
Journal Pre-proof

Automated marine litter investigation for underwater images using a
zero-shot pipeline

Tri-Hai Nguyen, Minh Dang

PII: S1364-8152(24)00126-9
DOI: https://doi.org/10.1016/j.envsoft.2024.106065
Reference: ENSO 106065

To appear in: Environmental Modelling and Software

Received date : 22 January 2024
Revised date : 28 April 2024
Accepted date : 5 May 2024

Please cite this article as: T.-H. Nguyen and M. Dang, Automated marine litter investigation for
underwater images using a zero-shot pipeline. Environmental Modelling and Software (2024), doi:
https://doi.org/10.1016/j.envsoft.2024.106065.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.envsoft.2024.106065
https://doi.org/10.1016/j.envsoft.2024.106065


Journal Pre-proof

A

A

-

ta ,

th f

m n

fra e

Pr ic

un ,

wh e

th e

en s,

an e

re -

sh e

lit

K

Pr 4
Jo
ur

na
l P

re
-p

ro
of

utomated Marine Litter Investigation for Underwater Images using a
Zero-shot Pipeline

Tri-Hai Nguyena, Minh Dangb,c,∗

aFaculty of Computer Science, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
bInstitute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

cFaculty of Information Technology, Duy Tan University, Da Nang 550000, Vietnam

bstract

Accurate and automated identification of marine litter on the seafloor is crucial due to its detrimen

l effects on marine ecosystems. While advancements in underwater imaging have facilitated this task

e significant human involvement required in traditional approaches necessitates the development o

ore efficient and cost-effective solutions. This study presents an efficient zero-shot segmentatio

mework based on Segment-Anything (SAM) guided by Interpretable Contrastive Language–Imag

e-training (iCLIP) for identifying and segmenting eight common seafloor litter categories in realist

derwater environments without model training. The framework supports prompt input by design

ich allows it to transfer its zero-shot capabilities to new types of marine litter. To further improv

e framework’s performance, two additional components were incorporated: an underwater imag

hancement model that addresses the degraded image quality common in underwater environment

d a mask post-processing algorithm that reduces noise masks generated by the framework. Th

corded mean intersection over union (mIOU) of 69.9% on the testing dataset suggested that zero

ot approaches have the potential to become a valuable technique for automatically detecting marin

ter during surveys and enabling continuous and accurate litter monitoring.
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Introduction

Marine debris, also known as marine litter or ocean trash, is a wide range of human-made wast

at enters oceans, seas, and other water bodies. It includes items such as plastics, glass, metals, pape

xtiles, and other materials, both macroscopic and microscopic. Marine debris is a pressing globa

vironmental problem with far-reaching consequences for marine life, habitats, ecosystems, economie

d human health (Iñiguez et al., 2016). It harms marine creatures that can ingest or become entangle

debris, leading to injuries, suffocation, or death. The entanglement and ingestion of debris ca

srupt the reproductive cycles and feeding habits of marine creatures, potentially impacting th

undance and quality of seafood available for human consumption (Jang et al., 2020). Additionall

affects human health due to the consumption of seafood contaminated by litter. The sources an

cumulation patterns of marine litter are highly diverse, influenced by factors such as geographica

cation, industrial activities, waste management practices, and human behavior. These multifacete

ctors contribute to the complexity of the issue, necessitating comprehensive solutions (Jia et al

23; Galgani et al., 2019).

The growing technological capabilities of underwater observation technologies and computer visio

vancements have led to the widespread adoption of photography-based monitoring for assessin

e type, distribution, and abundance of marine litter (Radeta et al., 2022). This approach provide

luable insights into the severity of marine litter pollution, enabling the development of effectiv

anup programs and fostering public awareness campaigns to reduce litter generation (Politiko

al., 2021; Kraft et al., 2021). The detection of seafloor litter in real-world underwater video footag

esents a complex challenge due to the diverse and dynamic nature of marine environments (Jia

al., 2021). Video footage can exhibit varying lighting conditions, zoom levels, and camera angle

ten causing marine litter to be barely visible (Raveendran et al., 2021). Moreover, the sheer variet

litter types, the diverse shapes within the same type of litter, the degradation of litter over tim

potential burial in the seabed, and the presence of complex background like rocks and seagras

n easily mislead detection algorithms (Schneider et al., 2018; Mæland and Staupe-Delgado, 2020

e development of algorithms capable of automatically detecting marine litter in underwater image

uld support analytical processes and play an imperative role in improving understanding of marin

2



Journal Pre-proof

po29

s,30

in d31

an y32

lo s,33

re e34

lit g35

ba .,36

20 d37

fo e38

su f39

cla ).40

Th e41

fo42

-43

og ).44

By e45

an .,46

20 g47

re i-48

tio o49

th a50

fo e51

lit y52

pr53

s-54

se r55

de a56
 Jo
ur

na
l P

re
-p

ro
of

llution and motivating targeted mitigation and management strategies (Sandra et al., 2023).

Deep learning (DL) has emerged as a powerful tool for image understanding across various domain

cluding computer vision (Marin et al., 2021), natural language processing, recommender system, an

omaly detection. Object segmentation, a subfield of DL, extends beyond object recognition b

calizing, classifying, and segmenting objects within images (Minh et al., 2022). In recent effort

searchers have implemented existing object segmentation models to identify the position of marin

ter (Zhou et al., 2022; Teng et al., 2022; Chin et al., 2022), while others have focused on strengthenin

ckbone networks to enhance marine litter feature extraction (Politikos et al., 2021; Corrigan et al

23). Additionally, several studies have suggested efficient and lightweight DL structures fine-tune

r marine litter detection (Deng et al., 2021; Ma et al., 2023). Despite these advancements, th

pervised marine litter recognition approach still faces limitations. Models trained on a finite set o

sses often exhibit restricted performance when encountering novel classes (Madricardo et al., 2020

is limitation stems from the reliance on labeled data, which can be scarce and expensive to acquir

r the vast diversity of marine litter categories.

Zero-shot learning is a transformative machine learning (ML) paradigm that enables models to rec

nize classes or categories they have never encountered during the training phase (Sun et al., 2021

leveraging a broader set of related information during training, ZSL enables models to generaliz

d make predictions for unseen or novel classes. The Segment Anything Model (SAM) (Kirillov et al

23), developed by Meta AI, represents a pioneering method in image segmentation, demonstratin

markable generalization capabilities across various benchmark datasets without the need for add

nal training on unseen objects. ZSL holds particular promise for marine litter recognition due t

e vast diversity of marine litter types and the challenges associated with collecting labeled dat

r each (Raveendran et al., 2021; Schneider et al., 2018). The development of an automatic marin

ter recognition framework powered by ZSL has the potential to revolutionize litter assessment b

oviding a faster, more cost-effective alternative to standard manual data analysis approaches.

Therefore, the need for an efficient and accurate system for segmenting underwater objects is e

ntial for the identification and cleanup of marine litter. This paper proposes a zero-shot pipeline fo

ep learning-based marine litter segmentation that overcomes the challenges of limited labeled dat

3
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d complex seafloor environments. Our contributions include: (1) using underwater image enhance

ent (UIE) algorithms to improve dataset image quality; (2) developing a zero-shot segmentatio

proach based on SAM guided by Interpretable Contrastive Language–Image Pre-training (iCLIP

gorithms, which eliminates the need for manual data annotation; and (3) demonstrating that the pro

sed framework achieves comparable segmentation performance and inference speed to the supervise

proach.

The remainder of this paper is organized as follows. Section 2 introduces the large-scale marin

ter dataset. Section 3 presents the zero-shot marine litter segmentation pipeline in detail. Sectio

evaluates the proposed approach on experimental data and discusses the obtained results of th

ro-shot segmentation approach. Finally, Section 5 concludes the paper with some remarks.

Marine litter dataset

Previous marine litter studies have been limited by small datasets with few litter types. Fo

ample, the seafloor marine litter dataset (635 images) (Politikos et al., 2021), the JAMSTEC datase

352 images) (dat), and the DSDebris dataset (15K images) (Huang et al., 2023). As a result, th

udy uses a massive dataset of around 112K images that cover eight common marine litter type

rpassing previous datasets in both quantity and quality. Although the specific composition of marin

ter can vary depending on geographical location and dominant industries, the chosen categories i

e dataset represent a significant portion of debris found globally (Politikos et al., 2021; Huang et al

23), making it relevant for various coastal monitoring and cleanup scenarios.

The dataset was shared by the National Information Society Agency of Korea (NIA) for researc

rposes1. It was mainly collected by Pukyong Ocean Technology Co., Ltd. and labeled by th

kyong University Industry-Academia Cooperation Division2. The marine litter dataset was collecte

ing a commercial GoPro5 action camera (gop). Eight surveys were conducted to assess seafloor litte

vering more than 100 hectares of seafloor over 8 hours of underwater video footage. The collectio

s planned for cloudless days between 11:00 AM and 1:00 PM, during solar noon, to ensure the bes

1https://aihub.or.kr/
2https://www.pknu.ac.kr/eng

4
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ntrast and clarity in the videos. Video frames with high turbidity, color shifts, or light flares wer

cluded from the analysis. Each image is 1920× 1080 pixels at 96 dpi. Sample images for each litte

pe are shown in Figure 1. A total of 111,890 images were collected and annotated, of which 89,51

0%) were used for training and validation, and 22,378 (20%) for testing.

(1) Fishing net (2) Fish trap (3) Glass (4) Metal

(5) Plastic (6) Wood (7) Rope (8) Rubber
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gure 1: Visual representation of the eight most common types of marine litter in the dataset and a bar chart depictin
e distribution of training, validation, and testing images across different marine litter types.

Methodology

1. Image pre-processing

Previous studies have shown that aquatic datasets often suffer from challenges such as poor lighting

lor distortion, low contrast, and reduced visibility due to light scattering and absorption in wate

ese challenges can significantly degrade the performance of litter identification models during train

5
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g (Radeta et al., 2022). Underwater image enhancement (UIE) is a common technique that ca

implemented to mitigating these issues. UIE is essential for improving the performance of imag

cognition models, as it reduces the gap between the underwater and the terrestrial domains an

hances the discriminative features of the objects (Huang and Belongie, 2017).

UIE aims to improve the visual quality of images captured in underwater environments, where fac

rs like light attenuation, scattering, and color distortion severely degrade image clarity (Raveendra

al., 2021). One common approach involves the restoration of images using various noise reductio

ethods, such as filtering or statistical approaches, to improve the image’s clarity. Additionally, colo

rrection techniques are employed to mitigate the color shifts caused by the absorption and scatte

g of light in water. Another notable approach to underwater image enhancement involves leveragin

L algorithms, particularly DL. Such approaches offer the advantage of adaptability and scalabilit

the models can continuously improve with more training data, making them suitable for variou

derwater imaging applications (Gong et al., 2021).

The main challenge of previous DL-based UIE is obtaining high-quality ground truth image

aveendran et al., 2021). Most existing methods generate approximate reference images and train de

rministic enhancement networks that cannot handle the ambiguity of reference mapping. To addres

e challenge of obtaining high-quality ground truth images for UIE, we implemented a probabilist

twork for underwater image enhancement (P-UIE) trained on real-world datasets (Fu et al., 2022

e P-UIE model has two main branches, each implementing a U-Net model with modified SE-ResNe

ocks (Gong et al., 2021) for enhanced image feature extraction. The first branch estimates the prio

stribution of a single raw underwater image, while the second branch constructs the posterior distr

tion of UIE using the raw underwater image and corresponding reference image as input. The ke

mponent of P-UIE is PAdaIN that uses a conditional variational autoencoder (CVAE) (Sohn et al

15) and adaptive instance normalization (AdaIN) (Huang and Belongie, 2017) to create a model o

e enhancement distribution. During training, random samples from the posterior distribution of th

hanced underwater image are injected into the AdaIN module to transform the enhanced represen

tion. During testing, random samples from the prior distribution are used to make predictions.

One of P-UIE’s strengths is its ability to handle the uncertainty of ground truth labels in UIE data

6
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aditional UIE methods often struggle with this challenge due to noisy and inaccurate ground trut

bels. P-UIE’s robustness to uncertainty makes it a more reliable UIE method. Another strength o

UIE is its ability to generate diverse enhanced images from a single input underwater image. Th

rsatility makes P-UIE suitable for a variety of uses, including underwater photography, inspection

d surveillance. As a result, this study implemented a pretrained P-UIE model for enhancing th

arine litter dataset before performing the marine litter identification.

2. Zero-shot seafloor litter segmentation pipeline

Figure 2 provides a schematic diagram of the proposed zero-shot seafloor litter segmentatio

peline, which consists of three main phases: iCLIP model for point prompt generation, SAM fo

ro-shot segmentation, and mask post-processing process for removing duplicated masks. iCLIP gen

ates point prompts from an input image and text description of the object of interest, which guide th

M segmentation model to focus on those regions. However, the obtained masks may contain dupl

te masks and noise blobs from the background. To address this, we propose a mask post-processin

odule to eliminate duplication.

7
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Fi

ote: Class features are denoted as Fclass, image features as Fimg, expanded mean attention map as A, tex
tures as Ft, pooled features as Fc, and masked features as Fi. Additionally, there are dual projection
mely ϕi and ϕ̂i, along with corresponding text projections, ϕt and ϕ̂t, used in computing the contrastiv
ses.

gure 2: Depiction of the text to points prompt from iCLIP to guide SAM for generating the mask of variou
pes of seafloor litter.

2.1. Point prompts generation

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) is a self-supervised learnin

proach that learns to encode images and text into a common representation where semanticall

ilar images and text are mapped to nearby points. CLIP models have outperformed all othe

ethods on a variety of downstream vision tasks, including zero-shot classification (Wei et al., 2023

age retrieval (Saito et al., 2023), and object segmentation (Kirillov et al., 2023). However, the visua

terpretability of CLIP models has been a relatively underexplored area.

Li et al. (Li et al., 2022) propose a new interpretable CLIP (iCLIP) model that visualizes th

ture maps of CLIP models. The iCLIP model introduces an Image-Text Similarity Map (ITSM) tha

8
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mputes the similarity between each image’s feature map and the embedding for the correspondin

xt description. The ITSM can be used to identify the image regions most relevant to the tex

scription. Additionally, the authors replace CLIP’s original global pooling layer with a masked ma

oling layer that pools over only the image regions relevant to the text description, as determined b

e ITSM.

Given an image sample x and text supervision y, the self-supervised image encoder fi and linea

ojection ϕi (a function that learns to project the output of the encoder to a lower dimension) produc

-normalized image token features X ∈ R1+Ni,C , as shown in Equation 1.

X̂ = fi(x) · ϕi,X =
X̂

∥X̂∥p
(1

where the class token 1 and the image token Ni are represented as vectors in an embedding spac

width C. The feature matrix X̂ contains the features of the image before they are normalized

milarly, the normalized text features Y ∈ RNt,C , are computed as shown in Equation 2. Thes

tures are used to train the ITSM model during training and become weights for the ITSM mod

ring inference.

Ŷ = ft(y) · ϕt,Y =
Ŷ

∥Ŷ ∥p
(2

After that, the intermediate similarity matrix M̂ ∈ RNi,Nt is computed by inner production betwee

age features X1:,: (excluding the class token X :1,:) and the transposed text features Y ⊤, as show

Equation 3.

M̂ = X1:,: × Y ⊤ (3

The ITSM feature map M ∈ RH,W,Nt is then reconstructed reshaping and resizing it to the inpu

age’s size using bicubic interpolation, with width and height W and H, respectively. Addition

ly, min-max normalization Norm is applied to the H and W dimensions to improve contrast fo

sualization. The obtained ITSM can be formulated as follows:

9
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M = Norm(Resize(Reshape(M̂))) (4

For interactive segmentation, iCLIP’s output points with similarity scores higher than 0.8 are use

guide the SAM model (Li et al., 2022), and the same number of last-ranked points are assigned a

ckground points. This helps to reduce the need for manual labeling and avoid the poor performanc

SAM with text prompts only.

2.2. Zero-shot segmentation

The Segment Anything Model (SAM) is a new prompt engineering-based semantic segmentatio

ethod introduced by Kirillov et al. (Kirillov et al., 2023). SAM is a promptable model, which mean

at it can segment objects in images using a simple prompt. SAM is trained on the SA-1B datase

large dataset of images and text descriptions, and can segment a wide variety of objects, even thos

t explicitly defined in the training data.

As illustrated in Figure 2(ii), The SAM model architecture consists of three key modules: an imag

coder, a prompt encoder, and a mask decoder. The image encoder processes the input image an

tracts essential visual features that are versatile enough to apply across various object classes i

e context of zero-shot segmentation. It uses vision transformers (ViTs) (Dosovitskiy et al., 2020

divide the image into patches and extract features from each patch, capturing both object-specifi

tails and background information. The prompt encoder can handle two types of prompts: spars

oints, boxes, and texts) and dense (masks) prompts. Since the location of marine litter in the inpu

age is unknown, we used the points prompt proposed by the iCLIP model to feed into the promp

coder, which encodes the points prompt into a latent representation. Finally, the prompt encode

tput is concatenated with the image encoder output and fed into the mask decoder, which predict

segmentation mask for the input image.

SAM is trained using a supervised learning approach. The training data consists of images an

xt descriptions, where each text description indicates the objects that are present in the imag

M is trained to find a minimum cross-entropy loss between the segmentation mask and the actua

gmentation mask.

10
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2.3. Mask post-processing

When points are used as input prompts, the resulting masks often contain many duplicate mask

d noise blobs from the background. To tackle this issue, we implemented a mask post-processin

gorithm (Algorithm 1) in Pseudocode (Nguyen et al., 2023). The algorithm works based on tw

rameters: (i) mask area and (ii) overlap ratio. The mask area threshold aims to eliminate excessivel

rge or small masks that can be considered noise. On the other hand, the overlap ratio is used t

erge masks that are highly similar or substantially overlap into a single mask.

lgorithm 1 Mask post-processing

: selected masks← []
: for each mask in sam output masks do
: mask,mask area← find largest contour(mask)
: if min area ≤ mask area ≤ max area then
: selected masks← selected masks ∪mask
: end if
: end for
: final results← []
: while selected masks ̸= ∅ do
: pivot mask ← selected masks.pop() ▷ Assign the last mask from the list to pivot mas
: for each mask in selected masks do
: iou, overlap ratio← calc mask overlap(pivot mask,mask)
: if (iou > iou threshold) or (overlap ratio > overlap threshold) then
: pivot mask ← pivot mask ∪mask
: end if
: end for
: final results← final results ∪ pivot mask
: end while

Algorithm 1 refines predicted object masks in several steps. Initially, it filters out very small o

rge ones based on their area (referred to as mask area). It then iteratively merges overlapping mask

elected mask). After that, it selects the last mask from the list and stores it in a variable calle

vot mask using the “pop;; operation (which removes the last element from a list). The algorithm

eps track of the pivot mask and compares it to other masks. If the overlap between the pivot an

other mask exceeds a threshold (either based on IoU or a custom overlap ratio), they are merge

gether. This process continues until all masks have been processed. The outcome is a refined list o

asks with reduced noise and merged overlapping detections.

11
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Experimental results

This section describes a series of experiments conducted on the seafloor litter dataset to comprehen

ely access the performance of the zero-shot segmentation pipeline under different testing condition

ction 4.1 details the evaluation metrics used to evaluate the model’s performance on various dimen

ns, whereas Section 4.2 reports the hardware and programming environment used to implement th

odel.

1. Evaluation metrics

Semantic segmentation models are evaluated using a confusion matrix, which has four component

ue positive (TP ), true negative (TN), false negative (FN), and false positive (FP ). The terms TP

, FP , and FN refer to the number of pixels that are correctly or incorrectly classified, respectivel

is the number of pixels that are correctly predicted to belong to the class of interest, TN indicate

xels correctly classified as background. FP is the number of pixels that are incorrectly predicted t

long to a certain class, and FN is the number of pixels that are incorrectly classified as background

, FN , and FP are used to calculate intersection over union (IoU), a popular metric for assessin

odel performance. IoU measures how much the predicted segmentation mask overlaps with th

ound truth segmentation mask. Mean IoU (mIoU) is the average IoU over all classes.

IoU =
TP

TP + FP + FN

mIoU =
IoU

N

(5

where N is the total number of classes in the dataset, which is 8 in this study.

2. Implementation descriptions

The zero-shot marine litter segmentation framework was developed using PyTorch3, a popula

thon machine learning library, on a Linux system with two Nvidia Tesla V100 GPUs, each with 3

B of memory. All DL models and hyperparameters, except for the zero-shot segmentation mode

3https://pytorch.org/

12
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re implemented using open-source code from the original papers. To ensure reliable comparison

th the zero-shot approach, all supervised segmentation models used a pre-trained ViTs model o

ageNet as their backbone architecture.

3. Performance assessment of zero-shot marine litter segmentation framework

3.1. Pre-processing module analysis

Figure 3 shows eight input images from the dataset, which contain various challenges such as lo

ht, blurriness, and poor illumination. The corresponding outputs from the pre-processing proces

ow a significant improvement in image quality after passing through the P-UIE model. For exampl

arine litter in raw seafloor images with low contrast or poor illumination conditions can be challengin

see, but the P-UIE model significantly enhances image quality, making marine litter more visible. I

dition, the pre-processing process does not add noise to input images or degrade the quality withou

y of the mentioned issues.

Original Pre-processed result Original Pre-processed resul

Figure 3: Comparison of the raw and pre-processed seafloor images.
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As displayed in Table 1, P-UIE improved the marine litter segmentation performance of the zero

ot approach on three segmentation metrics, including mIoU, precision, and recall. Specifically, th

IoU score increased from 66.2% to 69.9%, the precision score increased from 65.9% to 69.6%, and th

call score increased from 66.7% to 69.8%. This suggests that the P-UIE model was able to effectivel

prove the quality of the input images, making it easier for the segmentation model to accuratel

entify and segment the marine litter. In addition, the P-UIE model was able to remove noise an

tifacts from the input images, which can make it easier for the segmentation model to distinguis

tween the marine litter and the background. Finally, the P-UIE model also improved the contras

d color of the input images, which can also make it easier for the segmentation model to identif

e marine litter.

nput data mIoU (%) Precision (%) Recall (%)
aw 66.2 65.9 66.7
re-processed 69.9 69.6 69.8

Table 1: The improvement of the pre-processing process on the models’ performance.

3.2. Zero-shot segmentation performance analysis

Table 2 shows the performance of the proposed zero-shot marine litter segmentation approach fo

ch of the eight marine litter types in the dataset. The table reports the IoU, precision, and reca

ores.

Fishing net Fish trap Glass Metal Plastic Wood Rope Rubber Average
oU 61.5 63.7 75.1 77.2 74.8 70.2 66.4 70.7 70
recision 60.9 63.3 76.5 75.8 72.2 69.1 68.2 71.4 69.7
ecall 58.9 63.1 77.3 75.7 74.4 71.5 68.7 69.3 69.9

Table 2: Performance of the proposed approach for each marine litter type (IoU, precision, and recall).

The proposed zero-shot marine litter segmentation approach achieves good performance on a

ht marine litter types, with average IoU scores of 70% and average precision and recall scores abov

%. This performance is particularly noteworthy considering that the dataset used in this study wa

llected on real-life seafloor conditions, which are often challenging for marine litter segmentatio

gorithms. The highest IoU scores are achieved for metal (77.2%), glass (75.1%), and plastic (74.8%

14
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ile the lowest IoU scores are achieved for fishing nets (61.5%) and fish trap (63.7%). This suggest

at the proposed approach is a promising approach for zero-shot marine litter segmentation.

One possible explanation for the relatively low segmentation performance of fishing nets, fish trap

d ropes is that they can be difficult to distinguish from seaweed and other debris in the environmen

pecially in low-light or obscured conditions. Additionally, fishing nets and fish traps, which are ofte

ade of nylon, can have a similar appearance, further complicating accurate segmentation.

Figures 4 shows the model-predicted masks for the eight marine litter types. The first colum

ows the original image, the second column shows the interpretable CLIP attention masks, whic

ghlight potential litter areas, and the third column shows the overlay of the predicted litter mask

the original image. Overall, the iCLIP attention masks are able to accurately highlight potentia

ter areas in the image, even in the presence of noise and occlusion. For example, in the case o

hing nets and traps, the attention masks accurately highlight the nets, even when partially obscure

seaweed. Similarly, the attention masks accurately highlight metal, wood, and rubber objects, eve

en they are similar in color to the surrounding environment.

Based on the attention masks, the SAM model is guided to accurately segment the litter from

e background, closely following the litter boundaries. The SAM model demonstrates potential fo

curate object segmentation. While the SAM model generally performs well, it can occasionall

hibit shortcomings, such as incomplete object segmentation or slight over-segmentation.
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ote: For each image in the third column, white dots indicating the potential litter areas extracted by th
LIP model, with red dots indicating the background to guide the SAM model.

gure 4: Visualization of the proposed zero-shot marine litter segmentation approach on four different type
marine litter.
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Figure 5 shows the zero-shot segmentation results for two challenging cases where the marine litte

sembles the surroundings. In Figure 5(a), the model correctly segmented the tire, even though it wa

all, far from the camera, and had the same color as the surrounding seafloor. However, in Figur

b), the model faced a more challenging scenario: the rope resembled the surrounding seafloor rock

ich is confusing. As a result, the model correctly segmented the rope, but it also falsely recognize

me of the rocks near the rope as rope.

a)

b)

ote: The white arrow indicates correct segmentation, while the red arrow indicates wrong segmentation.

gure 5: Two examples of marine litter that are challenging to identify due to the complex surroundin
vironment.

3.3. Mask post-processing analysis

Table 3 displays the mIoU on the testing set obtained from a grid search over various combination

mask area (MA) within the range of [5%, 10%, 20%, 30%, 40%] up to 50% of the image area

aller MA values (e.g., 5% or 10%) allow the algorithm to focus on removing tiny masks, which ca

noise or artifacts, whereas larger MA values (e.g., 30% or 40%) aim to eliminate excessively larg

17
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asks that might cover significant portions of the image. Additionally, we explored overlap threshold

T) ranging from [0.6, 0.7, 0.8, 0.9, 1] for merging duplicated masks. A lower OT (e.g., 0.6 or 0.7

sults in more conservative merging, preserving distinct marine litters. A higher OT (e.g., 0.8 or 0.9

erges masks more aggressively, potentially combining overlapping marine litters. Our objective wa

identify the parameter combination that maximizes mIoU.

MA = 5 MA = 10 MA = 20 MA = 30 MA = 40
T = 0.6 55.5 52.3 54.4 43.9 39.7
T = 0.7 65.1 54.8 51.7 48.1 42.4
T = 0.8 69.9 59.0 58.8 49.6 47.3
T = 0.9 67.3 58.2 58.3 48.8 45.3
T = 1 65.2 55.1 57.5 45.7 44.2

ble 3: Identifying optimal parameters for post-processing process via grid search (MA and OT ranges).The highlighte
lue shows the best mIoU of the framework on the testing set.

The highlighted value represents the best mIoU achieved by the framework on the testing se

e combination of MA=5% and OT=0.8 yields the highest mIoU of 69.9, indicating effective pos

ocessing for marine litter segmentation. This setting effectively removes small noise masks whi

aintaining reasonable merging thresholds. This optimal parameter combination represents the bes

oice for the marine litter dataset.

3.4. Comparison study for zero-shot segmentation

Table 4 shows the performance of the proposed zero-shot segmentation approach on four metric

IoU, precision, recall, and frames per second (FPS), compared to three supervised approaches, in

ding Deeplabv3 (Chen et al., 2017), Mask-RCNN (He et al., 2017), and Mask2Former (Cheng et al

22), on the annotated testing dataset. Higher mIoU, precision, and recall indicate more accurat

d complete detection, while higher FPS indicates faster processing speed.

odel mIoU Precision Recall FPS
eepLabv3 (Chen et al., 2017) 74.2 75.6 73.7 18
ask-RCNN (He et al., 2017) 76.1 75.8 77.5 12
ask2Former (Cheng et al., 2022) 73.8 71.2 72.4 22
urs (iCLIP+SAM) 69.9 69.6 69.8 16

able 4: Performance of the zero-shot approach compared to supervised approaches on the annotated testing dataset
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Among evaluated models, Mask-RCNN achieves the highest mIoU (76.1%), precision (75.8%), an

call (77.5%). However, it has the slowest inference speed of 12 FPS, making it suitable for offlin

ter segmentation where time is not a crucial factor. While DeepLabv3, Mask2Former, and th

oposed zero-shot approach offer faster inference speeds, their mIoU scores are lower (74.2%, 73.8%

d 69.9%, respectively).

The key distinction lies in data requirements. Supervised models like Mask-RCNN, Mask2Forme

d DeepLabv3 demand a large-scale labeled dataset for training, which limits their applicability whe

ch data is scarce or unavailable. In contrast, the proposed zero-shot learning approach based on SAM

d iCLIP baselines offers a distinct advantage in scenarios where annotated training data is limited o

available. In summary, the choice between models depends on the trade-offs between performanc

d efficiency. Supervised models excel in performance when labeled data is readily available, whi

e proposed zero-shot approach provides an effective alternative in situations where labeled data

available.

Discussion

Previous studies have shown that the marine environment can have a big impact on the performanc

litter detection models. However, they did not offer a solution to this problem. We introduced

e-processing module based on the P-UIE model to improve the performance of the marine litte

gmentation framework. This module is crucial for handling the complexities inherent in marin

tasets, leading to a remarkable 3.7% increase in the segmentation model’s mIoU, compared t

e baseline performance of 66.2% on the raw dataset. While seemingly modest, this improvemen

anslates to a substantial reduction in missed or misclassified marine litter objects within a large-sca

taset. This translates to more precise marine pollution assessments, directly impacting cleanu

orts, ecosystem health monitoring, and research on pollution sources and impacts. While the pre

ocessing module needs more computing power and time, it can be easily turned on or off dependin

the specific needs of the application. Overall, this pre-processing model makes it possible to segmen

arine litter more effectively in challenging seafloor environments.
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In this study, we aimed to verify the effectiveness of the zero-shot approach for marine litter seg

entation. We compared the zero-shot approach with three different DL-based segmentation mode

a manually annotated marine litter test set. Our key finding was that the zero-shot approac

hieved slightly lower performance (mIoU 69.9%) than other supervised models. The zero-shot ap

oach achieved an inference speed of around 16 FPS, which is affected by the processing speed of th

o different models, iCLIP and SAM, as well as the mask post-processing process.

Our results are similar to those of previous research on zero-shot approaches. The zero-shot marin

ter segmentation pipeline based on iCLIP and SAM has several advantages over traditional supe

sed learning approaches, such as Mask-RCNN and DeepLabv3. First, it can be implemented withou

large dataset of labeled images, which can be expensive and time-consuming to collect. Second, it

ore robust to changes in the appearance of marine litter, such as variations in size, shape, and colo

ird, it generalizes well to new environments, such as different water depths and different types o

derwater terrain. The proposed zero-shot segmentation algorithm demonstrates promising result

automatically detecting and segmenting marine litter objects in underwater images. The propose

ro-shot marine litter detection framework represents one specific approach within the broader effor

combat marine litter. Our method offers valuable contributions in the field of large-scale monito

g of coastal areas, where the model is ready for use for various types of marine litter without th

e-consuming process of labeling data and training the model.

Conclusions and future works

Marine litter on the seafloor poses a significant threat, but monitoring it traditionally require

tensive human labor. This research presents a simple yet remarkably efficient framework for au

mated seafloor litter monitoring. We leverage recent advancements in DL models, particularly i

age registration, segmentation, and classification. These advancements have enabled pre-traine

odels to perform remarkably well in zero-shot learning scenarios. By harnessing the capabilities o

ese models, we have created a marine litter detection system that stands out for its ability to operat

ectively without relying on labeled data or model training.
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One of the notable innovations proposed in this framework is the utilization of a zero-shot segmen

tion pipeline that includes iCLIP. This technique generates potential points indicating the position o

arine litter and the background. These points are then fed into the point prompt encoding of SAM

guide the automated segmentation process. Additionally, we implemented P-UIE, a DL mod

signed to enhance the visual quality of images captured in underwater environments. Given th

allenging underwater conditions, which can sometimes deceive the framework into generating inco

ct object masks, we also introduced a mask post-processing algorithm. This algorithm eliminate

roneous masks based on a carefully fine-tuned IoU threshold and overlap ratio.

The framework has been robustly tested and successfully detects eight types of marine litter, eve

challenging seafloor environments where distinguishing litter from the background is difficult.

hieved an impressive mIoU of 69.9% and an inference speed of 16 frames per second (FPS). Th

UIE model further improves the mIoU of the pre-processed input from 66.2% to 69.9%. In addition

e extracted attention map serves as a visualization of the model’s attention weights. These weight

dicate the importance of each pixel in the input image for the model’s prediction. This informatio

n be used to understand the model’s decision-making process and identify the key features it relie

for making accurate predictions.

One notable limitation of the framework is its computational complexity, which hinders real-tim

ter segmentation. Therefore, optimizing the zero-shot marine litter segmentation framework fo

th robustness and time efficiency is a crucial area for future research. Additionally, compared t

lly supervised segmentation models like Mask-RCNN and DeeplabV3, the proposed model exhibite

er accuracy for recognizing underwater marine litter with fine-grained details and subtle variation

ne possible direction is to combine the zero-shot framework with limited amounts of marine litte

tection-specific labeled data (few-shot learning) or incorporating active learning strategies to improv

curacy and reduce reliance on large pre-trained models. In addition to technological advancement

omoting complementary strategies is essential for tackling marine litter effectively. These strategie

n include improved waste management infrastructure, educational initiatives promoting responsib

ste disposal, and policy changes encouraging sustainable practices.
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arin, I., Mladenović, S., Gotovac, S., Zaharija, G., 2021. Deep-feature-based approach to marin

debris classification. Applied Sciences 11, 5644.

inh, D., Wang, H.X., Li, Y.F., Nguyen, T.N., 2022. Explainable artificial intelligence: a comprehen

sive review. Artificial Intelligence Review , 1–66.

uyen, L.Q., Shin, J., Ryu, S., Dang, L.M., Park, H.Y., Lee, O.N., Moon, H., 2023. Innovativ

cucumber phenotyping: A smartphone-based and data-labeling-free model. Electronics 12, 4775.

24



Journal Pre-proof

Po ic448

n449

450

Ra s,451

452

Ra ,453

,454

455

Ra e456

457

Sa -458

F459

460

Sa ,461

r462

463

Sc a464

465

So l466

467

Su ,468

469

Te f470

471
 Jo
ur

na
l P

re
-p

ro
of

litikos, D.V., Fakiris, E., Davvetas, A., Klampanos, I.A., Papatheodorou, G., 2021. Automat

detection of seafloor marine litter using towed camera images and deep learning. Marine Pollutio

Bulletin 164, 111974.

deta, M., Zuniga, A., Motlagh, N.H., Liyanage, M., Freitas, R., Youssef, M., Tarkoma, S., Flore

H., Nurmi, P., 2022. Deep learning and the oceans. Computer 55, 39–50.

dford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin

P., Clark, J., et al., 2021. Learning transferable visual models from natural language supervision

in: International conference on machine learning, PMLR. pp. 8748–8763.

veendran, S., Patil, M.D., Birajdar, G.K., 2021. Underwater image enhancement: a comprehensiv

review, recent trends, challenges and applications. Artificial Intelligence Review 54, 5413–5467.

ito, K., Sohn, K., Zhang, X., Li, C.L., Lee, C.Y., Saenko, K., Pfister, T., 2023. Pic2word: Map

ping pictures to words for zero-shot composed image retrieval, in: Proceedings of the IEEE/CV

Conference on Computer Vision and Pattern Recognition, pp. 19305–19314.

ndra, M., Devriese, L.I., Booth, A.M., De Witte, B., Everaert, G., Gago, J., Galgani, F., Langedock

K., Lusher, A., Maes, T., et al., 2023. A systematic review of state-of-the-art technologies fo

monitoring plastic seafloor litter. Journal of Ocean Engineering and Science .

hneider, F., Parsons, S., Clift, S., Stolte, A., McManus, M.C., 2018. Collected marine litter—

growing waste challenge. Marine pollution bulletin 128, 162–174.

hn, K., Lee, H., Yan, X., 2015. Learning structured output representation using deep conditiona

generative models. Advances in neural information processing systems 28.

n, X., Gu, J., Sun, H., 2021. Research progress of zero-shot learning. Applied Intelligence 51

3600–3614.

ng, C., Kylili, K., Hadjistassou, C., 2022. Deploying deep learning to estimate the abundance o

marine debris from video footage. Marine Pollution Bulletin 183, 114049.

25



Journal Pre-proof

W e472

f473

474

Zh is475

476
Jo
ur

na
l P

re
-p

ro
of

ei, Y., Cao, Y., Zhang, Z., Peng, H., Yao, Z., Xie, Z., Hu, H., Guo, B., 2023. iclip: Bridging imag

classification and contrastive language-image pre-training for visual recognition, in: Proceedings o

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2776–2786.

ou, W., Zheng, F., Yin, G., Pang, Y., Yi, J., 2022. Yolotrashcan: A deep learning marine debr

detection network. IEEE Transactions on Instrumentation and Measurement 72, 1–12.

26



Journal Pre-proof

Hig



 ity



 und



Jo
ur

na
l P

re
-p

ro
of

hlights

We introduce a zero-shot marine litter segmentation framework 

An underwater image enhancement algorithm was applied to improve the dataset qual

The framework achieves a test mIOU of 69.9% for eight common marine litter

We perform detailed  analysis  of  the  model's  robustness  against  complex  backgro

noise 

We demonstrate the potential of zero-shot approach for automated marine litter 
monitoring
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