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Abstract   

The rapid adoption of drones has transformed industries such as agriculture, environmental 

monitoring, surveillance, and disaster management by enabling more efficient data collection and 

analysis. However, existing UAV image scene classification techniques face limitations, particularly 

in handling dynamic scenes, varying environmental conditions, and accurately identifying small or 

partially obscured objects. These challenges necessitate more advanced and robust methods. In 

response, this study explores ensemble learning (EL) as a powerful alternative to traditional machine 

learning approaches. By integrating predictions from multiple models, EL enhances accuracy, 

precision, and robustness in UAV-based land use and land cover classification. This research 

introduces a two-phase approach combining data preprocessing with feature extraction using three 

advanced ensemble models DenseNet201, EfficientNetV2S, and Xception employing transfer 

learning. These models were selected based on their top performance during preliminary evaluations. 

Furthermore, a soft attention mechanism is incorporated into the ensembled network to optimize 

feature selection, resulting in improved classification outcomes. The proposed model achieved an 

accuracy of 97%, precision of 96%, recall of 96%, and an F1-score of 97% on UAV image datasets. 

Comparative analysis reveals a 4.2% accuracy improvement with the ensembled models and a 1% 

boost with the advanced hybrid models. This work significantly advances UAV image scene 

classification, offering a practical solution to enhance decision-making precision in various 

applications. The ensemble system demonstrates its effectiveness in remote sensing applications, 

especially in land cover analysis across diverse geographical and environmental settings. 

Index Terms: Attention mechanism, land area images, land use classification, land cover 

classification, Ensemble Learning, Satellite imagery, Remote Sensing, 

1. Introduction 

The widespread use of Unmanned Aerial Vehicles (UAVs), also called drones has increased in recent 

years and has revolutionized various industries, including agriculture, environmental monitoring, 

                  



surveillance, and disaster management [1]. These versatile devices are equipped with robust imaging 

sensors that capture high-resolution images of vast and dynamic landscapes, making them invaluable 

tools for various applications [2]. One of the critical tasks in UAV-based applications is image scene 

classification, which involves categorizing images into predefined classes [3]. Accurate scene 

classification is pivotal for tasks like object detection, land-use mapping, and disaster response 

planning. However, classifying scenes from UAV images poses a distinct set of challenges. These 

difficulties stem from factors like fluctuating lighting conditions, image blurring caused by the 

drone’s movement, alterations in camera angles and perspectives, and the existence of small or 

partially hidden objects. To surmount these obstacles and elevate the precision of scene classification, 

machine learning methods, with a particular emphasis on EL, have emerged as a prominent solution 

[4]. EL is a powerful approach that combines the predictions of multiple classifiers to improve overall 

classification performance [5]. Various EL techniques have been explored in the context of UAV 

image scene classification, and the choice of the ensemble method can significantly impact the final 

classification accuracy [6], [7].  

Several methods have been developed for land area classification; however multiple challenges are 

associated with previous studies [8, 9]. The previous work utilized a solo architecture for land area 

classification, which performed insufficiently due to the range of objects captured by UAV 

cameras[10]. Furthermore, these studies used shallow architectures and fed the output of 

convolutional layers directly to the fully connected layers without selecting optimal features, resulting 

in suboptimal classification performance. Despite various efforts, challenges such as handling varying 

environmental conditions, managing dynamic scenes, and accurately identifying small or partially 

hidden objects persist[11, 12].    Therefore, this work aims to develop an attention-enhanced deep 

ensemble learning (EL) model to identify and categorize land use and cover changes accurately. By 

leveraging optimized deep convolutional neural networks (CNNs), we introduce an ensemble 

architecture that excels in classifying land use and cover changes. The model is designed to meet 

critical requirements, including high accuracy for reliable differentiation between land cover types, 

scalability to process large datasets, robustness to handle varying conditions, and interpretability to 

ensure the results are understandable and actionable. 

The practical significance of this approach is substantial, as accurate land cover classification is vital 

for effective environmental monitoring, urban planning, agriculture management, and disaster 

response. To further improve accuracy, we incorporate a soft attention mechanism that enhances the 

model's ability to focus on the most relevant features in the input data, reducing noise and improving 

classification precision [13, 14]. This not only boosts the model’s overall performance but also makes 

the decision-making process more transparent, thereby supporting better land management strategies 

and conservation efforts. The main contribution of the work is as follows. 

                  



 We have introduced an innovative integrated deep ensemble model, which combines the 

strengths of multiple pre-trained deep learning algorithms. Unlike traditional single-model 

approaches, our method leverages the complementary advantages of three baseline models. 

This novel ensemble strategy significantly advances the performance in UAV image scene 

classification, surpassing existing methods and setting a new benchmark for classification 

accuracy. 

 Another key novelty of our approach lies in the integration of a soft attention module, which 

dynamically selects the most relevant features for classification tasks. This attention 

mechanism enhances the model’s ability to focus on critical features, leading to improved 

accuracy in land cover classification. This integration enables the proposed ensemble learning 

(EL) model to better handle dynamic and constantly changing environmental conditions, 

making it highly resilient and robust in real-world UAV imagery applications. 

 We have conducted comprehensive experiments that demonstrate our model superior 

performance compared to baseline models in land area classification. Moreover, an extensive 

ablation study was performed to identify the most optimal configuration of the ensemble 

model, further validating the proposed model robustness and reliability. These results 

highlight the practical applicability of our model, providing new insights and setting a higher 

precision for UAV-based land cover classification tasks. 

The rest of the work is organized as; Section 2 provides an overview of previous research in this 

field; Section 3 presents the methodology. The experimental Results are discussed in section 4 

and finally conclude the article in Section 5. 

2. Literature Review 

These studies encompass diverse approaches, from optimizing spectral bands to employing advanced 

deep learning techniques to improve land cover classification accuracy and effectiveness in various 

remote sensing applications. Researchers continuously enhance methodologies, contributing to the 

advancement of environmental monitoring, wildlife habitat prediction, and other domains [15, 16]. 

Researchers in land cover classification employ deep learning techniques, ranging from CNN-based 

multispectral LiDAR systems to hybrid feature optimization models [17],[18]. For instance, Pan et al. 

[19] introduced Multispectral LiDAR land cover classification using a Convolutional Neural Network, 

optimizing parameters for improved performance. Similarly, Kwan et al. [20] explored the 

effectiveness of using CNN-based models for classifying land cover using different combinations of 

bands, including RGB, NIR, and LiDAR data.  

Moreover, Zhang et al. [21] presented the MLCG-OCNN algorithm, focusing on object 

discrimination and spectral pattern learning, further refining land cover classification techniques. 

                  



Rajendran et al. [22] adopted a hybrid feature optimization model combined with  DL classifiers to 

achieve notable improvements in land use and land cover (LULC) classification. Additionally, 

Chatterjee et al. [23] proposed an unsupervised clustering method for polarimetric Synthetic Aperture 

Radar (SAR) images, exploring fully convolutional networks for precise land cover detection. Other 

researchers [24-28] have evaluated the precision of land cover classification using neural network 

methods, focusing on high-resolution satellite imagery, while [29] investigated multimodal DNNs for 

land cover classification, considering processing efficiency and network traffic. Lei Song et al. [30] 

and Jing chen et al. [31] employed advanced methods, including a bi-branch fusion network 

combining CNNs and axial cross- attention mechanisms, to enhance land cover change detection 

accuracy in remote sensing images. Their approach effectively integrates local and global feature 

extraction, leading to significant improvements in detection performance. Recently, EL methods 

achieved better performance than solo models.  

Ensemble learning in UAV image classification has gained substantial attention, and several methods 

have been developed. For instance, Rahee Walambe et al. [32],[33] explore the application of EL 

methods, such as bagging and boosting, highlighting their ability to improve UAV image 

classification accuracy in challenging environmental conditions. Jin and Xu et al. [15, 34-37] 

demonstrated that the Gaussian process regression and ensemble models, particularly combining a 

Hodrick Prescott filter and neural network,  can significantly improve prediction accuracy compared 

to individual models, underscoring the potential benefits of ensemble approaches in complex 

prediction tasks. Bolin Fu and Lei et al. [38], [39] focused on the stacking ensemble approaches, 

effectively combining DL models with traditional machine learning algorithms for real-time UAV 

image classification. The study highlights the effectiveness of stacking ensembles in handling diverse 

and dynamic scenes, making it a valuable approach for practical applications.  

Colkesen et al. [40], [41] comprehensively analyze various EL techniques. These authors provide a 

comprehensive analysis of the strengths and weaknesses of each method, guiding the selection of the 

most suitable ensemble approach for specific scenarios. McCoy et al. [42] explored deep EL 

techniques for multimodal UAV image classification. The authors employ deep neural networks and 

ensemble methods to classify images from multiple sensor modalities, emphasizing the importance of 

leveraging diverse data sources for improved classification accuracy. Additionally, Namoun et al. [43] 

and Sefrin et al. [44] extend the application of EL to land cover change detection in UAV imagery. 

These authors propose an ensemble approach to detect and classify changes in land cover over time, 

showcasing the adaptability of ensemble methods to evolving environmental conditions. As evident 

from the literature, EL has become a pivotal component of UAV image classification, offering 

improved accuracy, robustness, and adaptability to various environmental conditions. These related 

works contribute to the growing body of knowledge in the field and showcase the diverse applications 

                  



of ensemble techniques in the context of UAV and UAV imagery analysis. Therefore, we introduce an 

attention-enhanced ensemble learning model that meets critical requirements like higher accuracy, 

reliable differentiation between different land cover types, and scalability for processing large datasets. 

We specifically developed this model to identify land cover changes effectively, addressing the 

challenges associated with evolving environmental conditions and the need for precise, large-scale 

analysis. The advancements presented in our model underscore the growing importance of ensemble 

techniques in UAV imagery analysis and their pivotal role in  

Table 1: Details of dataset, model, and performance of different methods developed for land area 

classification. 

Reference Method Dataset Models Year Accuracy% 

Pan et al  [19] CNN-based 

multispectral LiDAR 

system 

HIS, VHR-RGB Two-Stream CNN 2018 94.8 

Kwan et al 

[20] 

CNN-based DL models RGB, NIR, LiDAR     -- 2019 90.6 

Zhang et al 

[21] 

MLCG-OCNN 

algorithm 

      -- Object 

discrimination 

 83.45 

Rajendran et 

al. [22] 

Hybrid model  DL classifiers 2021 91.2 

Chatterjee et 

al [23] 

Unsupervised 

clustering  

Polarimetric SAR 

images 

Fully convolutional 

networks 

2022 89.7 

Moon et al 

[24] 

    -- KOMPSAT-3 

satellite imagery 

SVM, ANN, and 

DNN 

2020 92.0 

Aspri et al 

[29] 

    -- NCALM CNN 2020 83.6 

Walambe et al 

[32] 

 

 

 

 

 

Ensemble 

-- -- 2021 -- 

Fu et al  [38] -- -- 2022 92.2 

Colkesen et al 

[40] 

-- -- 2022 92.8 

Deepan  et al 

[45] 

-- -- 2021 93.2 

Naftalu et al 

[46] 

-- -- 2022 90.73 

Sefrin et al 

[44] 

-- -- 2020 ------- 

Xu et al [47]  Vaihingen, ATFM, DAL 2023 90.57 

                  



Postdam 

Ma et al[17]   -- FENet 2023  82.85 

Li et al [18]   Houston, Trento EMFNet 2021  96.1 

advancing the field of land cover classification.  Some standard approaches from the literature are 

further summarized in Table 1. 

3. Methodology 

This section describes the proposed framework for land area image scene classification. Our approach 

employs various stages, including pre-processing, augmentation, training, and evaluation, where the 

flow diagram illustrating these phases is given in Figure 1. The framework ensembles features 

extracted by different models at the feature level rather than simply combining prediction results from 

isolated models. This allows the model to integrate the strengths of multiple deep learning 

architectures into a unified representation before making the final classification. In this method, we 

leverage deep learning models for fine-tuning and transfer learning, optimizing critical hyper-

parameters such as learning rate, activation functions, and batch size. Additionally, the attention 

module is designed to enhance the model's focus on the most relevant features, assigning varying 

levels of importance to different aspects of the data. This ensures that the model prioritizes critical 

information, improving classification accuracy and making the methodology both robust and effective. 

Each steps of the proposed model are further discussed in the subsequent section. 

 

Figure 1: A generic diagram of the proposed model including processing, extraction of significant 

features, and training/classification. In processing, images are resized, and data augmentation is 

                  



applied for enhanced training accuracy. Transfer learning with DenseNet-201, EfficientNetV2S, and 

Xception models extract deep features. Ensemble classifiers use these features to predict class 

probabilities. 

 

 

3.1. Data Augmentation: 

We applied various data augmentation techniques, including rotation, flipping, and zooming, during 

preprocessing to prevent overfitting and enhance performance on small-scale datasets. This approach 

improved the model's generalization and robustness by exposing it to a broader range of scenarios, 

ultimately boosting its performance. 

3.2. Data Preprocessing: 

Data preparation is critical in deep learning, as it enhances input data quality, which is important for 

improving network performance and model generalization. In our preprocessing stage, we applied 

various image enhancement techniques, including rotation, flipping, scaling, and brightness 

adjustment, to augment the dataset and simulate diverse real-world conditions as given in Figure 2. 

These augmentations aimed to improve the model's ability to generalize and reduce overfitting. The 

preprocessing steps significantly boosted the model's accuracy and consistency, particularly in 

handling the diversity and complexity of UAV imagery, ensuring effective performance across 

different scenarios. As a first stage in our study, we used data normalization, multiplying all pixel 

values by 1/255 to convert them to a range of [1, -1]. This can be stated mathematically as an equation 

(1): 

Ri  
      

            (1) 

Where I represent the authentic data, the input maximum, minimum, and normalized data are denoted 

by the letters          , and   , respectively. The pixel values are scaled from their original range 

of [0,255] to a new range of [0,1] by simply normalizing them by 1/255. To adjust pixel values to a 

range of [1, -1], we use the following formula for this approach.  

         Ṙi       (
 

   
)    

  

   
   

This transformation adjusts the normalized pixel values from the range [0, 1] to the range [-1, 1]. By 

including this explanation, we clarify that the 1/255 normalization is actually a specific 

implementation of the more general Min-Max normalization method, adapted for the standard range 

of image pixel values. By guaranteeing that the input data is properly scaled, normalization plays a 

                  



vital role in enhancing the model's performance, especially in relation to convergence and 

generalization. Images were scaled to 224 × 224 × 3 before training. Data augmentation techniques 

included zooming (0.2), nearest complete mode setting, 90-degree rotation, and flipping, enhancing 

dataset variations for improved model generalization and reduced overfitting. 

 

Figure 2: Data augmentation, including rotating, flipping, cropping, and zooming, expands the 

training dataset, enhancing model robustness and generalization. 

3.3. Deep Ensemble Strategy 

In the realm of UAV image scene classification, our research adopts a novel deep ensemble strategy 

to  

 

Figure 3: A visual depiction showcasing the deep ensemble strategy, featuring the three most 

successful fine-tuned models. 

                  



enhance classification accuracy. While traditional ensemble methods, such as bagging, focus on 

aggregating the predictions of multiple models, our approach diverges by emphasizing the ensemble 

of features. Specifically, we train multiple models on different subsets of features, and rather than 

simply aggregating predictions, we combine the learned feature representations from these models to 

build a more robust and informative classifier. This feature-based ensemble allows for a more diverse 

and comprehensive understanding of the data, which in turn contributes to improved classification 

outcomes. 

The architecture of our ensemble method is visually depicted in Figure 3, which showcases the 

combination of three high-performing DL models: DenseNet201, EfficientNetV2S, and Xception. 

These models were considered for their exceptional performance in the context of UAV image scene 

classification. The ensemble combines multiple deep learning models, including DenseNet201, 

Xception, and EfficientNetV2S, among others, to leverage the strengths of each architecture. 

DenseNet201 was chosen for its dense connectivity, which enhances information flow and is 

particularly effective for high-resolution drone imagery where capturing fine details is crucial. 

EfficientNetV2S was selected for its balance between accuracy and computational efficiency, making 

it ideal for processing large UAV datasets without compromising performance. Xception, with its 

depth-wise separable convolutions, excels at capturing spatial hierarchies, which is essential for 

distinguishing complex land cover patterns.  

The theoretical basis for our ensemble method lies in the principle of model complementarities, where 

diverse models are likely to capture different aspects of the data, thereby improving overall 

generalization. To optimize the ensemble, we use an averaging method combined with a soft attention 

mechanism. This attention mechanism dynamically adjusts the weights of model outputs based on 

their contribution to the final prediction, thereby ensuring that the ensemble model adapts to the 

varying complexity of input data. More importantly, the integration of attention mechanisms further 

refines the ensemble by focusing on the most relevant features, thus enhancing the predictive accuracy. 

This strategy is supported by theoretical insights into ensemble learning, which demonstrate that well-

constructed ensembles often outperform single models, particularly in complex tasks such as image 

classification. To further support our choices, we conducted comparative experiments showing that 

these models outperformed others in terms of accuracy, precision, and robustness in land cover 

classification. 

The mathematical framework of deep EL, as outlined in Equation (2), highlights our approach. Our 

research aims to fetch the positive aspects of layered ensemble techniques to the challenging domain 

of UAV image scene classification to increase the precision, accuracy, and dependability of 

automated scene recognition in UAV imagery. 
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Here, the collective output of all models together is represented by  ( )  whereas,    represents the 

input vector, and the weight given to the
 
i
th
 model output of the   algorithm is represented by   , and 

  ( ) is the output of the i
th
 model. Prediction confidence is determined by standard error predictions, 

as follows: 

                                       {
 

   
∑ [ (   

 )   (  )]
  

   
}

 

 

                          ( ) 

Where  (  )           (      )   is the predicted output for input       is the number of neural 

networks used,  (      ) is the predicted output for input    using the      neural network, and a 

smaller    indicates a more reliable model prediction. We enhance DL model performance by 

freezing specific layers during fine-tuning and transfer learning. Images are adjusted to 224×224×3 

for feature extraction. 

 

Figure 4: Different models ensembled in the proposed model. 

We used different models such as VGG-16 [48], ResNet152, MobileNetV2 [49], InceptionV3 [48], 

Xception [50], Efficient Net [51], and Dense Net [52] in the model. Every model is optimized with 

modifications to their last layers, and finally, the nest performance is achieved in Xception, 

EfficientNetV2, and DenseNet. The last layer includes a dimension reduction layer, two dropout 

layers, and three densely connected layers, along with a SoftMax classifier in the output layer. The 

flattener transforms characteristics to a 1D vector, which is afterward processed through dense layers 

                  



with 512 and 1024 hidden units, respectively. Figure 4 illustrates our suggested layers. This layer 

employs the ReLu activation function, Provided by 

 ( )     (   )                                        ( ) 

The dense layer is triggered first, mapping each neuron output assigned a label via the ReLu function 

before making a prediction. With each activation map, weights and biases are multiplied to create the 

probability using a linear strategy in this method. In the hidden layer, a 30% dropout was applied to 

prevent overfitting. As our ultimate identifier, we employ the SoftMax classifier [53], as formulated 

in Eq.5. 

 ( ⃗)  
   

∑    
 

   

                                           ( ) 

The input vector components are   , with k as the number of classes and    representing the input 

vector. 

DenseNet-201 is a convolutional neural network (CNN) model having 201 layers; each layer is linked 

to every other layer in a feed-forward manner. Feature maps are provided to higher layers after 

receiving data from lower layers in the DenseNet architecture. DenseNet offers benefits such as 

enhanced feature propagation, a significant reduction in parameters, promotion of feature reutilization, 

and mitigation of the issue of gradients disappearing. This model outperforms the compared models in 

terms of speed and size. The width and height of the input image dictate its resolution, while the 

convolutional layers establish the network depth. DenseNet201 is a prominent computer vision model 

advancing through deep architecture with (3 × 3) convolutional filters. 

3.4. Soft Attention  

In this study, we used seven different deep-learning models to classify land area images, including 

DenseNet201, EfficientNetV2S, Xception, MobileNetV2, ResNet152, Inception V3, and 

EfficientNetB0. After testing, we chose three models with the highest accuracies and combined them 

into different pairs. Firstly, we combined DenseNet201, EfficientNetV2S, then EfficientNetV2S, 

Xception, and then Xception, DenseNet201and lastly, DenseNet201, EfficientNetV2S, Xception to 

see which pair is classifying the best together. After trying these combinations of different models, we 

found that the combination of all three models gave us the highest accuracy. To make classification 

better, we employ smart features and soft attention to these ensembled models. The soft attention 

mechanism in our model is designed to selectively focus on the most relevant parts of the input image 

data, thereby enhancing the model's ability to classify complex scenes accurately. The process begins 

with extracting feature maps from the input images using convolutional neural networks (CNNs), 

which capture various aspects of the image, such as edges, textures, and patterns. Once these feature 

                  



maps are obtained, a small neural network calculates attention scores for each map. These scores are 

then normalized using a SoftMax function to generate attention weights, determining each feature 

map's relative importance. The soft attention mechanism differs from intricate attention by allowing 

the model to assign varying levels of importance to different features simultaneously rather than 

focusing on a single part of the image. 

These attention weights are applied to the corresponding feature maps, amplifying the significant 

features while downplaying the less relevant ones. The weighted feature maps are then aggregated to 

create a focused representation that emphasizes the most critical parts of the image. This aggregated 

feature map is subsequently passed through fully connected layers for classification. By directing the 

model's attention to the most informative regions, the soft attention mechanism improves 

classification accuracy and enhances the interpretability of the model's decisions. We validated the 

effectiveness of this approach through experiments that demonstrated a significant and impressive 

performance improvement, particularly in scenarios with challenging conditions such as varying 

lighting and complex terrain types. This design ensures the model is robust and adaptable, making it 

well-suited for a wide range of classification tasks.  

 

Figure 5: Flow Daigram of proposed study 

Additionally, it reduces overfitting by concentrating on essential details, leading to better 

generalization. We used this approach to ensure that the ensemble could leverage the strengths of each 

model effectively, leading to improved overall accuracy.  
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σi (x) represents the attention weight for the i-th model which is the function of input x. 

 

 

3.5. Transfer Learning and Fine-Tuning  

These steps involved in training and perfecting our models are covered in this section. First, we use 

pre-trained weights from the 14 million images in the ImageNet dataset that have been divided into 

1000 classes. The ImageNet dataset's pre-trained weights enable faster use of earlier acquired features 

and enhanced image identification performance. Features unique to image classification are contained 

in the ImageNet weights that were obtained during training. This approach is more efficient than 

starting with randomly initialized weights, as it enables the model to quickly adapt to new tasks with a 

solid foundation of pre-learned features. Transfer learning, utilizing pre-trained weights, is more 

efficient and faster than using randomly initialized weights [54]. We then froze every layer of the base 

model to fine-tune it. Except for the last layers, which are trained using UAV images, preventing 

changes to the initial layers from the UCMerced_LandUse dataset. The input layers of this method 

retain pre-trained ImageNet weights. After training the last layers on the UCMerced_LandUse dataset, 

we unfreeze the entire network for further fine tuning, allowing the entire model to integrate and 

optimize both general and task specific features. The final models were then evaluated on test data to 

demonstrate the effectiveness of this transfer learning and fine-tuning approach. The flow diagram of 

the proposed model is given in figure 5. 

4. Results and Discussion 

This section discusses the dataset, evaluation metrics, experimental setup, and comparative analysis 

with supportive ablation study.  Experiments were conducted on a system that runs Python 3.8, 

integrates the TensorFlow and Keras frameworks, and runs a 64-bit version of Windows 10, which 

also includes 2.80GHz processors, 24 GB of RAM with an NVIDIA GeForce RTX 3090 GPU. All the 

models are fine-tuned using a different set of hyperparameters, as depicted in Table 2. The input 

dimensions are 224 × 224 × 3, and a batch size of 32 is being used. Categorical Cross Entropy is 

applied as the loss function with an SGD optimizer. Finally, a SoftMax activation function is applied 

to the output layer. 

4.1. Dataset 

We obtained experimental results using a comprehensive UCMerced_LandUse image dataset [54]. A 

randomly selected, balanced collection of images was used to ensure accuracy, with 70% of the 

                  



dataset allocated for training and the remaining 30% reserved for testing. Statistical details of the 

dataset are given in Table 3, while sample images of each class are represented in Fig. 6. The 

UCMerced_LandUse dataset consists of 18 different classes, each containing 1000 images. This 

comprehensive dataset allows for a robust evaluation of our models. For each class, 700 images were 

used for training and 300 for testing. This division ensures that the training set is sufficiently large to 

train the models effectively  

while the test set provides a reliable measure of model performance. The detailed breakdown of the 

dataset is provided in Table 3, illustrating the balanced nature of the dataset across all classes. 

 

       Figure 6: Sample images from the UCMerced_LandUse dataset. 

 

                  



4.2. Evaluation Parameters  

Herein, we used metrics such as recall, precision, F1-score, and accuracy to assess model efficacy. 

These metrics are computed from the fundamental outcomes: False Negatives (FN), False Positives 

(FP), True Positives (TP), and True Negatives (TN). Accuracy depicts the relative amount of correctly 

classified occurrences to the total, recall measures the correct prediction of positive cases, precision  

Table 2. Hyperparameters of different models. 

Performance 

measure  

DenseNet-

201 

EfficientNet-

V27 

Xception EfficientNet-

B0 

Inception-

V3 

ResNet-

152 

MobileNet 

V2 

Image size 224*224 224*224 224*224 224*224 224*224 224*224 224*224 

Optimizer    SGD    SGD    SGD    SGD    SGD    SGD    SGD 

Batch Size     32      32      32      32      32      32      32  

Epochs     50     50     50     50     50     50     50 

Loss      CC     CC     CC     CC     CC     CC     CC 

Activation 

Function 

SoftMax SoftMax SoftMax SoftMax SoftMax SoftMax SoftMax 

 

quantifies the accuracy of positive predictions, and the F1-score is the reciprocal of the arithmetic 

mean of precision and recall. Following are the mathematical formulas of these metrics: 

                
  

     
                                        ( )     

                 
  

     
                                          ( )                                            
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4.3. Ablation study 

We conducted an ablation study to evaluate the impact of different components and models on overall 

performance. This study is crucial for understanding which elements contribute most significantly to 

model accuracy and optimizing the model accordingly. Initially, we experimented with several deep-

learning models individually to determine their solo performance. The models tested included 

ResNet152, MobileNetV2, DenseNet121, EfficientNetV2S, Xception, DenseNet201, and 

EfficientNetB0. As shown in Table 4, the accuracy achieved by each model on the UCMerced dataset 

revealed that DenseNet201, EfficientNetV2S, and Xception were the top performers, each achieving 

                  



an accuracy of 95%. Building on these findings, we explored the potential of ensemble methods to 

further enhance accuracy. We first created two-model ensembles, such as EfficientNetV2S & 

Xception, Xception & DenseNet201, and DenseNet201 & EfficientNetV2S. Each of these 

combinations maintained a high accuracy of 95%, demonstrating the robustness of the individual 

models when combined. We then tested a three-model ensemble comprising EfficientNetV2S, 

Xception, and DenseNet201, which resulted in a slight improvement, achieving an accuracy of 96%. 

Finally, we incorporated an attention mechanism into the model, which further increased the overall 

accuracy to  

 

Figure 7: Grad Cam visualization of the proposed model for different classes 

97%. After applying soft attention, the ensemble model misclassified approximately 3% of land cover 

images primarily due to challenging environmental factors such as varying lighting conditions, terrain 

complexity, and seasonal changes. Lighting conditions can significantly affect the appearance of land 

cover types in remote sensing images, leading to confusion between classes, especially in areas with 

shadows or low sunlight. Additionally, terrain complexity, such as steep slopes or heterogeneous 

                  



landscapes, can create mixed pixels where multiple land cover types are present, making accurate 

classification difficult. Seasonal variations, such as changes in vegetation cover or water levels, can 

also alter the spectral characteristics of certain land cover types, further contributing to 

misclassification.  

These factors highlight the inherent difficulties in remote sensing image analysis and underscore the 

need for continued refinement of models to improve their robustness under diverse conditions. This 

progression highlights the benefits of combining high-performing models and leveraging attention 

mechanisms to boost performance, as demonstrated in Table 6. The proposed ensemble model's 

performance is also assessed using a confusion matrix.  

Table 3. Statistical details of the UCMerced_LandUse dataset [54]. 

Class  No of images  Training images  Testing images  

agriculture 1000 700 300 

airplane 1000 700 300 

Baseball diamond 1000 700 300 

Beach 1000 700 300 

Building 1000 700 300 

Chaparral 1000 700 300 

Forest  1000 700 300 

Freeway 1000 700 300 

Golf course 1000 700 300 

Harbor  1000 700 300 

Intersection 1000 700 300 

Mobile home park 1000 700 300 

Overpass 1000 700 300 

Parking lot 1000 700 300 

River 1000 700 300 

Runway 1000 700 300 

Storage tanks 1000 700 300 

Tennis court  1000 700 300 

Total images  18000 12600 5400 

 

Table 4. Ablation study results of different models. 

Model Attention UCMerced Dataset 

ResNet152 × 89 

MobileNetV2 × 88 

DenseNet121 × 88 

                  



EfficientNetV2S × 95 

Xception × 95 

DenseNet201 × 95 

EfficientNetB0 × 90 

EfficientNetV2S& Xception × 95 

Xception & DenseNet201 ×  95 

DenseNet201 & EfficientNetV2S  ×  95 

EfficientNetV2S& Xception & 

DenseNet201 

×  96 

Proposed (soft Attention) ✓  97 

To further evaluate the effectiveness of the individual models and the proposed ensemble method, we 

examined precision, recall, and F1-score metrics. These metrics provide a comprehensive view of the 

model performance beyond mere accuracy. Table 5 shows the evaluation results for each model. 

Table 5. Evaluating the suggested deep ensemble approach against contemporary refined techniques. 

Models  Precision% Recall% F1-Score% 

Inception-V3 [48] 95 96 95 

VGG16 [55] 97 95 95 

NasNetLarge [56] 58 58 57 

ResNet101 [57] 96 95 96 

Xception [50] 98 97 96 

MobileNetV2 [49] 96 95 96 

DenseNet201 [58] 94 93 93 

Proposed  96 96 97 

The results in Table 5 indicate that while individual models like Xception and MobileNetV2 perform 

exceptionally well, the proposed ensemble model slightly surpasses them in F1-score, reaching 97%. 

This underscores the effectiveness of our ensemble strategy in leveraging the strengths of multiple 

models to achieve superior overall performance. Figure 7 depicts the Grad-CAM visualizations of all 

classes, highlighting the activation regions that the models focus on during predictions. Figure 8 

presents the ROC curve representation for each class, illustrating the model's discriminative power.  

                  



 

Figure 8. Proposed model ROC representation of each class and average. 

ROC curves demonstrate a high area under the curve (AUC) values, which is consistent with the high 

accuracy observed in the confusion matrix. This further supports the robustness and effectiveness of 

the model in distinguishing between the different classes. Additionally, Figure 9 shows the confusion 

matrix of the proposed model, providing insights into the classification accuracy. The confusion 

matrix provided highlights the model's strong classification performance, with high accuracy across 

most classes. The matrix clearly illustrates the model’s ability to correctly predict the majority of 

instances, with minimal misclassification. This supports the overall effectiveness and reliability of the 

model in handling the given classification task. 

                  



 

Figure 9: Depicts a confusion matrix of the proposed model. 

4.4. Comparative Analysis 

We conducted a comparative analysis to evaluate the performance of our proposed model against 

several baseline models from recent literature. Table 6 presents the comparative analysis accuracy 

percentages of various ensemble models from different studies, along with the analysis of the 

strengths and limitations of each method in our proposed model. For instance, Ali Jamal et al. [59] 

achieved an accuracy of 87.50% using an ensemble of Inception, ResNet, and GoogleNet. This 

ensemble combines  

Table 6: Comparative analysis of the proposed model with baselines. 

Model Accuracy% Advantages Disadvantages 

Ali Jamal et al  [59] 

(Inception, ResNet, 

 Google Net) 

 87.50 Combines complementary 

architectures for improved 

feature extraction 

Lower accuracy, 

limited to specific 

datasets 

Rahee Walambe et al 

[32] (RetinaResNet50,  

YOLOV3, SSD, 

ResNet) 

 89.00 Robust, effective for object 

detection 

Computationally 

expensive due to 

complexity 

                  



Runyu Fan et al. [3]  

(ResNet50, ResneXt,  

ShuffleNet-V2) 

 94.0 Lightweight models, fast 

feature extraction 

Struggles with more 

complex datasets 

Sangdaow Noppitak et 

al [56] (NASNetLarge, 

VGG16, VGG19) 

 92.80 Strong classification skills 

with deep networks 

High computational 

resources and training 

time required 

Lei Song et al. [30] 

(CNN, ViT) 

93.68 Transformer-based models 

excel in sequential image 

analysis 

Requires large datasets 

for optimal 

performance 

Jing chen et al. [31] 

(CMFM, MFM) 

93.64 Effective for multi-modal 

fusion 

Limited 

generalizability to 

other tasks 

Kai Hu et al. [60] 91.1 -- -- 

Xu et al [47] 

(ATFM, DAL, FSGL) 

52.43   

Ma et al [17] 

(Hybird FENet) 

 82.85 Advanced hybrid models 

providing good accuracy in 

specific cases 

May lacks 

generalization across 

different dataset types 

Li et al [18] 

(Hybird EMFNet) 

 96.1          --          -- 

Pan et al. [19]   

(CNN) 

95.5   

Proposed 

(DenseNet201, 

EfficientNetV2S, 

 Xception) 

 97.0 Excellent accuracy, efficient 

feature extraction, scalable to 

complex datasets 

Higher processing 

resources required, 

extended training time 

complementary architecture for improved feature extraction; however, it shows lower accuracy and 

may be limited to specific datasets.  Similarly, Rahee Walambe et al. [32] reported an accuracy of 

89.00% with an ensemble comprising RetinaResNet50, YOLOV3, and SSD ResNet. While this model 

is robust and performs well for object detection, it is computationally expensive due to its complexity. 

Runyu Fan et al. [3] obtained a higher accuracy of 94% with a combination of ResNet50, ResneXt, 

and ShuffleNet-V2. This ensemble benefits from lightweight models and rapid feature extraction, but 

it may struggle with more complicated datasets. Sangdaow Noppitak et al. [56] used an ensemble of 

NASNetLarge, VGG16, and VGG19, achieving an accuracy of 92.80%. While these deep networks 

offer significant classification skills, they come at the cost of large computing resources and training 

time. In contrast, Lei Song et al. [30] achieved 93.68% accuracy using a combination of CNN and 

                  



ViT, benefiting from transformer-based models that excel in sequential image analysis but require 

large datasets for optimal performance. Jing Chen et al. [31] also achieved 93.64% accuracy using 

CMFM and MFM, which are effective for multi-modal fusion but may have limited generalizability to 

other tasks. Ma and Li et al. [17], [18]  achieved the accuracy of 82.85 and 96.1 by using advanced 

hybrid FENet and hybrid EMFNet models, respectively. We acknowledge the need for a more 

detailed comparison of existing literature and have addressed this by adding a comprehensive 

comparison that highlights the performance indicators, strengths, and limitations of various ensemble 

models discussed in recent studies. Table 6 now includes a detailed analysis of each model's 

architecture, accuracy, and advantages and disadvantages. For instance, models such as Inception, 

ResNet, and GoogleNet perform well in feature extraction but are limited by dataset specificity. 

Similarly, models like RetinaResNet50 and YOLOV3 provide strong object detection capabilities but 

come at a high computational cost. 

In contrast, our proposed ensemble model, which integrates DenseNet201, EfficientNetV2S, and 

Xception, with spatial attention module significantly outperformed these baselines, achieving an 

accuracy of 97%. This combination provides for excellent accuracy, efficient feature extraction, and 

scalability, making the model applicable to huge and complicated datasets. However, the integration 

of these complex architectures increases the processing resources and extends the training period. 

Nevertheless, the improved performance of our approach, particularly in applications requiring high 

accuracy and dependability in image categorization, highlights its efficacy. 

4.5. Computational Complexity Analysis 

In addition to evaluating the accuracy of the proposed ensemble model, it is crucial to assess its 

computational complexity compared to existing methods. Table 7 provides a comparison of various 

models in terms of the number of parameters (in millions), model size (in MB), and latency (in 

seconds). This analysis helps to understand the trade-offs between accuracy and computational 

efficiency. ResNet-101 [57] has 44.7 million parameters and a model size of 171 MB, with a latency 

of 90 seconds. Xception [50] and Inception-V3 [48], [61] have similar computational complexities, 

with Xception having 22.9 million parameters, an 88 MB model size, and 90 seconds latency, while 

Inception-V3 has 23.9 million parameters, a 92 MB model size, and 67 seconds latency. MobileNet-

V2 [49] is significantly lighter, with 3.5 million parameters and a 14 MB model size, but still has a 

latency of 87 seconds. DenseNet-201 [62], [58] and VGG16 [55] have higher computational 

complexities, with DenseNet-201 having 20.2 million parameters, an 80 MB model size, and 92 

seconds latency, and VGG16 having 138.4 million parameters, a 528 MB model size, and 93 seconds 

latency. EfficientNet-B0 [51] has 5.3 million parameters and a 29 MB model size, and it has a latency 

of 84 seconds. Our proposed ensemble model, which combines DenseNet201, EfficientNetV2S, and 

                  



Xception, exhibits a total model size of 247 MB and a latency of 32 seconds with 64.4 million 

effective parameters, While the proposed model has a larger size compared to individual models like 

MobileNet-V2 [49] and EfficientNet-B0 [61], it significantly reduces latency, demonstrating an 

effective balance between computational complexity and performance. This balance is crucial for 

practical applications where both high accuracy and reasonable computational efficiency are required. 

Table 7: Compares the proposed method's computational complexity with existing methods. 

Methods Parameters (in million) Model size (MB) Latency(sec) 

ResNet-101 [57] 44.7 171 90 

Xception [50] 22.9 88 90 

Inception-V3 [48] 23.9 92 67 

MobileNet-V2 [49] 3.5 14 87 

DenseNet-201 [62] 20.2 80 92 

VGG16 [55] 138.4 528 93 

EfficientNet-B0 [51] 5.3 29 84 

Proposed 64.7 247 32 

The results presented in Table 8 reflect the K-fold cross-validation performance of the 

proposed model and the second-best model from the ablation study. The accuracies reported 

are averaged across five different folds, ensuring robustness against variability from different 

parameter initializations. We also conducted paired t-tests to evaluate the statistical 

significance of the performance differences. The t-values and p-values demonstrate that the 

improvements of the proposed model over the second-best model are statistically significant 

(p < 0.05) across all folds, underscoring the reliability of our approach. 

 

 

Table 8: K fold Cross Validation of proposed model and second-best model in Ablation study. 

Fold Proposed model Acc Second-best Acc T_Value P_value 

Fold 1 96.8 95.8 15.0 0.042 

Fold 2 97.0 96.1 14.5 0.043 

Fold 3 96.9 95.8 15.0 0.042 

Fold 4 97.3 96.2 16.0 0.039 

Fold 5 97.1 96.2 15.5 0.041 

                  



Mean Accuracy 97.02 96.00   

Standard 

Deviation 

0.17 0.18   

To calculate the t-value and p-value for comparing two models, we perform a paired t-test. 

We start by collecting the accuracy results from both models across the same dataset folds. 

Next, we compute the difference between the paired accuracies for each fold. After that, we 

calculate the mean and standard deviation of these differences. Using these values, we then 

compute the t-value, which indicates the significance of the difference between the models' 

performances. Finally, we calculate the p-value, which helps us determine if the difference is 

statistically significant (e.g., p < 0.05). This process allows us to rigorously evaluate whether 

the proposed model significantly outperforms the baseline. 

5. Conclusion and Future Direction 

The research presented in this paper has highlighted substantial advancements in UAV image scene 

classification through the application of ensemble learning techniques. By combining DenseNet-201, 

EfficientNetV2S, and Xception models with a spatial attention module, we achieved an impressive 

validation accuracy of 97% on the UC Merced Land Use Dataset. This result underscores the 

effectiveness of integrating diverse deep-learning models and leveraging spatial attention to enhance 

classification performance and robustness significantly. Our ensemble model benefits from DenseNet-

201’s efficient feature reuse, EfficientNetV2S’s scalable design, and Xception’s depth-wise separable 

convolutions. The addition of the spatial attention module further refines the model’s ability to focus 

on relevant regions within the images, thereby improving accuracy and interpretability. This 

comprehensive approach not only optimizes classification performance but also enhances the model’s 

adaptability to complex and varied scenes.  

In addition to the scientific contributions, the practical applications of this study are particularly 

promising in fields such as agricultural monitoring and environmental protection. In agricultural 

surveillance, UAVs coupled with our suggested model may effectively categorize and monitor wide 

landscapes, recognizing patterns in crop health, detecting pest infestations, and managing resources 

more efficiently. The great precision of the algorithm in discriminating across various situations offers 

quick and relevant information, which may help farmers improve yields and decrease waste. Similarly, 

in environmental protection, the model may be used for monitoring ecosystems, identifying 

deforestation, tracking land use changes, and measuring the health of forests and wetlands. The 

capacity to comprehend varied and complicated environmental scenarios with high accuracy makes it 

beneficial for conservation efforts and for responding to environmental changes quickly. These 

practical applications offer hope for a more efficient and sustainable future.  

However, despite these promising results, there are limitations that should be addressed in future 

research to further improve the robustness and applicability of our model. While the ensemble model 

                  



demonstrated high accuracy on the UC Merced Land Use Dataset, the relatively small size and limited 

diversity of this dataset may not fully capture the complexity of real-world scenes. Expanding the 

dataset to include a broader range of environments and more varied imagery will be crucial for 

improving the generalizability of the model. Additionally, the current approach focuses primarily on 

spatial information, with limited consideration of temporal dynamics. Integrating spatial-temporal 

context could significantly enhance performance in dynamic and changing environments, which is 

critical for real-time UAV applications. Furthermore, the computational complexity of the ensemble 

model presents a challenge, especially for deployment on resource-constrained edge devices. Future 

work will focus on optimizing the model for real-time deployment by fine-tuning parameters, 

reducing computational overhead, and exploring advanced transfer learning techniques to improve 

adaptability to various conditions. By addressing these limitations and expanding its practical use, our 

proposed approach holds great potential for revolutionizing UAV-based monitoring across industries, 

particularly in agriculture and environmental protection, ultimately leading to more efficient and 

sustainable management of natural resources. 
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