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Abstract: 

In the era of remote sensing (RS), the demand for accurate land cover classification (LCC) has 

intensified due to various environmental challenges such as deforestation and urbanization. 

Conventional approaches often rely on shallow features for classification, limiting their effectiveness 

in capturing spatial patterns and diverse land cover types. In response, this study introduces a novel 

LCC approach utilizing a convolutional neural network (CNN) equipped with a dual land cover 

attention segment. The proposed module integrates channel attention (CA) and spatial attention 

mechanisms (SA) to enhance the discriminative capabilities of deep models. Leveraging inter-channel 

and inter-spatial relationships, the dual attention module enables the identification of various land 

cover types, spatial patterns, and color variations. Through thorough experimentation, the 

InceptionV3 feature extractor was identified as the optimal backbone for the proposed network 

architecture. Furthermore, to address the challenge of diverse land cover types, highly curated datasets 

are utilized. Additionally, to optimize model efficiency and reduce size, an improved model 

compression approach is employed. The effectiveness of the proposed Dual Land Cover Attention 

Network (DLAN) was evaluated through extensive experimentation, demonstrating superior 

performance compared to conventional methods. The results indicate the potential of DLAN in 

advancing LCC tasks, facilitating detailed agricultural zoning, environmental monitoring, and urban 

planning at a regional scale. 

Index Terms: land area images; Remote sensing; land use classification; land cover classification; 

Satellite imagery; Dual attention mechanism  

1. Introduction: 

In the present era, RS technology offers an extensive volume of earth observation data, encompassing 

satellite images and LiDAR. These datasets serve besides global-scale environmental monitoring but 

also find applications in regions for example change detection, LCC, and the observing and evaluation 

of natural disasters (X. Wang, et al., 2023). Furthermore, enhancing the precision of LCC holds 

paramount significance for Geo-observation, agricultural zoning, environmental protection at regional 

level, and urban development (Yan, et al., 2023). Recent incidents, such as changes in land cover 

patterns and extensive deforestation, have highlighted the urgent need for effective LCC. Therefore, 

numerous methods are developed for LCC primarily rely on shallow features like pixel color and 

texture for classification (Rizayeva, Nita, & Radeloff, 2023). Moreover, machine learning-driven 

algorithms are applied to remote sensing (RS) image classification, encompassing methods such as 

                  



SVM (Melgani & Bruzzone, 2004),  random forests (RF) (Ayerdi & Romay, 2015), K-means clustering 

(Lin, Li, & Tsai, 2004), etc. However, changes in land cover have been observed in regions beyond 

natural disasters, particularly due to urbanization, agriculture, and other human activities, requiring 

more advanced classification methods. While several methods have been developed for LCC, they 

often face challenges. These methods typically rely on shallow architectures that stack multiple layers 

without considering optimal feature selection. Some studies have explored attention mechanisms in 

the spatial or channel dimensions, but these methods are insufficient to effectively capture dominant 

spatial and channel details. Moreover, the inference time of existing methods makes them 

computationally expensive (D. He, Shi, Xue, Atkinson, & Liu, 2023; Shi, He, Liu, Liu, & Xue, 2023).  

However, satellite images often suffer from interference due to factors such as cloud cover, varying 

light conditions, and atmospheric disturbances. To address these challenges, the proposed method 

integrates robust feature extraction and attention mechanisms, such as the InceptionV3 model and the 

DAM, which enhance the model’s resilience to such interferences. The CA and modified SA modules 

allow the model to focus on the most informative features, mitigating the negative effects of noise 

while ensuring effective land cover classification. Furthermore, the model can be fine-tuned on 

specific datasets affected by environmental interferences, making it adaptable to diverse real-world 

conditions. Future enhancements will include additional preprocessing strategies to improve the 

model’s robustness against cloud cover and lighting variations. 

Therefore, this study developed an efficient LCC method by integrating DLAN module with 

backbone feature extractor. The DLAN module enhances the discriminatory capabilities of the 

backbones, enabling them to identify various land cover types, nuanced patterns and shade variations. 

The main contributions to our work are described below: 

 Introduction of Dual Land Cover Attention Module: We propose a novel DLAN featuring an 

innovative dual attention module that integrates CA and SA                                   

mechanisms. This module enhances the network's ability to discern and classify various land 

cover types by effectively capturing both channel-wise and spatial relationships within remote 

sensing data. 

 Optimal Backbone Selection and Comprehensive Evaluation: Through extensive 

experimentation, we identify InceptionV3 as the most effective backbone for our network 

architecture. We rigorously evaluate the proposed DLAN using a highly curated dataset of 21 

distinct land cover classes and openly available datasets, indicating that they provide higher 

performance in LCC than existing state-of-the-art approaches. 

 Model Compression and Efficiency Improvement: To address the challenge of model 

efficiency and size, we incorporate a refined model compression approach. This optimization 

ensures that DLAN remains effective while being resource-efficient, making it suitable for 

deployment in diverse environments with varying computational resources. 

 Empirical Validation and Qualitative Analysis: We provide a thorough empirical validation of 

the DLAN's performance, including qualitative analyses that highlight its advantages over 

                  



conventional methods. Our results underscore the potential of DLAN for advancing LCC 

tasks, with implications for agricultural zoning, environmental monitoring, and urban 

planning. 

The following sections of the article are organized as shown below: Section 2 encompasses a related 

study, offering a concise overview of the literature, and Hybrid methods. A brief exposition of the 

proposed method is presented in Section 3. Section 4 delves into discussions regarding the dataset, 

performing assessment, parameter settings, and outcomes. Lastly, Section 5 serves as the conclusion, 

addressing the shortcomings of the study and proposing directions for the future. 

2. Literature Review 

Traditional approaches for LCC in RSIs often rely on a limited set of rules applied to distinct spatial 

units, like pixels and objects (Amare, Demissie, Beza, & Erena, 2023). However, these traditional 

Machine Learning (ML) approaches with artificial feature descriptors typically involve low-level 

features, making it challenging to efficiently identify complicated land structures. Deep Learning 

(DL) has gained widespread application in LCC due to its improvements in multiscale and multilevel 

feature extraction, yielding optimal outcomes (Fayaz, Nam, Dang, Song, & Moon, 2024). DL-based 

land cover categorization approaches can be largely categorized into two groups based on the spatial 

representation level of the labels: patches and pixels. Patch-level algorithms are proper for medium-

resolution RSIs, lacking fine structural information (Frimpong, Koranteng, Atta-Darkwa, Junior, & 

Zawiła-Niedźwiecki, 2023). For instance, Li et al. (R. Li, Gao, Shi, & Zhang, 2023) introduced a patch-

based recurrent neural network (RNN), and Lv et al. (Lv, et al., 2023) developed a lightweight CNN for 

land cover mapping. On the other hand, Pixel-level algorithms seek to classify each pixel in remote 

sensing images (RSIs) with specific land cover labels using end-to-end deep learning models, akin to 

the process of semantic segmentation in natural images. State SOTA semantic segmentation 

architectures for RSIs often employ encoder–decoder architecture to capture detailed multilevel 

contextual information across extensive receptive fields (Dash, Sanders, Parajuli, & Ouyang, 2023; 

Moharram & Sundaram, 2023). Examples include McDonnell et al. (McDonnell, 2018) expanded 

stacked U-Net for semantic segmentation of RGB RSIs and Liu et al. (Q. Liu, Kampffmeyer, Jenssen, 

& Salberg, 2020) Compact dilated convolution integration network for LCC utilizing combined 

contextual information at both local and global levels. 

Given the limitations of RSI’s sensors in meeting high temporal, spatial, and spectral resolution 

requirements, the merging of corresponding information from multisource RSIs has emerged as a 

promising approach to enhance accuracy (Dang, et al., 2024). The fusion of information from 

different sources contributes to overcoming sensor limitations and improving the overall effectiveness 

of LCC techniques in RSIs. 

                  



Traditional approaches involve two phases: multisource RSI fusion and ML-based classification, with 

examples such as Iervolino et al. (Iervolino, Guida, Riccio, & Rea, 2019),and Kulkarni et al. (Kulkarni 

& Rege, 2020). ML-based classification methods include genetic algorithms and SVM by 

Sukhavatanavit et al. (Sukawattanavijit, Chen, & Zhang, 2017) and a general model by Qin et al. (Qin, 

et al., 2015) based on the Markov random field. However, these artificial feature descriptor techniques 

possess limited expressive power, restricting their capability to completely represent intricate high-

level semantic details. 

In the last few years, SOTA multisource LCC techniques predominantly rely on DL. Chen et al. 

(Chen, Li, Ghamisi, Jia, & Gu, 2017) developed a deep neural network (DNN) with two CNNs for 

extracting features from multi/hyperspectral and LiDAR data, and a fully connected DNN for 

combining heterogeneous features. Hughes et al.(Hughes, Schmitt, Mou, Wang, & Zhu, 2018) 

presented a pseudo-Siamese structure (PSCNN) for recognizing corresponding patches in high-

resolution optical and SAR imagery, where information is combined in a final fully connected 

decision layer through concatenation and a 1 × 1 convolutional operation. 

Despite these advancements, Patch-based multimodal depth models are unable to carry out pixel-level 

classification of high-resolution multisource RSIs. Xu and li et al. (X. Xu, et al., 2017) explored a dual-

branch CNN for pixel-level classification of multisource remote sensing data (MRSDC) by combining 

hyperspectral imagery (HSI) with data from various sensors. Audebert et al. (Audebert, Le Saux, & 

Lefèvre, 2018) discussed Strategies for urban segmentation include both early and late fusion 

approaches, with experiments showing late fusion recovering critical errors on hard pixels, while early 

fusion (V-FesuNet) facilitates more robust multimodal combined features but exhibits greater 

susceptibility to missing or noisy data. Xu et al. (Y. Xu, Du, & Zhang, 2018) proposed a fusion-FCN 

architecture for classification using LiDAR data, HSI data, and high-resolution images. Capilez et al. 

(Capliez, et al., 2023) developed an M3 fusion architecture integrating CNN and recurrent neural 

networks for spatial and time-series information. 

In short, multimodal DL-based LCC models often retrieve features from individual modal networks 

and create fusion representations for categorization. However, existing research has mainly 

concentrated on directly deriving multimodal features through interconnected two-stream approaches 

networks, limiting the exploration of specific modality features. The proposed joint learning strategy 

aims to effectively extract modality-specific discriminative information by concurrently learning both 

fusion and individual modality branches. 

3. Methodology 

As analyzed in Section 2, The CNN-based models achieved significantly superior performances 

compared to Traditional Machine Learning based methods. However, a receptive field is used for 

                  



feature extraction in all these models, specifically in shallow layers giving us limited results and 

making it difficult to differentiate between the different scenes of different classes. To deal with this 

challenging issue, we utilize a dual attention module consisting of CA and modified SA mechanisms 

in DLAN to gather extra polished spatial feature information and useful channels for LCC. The 

overall structure of the DLAN is illustrated in Figure 1, and it is explained in the following parts. 

3.1 Data Feature Extraction 

The remarkable capacity of CNNs to extract valuable aspects or features from rough images and adapt 

these images to a variety of computer vision functional domains. Selecting a domain adapted CNN 

structure is a tough task that needs to be completed to produce consistent algorithmic complexity and 

reliable predictions for practical use. The advancement of CNNs for visual detection task has been the 

subject of remarkable research, analyst have employed pre-trained models used as core feature 

extractors and subsequently fine-tune advance models on datasets for land cover categorization and 

localization. The idea of finetune and optimizing a pre-trained model involves adjusting the weights 

and parameters that have been learned, which helps to learn the unique visual characteristics of the 

domain. Pre-trained  

                  



 

Figure 1 : Proposed land cover architecture. 

networks include a powerful and diverse feature extraction process that may be efficiently utilized to 

adjust the system for any visual classification task. 

                  



 

Figure 2 : Representation of inception V3 model for land Cover classification 

We use numerous core feature extractors, like EffiecientNet, Xception, MobileNet, ResNet, 

InceptionV3, and efficientNetV2S to establish the best method for identifying key features for LCC in 

exceptionally difficult circumstances. Our approach is motivated by the progress ratio of active 

feature extraction approaches in various computer vision-based fields. In Section 4, the optimality of 

employing InceptionV3 features is empirically proven. Theoretically, InceptionV3 has been adjusted 

to produce better outcomes than its older version and has more Inception modules (Ahmad, Jan, 

Farman, Ahmad, & Ullah, 2020). Inception modules are multi-scale processing, which provides 

excellent results in a variety of tasks. The Inception (A), (B), and (C) modules are the three 

fundamental Inception modules found in InceptionV3. Figure 2 illustrates the several convolutional 

and pooling layers that are included in each Inception module. These modules use 1×1, 1×3, and 3×1 

and 3×3 tiny convolutional layers with small filter sizes to reduce the amount of training parameters. 

The channels for red, green, and blue are present in the 299 x 299 input size that is the default for 

InceptionV3. Five convolutional layers are employed to process the input images at first. Each 

convolutional layer applies multiple 3 × 3 kernels. After extracting the last few dense layers from 

InceptionV3, we obtain an 8x8 feature vector with 2048 channels for DLAN,  

                  



 

Figure 3 : Conceptual representation of dual attention module. 

called α; The mathematical representation is expressed in Eq 1: 

𝛼 =  𝜕 (𝜕 (𝜕 ((µ (𝜒 )))))                                  (1) 

where µ denotes the first convolutional operation applied to the input 𝝌 and each 𝝏 stands for one of 

the three Inception modules used in the DLAN. Equation 1 has given us a feature vector 𝛼 that is 

very detailed and includes a lot of information about the object, such as its colors, forms, and data 

about its edges and structure. But they are coarse features and using them to classify visual sequences 

will inevitably lead to under-depiction of the localization data and incorrect predictions, particularly 

in complex scenarios. As explained in the subsections, our dual attention module collects the most 

significant channels and spatial information to further enhance the 𝛼 features. 

 

                  



3.2 Dual Attention 

Numerous application domains have been analyzed CNN-based networks with different attention 

modules (Khan, et al., 2025) as reported in this research (Fayaz, Dang, & Moon, 2024a; Ullah, Ullah, 

Hussain, Khan, & Baik, 2021). Due to the combination's remarkable frame resemblance with every 

sequence, which produces positive performance consequences, it is especially outstanding in video 

applications. However, because of the variety of information and the use of specific CA approach or 

SA approach, the attention-based mechanisms created in this study led to limited performance for 

image data. Additionally, for image-oriented scene recognition, several papers just included a CA 

module in CNN architecture. For simple scenarios like classifying land cover objects, combining a 

CA incorporating base model characteristics is an efficient strategy. However, in more complicated 

scenarios identifying and localizing the object on scene requires more than just a CA module, the 

results are Restricted. The attention portion of the dual attention network is represented by the CA and 

modified SA modules that we introduced in this paper. This allows the dual attention network to 

concentrate on the highest priority areas for LCC, scene localization, and the identification of land-

based objects. Using the dual (Channel Attention + modified Spatial Attention) attention strategy, the 

attention module effectively extracts and localizes the most significant regions.  

Channel Attention: We employ CA to utilize the inter-channel co-ordination amongst features. Each 

channel's feature map is regarded as a feature detector, as depicted in Figure 3, where the CA includes 

fully interconnected layers, a convolution process, a global average pooling (GAP) layer, and a 

maximum pooling layer, each channel feature map is considered as a feature detector. During the 

training process, different channels convolution feature maps contribute differently to the 

representation of an object; some of the channels exhibit model structures better as compared to 

others, and vice versa. To decrease the complexity of the calculated weights, many researchers, 

including shu-xiangbo et al. (Shu, Yang, Yan, & Song, 2022) and yar et al. (Yar, et al., 2022) employed 

attention models that made use of maximum or average pooling. To develop our CA module, we used 

both pooling strategies rather than just maximum or average pooling. The max-pooling strategy 

concentrates on the most refined aspects of an object, on the other hand avg-pooling presents the most 

extensive information about the feature map. Hence, the two individual pooling techniques are 

employed individually on the spatial aspect or dimension of the assigned feature map α to create two 

separate spatial background details: 𝛽𝐶𝐻𝑎𝑣𝑔 and 𝛽𝐶𝐻𝑚𝑎𝑥, which are computed as given below: 

𝛽𝐶𝐻𝑎𝑣𝑔 = 𝑎𝑣𝑔 − 𝑝𝑜𝑜𝑙 (𝛽)                                            (2) 

𝛽𝐶𝐻𝑚𝑎𝑥 = 𝑚𝑎𝑥 − 𝑝𝑜𝑜𝑙 (𝛽)                                          (3) 

 

                  



The output description of 𝛽𝐶𝐻𝑎𝑣𝑔 and 𝛽𝐶𝐻𝑚𝑎𝑥 are received by two FC layers, 𝑓𝑐1 and 𝑓𝑐2, which 

have mutual constraints. Then, a ReLU function is implemented in every FC layer to obtain 𝑀𝑚𝑎𝑥 and 

𝑀𝑎𝑣𝑔 . Furthermore, a summation operation is carried out on both feature maps to calculate the weight 

parameters, resulting in Mc(α): 

𝑀𝑚𝑎𝑥 = ⊖ (𝑓𝑐2(⊖ (𝑓𝑐1(𝛽𝐶𝐻𝑚𝑎𝑥))))                     (4) 

𝑀𝑎𝑣𝑔 = ⊖ (𝑓𝑐2(⊖ (𝑓𝑐1𝛼𝐶𝐻𝑎𝑣𝑔))))                         (5) 

𝑀𝑐(𝛼) = (𝑀𝑚𝑎𝑥⨁ 𝑀𝑎𝑣𝑔)                                            (6) 

In the above equations,  𝑓𝑐1 & 𝑓𝑐2 layers utilize pointwise convolution filters to reduce and increase 

the features of every channel, in which ⊖ denotes ReLU function, and ⊕ signifies the summation 

process. Lastly, we obtain the 𝑀𝑐(α)  features by using a summing operation on 𝑀𝑚𝑎𝑥  and 𝑀𝑎𝑣𝑔 . 

Next, we apply a skip residual connection, ∅, to retain the feature transfer from the input and generate 

the CA map 𝐹𝑐: 

𝐹𝐶 =  𝑀𝐶(𝛼) ∅  𝛼                                                (7) 

3.3. Modified Spatial Attention: 

This segment uses spatial interaction of features. The SA technique is distinct from the CA technique; 

its goal is to identify the most significant area, which matches the actions of the CA section. To 

determine the SA, we employ maximum and avg pooling techniques within the channel, combining 

them with effective feature descriptors. To effectively highlight informational locations, pooling 

operations are applied along the channel axis. The next two-dimensional feature maps are created by 

utilizing the two pooling operations:  

𝛼𝑆𝑎𝑣𝑔 =  𝐴𝑣𝑔 − 𝑝𝑜𝑜𝑙 (𝐹𝐶)                                                           (8) 

𝛼𝑆𝑚𝑎𝑥 =  𝑚𝑎𝑥 − 𝑝𝑜𝑜𝑙 (𝐹𝐶)                                                         (9)              

Then, to create a two-dimensional SA feature map, the resulting feature maps are convolved by a 

convolutional layer and concatenated using an addition operation. We employed three convolutional 

layers in the modified SA module, preceded by the ReLU function. Each layer has 64 different filters: 

1 × 1 convolution is used in the first layer, 3 × 3 filter is used in the second layer, and 1 × 1 filter is 

used in the final layer. Instead of using dilated convolution operations, we use standard convolution 

method employed in every layer: 

𝑀𝑠𝐹𝑐 = (⊝ (𝑓1×1(⊝ (𝑓3×3(⊝ (𝑓1×1(𝛼𝑠𝑎𝑣𝑔 ⨁ 𝛼𝑠𝑚𝑎𝑥))))))                        (10) 

                  



In eq (10), 𝑓 portrays the filter dimensions utilized within the convolutional layers of the SA module. 

Employing GAP with the feature maps of 𝑀𝑠𝐹𝑐 and combining their outcome with  𝐹𝑐,  will yield the 

SA map 𝑀𝑆𝐹𝑐𝐺𝐴𝑃
 as shown below. 

𝑀𝑆𝐹𝑐𝐺𝐴𝑃
= 𝐺𝐴𝑃(𝐹𝑐)                                                 (11) 

𝐹𝑠 =  ⨀[𝑀𝑆𝐹𝑐𝐺𝐴𝑃
, 𝐹𝑐  ]                                               (12) 

Thereafter the combination procedure, we attained 𝐹𝑆; subsequently, batch normalization (BN) was 

carried out on 𝐹𝑆. In the end, we derived the feature maps of BN and α to obtain 𝐹𝐶𝑆: 

𝐹𝐶𝑆 = ⊙ [𝐵𝑎𝑡𝑐𝑕𝑛𝑜𝑟𝑚, 𝛼]                                           (13) 

Then, the 𝐹𝐶𝑆 were fed into a fully linked layer with 150 neurons, at end, the input images were 

classified to their corresponding classes by using SoftMax layer. In this study, the two units, the 

Channel and Spatial attention modules, were employed to determine corresponding details that focus 

on ―what‖ evidence is significant and ―where‖ this detail info is located. 

3.4. DLAN Compression Module 

The timely change and intricate characteristics of land cover demand swift and timely detection, 

underscoring the necessity for low latency, rapid inference time, and instantaneous decision-making. 

To address this imperative in the context of land cover applications, leveraging edge devices becomes 

obtainable. However, the restricted computational power and storage capacity inherent to these 

devices necessitates the deployment of efficient CNN models. In this research endeavor, we introduce 

a pioneering model compression technique tailored to the specific requirements of land cover 

analysis. This technique focuses on eliminating redundant neurons, effectively reducing the number of 

learning parameters while preserving the high performance of the model, ensuring a seamless balance 

between computational efficiency & accurate LCC.  

Image compression plays a crucial role in optimizing the performance of deep learning models, 

particularly when dealing with large datasets and the need for real-time processing. In the context of 

land cover classification, image compression helps reduce the computational load and enhances 

inference speed without sacrificing accuracy. The compression process typically involves several key 

steps, such as reducing pixel resolution, applying quantization techniques, and using model-based 

compression methods that eliminate redundant parameters. Herein, we employ a model compression 

technique based on differential evolution (DE), which optimizes the network by identifying and 

removing redundant neurons while retaining critical features for accurate classification. This ensures 

that the model remains efficient and suitable for deployment in resource-constrained environments, 

                  



such as drones, where low latency and quick decision-making are essential. Future work will include a 

more detailed explanation of the compression steps and their impact on the overall model efficiency. 

In this research endeavor, we explore a meta-heuristic strategy based on differential evolution (DE) to 

optimize the Dual Land Cover Attention Network (DLAN) for land cover analysis. Recognizing the 

parallels with biological evolution, DE serves as a meta-heuristic technique to enhance the efficiency 

of the DLAN model. By strategically decreasing learning parameters count through DE, we aim to 

streamline the model for improved performance in land cover analysis, aligning with the specific 

demands and nuances of this dynamic environmental domain. 

Table 1 : process of mutation (first block) and recombination (second block). 

 

The optimization process begins with a population pool of vectors, where each vector corresponds to 

the number of neurons in a hidden layer. Each element in the vector is assigned a value of either 0 or 

V1 V2 V3 V_res V_donor 

0 1 0 0.5 1 

1 1 0 1.5 1 

1 0 1 0.5 1 

0 0 1 -0.5 0 

1 0 1 0.5 1 

… … … … … 

0 1 1 0 0 

1 1 0 1.5 1 

1 0 0 1 1 

Recombination (second block) 

V_target V_donor Random numbers V_final - - 

1 0 0.4 0 - - 

0 0 0.8 0 - - 

1 1 0.3 1 - - 

1 0 0.4 1 - - 

0 1 0.8 0 - - 

… … … … - - 

1 0 0.9 1 - - 

1 1 0.1 1 - - 

0 1 0.4 0 - - 

   0 - - 

                  



1, where 0 indicates that the corresponding neuron will be discarded, and 1 indicates that the neuron 

will be retained. Over multiple iterations, a series of steps mutation, recombination, and selection are 

applied to identify and eliminate redundant neurons, ultimately optimizing the model’s efficiency. In 

the mutation step, three randomly selected vectors are used to generate a donor vector, which is then 

calculated using Equation 14:. 

𝑉𝑑𝑜𝑛𝑜𝑟 = 𝑣1 + 𝐹 × (𝑣2 − 𝑣3)                                    (14) 

Here, 𝐹  represents the mutation factor (set to 0.5 in this study), and 𝑣1, 𝑣2 and 𝑣3 are randomly 

selected vectors from the population pool. The resulting values from the mutation process, which may 

not initially fall within the set 0 and 1 are re-scaled so that values below 0.5 are set to 0, and values 

greater than or equal to 0.5 are set to 1. This ensures that the values are consistent with the binary 

nature required for neuron retention or discarding. The recombination step follows, where each vector 

element is assigned a random value as shown in Table 1. If this random value is below a remerging 

factor (set to 0.7 in this study), the resulting vector element is taken from the target vector; otherwise, 

the element is derived from the donor vector. This process helps introduce variation and explore new 

configurations that may lead to improved performance.  

The overall objective of this optimization approach is to balance the trade-off between maintaining 

classification accuracy and reducing model complexity. The fitness function used during the process 

incorporates both the F1-score (a measure of classification accuracy) and the compression ratio (a 

measure of model size reduction). This dual-objective strategy ensures that the selected neurons 

contribute to accurate classification while minimizing the model's size, making it suitable for 

deployment in resource-constrained environments, such as drones for real-time land cover 

classification. By applying this DE-based optimization mechanism, the model becomes more efficient 

without compromising its ability to accurately classify land cover data, ultimately resulting in a more 

practical and deployable solution for real-world applications. The model fitness function is 

represented by Eq. 15 and 16 listed below: 

 𝑍 =  𝑔 × (1 −  
𝜔𝑖

𝛼𝑖
) + (1 − 𝑔) × 𝐹1(𝑘)                            (15) 

(𝜔𝑖 ≤ 𝛼𝑖, ∀ 1 ≤ 𝑖 ≤ 𝑀)                                                           (16) 

Here, 𝜔𝑖 denotes the reduction factor applied to the count of hidden neurons in the i
th 

hidden unit 

layer, and 𝛼𝑖  represents the original count of neurons in that specific hidden unit layer, both 

customized to accommodate the intricacies of land cover analysis. The parameter g signifies the 

weight assigned to the first objective, which involves minimizing the number of neurons, while 1−g 

corresponds to the weight assigned to the second objective, focusing on optimizing model 

                  



performance. This dual-objective optimization strategy is crucial for tailoring the model to the specific 

demands of land cover analysis, balancing the trade-off between model complexity and classification 

accuracy. 

4. Experimental Setup and Results 

This section provides an overview of our experimental approach, focusing on the tailored aspects for 

land cover analysis. It covers dataset selection, training procedures, and specific evaluation metrics. 

Following this, a thorough comparison is presented, both quantitatively and qualitatively, between our 

proposed method and SOTA techniques within the realm of LCC. This comparison aims to highlight 

the effectiveness and advancements introduced by our model in addressing the unique challenges 

inherent in land cover analysis. Finally, to validate the dual attention network performance we 

executed an ablation study. We executed the experiments on an Intel(R) Core (TM) i9-14900K 3.20 

GHz with an NVIDIA GeForec RTX 3090 Ti GPU and SAMSUNG 990 PRO 2TB SSD employing 

Keras for deep learning which utilizes TensorFlow as the backend. A detailed summary of hardware 

and software is given in Table 2.  

Table 2 : Hardware and software specifications for the proposed system 

Label Name Description 

Libraries  NumPy, TensorFlow, Keras, sklearn, matplotlib, OpenCV 

Processor 3.20 GHz, NVIDIA GeForce RTX 3090 

Development tools  Windows-10 ,64-bit, Python 3.8 

Memory 24 GB 

 

The DLAN model, along with the ablation studies, with the training period of the model is 100 epochs 

using the standard input dimension (224×224×3) as specified by the Inception-V3 model. The batch 

size 32 and SGD optimizer is employed utilizing a learning rate (lr) of 0.001 and momentum 

coefficient of 0.8. 

4.1. Datasets & performance metrics. 

In the experimental evaluation of the DLAN, we carried out experiments by utilizing various datasets, 

which includes UCMerced_LandUse (Yang & Newsam, 2010), NWPU (Q. Wang, Gao, Lin, & Li, 2020) 

dataset and EuroSAT (Helber, Bischke, Dengel, & Borth, 2019). EuroSat is a dataset with a small size 

for recognition for land use. Dataset has ten classes, and each class has about 3000 images.  

The UCMerced Land Use dataset was carefully chosen for scholarly research, exhibiting a stringent 

selection procedure to maintain academic standards and data quality. Finally, they created a huge scale 

dataset for land cover and land use classification and detection comprising 21000 images; each class 

                  



has 1000 images. Throughout our experimentations, we observed that currently available datasets 

either lack diversity or are confined to a restricted number of classes. 

 

Figure 4 : Sample images from datasets 

Models trained in those types of datasets may struggle to perform effectively in real-time, complex 

conditions. Hence, we select a compact, imbalanced, and exceptionally diverse dataset, encompassing 

21 distinct land cover classes. The dataset originated from (Yang & Newsam, 2010). Thus, for the 

training process, we included 70% of the dataset, for the validation 20%, and for the testing 10%. 

Sample images are shown in Figure 4. 

We employed the evaluation metrics previously used to assess various SOTA LCC methods (Fayaz, 

Nam, et al., 2024; Hussain, Ul Amin, Fayaz, & Seo, 2023; Meng, Xie, Sun, Liu, & Han, 2023; 

Stanimirova, et al., 2023) comprising the accuracy, precision, F1-score, and recall, discriminated by 

the false-positive and false-negative rate. Detailed explanations regarding the arithmetic formulation 

of these metrics are provided in the references. 

Ablation Study  

We performed multiple studies to determine the most effective configuration for the Dual-Attention 

Fusion Network in the context of LCC. These studies addressed exploring different base core models 

                  



and assessing the efficiency of the proposed bilateral attention approach among many features. The 

outcomes of these ablation studies are presented in Table 3 and are elaborated upon in the following 

subsections. 

Table 3 : Effectiveness study of the proposed technique using the suggested UCmerced dataset for 

ablation study. Here blue implies the top performance and green conveys the second-best performance 

value whereas the line between all models differentiates the core feature from the performance of 

distinct dual attention ablation. 

Backbone models LAN 
UCmercedLandUse Dataset 

Precision Recall F1 score Accuracy 

MobileNet × 91.00 92.00 92.00 87.00 

Inception V3 × 93.00 90.00 91.00 89.00 

Xception × 89.00 91.00 90.00 88.00 

ResNet50 × 88.00 88.00 89.00 89.00 

EfficientNetV2S × 90.00 90.00 91.00 90.00 

MobileNet ✓ 92.00 93.00 93.00 91.00 

Xception ✓ 91.00 92.00 92.00 89.60 

ResNet50 ✓ 90.00 90.00 90.00 90.00 

DLANComp ✓ 97.00 96.00 96.00 97.00 

DLAN ✓ 97.00 97.00 98.00 98.00 

 

We employed various standard CNN models for core feature extraction. These models include 

EffiecientNet, ResNet101, MobileNet, DenseNet121, and Inception. Furthermore, we incorporated the 

dual attention module within these models to boost the precision of LCC and localization with our 

proposed dataset.  

The standard CNN models incorporating a dual attention module performed better than approaches 

that only used deep features, as can be shown in the first block of Table 3. This superiority over 

simple ImageNet classification is explained by the greater difficulties involved in land categorization. 

The incorporation of attention modules serves to augment the extraction capabilities of distinctive 

features of objects, consequently enhancing the overall accuracy of LCC. This method has better 

feature extraction capabilities than the baseline models, the InceptionV3 features paired or when 

paired with a SoftMax classifier, achieved the best performance. Therefore, from Table 3, we can 

finalize that DLAN provides the top performances, while Xception and EffiecientNet yield the worst 

results, owing to the non-corrective nature of some of their features and also restricted functionality of 

some of the features in LCC. 

                  



 

Figure 5 : Visual representation of our DLAN utilizing the proposed dataset. Blue and red colors show 

accurate and inaccurate classification results for each dataset. 

The forest images are classified as rivers because of the strong visual resemblance among these 

classes. Furthermore, the runway images are wrongly classified as a freeway because the land seems 

like a freeway. Figure 5 illustrates that the DLAN is a proficient model capable of perfectly 

identifying land cover in challenging conditions. In Figure 5, certain images are misidentified and not 

accurately localized, primarily attributed due to the visual resemblance between different land cover 

classes. 

Furthermore, to validate the effectiveness of our dual attention module, we conducted a comparative 

analysis with other widely used attention mechanisms, including Channel Attention (CA), Spatial 

Attention (SA), Squeeze-and-Excitation Network (SENet), Multi-Head Attention (MHA), 

Convolutional Block Attention Module (CBAM) and proposed one. As shown in Figure 6, our 

proposed Dual Attention Network (DLAN) achieved the highest accuracy of 98.00%, outperforming 

                  



all other attention mechanisms over UCmercedLandUse dataset. While CBAM and MHA also 

demonstrated strong performance with accuracies of 97% and 96%, respectively, our approach 

effectively leverages both spatial and channel information synergistically, leading to superior results. 

This highlights the advantage of integrating complementary attention mechanisms to enhance LCC 

performance. 

 

Figure 6. Comparative analysis of different attention modules integrated with inceptionv3 architecture 

over UCmercedLandUse dataset. 

To further validate the robustness and generalization performance of the proposed model, we 

evaluated it on real-world images collected from YouTube videos. These images were captured from 

different angles and under varying lighting conditions across multiple scene categories, including 

beaches, airports, and buildings. Specifically, the dataset includes images from Incheon International 

Airport in Seoul, Haeundae Beach in Busan, and various buildings in Seoul. Since drone-based data 

collection at such heights is restricted in South Korea, YouTube video frames serve as a viable 

alternative for testing real-world applicability. The results are as given in Figure 7. demonstrate the 

model's ability to accurately identify targets despite variations in viewpoint and illumination, further 

supporting its robustness in diverse environments. 

 

                  



 

Figure 7. Generalization performance evaluation using real-world images from YouTube videos, 

captured from different angles and lighting conditions across various scenes. 

Comparative Analysis: 

We evaluated the efficacy of the dual land cover attention network (DLAN) when compared with 

SOTA methods based on CNNs, assessing their respective performances. We utilize various 

benchmark datasets, including UC Merced Land_Use dataset, to demonstrate the applicability of dual 

attention in LCC and localization. To ensure an unbiased assessment, we conducted an ablation study 

on the suggested approach, employing various baseline CNN models.  

Table 3 provides the ablation study results for the proposed DLAN leveraging the suggested UC 

Merced Land_Use dataset. The outcomes indicate that the DLAN surpasses SOTA methods on all 

existing datasets, as evidenced by superior values regarding accuracy, precision, recall, and F1 score. 

The evaluation of the dual attention network's effectiveness compared to Traditional Machine 

Learning approaches was conducted using the UC Merced Land cover, AID and NWPU datasets. The 

assessment and comparison were based on the evaluation parameters specified in references (S. Li, 

Yan, & Liu, 2020; Talukdar, et al., 2020). Table 4 illustrates that the dual attention network 

demonstrated superior performance compared to existing Traditional Machine Learning methods on 

the specified datasets. Concerning the False Negative (FN) rate in AID dataset, the top-performing 

methods were (Ekim & Sertel, 2021). Additionally, our model enhanced the Overall Accuracy from 

94% to 98.00%. Nevertheless, the DLAN attained the maximum values for Accuracy, Precision, and 

F1 score, as outlined in Table 4, underscoring the strength and resilience of the proposed DLAN. 

                  



Therefore, to evaluate the efficiency of land cover categorization and localization, we conducted an 

assessment of the DLAN and Compressed DLAN (DLANComp) performance on different standard 

datasets, as detailed in Table 4. This evaluation specifically focuses on the model ability to classify 

and localize land cover types, acknowledging the importance of accurate performance metrics in 

understanding the capability of these models in handling diverse land cover scenarios. The finest 

efficiency on the UCmerced LandUse is obtained by DLAN, and the next best outcomes are attained 

with DLANComp; the lowest outcomes are acquired by EuroSat dataset. In the experiments, our 

techniques, as illustrated in Table 4, according to the other metrics, the DLAN and DLANComp had 

the highest values, while the second-highest values for these metrics belong to the DLANComp, 

which means that the proposed models are more stable than the SOTA Methods. 

Table 4: Comparative analysis our model and other approaches on the pre-existing Datasets. The blue 

and Green Illustrates the Top and second-Top Performances. 

Models / Methods AID EuroSAT NWPU UCmercedLandUse 

 P R F1 ACC P R F1 ACC P R F1 ACC P R F1 ACC 

 DNNE (Ekim & Sertel, 2021)  95 95 95 95 - - - - - - - - - - - - 

ResNet (Dastour & Hassan, 2023; 

Fayaz, Nam, et al., 2024)  
- - - 94 97 97 97 95 - - - - 88 86 86 92 

Google Net (Helber, et al., 2019)  - - - 94 - - - 98 - - - - - - - 97 

InceptionV3(A. A. Adegun, Viriri, & 

Tapamo, 2023; Alem & Kumar, 

2022b)  

- - - - 75 75 75 75 - - - - 87 87 87 94 

VGG19  - - - - - - - - - - - - 90 88 88 94.3 

CNN (Obianuju, Agwu, & 

Ikechukwu, 2021; Yamashkin, 

Yamashkin, Zanozin, Radovanovic, 

& Barmin, 2020)    

97 97 97 96 - - - 88 94 94 94 94 - - - - 

Hybird model (Fayaz, Dang, et al., 

2024a) 
- - - - 91 91 91 92 - - - - 96 96 96 98 

TEX-Net (Anwer, Khan, Van De 

Weijer, Molinier, & Laaksonen, 

2018) 

- - - 95 - - - - - - - - - - - 97 

Bi LSTM (Vinaykumar, Babu, & 

Frnda, 2023) 
- - - 97 - - -  93 93 93 96 - - - - 

VGG16 (Dastour & Hassan, 2023) 

[35]  
- - - 89 79 79 79 79 - - - - - - - 95 

ViT (Bazi, Bashmal, Rahhal, Dayil, 

& Ajlan, 2021) 
- - - 95 - - - - - - - 93 - - - 98 

LANCA - - - - 91 92 92 93 - - - - 94 93 93 93 

LANSA - - - - 91 91 91 92 - - - - 93 94 94 92 

DLANComp 91 92 92 92 93 92 95 95 85 86 87 97 97 96 96 97 

DLAN 92 92 93 94 95 93 96 94 56 97 86 96 97 97 98 98 

 

In the land classification domain, AID datasets are among the most commonly utilized publicly 

accessible datasets. Traditional methods achieve the optimal false-negative (FN) ratio on this dataset. 

However, DLAN and DLANComp attain superior False Positive and Accuracy values, surpassing the 

                  



SOTA approaches, as illustrated in Table 4. AID is recognized as a very difficult dataset in the field of 

LCC. On AID dataset, the maximum R value is attained because of the graphical resemblance 

between the land cover classes. However, DLAN surpasses the SOTA deep models in precision, F1-

score, and accuracy; the F1 score represents a single metric that balances both Precision and Recall 

concerns. Among these models, the proposed DLANComp attained the second-highest performance, 

whereas the DLAN got the top performance, as illustrated in Table 3 and Table 4. Therefore, the 

complete statistical assessment reveals that the proposed model delivers the top performance in 

handling challenging LCC tasks. 

Qualitative analysis: We also examined the qualitative implementation of the DLAN by 

differentiating with different images that contain and those that lack specific land cover features, 

relying on the localization results. The outcomes depicted in Figure 5 demonstrate the strength of the 

DLAN; it effectively identifies and detects distinct land cover territories within challenging sights. For 

every test image, we integrated activation maps of DLAN to highlight the most useful section of an 

image that the system focuses on. The activation of the classes reveals that the model excels at 

pinpointing areas with a high probability of featuring specific land cover types. 

Figure 5 presents the pictorial outcomes of the DLAN for intricate samples from UCmercedLandUse 

dataset, showcasing the model's performance in handling diverse land cover scenarios. The first row 

represents the real scenes of LCC, whereas the 2
nd

 and 6
th
 rows depict classification performance; the 

3
rd

 and 5
th
 rows are the localization performance. In the 2

nd
 and 4

th
 rows, the DLAN correctly localizes 

and classifies all input samples with respect to land cover characteristics.  

Table 4, we presented the accuracy of the proposed compressed model, which is designed to 

efficiently decrease the count of parameters and overall dimension, while maintaining the efficiency 

of the DLAN unaffected. Table 4 reveals that the compressed DLAN attains the second-best results 

across all assessment metrics, excluding the P metric. The lower performance in the P metric is 

attributed to misclassifying some challenging conditions. Nevertheless, the compressed model 

consistently delivers the next-best outcomes in terms of F1 score, suggesting a stable performance in 

the classification. 

Furthermore, we conducted additional experiments using the SIRI WHU dataset, which includes a 

wide range of image categories with varying complexities to further verify the robustness of the 

proposed model. As shown in Figure 8, we compared  the performance of our method with different 

methods such as Alem et al. (Alem & Kumar, 2022a), Wenyi et al. (Hu, et al., 2024), Linjuan et al. (L. 

Li, Zhang, Xie, & Zhang, 2024), Adegun et al. (A. Adegun, Viriri, & Tapamo, 2024), Raju et al. (Raju, 

Natarajan, & Vasamsetty, 2022) , and Hussain et al. (Albarakati, et al., 2024), on SIRI WHU dataset. 

The proposed model achieved superior performance compared to other methods with 98% precision, 

                  



97% recall, and 98% accuracy. The highest accuracy is achieved by Hussain et al., while other 

methods show either lower overall performance (like Alem et al.'s 87% scores) or imbalanced metrics 

(such as Linjuan et al.'s 91% precision versus 86% recall). Notably, the proposed model maintains 

balance between precision and recall (98% vs 97%), indicating equally strong performance in both 

avoiding false positives and identifying all relevant cases. This balanced verify robustness of proposed 

architecture over a challenging benchmark compared to baseline methods. 

 

Figure 8: Comparative analysis our model and other approaches over SIRI WHU dataset. 

Effect of Dual Attention:  

In examining the resilience of different CNNs for LCC, this study primarily focused on assessing the 

effectiveness of the proposed dual attention module. The DLAN integrate CA and SA to address the 

challenges associated with LCC by effectively focusing on both the most informative channels and the 

most relevant spatial regions. Specifically, the SA helps the model identify critical spatial regions that 

are important for accurate classification while CA operates by analyzing inter-channel relationships, 

allowing the model to weigh the importance of different feature channels. The rationale behind 

combining these two attention mechanisms is to enhance the model's ability to capture both ―what‖ 

(relevant features) and ―where‖ (important regions) information, which significantly improves 

performance in more complex LCC tasks. The DLAN configuration proved to be the most effective, 

outdoing M+CA by an accurate margin of 2.00%. This highlights DLAN superior robustness and 

efficiency in LCC tasks compared to the other tested models. To further validate the effectiveness of 

this approach, additional comparative experiments will be conducted with other attention 

mechanisms, including CBAM, SENet, and Transformer-based attention. These experiments will 

provide a more comprehensive comparison and solidify the scientific justification for the proposed 

dual attention mechanism, demonstrating its superiority in LCC tasks. 

                  



Model Compression: 

In this article we employed DE to reduce redundant neurons, thereby improving computational 

efficiency and enabling the model to operate more effectively in resource-constrained environments. 

DE is a meta-heuristic optimization process that iteratively adjusts the model’s parameters by 

applying mutation, recombination, and selection to identify and remove unnecessary neurons. This 

optimization process is specifically designed to preserve the most essential features for classification 

while minimizing the number of parameters, resulting in a more efficient model. While model 

compression often presents a trade-off with classification accuracy, our approach ensures that the 

critical neurons and features necessary for LCC are retained. This allows us to maintain a high level of 

classification accuracy while reducing the model’s complexity. To facilitate the implementation of the 

proposed LCC model in real-world settings with limited computational resources, we utilized DE to 

compress the DLAN model. We successfully reduced the model size from approximately 84 MB to 43 

MB, and the total number of model parameters decreased from 23851874 to 13,385,649 with a slight 

decline from 98.00% to 97.00%. This demonstrates that our model compression performs a beneficial 

balance between computational cost and accuracy.  

 

Table 5: Comparative analysis of inception V3 model filters before and after applying the 

compression in the convolutional 

Layer Original filters Reduced filters 

i 320 147 

ii 448 217 

Iii 384 186 

Iv 384 160 

v 320 139 

vi 448 205 

vii 284 184 

viii 284 170 

 

The specific layers affected were mixed 4 through mixed 7, which were refined, and mixed 9 and 

mixed 10, which underwent compression through the DE process. The details of the decreased filters 

in the layers are provided in Table 5. The visual representation demonstrates that the compressed 

model effectively focuses on land regions in a manner comparable to the original model. 

                  



Time Complexity: In this study, we evaluate the computational time and accuracy trade-off of our 

proposed model, DLAN, by comparing it against several state-of-the-art (SOTA) lightweight models. 

Computational complexity and model size are the two primary factors influencing deep learning 

model inference time. As illustrated in Table 6, We assess how the proposed DLAN and compressed 

DLAN models perform in terms of processing time and accuracy, and compare these results with 

other models like ResNet, InceptionV3, and EfficientNet. To further explore the trade-off between 

computation time and accuracy, we present a detailed comparison of computational time versus 

accuracy across different models, highlighting the balance between efficiency and performance. This 

analysis underscores the practical implications of our method, especially in real-world applications 

where both speed and accuracy are critical. 

Table 6: Comparative analyses of different methods in terms of parameters(millions), model size 

(MB), and latency(sec). 

Methods 
Parameters (in 

million) 

Model size 

(MB) 

Latency 

(sec) 

Accuracy 

(%) 

ResNet-101 (K. He, Zhang, Ren, & Sun, 

2016; Jamali, et al., 2021) 
44 171 90 87 

Xception (Chollet, 2017) 22 88 90 94 

Inception-V3(C Szegedy, 2016) 23.9 92 67 -- 

MobileNet-V2 (M Sandler, 2018) 3.5 14 87 -- 

DenseNet-121(M Shafiq, 2022) 20.2 80 92 -- 

EfficientNet-B0 (C Szegedy, 2016) 5.3 29 84 -- 

VGG16 (Simonyan & Zisserman, 2014) 138 528 93 -- 

Deep Ensembled model (Fayaz, Dang, & 

Moon, 2024b) 
64.7 247 32 97 

DVIT (Bansal & Tripathi, 2024) 6.6 -- -- 88 

SwinTransformer (Z. Liu, et al., 2021) 4.6 -- -- 87 

PlantXViT (Thakur, Khanna, Sheorey, & 

Ojha) 
4.6 -- -- 90 

DLAN 23 M 84 Mb 71 sec 98 

DLANComp 13 M 43 Mb 36 sec 97 

 

Discussion: 

The proposed method demonstrates significant potential for deployment in drone-based aerial surface 

image recognition. While this study primarily focuses on satellite imagery, drones equipped with 

                  



high-resolution cameras can offer real-time, detailed images of land surfaces. These drones can 

capture images at various altitudes, angles, and times, providing an advantage over satellite-based 

systems. The proposed model, with its dual attention mechanisms Channel Attention (CA) and Spatial 

Attention (SA) is well-suited for integration into drone systems. The CA mechanism helps analyze 

inter-channel relationships, while the SA mechanism allows the model to focus on critical spatial 

regions, making it particularly effective in aerial imagery where varying altitudes, angles, and 

conditions present unique challenges for classification. 

Deploying this model on drone systems would enable efficient, on-the-fly land cover classification, a 

key feature for various real-world applications. These include urban monitoring, agricultural land 

assessment, and disaster response, where drones can offer high-resolution images in areas where 

satellite data may not be as effective. Real-time processing is crucial in these applications, and the 

proposed model’s efficient feature extraction ensures that it can work within the constraints of drone 

systems. Furthermore, by focusing on both "what" (important features) and "where" (relevant regions) 

information, the model is robust enough to handle complex, noisy environments in aerial imagery, 

ensuring high classification accuracy even under variable conditions. However, several challenges 

need to be addressed to adapt this model for drone-based platforms, particularly in real-time 

processing and computational efficiency. Drones typically operate under dynamic conditions—such as 

varying altitudes, lighting, and weather which can affect image quality. Future work will focus on 

optimizing the model for real-time deployment, ensuring it handles these variations effectively. 

Additionally, improving the model’s robustness to environmental interference, such as cloud cover 

and atmospheric disturbances, will be a key focus. By further fine-tuning the model for drone-specific 

imagery and optimizing it for real-time use, the method can be fully integrated into drone systems, 

enhancing land cover classification in a range of dynamic, real-world conditions. 

5. Conclusion and future work  

In the domain of computer vision, leveraging CNNs has markedly advanced the efficacy of land cover 

classification techniques. Despite considerable progress, prevalent CNN-based methodologies for 

detecting land cover have encountered notable challenges. These include the misclassification of land 

scenes within complex environments, alongside issues pertaining to the impractical time complexities 

and substantial model sizes that impede their applicability. In response to these limitations, our 

research introduces a novel approach DLAN. This method is rooted in the extraction of deep features 

coupled with the implementation of a newly devised dual land attention mechanism. Our approach 

further incorporates an innovative model compression strategy aimed at strengthening the model's 

efficiency while concurrently minimizing its size. The evaluation of DLAN was conducted using a 

uniquely assembled dataset, characterized by its imbalance, diversity, and the high level of challenge 

it presents, thereby establishing a new benchmark for LCC. Through rigorous experimenting on 

                  



standard datasets and comparative analysis against SOTA methods, our findings reveal that DLAN 

achieves an optimal balance in terms of accuracy, processing speed, and model compactness. Such a 

balance underscores the utility of our vision-based method for land cover classification across a wide 

array of application domains, including but not limited to forested regions, roadways, demanding 

outdoor environments, and industrial areas. This versatility is attributed to the comprehensive and 

varied nature of our training dataset. 

Looking forward, the research aims to extend the capabilities of DLAN by integrating multi-modal 

remote sensing data, including LiDAR, SAR, and hyperspectral imagery, to enhance classification 

performance in diverse landscapes. Additionally, the adoption of semi-supervised learning approaches 

will be explored to improve model generalization by leveraging both labeled and unlabeled data, 

making DLAN more adaptable to real-world scenarios with limited annotated datasets. 

Furthermore, there is an ambition to enhance the precision of the model in delineating land regions 

within images through the inclusion of object detection or semantic segmentation models a facet not 

currently addressed by DLAN. These advancements will not only refine the accuracy of land cover 

detection but also expand the model's applicability in resource-constrained and challenging 

surveillance contexts, significantly contributing to the field of computer vision and land cover 

analysis. 
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