indica-32

tors, such as chlorosis, stunted growth, or canopy structural variations, often33

undetectable at ground level. UAVs generate large-scale datasets that moti-34

vate the development of advanced computer vision (CV) frameworks capable35

of automated feature extraction, anomaly classi�cation, and quanti�able stress36

mapping to transform raw imagery into actionable interventions.37

While conventional ML methods depend on handcrafted feature extraction,38

deep learning (DL) models, particularly convolutional neural networks (CNNs),39

demonstrate superior capacity for automated detection of subtle rice growth ab-40

normalities from UAV or ground-level imagery (Alam et al., 2025). DL models41

automatically learn discriminative features, such as color, texture, structural,42

and spatial domains, to identify issues such as stunted growth, disease, or nutri-43

ent de�ciencies with minimal human intervention. As a result, DL has achieved44

state-of-the-art performance in various tasks for precision agriculture, including45

classi�cation (Li et al., 2020; Dang et al., 2020), detection (Dosset et al., 2025;46

Wang et al., 2024), and segmentation (Alam et al., 2025; Zhang et al., 2021a).47

For example, Tian et al. (Tian et al., 2021) employed partial least squares48

discrimination analysis on UAV multispectral data to detect rice lodging. By49

utilizing spectral, textural, and color features, the model achieved over 90%50

accuracy. However, its handcrafted spectral features exhibited limited general-51

ization for various cultivars, growth stages, and regional conditions because the52

model was �ne-tuned on Shanghai paddy characteristics. With a more advanced53

approach, Yang et al. (Yang et al., 2020) introduced an adaptive UAV-based54

scouting system that combines multi-altitude imaging and a deep segmentation55
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model to detect rice and lodging. The model achieved 95.28% rice identi�ca-56

tion and 86.17% lodging detection. However, the results are based primarily57

on simulations and selected UAV energy pro�les. On the other hand, Zhang58

et al. (Zhang et al., 2021a) developed Ir-UNet, a DL model for wheat yellow59

rust detection. By integrating irregular convolution and content-aware channel60

reweighting modules, Ir-UNet addressed challenges posed by irregularly shaped61

and blurred disease boundaries. The experimental results showed that the model62

achieved 97.13% overall accuracy on UAV multispectral data and maintained63

robustness with reduced input features. Recently, Wu et al. (Wu et al., 2025)64

proposed a YOLOv5-based pipeline for missing rice seedling detection using65

UAV images. UAV images were �rst stitched into a geo-referenced panoramic66

view and then cropped to a series 640Ö640 patches for dataset creation. The67

patches were used to train a YOLOv5, which achieved an 80% recall and 75%68

precision in identifying missing rice seedlings. However, GPS-dependent image69

stitching and prede�ned thresholds degraded performance in �elds with irregu-70

lar planting patterns or GPS drift, and the rectangular detection regions could71

miss seedlings in non-uniform layouts. In general, previous approaches su�er72

from three main limitations: (1) single-symptom detection, such as lodging or73

single disease detection, (2) poor generalizability due to limited labeled training74

data, (3) limited adaptability to irregular input due to grid layouts.75

Originally developed for natural language processing (NLP), transformer76

models revolutionized CV by introducing a self-attention mechanism to model77

long-range spatial dependencies and global context (Lin et al., 2022). The Vision78

Transformer (ViT) (Dosovitskiy et al., 2020) pioneered this for CV by partition-79

ing images into patch tokens, but its computational ine�ciency limited dense80

prediction tasks. Swin Transformer (Liu et al., 2021) addressed this by intro-81

ducing hierarchical feature extraction and shifted windowing scheme to improve82

e�ciency and spatial reasoning for dense prediction tasks like semantic segmen-83

tation. Building on these innovations, SegFormer (Xie et al., 2021) emerged as84

a state-of-the-art semantic segmentation model. It combined transformer-based85

global context modeling with a lightweight, hierarchical architecture to simul-86
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taneously capture �ne-grained details and broader contextual relationships. It87

achieved high accuracy of 84.0% on Cityscapes with only around 3.8 million88

parameters. Therefore, SegFormer was proved to be suitable for tasks requiring89

precise localization of subtle anomalies like abnormal rice growth identi�cation.90

Building on SegFormer's e�ciency and robustness in agricultural applica-91

tions (Spasev et al., 2024; Nuradili et al., 2024), this study proposes a light-92

weight transformer-based framework engineered to overcome the multi-symptom93

detection gap identi�ed in Section 2. The model simultaneously identi�es four94

di�erent rice growth abnormalities using multispectral imaging. Key contribu-95

tions include.96

� Comprehensive data processing and e�ective post-processing to generate97

precise orthophotos for the collected multi-spectral dataset.98

� A large-scale UAV-based remote sensing dataset containing over 378,00099

images.100

� An optimized spectral fusion of green, near-infrared, and red-edge to im-101

prove image quality for accurate abnormal rice growth recognition.102

� A light-weight transformer-based system for the identi�cation of four ab-103

normal rice growth symptoms.104

The rest of this paper is organized as follows. Section 3 describes the ab-105

normal rice growth dataset used in this study. Section 4 presents the proposed106

ARG-TR framework for multi-spectral rice growth segmentation. Section 5 re-107

ports the experimental setup and results. Section 6 discusses the main �ndings,108

limitations, and practical implications. Finally, Section 7 concludes the paper109

and outlines directions for future research.110

2. System Overview111

Figure 1 depicts the main processes of AGR-TR, a multi-symptom abnormal112

rice growth segmentation framework. In this context, AGR indicates that the113
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framework is applied to agriculture context, while TR refers to the transformer-114

based architecture.115

Data annotation

ARG-TR 

model

(II) Abnormal Rice Growth Detection

Data processing

(I) Data Collection

Multispectral data

Trained 

model

Test image Predicted mask

Data augmentation

Data partitioning

Training

Testing

Figure 1: Depiction of the main components of the transformer-based abnormal rice growth

detection framework (AGR-TR).

The framework consists of two sequential stages: data preparation and ab-116

normal rice growth detection. In the �rst stage, multi-spectral UAV imagery117

undergoes various preprocessing steps to reduce noise and enhance quality. The118

preprocessed images are then annotated with pixel-level labels to distinguish119

abnormal growth regions. Next, the dataset is partitioned into training and val-120

idation sets. Finally, the images from the training set is augmented to improve121

model robustness. The second stage employs and �ne-tunes a transformer-based122

SegFormer to segment abnormal growth areas. The model is trained on the pro-123

cessed dataset to automatically discriminate against spatial-spectral patterns.124

During inference, the trained model processes an input image to generate an125

output mask that highlights regions of abnormal rice growth. This end-to-end126

pipeline integrates advanced CV techniques with agronomic insights to support127

real-time rice health monitoring.128
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3. Abnormal Rice Growth Dataset129

This study utilizes a large-scale abnormal rice growth dataset comprising130

approximately 378,000 multi-spectral images capturing four distinct patterns of131

abnormal growth. The dataset was made available for research purposes by the132

National Information Society Agency of Korea (NIA)2, which ensures robustness133

and practical relevance for real-world agricultural applications. The dataset134

was developed through a collaborative initiative led by Geomatic Limited3 in135

partnership with various organizations. Sunyoungeng Limited4 manages data136

collection, whereas NEWLAYER Limited 5 and Muhanit Limited 6 handles data137

annotation and preprocessing.138

3.1. Data collection139

Abnormal rice growth data were collected from 2022 to 2023 in a 100-hectare140

experimental crop �eld in Jangan-ri, Jangan-myeon, Hwaseong City, Gyeonggi141

Province, South Korea (Figure 2). The site features a temperate monsoon cli-142

mate ideal for rice cultivation, characterized by warm, humid summers (25�30143

°C) and annual rainfall of 1,100�1,400 mm concentrated during the summer144

monsoon season. Fertile loamy to clay-loamy soils (pH 5.5�7.0) ensure strong145

water retention and nutrient availability (Ju et al., 2022), while the �at topog-146

raphy supports e�cient irrigation and uniform �eld management.147

The Oryza sativa 'Odae' cultivar (a widely cultivated Japonica variety) was148

transplanted on 26 May 2022 at a density of 30 cm Ö 17 cm. Fertilization fol-149

lowed regional standards with applications of nitrogen (89 kg/hm
2
), phospho-150

rus (40 kg/hm
2
), and potash (53 kg/hm

2
). Data collection covered �ve critical151

growth stages, including tillering, panicle initiation, booting, heading & �ow-152

ering, grain �lling. This study speci�cally targets four high-impact abnormal153

2https://www.nia.or.kr/site/nia_kor/main.do
3https://www.geomatic.co.kr/
4http://nonghyup.ac.kr/e_main.asp
5http://egis.everlinks.co.kr/
6https://muhanit.kr/
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growth groups: (1) missing plants (indicating seedling establishment failure), (2)154

lodging (stem collapse compromising harvest e�ciency), (3) rice blast disease155

(Magnaporthe oryzae infection causing necrotic lesions), and (4) poor growth156

(exhibiting chlorosis, reduced tillering, and diminished vigor).157

Micasense 

RedEdge-MX

Figure 2: Abnormal rice growth test bed.

The 100 hectares experimental rice �eld was divided into 40 zones, with data158

collected from 10 representative plots per zone, leading to a total of 400 moni-159

tored plots. Data acquisition main focus was on capturing high-resolution RGB160

and multispectral imagery to identify rice �eld abnormalities using TRINITY161

F90+ (Measurusa, 2025). The TRINITY F90+ is a certi�ed vertical take-o�162

and landing mapping drone, which features a 2.394 m wingspan and a 5.0 kg163

maximum take-o� weight. With a maximum �ight time of 90 minutes and op-164

erational range of up to 100 km, it can cover approximately 700 hectares in a165

single �ight. The drone is compatible with various payloads, including the Mi-166

casense RedEdge-MX multispectral camera (MicaSense, 2025), which captures167
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imagery on �ve narrow spectral bands (blue, green, red, red-edge, and near-168

infrared). The integration of RedEdge-MX with the TRINITY F90+ enabled169

e�cient, high-�delity multispectral data acquisition and provided detailed in-170

sights into crop health, stress detection, and growth dynamics. Flights were171

performed at 120 m altitude and 5 m/s ground speed, which achieved a ground172

sample distance (GSD) of 8 cm per pixel.173

Environmental variables, such as wind gusts, lighting conditions and phe-174

nological factors, can signi�cantly in�uence spectral interpretation. For exam-175

ple, midday sun creates strong shadows that exaggerate canopy gaps, while176

variable solar angles alter re�ectance baselines for chlorosis detection. On the177

other hand, late-season tillering changes the re�ectance baseline against which178

stunting or chlorosis is detected. To address environmental variables a�ecting179

spectral interpretation, the data acquisition implemented three critical controls:180

(1) All �ights conducted between 09:00-11:00 KST under clear-sky conditions181

to minimize solar angle variation, (2) Geometric correction using calibration182

and ground control point, (3) collection of �ve growth stages (tillering to grain183

�lling) to enable robustness against canopy architecture changes.184

3.2. Data processing185

Figure 3 illustrates the end-to-end work�ow for analyzing abnormal rice186

growth using drone-based multispectral imagery from the experimental �eld.187

Initially, all raw imagery undergoes internal quality assurance review by the188

lead data collector before transmission to the processing team. The work�ow189

begins with raw multispectral data, which is aligned to ensure consistent spa-190

tial overlap between images. Next, spectral calibration corrects environmental191

variability (e.g., lighting, atmospheric conditions) and sensor inconsistencies.192

Ground control point (GCP) correction then enhances positional accuracy by193

aligning image coordinates with real-world locations (Agüera-Vega et al., 2017),194

followed by geometric correction to address distortions from sensor tilt or terrain195

variations. These preprocessing steps collectively produce precise, georeferenced196

orthophotos, used for subsequent analysis.197
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Figure 3: Depiction of the main processing steps for the collected abnormal rice growth

dataset.

Prior research has established the critical role of Green, Near-infrared (NIR),198

and Red-edge (RE) spectral bands for vegetation analysis (Biswal et al., 2024;199

Kang et al., 2021). Biswal et al. (Biswal et al., 2024) demonstrated the exclu-200

sive use of these three bands for estimating paddy crop aboveground biomass,201

while Kang et al. (Kang et al., 2021) highlighted the role of features derived202

from RE-NIR-Green band combinations in crop classi�cation. Building on this203

foundation, Green, NIR, and RE bands were merged to segment abnormal rice204

growth, as the merged version enhanced detection of plant stress, growth anoma-205

lies, and terrain characteristics (Dang et al., 2024). Figure 4 illustrates the206

creation of combined RGB-like images from these bands within multispectral207

orthophotos. This process merges individual channel images into a 3-channel208

format compatible with standard CV algorithms and DL models.209

Finally, a post-processing pipeline was carried out to ensure the usability and210
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Green Near infrared Red-edge

Multi-spectral image

Channel merging

Figure 4: Example of RGB-like image generation through channel merging .

accuracy of the dataset. Irrelevant or distorted sections, such as mismatched211

areas and outer regions, were removed. The re�ned orthophoto was divided212

into crop plots for localized analysis. Finally, abnormalities, such as rice blast213

disease, lodging, poor growth, and missing plants, were labeled to support model214

training and validation.215

The drone's high-resolution camera delivered a GSD of 8 cm/pixel, su�cient216

to resolve individual plants and small abnormal growth patches. For annotation217

process, we overlaid the farm-plot map onto the orthomosaics and annotated218

each plot showing abnormal growth. To ensure the accuracy of annotations219

in drone imagery captured at 120 meters altitude, a multi-stage veri�cation220

protocol was implemented. Vegetation indices, including Normalized Di�erence221

Vegetation Index (NDVI)/Enhanced Vegetation Index (EVI), were computed to222

highlight potential anomalies invisible in visible spectra. For example, missing223

plants were identi�ed by marking regions with NDVI values below a prede�ned224

threshold, while poor growth was annotated using EVI. To reduce ambiguity225

and improve annotation consistency, the missing plants class is strictly de�ned226
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as continuous bare-soil regions within the planted area rather than isolated gaps.227

In practice, annotators marked a region as missing plants only when the bare-228

soil patch formed a coherent area spanning multiple adjacent planting rows or229

otherwise appeared as a continuous discontinuity in the crop canopy. Single-230

plant gaps, isolated pixels, thin shadows, wheel tracks, and other narrow non-231

crop features were annotated as healthy crop. Lodging was labeled by converting232

imagery to RGB format and marking the �attened rice locations. However, rice233

blast disease showed no distinctive spectral signatures that could be initially234

labeled. Therefore, it was labeled immediately post-�ight by trained crowd235

workers using handheld RGB cameras and GPS markers during �eld surveys.236

All annotators completed rigorous training in multispectral image interpretation237

prior to labeling. Moreover, annotated images were validated through random238

�eld surveys to con�rm the presence of annotated abnormalities. This integrated239

approach ensured annotation reliability despite the challenges of high-altitude240

aerial observation.241

The drone-based multispectral imaging approach o�ers valuable insights into242

abnormal rice growth but faces several data acquisition limitations. (1) Oper-243

ational constraints such as limited drone �ight time, altitude restrictions, and244

narrow camera �eld of view complicated data collection and processing. (2)245

Variations in solar illumination required complicated post-collection data pro-246

cessing, and data were collected only at �ve discrete growth stages with 7-10247

day intervals, potentially missing rapid rice blast disease developments. (3)248

The study's focus on a single geographic location with speci�c soil and climate249

conditions limits generalizability to other regions.250

3.3. Dataset description251

Figure 5 presents the class distribution of the abnormal rice growth dataset.252

The dataset contains 378,074 annotated images in �ve classes: normal condi-253

tions, rice blast disease, lodging, poor growth, and missing plants. For model254

development, 80% of the dataset (302,450 images) was used for training and val-255

idation purposes (226,853 images for training and 75,597 images for validation),256
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20% of the dataset was used for testing (75,624 images).257

Normal

Rice blast disease

Lodging

Poor growth

Missing plants

67920

30375

30938

59760

37860

22640

10125

10312

19910

12610

22644

10125

10315

19920

12620

Training Validation Testing

Figure 5: A bar chart showing the distribution of images across di�erent classes in the collected

dataset, including normal conditions, rice blast disease, lodging, poor growth, and missing

plants.

3.4. Data augmentation258

Data augmentation plays a vital role in enhancing model robustness for259

rare anomalies, including rice blast disease, lodging, and missing plants, by260

mitigating class imbalance in the training set. A multi-stage augmentation261

pipeline was implemented to improve generalization in spatial, spectral, and262

scale variation. Figure 6 provides examples of augmented images using the263

augmentation pipeline.264

The images were �rst scaled by a random factor ranging from 0.5 to 2.0265

followed by resizing to 512 × 512 pixels. This step aims to improve the model266

multi-scale robustness by simulating variations in object scale and distance. Af-267

ter that, a RandomCrop operation was implemented to sample various regions268

to increase diversity in spatial composition. Next, the images were �ipped ran-269

domly to introduce invariance to orientation. Finally, color jittering (brightness,270

contrast, saturation) was applied to mimic diverse lighting conditions and sen-271
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Input image

(a) (b) (c)

(d) (e) (f)

Figure 6: Examples of augmented images (a-f) used for training the ARG-TR model. Aug-

mentations include a combination of scaling, cropping, �ipping, and photometric adjustments.

sor variations. The augmentation techniques expanded the original training set272

of 226,853 images by three-fold to 680,550 images.273

The large-scale and diverse nature of the dataset in capturing multiple types274

of rice growth abnormalities in di�erent growth stages and environmental con-275

ditions presented both opportunities and challenges for analysis. The need to276

e�ectively process high-resolution multispectral imagery while accurately seg-277

menting and classifying various abnormal growth patterns in real-time prompted278

the authors to choose a light-weight framework, which utilizes the rich spectral279

information in the dataset through self-attention mechanisms while maintaining280

computational e�ciency without sacri�cing scalability.281

4. Methodology282

Figure 3 illustrates the ARG-TR framework, a Transformer-based system for283

detecting and segmenting abnormal rice growth. In this context, ARG denote284
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Abnormal Rice Growth, while TR refers to a light-weight Transformer-based285

segmentation model.286
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Figure 7: Schematic overview of the ARG-TR framework for abnormal rice growth segmen-

tation. Figure adapted from (Xie et al., 2021)

SegFormer (Xie et al., 2021) is an e�cient semantic segmentation architec-287

ture that combines a hierarchical transformer encoder and a lightweight multi-288

layer perceptron (MLP) decoder. Unlike CNN-based models, SegFormer elimi-289

nates positional embeddings through overlapped patch merging, which enables290

consistent performance on variable input sizes while preserving computational291

e�ciency. This study utilizes SegFormer Mix Transformer(MiT)-b3 variant as292

the foundation. Its key innovations include:293

� Multi-scale encoder: The encoder extracts both coarse and �ne-grained294

features at four resolutions (1/4, 1/8, 1/16, and 1/32 input scale) via295

overlapping 4 × 4 patches. Unlike traditional approaches, it does not296

require positional embeddings to progressively capture �ne details and297

contextual semantics.298
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� E�cient decoder: The decoder aggregates multi-scale features through299

MLP layers and upsamples them to produce a high-resolution segmenta-300

tion map. The decoder ensures precise localization of abnormal growth301

patterns by fusing coarse (contextual) and �ne-grained (detail-rich) fea-302

tures. Channel dimensionality is reduced from 1,024 to 128 via MLP303

blocks before generating 5-class logits (normal, blast, lodging, poor growth,304

missing plants.305

Table 1 describe the detailed network structure of the ARG-TR model. It306

begins with a 7Ö7 convolutional patch embedding (stride=4) to downsample307

the input to H/4 Ö W/4 resolution with 64 channels, followed by LayerNorm308

for normalization and GELU for non-linearity. The encoder consists of four309

hierarchical stages of Transformer layers: Stage 1 with 3 layers (64 channels,310

H/4 ÖW/4), Stage 2 with 3 layers (128 channels, H/8 ÖW/8), Stage 3 with 18311

layers (320 channels, H/16 Ö W/16), and Stage 4 with 3 layers (512 channels,312

H/32 Ö W/32). In the decoder, features from all encoder stages are upsampled313

to H/4 ÖW/4, concatenated, and processed through an MLPBlock that reduces314

the channel dimension from 1024 to 256 to 128, followed by a 1Ö1 convolution315

to generate 5 class logits. The head applies a softmax operation to convert316

logits into probabilities and resizes the output to the original image resolution.317

This design e�ciently captures both �ne and coarse details for multispectral318

rice growth anomaly detection.319

4.1. Hierarchical Transformer Encoder320

The Mix Transformer (MiT) backbone in SegFormer (Xie et al., 2021) serves321

as a hierarchical encoder customized for e�cient semantic segmentation. It im-322

plements a four-stage pyramid structure to generate multi-scale feature maps at323

resolutions of 1/4, 1/8, 1/16, and 1/32 of the input image. This design enables324

robust segmentation of objects for varying scales, from �ne-grained details to325

broader contextual patterns. Between transformer layers, a Mixed Feed-Forward326

Network (Mix-FFN) integrates depthwise 3Ö3 convolutions with standard MLP327
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Table 1: Network structure of the ARG-TR

Module Layer / Operation Channels Output Size

Patch Embedding
Conv 7Ö7, stride 4 64 H/4ÖW/4

LayerNorm + GELU � H/4ÖW/4

Encoder

3 layers (Stage 1) 64 H/4ÖW/4

3 layers (Stage 2) 128 H/8ÖW/8

18 layers (Stage 3) 320 H/16ÖW/16

3 layers (Stage 4) 512 H/32ÖW/32

Decoder

Upsampling � H/4ÖW/4

Concat � MLPBlock 1024�256�128 H/4ÖW/4

1Ö1 Conv � 4 logits 128�4 H/4ÖW/4

Head & Loss
Softmax + resize � H/4ÖW/4Ö5 classes

IoU � �

operations to enhance local spatial feature interactions. Finally, a patch merging328

module downsamples feature maps by concatenating neighboring patches and329

linearly projecting channel dimensions to establish a coarse-to-�ne feature hi-330

erarchy. Moreover, overlapped patch embedding in early stages maintains local331

continuity without the need for positional encodings.332

4.1.1. Hierarchical Feature Representation333

SegFormer's encoder generates multi-scale feature maps at (1/4, 1/8, 1/16,334

1/32 input spatial resolution), a crucial improvement from traditional ViTs,335

which produce single-scale representations. This hierarchical structure enables336

high-resolution feature maps to capture �ne-grained details (early-stage rice337

blast lesions), while low-resolution feature maps encode coarse contextual in-338

formation (lodging propagation). For rice growth analysis, hierarchical feature339

representation is essential as �ne-grained features detect subtle spectral devia-340

tions in individual plants, whereas coarse features model spatial dependencies341

across �eld conditions.342
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4.1.2. Overlapped Patch Merging (OPM)343

Overlapped Patch Merging (OPM) is an important component of SegFormer's344

Mix Transformer (MiT) encoder that enables hierarchical feature extraction345

while preserves local spatial continuity. Unlike standard ViTs with non-overlapping346

patches, OPM generates overlapping patches to maintain �ne-grained spatial re-347

lationships essential for segmenting subtle abnormalities.348

Given multi-spectral input X ∈ RH×W×C , where C = 3 for Green/NIR/RE349

bands, H and W are the height and width. OPM slides a patch window across350

the image with a stride S smaller than the patch size K and with padding P ,351

so adjacent patches overlap. The stride S being smaller than the patch size K352

is the key element that creates the overlap and shared context. Each window353

is �attened and linearly projected to form a token for the next hierarchical354

level. Repeating this merging yields hierarchical feature maps whose spatial355

resolution is reduced (for example from H/4 × W/4 to H/8 × W/8) while the356

channel dimension increases. The overlap size in each dimension is calculated357

as:358

Overlap = K − S

The overlapping design reduces blocky artifacts and better preserves bound-359

aries and �ne details because pixels near patch edges contribute to multiple360

patch vectors361

Table 2: OPM parameters for hierarchical feature maps

Stage Patch Size (K) Stride (S) Padding (P ) Output Resolution

1 7 4 3 H
4 × W

4

2 3 2 1 H
8 × W

8

3 3 2 1 H
16 × W

16

4 3 2 1 H
32 × W

32

The overlapping design improves segmentation performance because it sup-362

plies the transformer with smoother, more informative multi-scale features. Af-363
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ter patch merging, each stage's feature maps are passed through transformer364

blocks, which include e�cient self-attention and Mix-FFN layers.365

4.1.3. E�cient Self-Attention (ESA)366

SegFormer employs ESA, a computationally optimized adaptation of stan-367

dard self-attention used in ViTs. ESA is applied independently within each of368

the four stages of the MiT encoder. Given an input feature map Fi ∈ RHi×Wi×Ci
369

from stage i, ESA �atten spatial locations into a token sequence X ∈ RN×Ci ,370

where N = Hi · Wi represents the number of spatial locations. In standard371

multi-head self-attention the per-head queries, keys and values are computed as372

Q = XWQ, K = XWK , V = XWV , (1)

where WQ,WK ,WV ∈ RCi×dhead and dhead denotes the per-head dimension.373

Standard attention computes softmax
(

QK⊤
√
dhead

)
V , which requires forming an N×374

N a�nity matrix and therefore has quadratic complexity in the number of375

tokens.376

ESA reduces this cost by shortening the key/value sequence by a reduc-377

tion ratio R. A sequence-reduction operator (denoted SeqReduce(·)) produces378

downsampled keys and values379

K ′ = SeqReduce(K) ∈ R
N
R ×dhead , V ′ = SeqReduce(V ) ∈ R

N
R ×dhead . (2)

SeqReduce(·) can be implemented by reshaping and linear projection. ESA then380

computes attention from full-resolution queries to the reduced keys/values:381

EfficientAttention(Q,K ′, V ′) = softmax

(
QK ′⊤
√
dhead

)
V ′, (3)

where the softmax is taken along the reduced key dimension (length N/R) so382

that each of the N queries attends over the N
R reduced positions. The com-383

putational cost becomes O
(
N · N

R · dhead
)
, which is signi�cantly lower than the384

complexity of standard self-attention when R > 1 (Xie et al., 2021).385

4.1.4. Mix Feed-Forward Network (Mix-FFN)386

The Mix-FFN is a modi�cation of the standard feed-forward network (FFN)387

that injects local spatial context into token-wise MLPs by inserting a 3 × 3388
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convolution between the two linear projections. This provides local positional389

information while preserving the global modelling capability of the FFN.390

Let the input tokens be xin ∈ RN×C with N = HiWi. The Mix-FFN391

proceeds as follows:392

z = W1xin + b1 ∈ RN×dexp , (4)

Z = reshape(z) ∈ RHi×Wi×dexp , (5)

U = Conv3×3(Z; padding = 1) ∈ RHi×Wi×dexp , (6)

V = GELU(U), (7)

v = flatten(V ) ∈ RN×dexp , (8)

xout = W2 v + b2 + xin ∈ RN×C . (9)

where W1 : RC → Rdexp and W2 : Rdexp → RC are the two linear projections393

(MLPs) of the FFN and dexp = r · C is the expansion dimension (commonly394

r = 4) (Xie et al., 2021). The 3×3 convolution uses padding 1 to preserve spatial395

resolution. The residual connection +xin is applied as in standard transformer396

blocks. After processing, the output is �attened back to N × C for subsequent397

layers.398

4.2. Lightweight All-MLP Decoder399

SegFormer's decoder eliminates the complexity of traditional convolutional400

decoders by relying entirely on MLPs for e�cient feature fusion and segmenta-401

tion. The decoder uni�es feature channel dimensions, upsamples features to a402

common spatial resolution, fuses them via a pointwise linear layer, and predicts403

per-pixel class logits with a �nal linear projection. For four-level encoder feature404

maps Fi the decoder proceeds as follows:405

1. Feature uni�cation. Each encoder feature map Fi (with Ci channels)406

is projected to a uni�ed channel dimension C by a pointwise linear layer:407

F̂i = Linear(Ci, C)
(
Fi

)
for all i. (10)
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2. Upsampling. Each uni�ed feature map F̂i is upsampled to the common408

spatial resolution H
4 × W

4 :409

F̃i = Upsample
(
H
4 ,

W
4

)(
F̂i

)
for all i, (11)

where F̃i denotes the upsampled version of F̂i.410

3. Concatenation and fusion. The upsampled features are concatenated411

along the channel dimension. For four encoder levels this yields 4C chan-412

nels, which are fused back to C channels by a pointwise linear layer:413

F = Linear(4C,C)
(
Concati

(
F̃i

))
. (12)

4. Segmentation prediction. A �nal linear layer maps the fused feature414

F to per-pixel class logits for Ncls classes:415

M = Linear(C,Ncls)(F ), (13)

so that M has shape H
4 × W

4 × Ncls. M is typically upsampled (e.g.,416

bilinear) to the original image resolution H ×W for evaluation and visu-417

alization.418

4.3. Implementation description419

Our framework uses the MiT-B3 backbone as the foundation. It was con-420

�gured with four stages containing [3, 4, 18, 3] Transformer layers, respectively.421

The number of attention heads for the stages is [1, 2, 5, 8] and the corresponding422

embedding dimensions are [64, 128, 320, 512]. The lightweight all-MLP decoder423

employs a hidden dimension of 768 to fuse multi-scale features and produce424

segmentation outputs.425

The model was trained for 3,000 iterations with a batch size of 4 using the426

AdamW optimizer with β1 = 0.9, β2 = 0.999 and ε = 10−8. The initial learning427

rates were set to ηbackbone0 = 6× 10−5 for the backbone and ηdecoder0 = 6× 10−4
428

for the decoder. A polynomial learning-rate schedule was applied:429

ηt = η0

(
1− t

T

)0.9

,
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where η0 is the initial learning rate, t is the current iteration, and T is the total430

number of iterations.431

The AGR-TR framework was implemented in PyTorch (v1.7.1) and trained432

on a Linux workstation equipped with two NVIDIA RTX A6000 GPUs (48GB433

each). Model performance was evaluated on the original validation set to assess434

real-world applicability. For comparison, we implemented �ve baseline segmen-435

tation models using MMSegmentation (Contributors, 2020): DeepLabV3 (Chen436

et al., 2017), Segmenter (Strudel et al., 2021), K-Net (Zhang et al., 2021b)437

(K-Net), MaskFormer (Cheng et al., 2021), and U-Net (Ronneberger et al.,438

2015). All baselines were reimplemented within the same training and evalua-439

tion pipeline to ensure a fair comparison.440

4.4. Evaluation metrics441

The performance of the abnormal rice growth segmentation framework is442

evaluated using the Intersection over Union (IoU) metric (Wang et al., 2020),443

a standard measure for semantic segmentation that quanti�es the pixel-wise444

overlap between predicted and ground-truth labels. For each class c we compute445

the pixel-level counts: true positives (TPc), false positives (FPc), and false446

negatives (FNc). Here, TPc is the number of pixels correctly predicted as class447

c, FPc is the number of pixels incorrectly predicted as class c, and FNc is the448

number of pixels belonging to class c but predicted as another class. The IoU449

for class c is de�ned as450

IoUc =
TPc

TPc + FPc + FNc
. (14)

The mean IoU (mIoU) over N abnormality classes is computed as451

mIoU =
1

N

N∑
c=1

IoUc, (15)

where N denotes the total number of classes in the dataset. The mIoU penalizes452

both over- and under-segmentation and therefore provides a robust measure of453

segmentation accuracy.454
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To quantify uncertainty in the estimated performance, we report a 95%455

con�dence interval (CI) for the mean mIoU computed across n independent456

experimental runs. Let xi denote the mIoU observed in the i-th run, and de�ne457

the sample mean and sample standard deviation by458

x̄ =
1

n

n∑
i=1

xi, (16)

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2. (17)

Under the usual assumption that the sample mean is approximately t-distributed,459

a two-sided 95% CI for the true mIoU is given by460

95% CI = x̄± tα/2, df · s√
n
, (18)

with α = 0.05, degrees of freedom df = n − 1, and tα/2, df the corresponding461

critical value from the Student's t-distribution.462

5. Experimental results463

5.1. Data augmentation464

To assess the e�ect of data augmentation on segmentation performance,465

each experiment (training with and without augmentation) was repeated for466

n = 5 independent runs using di�erent �xed seeds. Table 3 summarizes ARG-467

TR's segmentation performance on the original and augmented datasets. In468

the table �±� denotes the sample standard deviation across the n runs, and469

the 95% con�dence intervals (CIs) for the mean mIoU were computed using the470

Student's t-distribution with degrees of freedom df = n− 1 = 4.471

The mean mIoU increased from 60.39% (original) to 62.88% (augmented),472

with corresponding 95% CIs [57.53%, 63.25%] and [60.15%, 65.61%], respec-473

tively. In addition, the consistent improvements on all evaluation metrics em-474

phasize the critical role of data augmentation in mitigating class imbalance475

challenges, re�ning feature learning, and enhancing generalization to diverse476
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Table 3: ARG-TR segmentation performance on original data and augmented data. Note: ±

indicates standard deviation.

mIoU mIoU 95% CI Precision Recall

Original data 60.39±2.3 [57.54, 63.24] 62.18±2.1 59.43±2.4

Augmented data 62.88±2.2 [60.15, 65.61] 65.03±2.7 63.82±2.9

�eld conditions. For example, the improvement in precision and recall suggests477

that the augmentation pipeline reduces both false positives and false negatives,478

where ambiguous or rare symptoms often challenge model robustness.479

5.2. Spectral band contribution analysis480

Figure 8 shows sample images for three di�erent spectral-band con�gura-481

tions: green (G), green + near-infrared (G+NIR), and green + near-infrared +482

red-edge (G+NIR+RE).483

G G+NIR G+NIR+RE

Figure 8: Illustration of the three spectral-band settings used as input to the model. �G�

denotes the green band; �NIR� denotes near-infrared; �RE� represents the red-edge band.

To quantify the contribution of each spectral band to anomaly detection, we484

performed an ablation study using three input con�gurations: G only, G+NIR,485

and G+NIR+RE. Table 4 reports the class-wise IoU (%) for each con�guration.486

With only the green channel the model obtains moderate performance (IoU487

between 47.1% and 57.3%). The combination of G and NIR bands yield sub-488

stantial gains for all anomaly types. For example, IoU for L increases from489
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Table 4: Ablation of spectral bands on class-wise IoU (%).

Class G G+NIR G+NIR+RE

Missing plants (MP) 49.80 60.52 65.82

Lodging (L) 57.34 66.18 68.41

Rice blast (RBD) 47.11 57.73 61.78

Poor growth (PG) 50.52 58.21 63.34

57.3% to 66.1%, and IoU for MP increases from 49.8% to 60.5%. The integra-490

tion of RE band further improves performance and produces the highest IoU491

for every class. For example, L to 68.4% and MP to 65.8%. These results indi-492

cate that NIR provides complementary contrast useful for detecting structural493

and vegetation anomalies, while the RE band re�nes discrimination of disease-494

and stress-related symptoms as it is sensitive to chlorophyll content and subtle495

stress signals. Overall, the combination G+NIR+RE o�ers the most informative496

spectral input for abnormal rice growth segmentation in our experiments.497

5.3. ARG-TR performance evaluation498

We performed an ablation study to examine how encoder depth and de-499

coder hidden size a�ect segmentation accuracy and model complexity. Table 5500

reports three ARG-TR variants with di�erent encoder depths, decoder hidden501

dimensions, total parameter counts (in millions), and the resulting mIoU.502

Table 5: Ablation of encoder depths and decoder hidden size. �Hidden sizes� lists the stage-

wise embedding dimensions for the encoder.

Model variant Depths Hidden sizes Decoder hid-

den size

Params

(M)

mIoU

ARG-TR (1) [2, 2, 2, 2] [64, 128, 320, 512] 256 14.0 61.65

ARG-TR (2) [3, 4, 6, 3] "" 768 25.4 62.72

ARG-TR (3) [3, 4, 18, 3] "" 768 45.2 64.86

Key observations include:503
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� Moving from ARG-TR (1) to ARG-TR (2) increases the parameter count504

by 11.4M (from 14.0M to 25.4M, about 81.4% increase) and yields a505

smaller mIoU gain by 1.07% (from 61.65% to 62.72%).506

� Moving from ARG-TR (2) to ARG-TR (3) further increases parameters by507

19.8M (from 25.4M to 45.2M, approximately 78.0% increase) and obtains508

a larger mIoU value of 1.96% (from 62.72% to 64.86%).509

These results show that increasing model capacity consistently improves seg-510

mentation performance, and in this set of variants the largest model (ARG-TR511

(3)) provides the highest mIoU. Considering the balance between accuracy and512

computational cost, ARG-TR (3) was selected as the primary model for sub-513

sequent experiments because it achieves the highest segmentation performance.514

For deployment scenarios with limited memory or latency budgets, ARG-TR515

(1) or ARG-TR (2) are preferable due to their lower parameter counts and516

competitive performance.517

Figure 9 presents the training progress of the ARG-TR model using two key518

metrics recorded over 3,000 iterations: pixel accuracy (left) and training loss519

(right). The validation accuracy (seg_accuracy) shows a rapid rise between ap-520

proximately 600 and 1,000 iterations, reaching about 88%−90%. The loss starts521

near 0.9 and decreases sharply to around 0.4 by iteration 1,500, then gradually522

stabilizes close to 0.4 by iteration 3,000. The quick initial convergence indicates523

that ARG-TR e�ciently learns discriminative features even with limited labeled524

data. After the early-stopping mark at iteration 2,000, both accuracy and loss525

remain stable. Therefore, 2,000 iterations are considered su�cient to achieve526

near-optimal generalization in our setup.527

Table 6 summarizes ARG-TR's segmentation performance for four abnor-528

mal rice growth classes. Reported metrics are IoU, precision, and recall (all in529

percentage). The testing process was repeated for n = 5 independent runs for530

each class. Overall, ARG-TR achieves IoU over 60.8% for all classes. �Lodging�531

obtains the best performance (mean IoU = 67.3%, precision = 68.4%, recall532

= 69.13%), likely because its structural signature (bent or collapsed plants) is533
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Figure 9: Training progress of the ARG-TR model on the abnormal rice growth dataset: pixel

accuracy (left) and loss (right). The vertical dashed line indicates the early-stopping mark at

iteration 2,000.

visually distinct. �Missing plants� follows with mean IoU = 64.1%.534

�Poor growth� and �Rice blast� show lower IoU values at 61.3% and 60.8%,535

respectively. The relatively lower precision and recall for �Poor growth� and536

�Rice blast� can be attributed to the higher visual similarity of these symptoms537

to healthy rice plants under certain conditions, which increases the likelihood538

of both false positives and false negatives. For �Poor growth�, the phenotypic539

di�erences, such as slight stunting, reduced leaf area, or lighter color, can be540

subtle and easily confused with natural �eld variability or early-stage nutrient541

de�ciencies. For �Rice blast�, the appearance of lesions may be small for early-542

stage disease, sparsely distributed, or partially occluded by surrounding leaves.543

As a consequence, it is di�cult to detect them at UAV imaging resolutions.544
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Table 6: ARG-TR performance for each abnormal rice growth class. Note: ± indicates

standard deviation.

Missing plants Poor growth Lodging Rice blast

IoU 64.11±2.2 61.29±2.5 67.37±1.8 60.87±2.8

Precision 66.80±2.5 64.27±2.1 68.42±2.5 63.47±2.3

Recall 67.34±1.8 63.98±2.4 69.13±2.4 62.18±2.0

5.4. Visualization of abnormal rice growth segmentation using the ARG-TR545

framework546

Figure 10 and Figure 11 illustrate segmentation outputs produced by the547

ARG-TR framework for four abnormal rice growth classes: Missing Plants548

(MP), Poor Growth (PG), Rice Blast Disease (RBD), and Lodging (L). The549

color legend used throughout the �gures is: MP (magenta), PG (red), RBD550

(cyan), L (orange), healthy rice (blue), and bare ground (black).551

Overall, the visual alignment between model predictions and ground truth552

demonstrates robust segmentation performance for several categories. For MP,553

the model consistently detects large gaps in the �eld and closely matches ground554

truth boundaries. For L, the model successfully captures the irregular textures555

and patterns associated with lodged plants. For PG, the model locates small556

and sparse a�ected areas with relatively few false positives. Finally, the model557

correctly detects the infected RBD regions, which matches the ground truth.558

Figure 11 shows examples of mixed and ambiguous cases that highlight both559

strengths and weaknesses of the model.560

In general, while the model e�ectively identi�es large contiguous regions of L561

and RBD, it struggles with �ner distinctions in overlapping or ambiguous cases.562

For example, MP areas are occasionally undersegmented or as L, particularly563

in regions where L regions are near the MP regions (Figure 11 c, d). Moreover,564

early stage RBD symptoms tend to be fragmented in predictions, which re�ects565

the di�culty of separating infected regions from healthy areas. These errors566

highlight the complexity of identifying co-occurring stressors in real-world agri-567
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Figure 10: Predictions of the ARG-TR framework for all abnormal rice growth classes. Note:

MP: Missing Plants (Magenta), PG: Poor Growth (Red), RBD: Rice Blast Disease (Cyan),

L: Lodging (Orange), Blue indicates healthy rice, and Black represents bare ground.

cultural scenes, where symptom boundaries are often blurred by environmental568

variability and plant interactions.569

5.5. Comparative analysis of ARG-TR and other baseline segmentation models570

This section compares the ARG-TR framework with several established seg-571

mentation models: KNet (Zhang et al., 2021b), Segmenter (Strudel et al., 2021),572

SegFormer (Xie et al., 2021), DeepLabv3 (Chen et al., 2017), U-Net (Ron-573

neberger et al., 2015), MaskFormer (Cheng et al., 2021), and EDANet (Yang574

et al., 2020). Table 7 summarizes each model's performance on the abnormal rice575

growth validation set using mIoU, pixel accuracy, and inference speed (frames576

per second (FPS).577

ARG-TR achieves the highest mIoU (64.86%) and pixel accuracy (93.42%)578
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Figure 11: ARG-TR predictions for challenging mixed-condition cases. Note: MP: Missing

Plants (Magenta), RBD: Rice Blast Disease (Cyan), L: Lodging (Orange), Blue indicates

healthy rice, and Black represents bare ground.

on the dataset, outperforming strong baselines such as KNet (mIoU: 57.34%)579

and MaskFormer (mIoU: 60.13%). This improvement suggests that ARG-TR580

o�ers superior contextual understanding and �ner feature discrimination, likely581

due to its transformer-based global-context modeling and the integration of582

targeted anomaly-aware modules.583

Regarding e�ciency, ARG-TR reaches a better trade-o� between accuracy584

and speed. While it is slower than EDANet (61 FPS) and DeepLabv3 (29 FPS),585

its accuracy gains make it more suitable for precision agricultural monitoring586

where segmentation quality is prioritized. Lighter models, like UNet and some587

transformer variants, such as Segmenter and MaskFormer show lower segmenta-588

tion performance on this task, which highlights limitations in capturing complex589

spatial hierarchies.590

Figure 12 presents qualitative comparisons between ARG-TR, MaskFormer,591

and KNet on three representative UAV samples. ARG-TR consistently produces592
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Table 7: Performance comparison of the ARG-TR framework and baseline models on the

abnormal rice growth dataset. Note: Inference speed measured on the same evaluation envi-

ronment (batch size = 1).

Model mIoU Pixel ac-

curacy

Inference

speed (FPS)

KNet (Zhang et al., 2021b) 57.34 89.12 12

Segmenter (Strudel et al., 2021) 56.47 88.75 10

DeepLabv3 (Chen et al., 2017) 54.89 86.43 29

UNet (Ronneberger et al., 2015) 49.21 83.56 15

MaskFormer (Cheng et al., 2021) 60.13 90.58 9

EDANet (Yang et al., 2020) 56.52 89.23 61

ARG-TR (Segformer) (Xie et al., 2021) 64.86 93.42 25

masks with sharp boundaries and reduced noise. In the �rst two samples (dis-593

tinct L and MP regions), ARG-TR's predictions align closely with ground truth594

annotations. In the third sample, ARG-TR shows minor over-segmentation595

but remains more similar to the ground truth than MaskFormer and KNet.596

MaskFormer tends to produce more fragmented MP regions, while KNet pro-597

duces noisier and more scattered masks, especially in samples with mixed ab-598

normalities. These qualitative di�erences emphasize ARG-TR's strengths in599

�ne-grained anomaly localization and boundary adherence, both important for600

real-world agricultural monitoring where small or ambiguous symptoms must601

be detected reliably.602

Through previous experiments, ARG-TR consistently outperformed state-603

of-the-art baselines in both mean IoU and pixel accuracy. Using G+NIR+RE604

input bands produced a 13.2% increase in IoU compared with only using the605

green channel. In addition, ARG-TR achieved real-time inference and produced606

more precise segmentation boundaries, particularly in mixed or ambiguous �eld607

conditions.608
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Input Ground truth ARG-TR MaskFormer KNet

Figure 12: Comparison of the output of ARG-TR framework and two other state-of-the-

art segmentation models, MaskFormer and KNet on three di�erent input samples. Note:

MP: Missing Plants (Magenta), L: Lodging (Orange), Blue indicates healthy rice, and Black

represents bare ground.

6. Discussion609

The primary goal of this study was to identify an e�cient and robust DL610

framework for abnormal rice growth detection. We evaluated multiple segmen-611

tation architectures on a large, manually annotated UAV dataset. Through a612

series of experiments, transformer-based architectures, such as SegFormer and613

MaskFormer, achieved higher segmentation performance than other CNN-based614

alternatives (e.g., DeepLabv3, U-Net). These results are consistent with recent615

work that highlights transformers' ability to model global context and long-616

range dependencies for agricultural disease and stress detection (Wang et al.,617

2024; Kapetas et al., 2024). According the results reported in Table 7, the618

ARG-TR framework showed the best overall performance (mIoU = 64.86%,619

32



pixel accuracy = 93.42%). The hierarchical feature fusion and transformer-620

based global-context modeling improve discrimination of subtle anomalies such621

as lodging and rice blast.622

Several aspects of UAV data acquisition greatly a�ect the performance of623

the framework. First, variation in solar illumination and viewing geometry in-624

troduces spectral shifts that reduce class separability. We addressed this by625

applying geometric correction, spectral band combination, and augmentations626

during training, but residual e�ects can still increase false positives/negatives627

in borderline cases. Second, weather constraints and the limited number of628

imaging dates (�ve discrete growth stages) create temporal gaps that can miss629

rapid symptom progression. For example, mIoU scores for Rice Blast Disease630

(60.8%) and Poor Growth (61.3%) indicate lower per-class performance com-631

pared with large, contiguous anomalies such as missing plants. This is expected632

because stunting and early infections produce weak, spatially dispersed spec-633

tral signatures that are di�cult to distinguish from normal variability. Third,634

�ight altitude and ground-sampling distance limit the detectability of very small635

or early-stage lesions; multispectral indices (e.g., NDVI, red-edge) partly com-636

pensate by highlighting physiological stress that is not obvious in RGB, but637

small-scale symptoms remain challenging. Finally, ARG-TR's inference speed638

(25 FPS measured in our evaluation setting) is suitable for many UAV-based639

monitoring work�ows where segmentation quality is prioritized. However, in ap-640

plications that require very high throughput, such as continuous video streams641

or large-area rapid surveys, lighter-weight models or optimized inference engines642

(EDANet, DeepLabv3) are preferable.643

Although this study focused on G, NIR, and RE bands, the network archi-644

tecture can readily accommodate di�erent spectral combinations or higher res-645

olution sensors with minimal modi�cation. While we demonstrated the model646

mainly on rice, the framework can be retrained for other species, such as wheat647

or maize, because the model learns spatial spectral representations directly from648

data, it can adapt to diverse geographic regions and environmental conditions649

given representative training samples. The model is suitable for real-time UAV650
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deployments or integration into monitoring platforms for various agricultural651

settings.652

7. Conclusions and future works653

In this work, we introduced ARG-TR, a transformer-based segmentation654

framework speci�cally, con�gured for identifying abnormal rice growth patterns655

using drone-captured imagery. The model was trained on a large-scale drone-656

based dataset containing 378,074 high-resolution images covering four common657

abnormal rice growth anomalies (lodging, rice blast disease, poor growth, and658

missing plants). By integrating hierarchical transformer architecture with a659

strategic augmentation pipeline, ARG-TR achieves rapid convergence during660

training and robust generalization to diverse �eld conditions. With a mIoU of661

64.86 and 93.42% pixel accuracy, ARG-TR excels in identifying distinct anoma-662

lies like lodging and rice blast disease, while maintaining e�cient inference speed663

(25 FPS).664

Challenges exists in detecting subtle or overlapping stressors like early-stage665

stunting and ambiguous symptom boundaries. Future work will explore hybrid666

architectures that combine local texture encoders with global transformers, as667

well as domain-speci�c synthetic augmentations to enrich rare-class represen-668

tations. Moreover, the integration of additional modalities, such as spectral669

or temporal data, may further sharpen boundary delineation and symptom dis-670

crimination. Finally, with continued enhancements in model design and training671

strategies, ARG-TR has the potential to power real-time and scalable agricul-672

ture systems capable of delivering timely and actionable insights for crop health673

management.674
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