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ARTICLE INFO ABSTRACT

Keywords: Vision Language Models (VLMs) have significantly advanced multimodal tasks
Vision Language Model like image captioning, visual question answering, and multimodal retrieval. This
Pre-trained Model survey presents a systematic review of 115 published papers from 2018 to 2025. It
Prompt Engineering focuses key VLM components including fine-tuning strategies, prompt engineering
Fine Tuning techniques, pre-trained models, adapter modules, and benchmarking datasets. For
Adapter each component, we present taxonomies and summarize comparative findings
dataset across standard VLM benchmarks. The survey emphasizes the role of lightweight,
Multi-language Model Survey parameter-efficient adaptation methods in reducing computational overhead while

maintaining strong task performance, particularly in real-world deployment con-
texts. It further examines the strengths and limitations of prompt-based learning,
dataset-specific tuning strategies, and architectural trade-offs. Finally, the paper
identifies open challenges in scalability, generalization, and bias, and explores
emerging research directions including symbolic reasoning, multilingual adapta-
tion, and energy-efficient VLM design. To our best knowledge, this is the first
comprehensive survey to integrate these critical components into a single, cohesive
survey paper, intended to serve as a foundational resource for researchers and
practitioners striving to optimize VLMs for diverse real-world scenarios. The
highlights of the review are available at GitHub directory.

1. Introduction

Artificial Intelligence (AI) has made significant developments in recent years, with impressive
advancements in domains such as Natural Language Processing (NLP) and Computer Vision (CV).
The integration of these two domains into Vision Language Model (VLMs) represents one of the most
significant breakthroughs in enabling machines to process and generate multimodal information that
involves both vision and language. These models aim to connect the gap between the visual world and
textual understanding, allowing for a more refined and comprehensive approach to tasks that involve
both modalities. The success of VLMs is mainly driven by the utilization of large scale pretrained
models and SOTA deep learning methodologies, such as transformers which have contributed to
considerable advancements in both accuracy and generalization in various tasks [1].

(2] hmoon@sejong.ac.kr (H. Moon)
ORCID(S):

First Author et al.: Preprint submitted to Elsevier Page 1 of 72



VLM Survey

VLM Cv
A model that jointly Afield of Al that enables
processes visual and textual machines to interpret and
information to perform tasks understand visual data from
like image captioning, visual the world, such as images
question answering, or and videos.

referring segmentation.

Figure 1: Conceptual model of the paper, where VLMs unify NLP and CV by jointly interpreting text and
images to enable tasks such as image captioning, visual question answering, and image/video retrieval.

VLMs have a wide range of practical applications, including image captioning, Visual Question
Answering (VQA), multimodal retrieval, visual reasoning, and other related domains [2, 3, 4].
To enhance the sophistication and effectiveness of these applications, it is essential to develop
efficient techniques for fine-tuning and prompt engineering. These methods are crucial for developing
pretrained models that respond more to particular tasks or fields, improving their efficiency while
maintaining computational efficiency [5, 6]. However, despite the impressive capabilities of VLM, its
deployment still faces challenges, especially in fine-tuning and task-specific adaptation. Fine-tuning
large-scale models remains a significant challenge, particularly due to the substantial computational
resources required and the difficulty in maintaining generalization across diverse domains [7].
Techniques such as prompt engineering, adapter-based methods, and the use of specialized datasets
have emerged as effective approaches to address these challenges, enabling more precise refinement
of model applications for specific use cases [6, 8].

The primary motivation for conducting this survey lies in the need for a comprehensive review of
optimization techniques and their application to VLMs. While substantial progress has been made in
enhancing the foundational architectures of multimodal models [9], this paper specifically focuses
on the methods that enable these models to be effectively adapted and fine-tuned for real-world
applications. In particular, we examine fine-tuning strategies, prompt engineering, adapter-based
approaches, and the role of datasets as critical components in boosting the performance and versatility
of VLMs. Figure 1 provides a graphical representation of the VLM concept.

1.1. Background and Motivation

The field of VLMs has witnessed groundbreaking advancements in recent years, fueled by progress
in deep learning and the growing availability of large-scale multimodal datasets. Early models, such
as image-captioning systems, focused on aligning image features with textual descriptions [10].
However, more sophisticated architectures such as LLaVA [11] and PaliGemma 2 [12] have sig-
nificantly transformed the landscape. These models leverage transformers and other advanced neural
architectures to construct robust joint representations of vision and language, enabling them to perform
complex tasks like zero-shot learning and cross-model retrieval with remarkable effectiveness.

Apart from the impressive success of these pre-trained models and their efficient application to
particular tasks often demands substantial computational resources and expertise. Fine-tuning, which
involves adjustment of parameters within a pre-trained model using smaller datasets to task specific,
is highly effective but resource intensive [13]. Techniques such as Low-Rank Adaptation (LoRA) and
bit-fitting have been developed to tackle this challenge, thus increasing the efficiency of fine-tuning
[14]. Task-specific prompt engineering has demonstrated significant efficacy in optimizing VLMs,
enhancing performance in tasks like VQA and image captioning through the strategic guidance of
model outputs through meticulously designed [8]. Adapter-based methodologies further streamline
fine-tuning by adjusting smaller model components or incorporating task specific modules, avoiding

First Author et al.: Preprint submitted to Elsevier Page 2 of 72



VLM Survey

extensive retraining. Datasets play a vital role in VLM development. The variety and caliber of datasets
not only exert influence over the training progress but also affect the evaluation and benchmarking of
the models themselves. Datasets such as MMVP-VLM [15], GEOBench-VLM [16], MammoVLM
[17] and MMT-Bench [18] have played a crucial role in extending the limits of what VLM can
accomplish. However, challenges related to dataset bias, annotation quality, and adaptation to domain-
specific remain important challenges that need to be resolve in order to improve model robustness and
fairness [19].

In summary, there is a pressing need for a thorough understanding of the techniques that enable
VLMs to be effectively fine-tuned and optimized for specific tasks. This survey addresses that need
by providing a comprehensive review of fine-tuning strategies, prompt engineering, adapter-based
methods, pretrained VLM architectures, and datasets. It offers an in-depth analysis of State-of-The-
Art (SOTA) methodologies while identifying existing challenges, critical gaps, and emerging research
directions that hold the potential to drive further advancements in the field.
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Figure 2: Conceptual model of the paper.

1.2. Scope and Objectives

The scope and objectives of this survey encompass a comprehensive exploration of optimization
techniques applied in VLMs, focusing on their design, adaptation, and performance enhancement.
The survey outlines on the following core concepts:

1. Various fine-tuning methodologies are examined that adapt pretrained VLMs to specific down-
stream tasks, including full fine-tuning, parameter-efficient tuning, and task-aware finetuning
mechanisms.

2. This survey analyzes the role of prompt formulation in zero-shot and few-shot learning
scenarios, reviewing manual, automatic, and soft prompting techniques that enable efficient
adaptation without modifying the model’s core parameters.

3. A lightweight approaches such as adapters, prefix tuning, and LoRA, are investigate which
aim to minimize computational complexity and storage costs while preserving competitive
performance across multiple tasks.
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4. A structured overview is provide that influential pretrained VLMs, highlighting their architec-
tural designs, training objectives, and core capabilities that serve as a foundation for downstream
applications.

5. The review covers a range of large-scale and task-specific datasets used for pretraining and
evaluation, including image-text, video-text, and instruction-tuned corpora. The influence of
dataset quality, diversity, and alignment on model generalization is also discussed.

The survey has three main objectives:

1. To critically evaluate the foundation models employed in the optimization of VLMs and their
influence on improving performance. It involves a systematic review of key optimization
techniques such as fine-tuning, prompt engineering, and adapter-based learning. The survey
aims to assess how these approaches contribute align with the large language model to
enhancing the adaptability, task-specific performance, and overall generalization capabilities
of VLMs across diverse multimodal benchmarks.

2. To analyze the challenges encountered in fine-tuning, prompt engineering, adapter methods,
pretraining, and dataset utilization, and to provide potential solutions. A core focus of this
survey is to identify the technical and practical limitations faced during the optimization of
VLMs. It includes issues such as overfitting during fine-tuning, prompt sensitivity in few-shot
scenarios, scalability constraints of adapters, and biases or insufficiency in training datasets. For
each challenge, the survey discusses SOTA solutions and strategies proposed in recent literature
to mitigate these barriers.

3. To suggest future research directions by exploring innovative methodologies to enhance the
efficiency and generalization of VLMs. Building on the analysis of existing techniques and
challenges, the survey highlights emerging trends and proposes avenues for future research.
These include low-resource adaptation methods, dynamic prompt tuning, multimodal data
augmentation, and the integration of VLMs with real-world deployment considerations such
as edge efficiency and cross-lingual generalization.

This survey aims to provide a comprehensive review of these essential components, highlighting
their contributions to the SOTA in VLM research. By systematically reviewing and synthesizing
key advancements in these areas, the paper will present achievements and identify promising new
directions for further exploration, thereby guiding future research and technological development in
Vision-Language Models. Figure 2 illustrates the conceptual model presented in the paper.

1.3. Main Contributions

The goal of this survey is to provide concrete contributions to understanding and optimizing Vision
Language Models in several aspects, specifically fine-tuning prompt engineering, adapters, pretraining
objectives, pre-trained models and datasets. To the best of our knowledge, no prior work has integrated
all these aspects into a single, unified and comprehensive survey. The major contributions of this paper
are as follows:

1. We provides a comprehensive review of fine-tuning techniques within the context of VLMs.
It delves into the associated computational and temporal challenges, evaluating strategies to
enhance efficiency and effectiveness in fine-tuning processes. This analysis aims to identify
best practices for optimizing performance while minimizing resource demands.

2. We investigate the emerging area of prompt engineering a crucial strategy for leveraging
pretrained models in novel applications with minimal additional training. The survey evaluates
the effectiveness of prompt engineering across various scenarios, presenting a systematic
framework for its application and highlighting innovative use cases in VLMs.
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Figure 3: We selected papers based on their relevance to vision-language models, focusing on key areas
such as pretrained architectures, fine-tuning, prompt engineering, adapters, and benchmarks. Priority was
given to technically significant and widely cited works from top-tier conferences and journals.

3. The use of adapters is assessed as a flexible solution for customizing pretrained models to novel
tasks. This study systematically reviews diverse adapter variants, discusses their integration
approaches and evaluates their influence on the performance of VLM:s efficacy, contributing to
a deeper understanding of adapter-based model customization.

4. Examines the innovations and ongoing development of pretrained models in the field of Vision-
Language Models. It covers how these models are developed, continually updated and optimized
providing insights into their crucial role and potential for future enhancements.

5. We assess the role of multimodal datasets in the development and performance of VLMs,
delving into their crucial characteristics, inherent challenges, and prospective pathways for
dataset refinement including mitigating annotation reliance and augmenting diversity.

1.4. Conceptual Overview

To explain the fundamental concepts covered in this survey paper, we present a conceptual
overview of the major components involved in optimizing VLMs.
Fine-Tuning: Fine-tuning constitutes adapting a pretrained VLM to specialized tasks through addi-
tional training on limited, application-specific datasets. This approach adjusts the model parameters to
optimize performance for target applications while utilizing generalized knowledge acquired during
pre-training.
Pre-trained Models: Pre-trained VLMs are foundational architectures trained on extensive multi-
modal datasets (e.g., image-text pairs) to develop generalized cross-modal representations. These
models establish versatile computational frameworks that allow efficient knowledge transfer for
specialized applications without demanding extensive annotated data.
Prompt Engineering: Prompt engineering involves the strategic formulation of input structures and
designing that incorporates textual queries, contextual descriptions or multimodal instructions to
optimize Vision-Language Model performance for specific objectives. This technique utilizes model
pre-acquired knowledge by carefully crafting inputs to generate accurate and task relevant outputs.
Adapters: Adapters represent modular, task-specific architectural components integrated into pre-
trained VLMs. These components facilitate efficient adaptation to novel applications through sup-
plementary trainable layers that focus on target objectives while preserving the model’s foundational
competencies, all without comprehensive modification of core parameters.
VLM Datasets: VLM datasets comprise paired multimodal data that include image caption or video-
text datasets that provide aligned visual and textual information. These datasets are crucial for both
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Figure 4: Schematic overview of the survey design highlighting optimization strategies in VLM. The figure
categorizes key components covered in the paper, including fine-tuning techniques, prompt engineering,
adapter and pretraining model. Each component is critically analyzed to provide comprehensive insights
into current trends, challenges, and future research directions in VLM optimization

pretraining and fine tuning Vision Language Models, enabling the models to capture the complex
relationships between visual and linguistic modalities across a diverse range of domains.

1.5. Method Coverage

The approach used in the selection of papers for this survey encompassed a series of successive
phases done systematically in order to the utilization of high quality and relevance research articles
mainly from leading scholarly publications. Our procedure was designed to provide a thorough
and unbiased literature review on Vision-Language Models with a particular focus on fine-tuning
methods, pertaining models, prompt engineering, adapter techniques and VLM benchmark dataset as
demonstrated in Figure 5. The selection process is detailed below:

1.5.1. Search Strategy

We conducted an extensive search in several well-established and recognized electronic databases.
The main terminologies employed in the search included Vision Language Model, Prompt Engineer-
ing, Adapter, Fine-Tuning, Pretraining Model and VLM Datasets. These terms were meticulously
chosen according to the relevance to main features of the survey and their relation to recent
developments in the domain. The following databases were prioritized for the search:

e Science Direct
e Springer

e Scopus
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e Web of Science

Alongside these academic databases, we also conducted supplementary research through Google
Scholar to obtain papers that may not have been acquired in the above-mentioned databases. Given
the rapid evolution inherent in VLM research, we incorporated preprints from arXiv, contingent upon
their acceptance for publication in peer-reviewed conferences or journals. The Figure 5 shows a
graphical representation of the academic databases applied in the survey paper.

1.5.2. Selection Criteria
advancements

e Relevance: Many papers directly related to VLM fine tuning, prompt engineering, adapter
methods pretrained models and benchmark datasets were prioritized. Such studies that were
merely indirectly related or exhibited a limited scope were systematically excluded.

e Publication Type: We considered peer-reviewed journal articles, conference proceedings and
well-recognized preprints from arXiv.

e Language: With the language, only English language publications were considered in the
process of selection due to the linguistic predominance within the research society and the
emphasis on global trends.

1.5.3. Filtering Process
The filtering process was conducted in several stages:

e Initial Screening: The first step was to scan through the titles of the papers, abstract and
keywords for the presence of the specified keywords. At this stage, repeated entries and articles
that did not meet the relevance criteria were identified and eliminated. This step narrowed it
down from 600 articles to just 305 articles at the first selection criterion alone.

o Abstract Review: The rest of the papers were subjected to an abstract level analysis and critique
accordingly. Studies that were found irrelevant or presented with minor detail were omitted at
this level. Following this review, the number of articles was further reduced to 200.

o Full-Text Review: The next step was to perform a more screening and systematic analysis of
the full texts of the remaining articles. The main objectives of this review were to establish the
extent and depth of the methodologies described, as well as the relevance and significance of the
findings. Some overlaid studies that did not offer significant information regarding fine tuning,
prompt engineering and adapter methods were not included.

1.5.4. Quality Assurance
In order to ascertain the quality of the selected articles, the review process incorporated the
subsequent quality assessments:

e Peer Review: Every paper included in the final set was either peer reviewed or published in
reputed journals or conferences.

e Reputation of Conference/Journal: To ensure pertinent and highly impactful research, only
international conferences and the best-tier journals were taken into account.

o Reproducibility and Transparency: Great importance was accorded to the studies that offered
enough information on how the experiments were conducted, datasets used when assessing the
models and the structures of the models to help develop other models.
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Figure 5: lllustration of the search engine and databank system used for systematic paper selection.
This process involves querying multiple academic databases using predefined keywords related to VLMs,
followed by filtering based on relevance, publication venue, and methodological contribution. The resulting
databank serves as the foundation for building the comprehensive literature review presented in this survey.

1.5.5. Final Selection

Finally, the total number of papers selected in the filtering process was 115 papers for the survey.
These papers were deemed as the newest, most focused, diverse, and impactful work with regard
to VLM fine-tuning, prompt engineering, adapter methods, pre-trained models, and datasets. Thus,
the selected studies were evaluated in terms of their methodological approaches, contributions and
perspectives to present the state of the art in the domain. By virtue of this systematic and multistage
approach, the studies on which this survey is based were all relevant and of high quality as described
in Figure 3.

1.6. Section Outlines

The structure of this survey is as follows: Section 2 discusses Foundation Model Paradigms
which include the development trajectory of the VLM and existing survey. Section 3 delves into
fine-tuning, prompt engineering, pre-trained models, and adapters, highlighting their methodologies,
applications challenges and open research probelem. Section 4 outlines the latest VLM pretrained
model while Section 5 discusses datasets and its various types. Section 6 presents evaluation matrices
of Vision-Language Models and benchmarks, emphasizing challenges, Emerging trends and Research
Opportunities. Section 7 explores open challenges and future research directions. Section 8 outlines
discussion and while the Section 9 concludes of the survey paper. The whole paper contained is
explained in the Figure 4.
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2. Foundation Model Paradigms

Vision-Language Models [20] are the next generation of machine learning models developed
to understand and simultaneously process visual and textual information. These models aim to
address the gap between the visual understanding capabilities of CV and the linguistic abilities
of NLP. Through the establishment of unified representations for both images and textual content,
Vision Language Models enable seamless multimodal understanding, thereby enhancing the ability
of machines to interpret and produce information in tasks that encompass both modalities [21].

Significance of Vision-Language Models Vision Language Models represent a transformative
step in Al by tackling intricate tasks that require a deep understanding of the correlations between
visual and textual information. Their significance is highlighted in tasks such as image captioning
[22], which involves the automated generation of precise and semantically rich textual descriptions
corresponding to images. Similarly, VQA [23] which derives contextually grounded responses to
textual queries through object identification and relational reasoning within visual scenes. Another
essential application is multimodal retrieval, that substantially enhances information accessibility
by allowing cross-modal searches (e.g., image retrieval via textual queries or conversely) across
heterogeneous data formats [24], Furthermore, visual reasoning [25] extracts logical interpretations
from visual scenarios such as entity relationship analysis or outcome prediction, thereby supporting
decision-making capabilities in complex visual contexts. Beyond these foundational functions, these
models demonstrate indispensable utility in specialized domains: In healthcare diagnostics [26], they
enhance precision through interpretative analysis of medical imagery synergized with clinical nar-
ratives. Similarly, autonomous systems employ them for environmental navigation and contextually
informed determinations through multimodal data integration. a Moreover, geospatial intelligence
applications facilitate examination of satellite imagery contextualized with spatiotemporal metadata
for land-use analytics and terrain assessment [27]. Consequently, given their capacity for synergistic
multimodal fusion, Vision-Language Models have emerged as a foundational substrate for addressing
challenges in fields requiring integrated multimodal intelligence.

2.1. Historical Development and Key Milestones

The trajectory of Vision-Language Models demonstrates accelerated development, transitioning
from rudimentary architectures to complex frameworks. Initial multimodal frameworks such as
proposed by J.Mao at.el, [28], are simple models linking images with text, typically employing
manual-crafted features, which demonstrated limited capacity for capturing complex cross-modal re-
lationships. A critical milestone was the introduction of frameworks like Visual Semantic Embedding
(VSE) [29], which employed neural networks to project images and texts into a unified representational
space, substantially improving cross-modal retrieval efficacy. These developments established the
foundation for end-to-end trainable architectures, including Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTM) models that improved capabilities in image captioning
and visual question answering [30]. The true innovation in Vision-Language Models came with
the development of large-scale pre-trained models, specifically CLIP (Contrastive Language-Image
Pretraining) [5], which used a contrastive learning approach, and achieved remarkable zero-shot
generalization across diverse downstream applications using multimodal datasets. Its ability for task
transfer without application-specific refinement represented a substantial conceptual progression.
Subsequent innovations like Flamingo [9] further refined VLM capabilities through parameter efficient
designs, achieving competitive performance across diverse domains via modular integration of
pretrained representations. These methodological advances, amplified by models including Vary [31],
BRAVE [32], CLIP-FSSC [33], and BLIP (Bootstrapping Language-Image Pretraining) [34], have
collectively enhanced functional capacities across multimodal tasks, establishing SOTA VLMs as
prevailing methodological paradigms within vision language models.
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Impact of Large-Scale Pre-Trained Models The rise of large-scale pre-trained models has
fundamentally transformed the landscape of Vision-Language Models. These models, trained on
billions of image-text pairs, exhibit unprecedented capabilities in zero-shot and few-shot learning,
eliminating the need for extensive labeled data for new tasks. Key contributions of pre-trained Vision-
Language Models include:

e Scalability: The ability to handle a wide range of downstream tasks with minimal task-specific
adjustments [35, 36].

e Generalization: Strong zero-shot [37] and few-shot [38] capabilities allow models to perform
well on unseen datasets and tasks.

e Efficiency: Pre-training reduces the dependency on task-specific data and computational re-
sources, paving the way for scalable deployment across domains [39, 40].

The developmental trajectory of Vision-Language Models highlights a shift from narrow, task-specific
systems to generalized, scalable architectures capable of addressing complex multimodal challenges.
These advancements underline the importance of foundational models in modern Al research and
their growing impact across diverse application areas.

2.2. Core Architectures

The architectures driving Vision-Language Models have evolved to incorporate several innova-
tions, most notably the Transformer architecture, which has revolutionized both natural language
processing and computer vision. The Transformer model [41] uses self-attention mechanisms to
allow models to weigh the importance of different parts of input data, whether visual or textual, and
capture long-range dependencies. This architecture has become the foundation for many state-of-the-
art Vision-Language Models, providing significant improvements in both accuracy and computational
efficiency.

One of the most important advancements has been the development of Vision Transformers
(ViTs) [42], which adapt the transformer model originally designed for NLP tasks to vision tasks.
ViTs have proven highly effective, particularly in scenarios where large datasets are available, and
have surpassed traditional Convolutional Neural Networks (CNNs) in several vision benchmarks. In
addition to transformers, many Vision-Language Models utilize encoder-decoder architectures, which
have proven effective for tasks like image captioning and VQA. In these models, the encoder processes
the visual or textual input, and the decoder generates the output (e.g., a caption or an answer to a
question). This architecture is essential for tasks where one modality (e.g., an image) needs to be
translated into another modality (e.g., text) [5].

Furthermore, hybrid architectures have emerged as another important development. These models
combine CNNs (for processing visual data) with transformers (for textual data), allowing each archi-
tecture to leverage its strengths. This hybridization facilitates better multimodal learning and increases
the robustness of models across various tasks [43]. Critical research areas in VLM architectures also
include cross-modal alignment and multimodal fusion. Cross-modal alignment ensures that the visual
and textual representations exist in a shared space, facilitating easier integration of both modalities
[44]. Meanwhile, multimodal fusion methods aim to combine the features from both modalities into a
unified representation, improving performance on tasks like image captioning and VQA [45, 46]. The
role of representation learning in Vision-Language Models has also been pivotal. By learning a shared
representation for both vision and language, these models can generalize better across different tasks,
increasing their robustness and enabling them to excel in complex multimodal applications [47, 48].
The Figure 6 represent the general hierarchic of the VLM.
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Figure 6: General hierarchical framework of vision-language models

2.3. Comparison with Existing Survey

The landscape of Vision-Language Models has been extensively explored in recent literature, with
numerous surveys focusing on various aspects of model development, adaptation, and application.
However, existing surveys often address specific components of Vision-Language Models in isolation,
providing valuable but fragmented insights. Several surveys excel in detailing pre-trained models,
fine-tuning techniques, and prompt engineering, which are central to the methodology of our survey,
A VLM Survey: Fine-Tuning, Pre-trained Models, Prompt Engineering, Adapter, and Benchmarking
Data. Yet, many of these works overlook the critical integration of these techniques, which is essential
for optimizing model performance and ensuring scalability in real-world applications.

For instance, A Survey [49], emphasize pre-trained models and pre-training techniques. While
these works contribute valuable insights into model architecture, they often provide limited coverage
of fine-tuning and adapter techniques, focusing more on theoretical aspects than on practical applica-
tions. Similarly a Survey [50], present important real-world insights into vision-language interaction
in autonomous driving but lack coverage on fine-tuning, prompt engineering, and adapter methods,
which are essential for scalable model deployment. Surveys such as Zhou et al. [51] focus on geospatial
applications of Vision-Language Models, highlighting the use of pre-trained models in this domain.
However, the focus on this narrow application limits the survey’s scope, as it does not address fine-
tuning, prompt engineering, or adapter techniques, which are crucial for broader model adaptability.

Paper/Year Strengths Limitations/Weaknesses
2022 [52] o In-depth review of VLM tasks and represen- | e Lacks detailed coverage of fine-tuning
tation learning. and adapter techniques.
e Covers large models and their uses. e Limited focus on datasets.
2022 [49] o Thorough discussion of pre-trained models. e Limited coverage of fine-tuning or
e Covers architectures and pre-training tech- | adapter techniques.
niques. e Focus on pre-trained models may not
be as practical for real-world scenarios.
2022 [58] e Provides insights into emerging multimodal | e Does not focus on fine-tuning or pre-
research trends. training techniques.
e Focus on integrating vision and language. e Limited discussion of pre-trained
models.
2023 [54] o Detailed coverage of prompt engineering tech- | e Does not cover fine-tuning or adapter-
niques. based methods.
o Explores different types of prompts used for | e Limited practical applications in real-
Vision-Language Models. world settings.
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Paper/Year Strengths Limitations/Weaknesses

2024 [55] o Highlights trust-based approaches for Vision- | ¢ Does not focus on fine-tuning or
Language Models. adapter techniques.

e Provides insights into vulnerabilities of | e Limited discussion on pre-training
Vision-Language Models. techniques.

2024 [56] e Thorough analysis of OOD detection in | e Does not focus on pre-training tech-
Vision-Language Models. niques, fine-tuning, or adapter methods.
o Addresses real-world deployment challenges. | e Narrow focus on one task (OOD de-

tection).

2024 [21] o Comprehensive overview of Vision-Language | e Limited discussion on fine-tuning
Models. techniques.

o Discusses pre-trained models and pre-training | e Does not cover adapter-based meth-
techniques. ods.

2024 [57] e Focus on low-shot learning and pre-trained | e Does not address fine-tuning tech-
models. niques.

o Strong theoretical background using represen- | e Limited exploration of adapter-based
ter theorem. methods.

2024 [51] e Focus on geospatial applications of Vision- | e Does not discuss fine-tuning or
Language Models. adapter techniques.

e Pre-trained models used in geospatial con- | e Narrow focus on geospatial applica-
texts. tions.

2024 [50] e Focus on autonomous driving and vision- | e Narrow domain focus.
language interaction. e Does not focus on fine-tuning, prompt
e Real-world problem-solving focus. engineering, or adapter methods.

2024 [53] o Comprehensive overview of pre-trained mod- | e Does not discuss fine-tuning or
els. adapter techniques in depth.

o Covers different pre-training techniques. e Limited application-based examples.

2024 [7] e Focus on vision tasks like image captioning | e Limited discussion on datasets and
and VQA. evaluation metrics.

e Describes the use of pre-trained models in | e Does not address prompt engineering
vision tasks. or adapter methods.

2024 [62] e Focus on efficient fine-tuning methods. e Limited discussion of pre-training
e Covers adapter-based tuning and prompt- | techniques.
based fine-tuning. e Does not fully address datasets or

model evaluation.

2025 [59] e Detailed coverage of efficiency techniques | e Lacks comprehensive coverage of
suitable for deployment in edge and resource- | prompt engineering, adapters, and
constrained devices. dataset benchmarking.

o Discusses performance-memory trade-offs. o Narrow focus on edge devices.

2025 [60] e Extensive insights into synthetic data genera- | e Does not explore prompt engineering
tion and integration with VLMs, strong empha- | and adapter methodologies.
sis on dataset construction and benchmarking. e Limited focus primarily to synthetic
o First comprehensive survey on the intersection | data generation.
of VLMs and synthetic data.

2025 [61] o Detailed coverage of VQA tasks, robust evalu- | e Limited to visual question answer-
ation metrics and benchmarking focused specif- | ing context, lacks comprehensive cover-
ically on VQA tasks. age of prompt engineering and adapter

methods.

Our Survey e Comprehensive coverage of the latest advancements in VLM methodologies, includ- |e Fine-tuning technique

ing:
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Table 1
Technique-based comparison of the VLMs composed of various attributes including adapter, dataset,
fine-tuning, pre-trained.

Year/Paper | Category FT | PE | Pre-TT Adapter | Pre-TM | Dataset

2022 [52] General VL Tasks and | v X | v X v v
Methods

2022 [53] VLM pre-Training X X | v X v v

2023 [54] Prompt Engineering | X v |/ X v v
Techniques

2024 [3] Medical VLM x| x v X v v

2024 [7] VLPM Architecture X X |/ X v v

2024 [21] Methodologies  and | v X | v X v 4
Future Directions

2024 [50] Autonomous Driving X X | v 4 v/ v

2024 [51] Geospatial VLM X X | v X v v

2024 [55] Trustworthiness of | v/ X | X X v v
Vision-Language
Models

2024 [56] OOD Detection X X | X X v X

2024 [57] Low-shot VLM Adap- | v X | X X 4 4
tation

2024 [58] Emerging Trends in | X X | X X v v
VL Research

2025 [59] Edge Devices 4 X | v X v 4

2025 [60] Synthetic Data & | vV X | v X v v
VLMs

2025 [61] VQA v X | v X v v/

our survey | Comprehensive v v | v/ v v v

paper Overview

Likewise, Li et al. [52], provide an in-depth review of VLM tasks and representation learning, but do not
thoroughly explore fine-tuning or adapter methods, and their discussion on datasets is also limited. A survey
presented by Vatsa et al. [55] concentrate predominantly on VLM trustworthiness, yielding valuable vulnerability
insights while omitting consideration of fine-tuning methodologies, adapter techniques, and providing insufficient
examination of pre-training paradigms. Similarly, Miyai et al. [56] delivers rigorous out-of-distribution (OOD)
detection analysis which is critical for real-world robustness. yet neglect fine-tuning procedures, pre-training
strategies, and adapter mechanisms, leaving significant gaps in understanding how Vision Language Models can
be adapted for diverse tasks.

Similarly, Ghosh et al. [21] furnish an extensive pre-trained model taxonomy but afford limited analysis
of fine-tuning approaches and do not cover adapter-based methodologies. Ding et al. [57] establish a robust
theoretical foundation for low-shot learning within pre-trained frameworks, notwithstanding their superficial
exploration of fine-tuning and adapter techniques, hindering their practical applicability in real-world VLM
adaptation.

Conversely, Xing et al. [62] emphasize parameter-efficient adaptation (encompassing adapter-based and
prompt-tuning methods) to enhance training efficiency and resource optimization. Notwithstanding these con-
tributions, their work insufficiently addresses pre-training fundamentals and insufficiently covers dataset and
evaluation protocols, which are essential considerations for effective VLM deployment.

Several recent surveys have advanced the field of Vision-Language Models. Shinde et al. [59] provided
valuable insights into efficiency techniques tailored for edge device deployment. However, their work does not
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thoroughly explore adapter-based methods or prompt engineering. Similarly, Mohammadkhani et al. [60] focused
on synthetic data generation and its application in VLMs, offering useful perspectives on dataset creation and
benchmarking, but they overlooked adapters and prompt engineering techniques. Meanwhile, Huynh et al. [61]
concentrated solely on Visual Question Answering (VQA). Collectively, these surveys remain limited in scope,
lacking coverage of broader methodological components such as prompt design and adapter integration.

In contrast, our survey aims to address these gaps by presenting the first unified framework that systematically
integrates the full VLM pipeline, covering pre-training strategies, fine-tuning techniques, prompt engineering,
adapter-based tuning (including LoRA, BitFit, Houlsby, and Compacter), and empirical benchmarking. Beyond
simply listing techniques, we introduce structured taxonomies and evaluation tables that clarify the applicability,
advantages, and limitations of various adapter types and prompt strategies. We also provide a detailed dataset
audit that includes multilingual coverage, modality types, annotation bias, and domain generalization—areas
largely neglected in prior works. Importantly, our discussion covers multiple application domains including
medical imaging, autonomous driving, document understanding, robotics, and general-purpose vision-language
tasks, thereby demonstrating the cross-domain applicability of our framework. We further highlight practical
deployment considerations such as parameter-efficient tuning, scalability, latency, and modularity, which are
critical for industrial adoption but often overlooked in prior surveys. This comprehensive approach makes our
survey the first to integrate the full life cycle of Vision-Language Models, from pre-trained models and datasets
to fine-tuning, task-specific prompts, and scalable adapters. Ultimately, our survey sets a new benchmark in the
field, enabling researchers and practitioners to optimize Vision-Language Models for both academic research and
industrial applications. Table 1 outlines the domains and optimization techniques targeted by each respective
survey, while Table 2 illustrates the strengths and weaknesses of the existing survey papers.

2.4. Gaps in the Literature

Despite the wealth of insights provided by existing surveys and research in the Vision-Language Model
domain, several critical gaps remain in the literature. These gaps represent promising areas for future research,
particularly in the following aspects:

2.4.1. Fine-Tuning Methods

Although significant progress has been made in fine-tuning (FT) pre-trained models for vision-language
tasks, computationally efficient fine-tuning techniques remain unexplored. Current approaches, especially those
involving large-scale models, often demand extensive computational resources, making them less accessible
for researchers with limited infrastructure. The development of low-resource fine-tuning strategies and transfer
learning methods is particularly scarce, representing an important avenue for further investigation [63]. Future
work should focus on minimizing the computational cost while maintaining the performance of Vision-Language
Models across various applications.

2.4.2. Pre-trained Models

Pre-trained models such as CLIP [64], Flamingo [9], and VILBERT [65] have become foundational for many
vision-language applications. However, there is limited exploration of optimization strategies tailored to specific
tasks. Although these models are pre-trained on massive datasets, their adaptability to diverse task-specific
requirements remains insufficiently addressed. Additionally, domain-specific pre-training, which could enhance
the models’ performance on specialized tasks, has not been extensively studied [66]. Further research is needed to
investigate the potential of specialized pre-training techniques for domain-specific applications, enhancing their
generalization ability.

2.4.3. Prompt Engineering

Prompt engineering (PE) has gained significant attention in recent literature, yet many surveys have yet to
examine how different prompt design strategies impact model performance across a wide range of domains. While
general and task-specific prompts have been discussed, there remains a gap in understanding how these prompts
can be fine-tuned for particular use cases. The lack of in-depth studies on prompt adaptation for specific domains
presents a promising direction for future research [67]. Studies should explore task-specific prompt design and
its influence on fine-tuning Vision-Language Models for optimal performance.
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2.4.4. Adapters

Adapter-based methods have emerged as a promising solution for efficient model adaptation without requiring
full fine-tuning. However, there is still a need for a more thorough understanding of the limitations of these
methods, particularly in scaling them to larger models. Research into identifying the most effective adapter
architectures and their impact on task performance remains limited. Further exploration into how adapters can
be utilized for cross-task generalization and large-scale model deployment is essential [68].

2.4.5. VLM Datasets

The development of high-quality, multimodal datasets continues to be a significant challenge. While datasets
such as MS COCO [69] and Visual Genome [70] have been widely used, they remain limited in their diversity and
scope. These datasets lack sufficient variety in content and real-world contexts, which affects the generalizability
of Vision-Language Models. There is a pressing need for more diverse, multilingual, and cross-domain datasets
that can foster better generalization and support real-world applications of Vision-Language Models [71]. The
creation of richer, more varied datasets is crucial for advancing the field.

2.5. Emerging Trends in VLM Research

Recent trends in VLM research reveal several promising research trajectories. Notably, the integration
of cross-modal transformer architectures and proliferation of multitask learning methodologies are attracting
considerable attention. These frameworks synergistically integrate heterogeneous learning paradigms to augment
model efficacy across diverse applications. Furthermore, advancements in self-supervised learning facilitate
enhanced vision-language alignment by enabling VLMs to acquire representations with minimal dependence
on annotated data, thereby improving both scalability and operational efficiency. Concurrently, sophisticated
multimodal fusion techniques continue to progress, significantly refining intermodal interactions to elevate overall
performance in complex reasoning tasks. As the discipline progresses, hybrid architectures integrating vision
language learning paradigms are expected to assume increasingly pivotal roles. An emerging area of interest
is model efficiency, specifically reducing computational overhead during fine-tuning, training, and inference.
Approaches such as sparse transformers, distillation, and knowledge transfer are being explored to improve the
accessibility and scalability of Vision Language Models. These approaches aim to optimize large scale VLMs
for resource-constrained environments while expanding practical deployment potential across domains [72].

3. VLM Optimization Insight

As Vision-Language Models continue to expand in both size and complexity, their systematic optimization
emerges as a critical demand for enhancing efficacy across diverse multimodal applications. Strategic optimiza-
tion methodologies not only enhance models capacity for cross-domain generalization and specialization but also
ensure computationally efficient deployment in practical application [73]. Core techniques, including prompt
engineering, pre-training paradigms, adapter mechanisms, and fine-tuning methods, constitute foundational
elements for maximizing VLM performance. Subsequent sections present a comprehensive analysis of principal
optimization strategies, specifically prompt engineering, adapter, pre-training methodologies, and fine-tuning
approaches. Each technique contributes substantially to advancing task-specific proficiency, computational
resource efficiency, and scalable implementation frameworks.

3.1. Prompt Engineering

Prompt engineering has emerged as a critical optimization approach for Vision Language Models, enabling
the model ability to perform complex multimodal tasks. By strategically employing natural language instructions,
prompts direct VLMs to perform diverse operations with minimal task-specific training requirements. This
approach is particularly valuable in scenarios where labeled data is limited, allowing Vision-Language Models
to generalize across a range of domains. Effective prompt engineering not only optimizes model performance
but also enhances computational efficiency and task adaptability [74]. This section explores the various types of
prompts, applications in zero-shot [75] and few-shot learning [76], and optimization techniques used to improve
prompt-based performance. Figure 7 presents the research development of the prompt engineering from 2021
to 2025.
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Figure 7: Research progress in prompt engineering techniques from 2021 to 2025.

3.1.1. Types of Prompts:

Prompts in Vision Language Models can be classified into two primary types: discrete prompts and
continuous prompts. Each type serves distinct purposes depending on the nature of the task and the level of
model flexibility required [77].

o Discrete Prompts: Discrete prompts as also called Hard Prompts [78] are pre-defined, human-readable
text inputs used to instruct the model on how to approach a given task. These prompts are straightforward
to implement and interpret, making them a popular choice for tasks with clear, well-defined objectives.
For example, a typical discrete prompt might be phrased as, “What is the object in the image?” [5].
While effective for tasks that require basic recognition or classification, discrete prompts can be less
flexible in handling more complex, context-sensitive tasks, limiting their utility in certain multimodal
applications [79]. Several recent studies have explored the application and impact of discrete prompts
in the VLM domain. Notable work includes [78] proposed knowledge-aware prompts that incorporate
semantic class descriptions as discrete inputs while [80, 81] conducted a comprehensive review of
prompt engineering methods, highlighting the role of discrete prompts in VLMs. [74] explored black-box
optimizers to generate discrete, human-readable prompts. Additional notable contributions include the
works of [82], [83], [84], [85], [86] and [87], each offering unique perspectives on the design, optimization,
and interpretability of discrete prompts in VLMs.

e Continuous Prompts:Continuous prompts [88] employ trainable parameter embeddings integrated within
model inputs, enabling dynamic task-specific adaptation. These prompts provide richer forms of input that
allows the model to adjust the model based on task-specific requirements. Their continuous nature renders
them especially effective for complex, context dependent operations requiring complex flexibility [89].
This approach substantially enhances cross-modal generalization capabilities where conventional discrete
prompts prove insufficient. Recent empirical investigations including Khattak et al. [90], Long et al. [89],
and Zhou et al. [91] demonstrate marked improvements in task adaptability and performance metrics
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[102]

through continuous prompt implementation. These techniques enable robust generalization across diverse
multimodal contexts with minimal task-specific training. Complementary research by Nguyen et al. [92]
and Bai et al. [93] further explore computational efficiency gains and enhanced task transferability by
continuous prompts.

The methodology continues to evolve, exhibiting significant potential for advancing generalization
capacity and robustness in Vision Language Models. Additional studies [94], [95], [96], [97], [98], [99]
and [100] have also explored various aspects of continuous prompts, collectively validating continuous
prompts efficacy in optimizing model performance and operational flexibility [101].

3.1.2. Utilization

One of the primary advantages of prompt engineering is its capacity to enable zero-shot and few-shot learning,
allowing Vision-Language Models to perform tasks with minimal or no task-specific data. These paradigms
leverage the generality of the prompts and the model’s pre-trained knowledge to enable effective task execution
[103].

Zero-shot Learning: In zero-shot learning, Vision-Language Models are expected to perform tasks without
being explicitly trained on task-specific data. Instead, the model generalizes its pre-trained knowledge by
interpreting the natural language prompt. The effectiveness of zero-shot learning heavily relies on the design
of the prompt, as it must provide enough context for the model to infer the correct task despite having never
encountered specific examples during training [5]. Well-crafted prompts thus become a powerful tool for
transferring knowledge across diverse tasks without the need for additional labeled data. Recent studies have
demonstrated the effectiveness of prompt engineering in zero-shot learning scenarios, including works such as
[104], [75], [105], [106], [107], [LO8], [109], [110]. [111]

Few-shot Learning: Few-shot learning [112] allows Vision-Language Models to adapt to new tasks with a
limited number of labeled examples. In these settings, the model can generalize from a small number of task-
specific instances, and prompt engineering plays a crucial role in guiding the model’s adaptation process. The key
challenge in few-shot learning is designing prompts that enable the model to efficiently learn from a small amount
of data while maintaining high performance [113]. Recent advances, such as the use of prompt-based learning in
the StyLIP model [114], demonstrate how carefully designed task-specific prompts can significantly enhance
the model’s ability to perform well even with minimal supervision. [115] introduces BiomedCoOp, a novel
prompt learning framework for efficient adaptation of BiomedCLIP for few-shot biomedical image classification.
similarly [116] compares few-shot fine-tuning and in-context learning, highlighting the effectiveness of prompt
engineering in both approaches. Other notable studies in this domain include [117], [117], [118], [119], and [120].

3.1.3. Prompt Optimization

To further optimize prompt-based performance, several advanced techniques have been introduced. These
methods focus on refining how prompts are presented to the model, ensuring more efficient and effective task
execution.
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Soft Prompts: Soft prompts are learnable prompts that are not pre-defined but instead learned during the
training process as continuous vectors. This approach allows the model to adapt the prompt based on the task,
enhancing its flexibility and performance. Soft prompts have demonstrated superior performance over discrete
prompts in tasks that require greater adaptability, as they enable the model to adjust its approach to better suit the
task’s requirements [102]. This technique is particularly effective in zero-shot and few-shot learning settings,

Table 3: Summary of Prompt Engineering Technique for Vision Language Models (2021-2025)

Year Method Type Description Publication Code
2021 | CLIP[5] Hard-Prompt | Lntroduced contrastive ICML 2021 Link
language-image pre-training.
Context optimization for
2022 CoOp [121] Soft-Prompt prompt tuning using learnable 1ICV 2022 Link
embeddings.
2022 CPT [122] Hard-Promp | L2sk-specific fine-tuning in e Link
vision-language tasks.
Extended CLIP to dense vision
2022 DenseCLIP Text tasks with optimized textual CVPR 2022 Link
[123] Soft-Prompt
prompts.
Few-shot learning framework .
2022 FewVLM [124] | Hard-Prompt for VLMs using hard prompts. ACL 2022 Link
2002 ProDA [125] Text Prompt d}strlbutlor} alignment CVPR 2022 Link
Soft-Prompt for domain adaptation.
2022 | ProGrad[126] | LX Gradient optimization to CVPR2022 | Link
Soft-Prompt improve prompt effectiveness.
Combined prompt tuning with
2022 PEVL [127] Hard-Prompt vision encoders for enhanced EMNLP 2022 Link
alignment.
2022 VPT [128] Visual Visual embeddings as ECCV 2022 Link
Soft-Prompt learnable prompts.
2022 | TPT[129] Text "§pranced text-based NeurIPS 2022 | Link
Soft-Prompt prompt-tuning methods.
Visual Visual Prompt multi-modal
2023 ViPT [130] ! Tracking for various CVPR 2023 Link
Soft-Prompt
downstream tasks.
2023 MaPLe [131] Visual-text & Multlimodal Adaptive Prompt CVPR 2023 Link
Modal-Prompt Learning.
2023 | KeCoOp[132] | 1 Knowledge-guided context CVPR 2023 Link
Soft-Prompt optimization.
2023 LASP [133] Text Text-to-Text optimization fqr CVPR 2023 Link
Soft-Prompt language-aware soft prompting.
2023 DAMVP [134] Visual dlversn.y—aware meta visual CVPR 2023 Link
soft-prompt prompting.
Text Task Residual for Tuning .
2023 TaskRes [135] Soft-Prompt Vision-Language Models. CVPR 2023 Link
Text Read-only Prompt
2023 RPO [136] Optimization for Few-shot ICCV 2023 Link

Hard-Prompt

Learning.
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Year Method Type Description Publication Code
2023 PromptSRC Visual-Text Semant}c-Rlch Contextual 1CCV 2023 Link
[137] Soft-Prompt Prompting.

2024 DePT [138] Visual Text Dense Prompt Tuning. CVPR 2024 Link
Soft-Prompt

2024 TCP [139] Text Text-Conditioned Prompting. | CVPR 2024 Link
Soft-Prompt

2004 MMA [140] Visual-Text Multl—Modal Adaptive CVPR 2024 Link
Soft-Prompt Prompting.

2024 | HPT[141] Visual-Text Hierarchical Prompt Tuning. AAAL 2024 Link
Soft-Prompt

2024 ﬁog]"mp ! Soft-Prompt Contextual Prompt Learning. | ICLR 2024 Link
Visual-Text . .

2024 CasPL [143] Cascade Prompt Learning. ECCV 2024 Link
Soft-Prompt

2004 PromptKD [96] Visual-Text Knowledge Plstlllatlon-based CVPR 2024 Link
Soft-Prompt Prompt Tuning.
Visual-Text Dual-Prompt Collaboration for .

2025 DPC [144] Soft-Prompt tuning VLMs. CVPR 2025 Link
Visual-Text Two-Stage Few-Shot .

2025 2SES [145] Soft-Prompt adaptation for VLMs. CVPR 2025 Link

where the model must generalize from minimal data.Some recent research work on soft prompts are [98] [146],
[147], [148], [149], and [150].

Prefix Tuning: Prefix tuning [151] is a more computationally efficient substitute to conventional fine-
tuning. This approach prepends learned parametric prefixes to input embeddings, directing task interpretation
without full model retraining. By focusing only on a small portion of the model parameters (the prefix), this
approach decreases computational overhead while achieving targeted optimization [152]. Empirical studies
confirm performance enhancements with minimal resource expenditure, making it an attractive option for
resource-constrained environments [153]. Ground breaking research studies on prefix tuning are [154], [155],
[156] and [157].

Hybrid Methods: Hybrid methodologies synergistically integrate discrete and continuous prompting engi-
neering. These strategies leverage complementary strengths through combined textual prompts (discrete prompts)
and trainable continuous vectors (soft prompts), creating flexible adaptation frameworks. Consequently, VLMs
achieve expanded functional scope with heightened efficacy across multimodal applications. This integrative
approach enables more resource efficient and adaptable task execution across heterogeneous domains [158],
[159], [160], [161] [162].

Table 3 summarizes key prompt engineering techniques for Vision-Language Models, including discrete,
continuous, and structured prompts. It emphasizes techniques for task-specific adaptation, such as prompt based
fine-tuning and few-shot learning, and their applications in domains such as image captioning, object detection,
and visual question answering (VQA). Collectively, these approaches enhance model versatility and operational
efficiency in both specialized and generalized contexts.

3.1.4. Challenges and Open Problems

Prompt engineering represents a paramount optimization strategy for Vision Language Models, yet several
challenges must be addressed to advance multimodal learning efficacy [80]. A principal limitation concerns cross-
domain transferability. prompts frequently demonstrate task-specific performance but exhibit limited adaptability
across domains, particularly in zero-shot learning scenarios [163]. Furthermore, interpretability limitations
in soft and continuous prompts obscure decision rationales, creating significant barriers for safety-sensitive
contexts. This requires developing interpretability to enhance methodologies without performance degradation.
Concurrently, another challenge is computational demands from parameter-efficient adaptations (e.g., prefix
tuning, soft prompts) increase model complexity, hinder real-time applications [54]. Further challenges include
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significant input sensitivity that appears as performance degradation under noisy or adversarial conditions and
require robust techniques to mitigate this sensitivity. Effective prompt design for few-shot or zero-shot learning
with complex multimodal inputs poses significant difficulties. Bias in prompts is another issue, as it can lead
to harmful stereotypes or unethical results, stressing the need for strategies to determine and reduce bias. The
field additionally suffers from fragmented evaluation standards that obstruct comparative analysis and best-
practice establishment. Finally, the fundamental challenge of synergistic vision and language integration through
prompts remains inadequately addressed, requiring innovative multimodal tuning approaches. Addressing these
challenges is crucial for enhancing the applicability and cross-domain effectiveness of prompt engineering in
Vision-Language Models.

3.2. Pretraining

Pre-training serves as a fundamental phase in the development of VLM Models, as it develops the foundation
for acquiring the vital information necessary to perform a diverse series of multimodal tasks [164]. Using
extensive datasets that combine visual and linguistic modalities, pretraining techniques focus on generating
unified representations that are efficient for tasks such as VQA, image caption generation, and cross-modal
information retrieval [165]. Recently, various pretraining approaches have been proposed where each and every
pretrained model has his own distinct strengths and limitations [166]. This section will discuss some of the most
common strategies such as contrastive objectives [167], alignment strategies [168], and generative pre-training
[169] while also highlighting the associated challenges and open problems in this domain of VLM.

3.2.1. Contrastive Learning :

Contrastive learning (CL) has become a dominant approach for pre-training Vision-Language Models, with
its primary goal being to align visual and textual embeddings into a shared latent space [32]. In this framework,
the model learns to associate matching image-text pairs while distinguishing them from non-matching pairs. By
optimizing the contrastive loss function, the model learns robust representations that capture the relationships
between vision and language [170, 171].It encompasses three pivotal approaches: Image CL, Image-Text CL,
and Image-Text-Label CL, each tailored to enhance model performance in specific applications.

A notable contribution is DoCo (Document Object Contrastive Learning), introduced by Li et al. [25].
DoCo extends contrastive learning to visual document understanding by aligning features of document objects
(e.g., tables, figures, and text regions) with visual representations generated by vision encoders. This approach
enhances comprehension in text-rich scenarios, making DoCo particularly effective for document classification,
layout analysis, and multi-modal information extraction. DoCo highlights the utility of precise alignment for
generalizing across complex, text-heavy scenarios but also encounters challenges like noise in datasets and high
computational demands. Beyond DoCo, contrastive learning encompasses several key methods tailored to specific
aspects of vision-language tasks:

Image CL Image CL focuses on learning robust image representations by contrasting positive and negative
pairs. This approach is particularly effective in scenarios with limited labeled data, as it enhances the model’s
ability to discern patterns within unlabelled data. For instance, in hyperspectral image prediction, contrastive
learning has been shown to improve classification performance even with reduced training data, by enabling
the encoder to adapt to features identified by the classifier [172]. In medical imaging, contrastive learning
frameworks like counterfactual contrastive learning have been developed to create positive pairs that capture
relevant domain variations, such as scanner differences, thereby improving robustness to acquisition shifts and
enhancing downstream performance [173].

Image-Text CL Image-text contrastive learning aligns visual and textual data by minimizing the distance between
semantically similar image-text pairs while maximizing it for dissimilar pairs. This technique is crucial for
tasks like image-text retrieval, where distinguishing visually similar images is challenging. The Triplet Contrast
Learning Framework (TCLF) and its associated losses, such as SNCE and IMI, have been proposed to enhance
discriminative capacity and improve alignment in challenging image-text pairs [174]. In the medical domain,
image-text contrastive learning has been used to pair chest X-rays with structured report knowledge graphs,
outperforming traditional image-text methods by leveraging structured clinical insights to enhance learning [175].
Image-Text-Label CL Image-text-label contrastive learning extends the concept by incorporating label in-
formation into the contrastive learning process. This approach is particularly beneficial in multi-label text
classification, where integrating label semantics and correlations can significantly enhance model performance.
The multi-perspective contrastive model (MPCM) exemplifies this by using contrastive methods to improve
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label information perception from both textual semantic and correlation perspectives [176]. In vision-language
instruction tuning, content correlated VLIT data generation via contrastive learning (C3L) has been proposed
to enhance content relevance between VLIT data and images, addressing challenges like exposure bias and
improving model generalization to unseen inputs [177].

Contrastive learning has significantly advanced VLM capabilities e.g [178] utilizes image-text contrastive
learning to align image snippets with text, enhancing gene identification and pathway curation. Similarly, [179]
employs CLIP-based prompts to improve geo-localization through enhanced visual feature generalization, but
challenges such as noisy data alignment, reliance on limited data augmentation strategies, and high computational
costs persist, requiring future research into scalable methods and robust augmentation techniques for diverse
applications.

3.2.2. Alignments Strategies:

Alignment strategies aim to learn joint representations of visual and textual modalities that allow models to
effectively reason about the interactions between them [180]. One common technique is cross-attention, where
separate visual and textual streams are processed initially, followed by shared attention layers that enable the
model to align the two modalities. This approach allows the model to learn contextual relationships between image
regions and words in a caption or a question, improving performance on tasks that require understanding of both
modalities. Recent models, such as EVE [181] and VisionGPT [182], exemplify advancements in cross-modal
alignment. EVE removes the need for separate encoders, utilizing a unified framework to process both visual
and textual inputs, simplifying the model and improving efficiency. VisionGPT extends this by combining SOTA
foundation models to improve multimodal understanding and facilitate complex vision-language applications.
Another notable technique is ViTamin [45], which optimizes visual encoder design within the CLIP framework,
enhancing scalability and efficiency for vision-language tasks. Unlike earlier approaches that depend on pre-
extracted visual features, these models permit real-time processing by dynamically aligning visual and textual
representations during training. The alignment procedures in vision-language models mainly concentrate on two
approaches: Image-Text Matching and Region-Word Matching
Image-Text Matching Image-text matching is a fundamental task in VLM research, involving the precise
alignment of visual content with linguistic descriptors to enable applications such as automated caption generation
and cross-modal retrieval. Several recent advancements have refined this process. For instance, the CLIP-based
model uses Vision Transformer and BERT to encode images and text, respectively, integrating them into a shared
vector space to measure semantic similarity. This framework enhances computational efficiency during training
and demonstrates state-of-the-art performance on benchmark datasets including WuKong and Flickr30k [183].
Similarly, the FAAR method focuses on local similarity levels between visual elements and textual, employing a
filtered attention module to remove meaningless compariso and an adaptive regulator to adjust attention weights.
This approach improves alignment accuracy on datasets such as Flickr30K and MSCOCO [184]. The BOOM
network further advances image-text matching by imposing bidirectional consistency between "word-to-region”
and "region-to-word" mappings, ensuring precise cross-modal alignments and achieving leading performance on
major datasets [185].

Region-Word Matching Region-Word Matching focuses on aligning specific regions of an image with corre-
sponding words in a text, providing a more granular level of alignment. DALNet employs a dual-level alignment
strategy, using Global Implicit Alignment for capturing global semantics and Local Explicit Alignment for
improving object localization. This approach significantly enhances weakly supervised semantic segmentation
performance [186]. Similarly, the HUGE method uses hierarchical graph learning to promote cross-modal
learning and unified graph enhancing to integrate plausible alignments. This strategy outperforms state-of-
the-art image-text matching methods [187]. Another notable advancement is MACK uses prototypical region
representations to match images with texts, even in unpaired scenarios. This method is effective for zero-
shot and cross-dataset image-text matching [188]. While these advancements enhance alignment efficiency
and accuracy, challenges remain, particularly in aligning fine-grained visual and textual information when
handling heterogeneous or noisy datasets. Addressing these issues requires innovations in model architecture, data
preprocessing, and multimodal optimization techniques to ensure robust performance across diverse applications.

3.2.3. Generative Pre-training:
Generative pre-training frameworks are designed to facilitate novel content synthesis, including textual
or visual outputs, by exploiting learned cross-modal representations. This approach demonstrates particular
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efficacy for caption generation, AVQ, and multimodal synthesis applications. Unlike contrastive pre-training,
which prioritizes discriminative objectives, generative pre-training intends to generate high-quality outcomes
that are coherent and contextually relevant with respect to the given input. VL-GPT [189] is proficient at
concurrently perceiving and generating visual and linguistic data, achieving empirically validated performance
in image captioning, visual question answering, and text-to-image synthesis. Complementary innovations such
as VQ-VAE and GPT Fusion address limitations in image synthesis by combining discrete latent representations
from Vector Quantized Variational Autoencoders with GPT, allowing contextually coherent and realistic image
generation [190]. Similary, ViTLP advances visual document understanding through hierarchical text-layout
modeling and multi-segment generative pre-training [191]. C-PGC strengthens VLP models against adversarial
samples using contrastive training guided by cross-modal information, improving robustness and transferability
[192]. Generative pre-training offers flexibility in handling a range of downstream tasks, but it also introduces
challenges related to training stability and sample diversity. Generative models require large amounts of

Table 4: Pre-training Techniques for Vision-Language Models

Pre-training Description Models Applications Challenges
Technique
Contrastive Ob- | Contrastive  learning | CLIP, ALIGN Cross-modal difficulty in scaling to
jectives aligns  vision and retrieval, Image | large datasets, Need for

language embeddings captioning, high-quality pairs of

by mapping similar Zero-shot data

vision-language  pairs learning,

close together in the Visual search

embedding space.
Alignment Focuses on cross-modal | VLP, Visual Balancing  alignment
Strategies representation learning, | ViLBERT , | Question across domains,

where  vision and | UNITER Answering Complex loss functions

language models are (VQA),

jointly trained to align Multimodal

their representations in representation

a shared space. learning
Generative Pre- | Pre-trains models to | Flamingo, Text-to-image Generating  coherent
training generate text or images, | BLIP, DALL- | generation, content, Difficulty in

with the model learning | E, GPT-3 Text fine-tuning for specific

to predict and generate generation, domains

data in a multimodal Cross-modal

setting. generation

tasks

Masked Uses a masked | BERT, Natural Computational cost,
Language language modeling | DeBERTa, language Masking strategies,
Modeling objective ~ to  pre- | VILBERT understanding, Balancing modalities
(MLM) train models to Image

predict missing captioning,

tokens in sentences Cross-modal

or image captions, reasoning

improving contextual

understanding.

Continued on next page
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Continued from previous page

Pre-Training Description Models Applications Challenges
Cross-modal Aligns image and | ImageBERT, Image-to-text Data imbalance, Diffi-
Contrastive text representations | OSCAR, matching, culty in selecting nega-
Learning by contrasting paired | VisualBERT Text-to-image tive samples
and non-paired data, retrieval,
enhancing cross-modal Zero-shot
understanding. learning
Multimodal Pre-trains models to | ViT-BERT, Video-text Capturing cross-modal
Autoencoding perform autoencoding | MERLOT understanding, dependencies, Robust-
tasks,  reconstructing Image ness of the autoencoder
missing parts of a captioning, task
modality  (text  or Video
image). description
generation
Masked Image | Maskspartsof animage | BEiT, MAE, | Image Balancing visual and
Modeling and trains the model to | MaskFeat inpainting, textual inputs, Image
(MIM) reconstruct the missing Visual diversity challenges
regions based on textual representation
input. learning,
Visual caption
generation
Self-supervised | Uses  self-supervised | SimCLR, Object Handling large amounts
Pre-training tasks to allow models | MoCo, SWAV detection, of unlabeled data, En-
to learn from unlabeled Image suring effective super-
data by generating segmentation, vision signals
their own supervision Visual feature
signals. extraction

diverse data to ensure the outputs remain meaningful and accurate. Additionally, balancing the generative and
discriminative aspects of pre-training is a difficult task, as it requires ensuring that the model is both capable of
producing high-quality text and aligning the visual and textual domains effectively.

The Table 4 summarizes various pre-training techniques for Vision-Language Models, including contrastive
learning, alignment strategies, generative pre-training, and self-supervised tasks. Each technique has its specific
approach, such as aligning image-text pairs, generating multimodal content, or predicting missing information.
The table highlights the applications of these methods, such as image captioning, text-to-image generation, and
visual question answering. It also outlines the key challenges, including data quality, computational cost, model
scalability, and ensuring effective alignment across modalities.

3.2.4. Challenges and Open Problems:

Despite significant progress in Vision Language Models through pretraining techniques such as contrastive
objectives, alignment strategies, and generative pre-training, face several challenges that hinder their scalability,
efficiency, and effectiveness of these models. One of the primary challenges is data integrity and modality
alignment. Ensuring high quality well-aligned image-text pairs remains a persistent issue, as misaligned or noisy
training data demonstrably compromises model performance, particularly in complex cross-modal reasoning
applications. Additionally, the vast amount of data required to train high-performing Vision-Language Models
necessitates substantial computational resources and efficient data curation methods. Computational efficiency is
another serious hurdle, as pre-training Vision Language Models on large multimodal datasets demands significant
hardware resources. Although techniques like hard negative mining and more efficient model architectures, such
as ViLT, are being explored to alleviate computational bottlenecks, balancing efficiency with model performance
remains a key challenge. Furthermore, multimodal alignment continues to be difficult, as the differences in
the granularity and structure of visual and textual data require sophisticated methods for effective cross-modal
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understanding. As multimodal tasks become more complex, the need for more robust alignment techniques
intensifies.

Finally, ensuring task generalization and robustness is critical for the success of Vision-Language Models.
While contrastive pre-training has demonstrated strong zero-shot learning capabilities, the transferability of
learned representations across a wide range of tasks remains an area for improvement. To tackle these challenges,
ongoing research is needed to refine existing pretraining approaches, develop more efficient training techniques,
and enhance alignment and scalability. These efforts will be essential for advancing the robustness, efficiency,
and capability of future Vision-Language Models.
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3.3. Adapter

Adapters have emerged as a widely recognized method for adapting the VLM model to a variety of tasks while
maintaining low computational costs [194]. These lightweight, task-specialized modules are incorporated within
pretrained architectures, enabling effective adaptation without full-model retraining [195]. Adapters are particu-
larly advantageous in resource constrained scenarios where task-specific data is limited or where computational
efficiency is crucial [196]. This section conducts a systematic examination of adapter types, contrasts them with
conventional fine-tuning approaches, and investigates their efficacy in cross-modal integration and task-specific
adaptation. Furthermore, it critically evaluates persistent methodological constraints, implementation limitations,
and unresolved challenges inherent to adapter deployment within contemporary VLM frameworks.

3.3.1. Modular Adapters:

Modular adapters are small task-specific modules integrated into a pretrained VLM Model. These adapters
contain a limited number of parameters, which are fine-tuned for specific downstream functions while maintaining
the integrity of the foundation model. The main advantage of this modular technique is that it facilitates task-
oriented adaptation without involving extensive computational power for complete model retraining. Adapter-
BERT is a prominent example of modular adapters. It incorporates modular adapter layers into a pretrained
BERT model, improving its efficiency across tasks such as entity name recognition and sentiment analysis [197].
This modular technique retaining fixed pretrained parameters facilitates more efficient adaptation, offering a
distinct advantage over conventional fine-tuning techniques requiring updates to all model parameters. In the
domain of VLM modular adapters allow models to focus on specific tasks such as VQA or image captioning
while retaining the broad knowledge learned from extensive diverse datasets. These adapters significantly reduce
computational costs and are more straightforward to implement presenting them as a preferred option for various
practical applications [198]. Furthermore, recent research that has used the concept of modular adapters includes
VL-Adapter [199], MDL [200], and Q-Adapter [201].

First Author et al.: Preprint submitted to Elsevier Page 24 of 72



VLM Survey

3.3.2. Multi-Modal Adapters

éeputis et al., [194] introduced a framework that incorporates a trainable multi-head attention mechanism
to integrate textual and visual features, thus enhancing the generalization of models like CLIP when used to
previously unseen classes. Similarly, the multimodal adapter approach integrates textual and visual modalities
features into a unified feature space. This approach optimizes the balance between discriminatory power and
generalization by focusing on the upper layers of transformer architectures [202]. Moreover, LaVIN employs a
Mixture-of-Modality adapter to efficiently connect image encoders with large language models. This approach
facilitates seamless integration of vision and language, as well as adaptability to multimodal instruction-based
tasks, achieved through lightweight and parameter-efficient fine-tuning [203].

3.3.3. Fusion and Non-Fusion Adapters:

Adapter-based fine-tuning has become a widely adopted strategy for efficiently adapting pre-trained Vision-
Language Models to downstream tasks. These adapters can be broadly categorized into two types, fusion
and non-fusion, based on how they interact with multimodal inputs and where they are integrated within the
model architecture. This distinction is critical for understanding their design goals, mechanisms, and application
scenarios.

o Fusion adapter: Fusion adapters are developed to enhance cross-modal interaction by integrating visual
and textual features within the adapter layer itself. They are typically inserted into or around the cross-
attention layers, fusion blocks, or multimodal decoder components of the VLM. This placement enables
them to directly influence how information from one modality condition or interacts with the other. Fusion
adapters learn task-specific refinements to the process of integrating information across modalities. They
can optimize cross-modal attention weights, transform combined representations, or guide the interplay
between visual and linguistic cues. These adapters are “fusion-aware” and directly contribute to the
joint understanding required for complex multimodal tasks. For example, VL-Adapter [199] introduces
cross-attention layers to fuse visual and textual embeddings, while UniAdapter [204] employs a unified
adapter module across both modalities to improve joint representation learning. PaLM2-VAdapter [205]
enhances the model’s ability to acquire a shared, task-specific representation space for visual and textual
data, thereby improving the efficiency and effectiveness of cross-modal reasoning. Fusion adapters are
particularly useful in several scenarios. They are essential for complex multimodal reasoning tasks such
as VQA, where deep logical inference over visual content guided by textual queries is required, or detailed
image captioning that demands fine-grained alignment between specific visual elements and linguistic
descriptions. They also support task-specific cross-modal alignment, such as in visual dialogue, where
dynamic and context-dependent interaction between modalities is critical. Additionally, fusion adapters
are valuable for direct multimodal output generation, including text-guided image synthesis or image-
guided story generation, where the adapter refines how information from one modality is translated or
infused into the output of the other.

Non-Fusion Adapters: Non-fusion adapters operate independently within each modality stream, such
as vision or language, without directly modifying the fusion mechanisms of the VLM. These adapters
are usually inserted into the unimodal encoder layers, such as the Vision Transformer or language model
blocks, and are used to fine-tune modality-specific representations before any cross-modal interaction
occurs. Their mechanism focuses on learning task-specific transformations for visual or textual features
in isolation, relying on the base VLM’s pre-trained fusion layers to handle cross-modal alignment. This
modular approach allows for more targeted and efficient adaptation, particularly in scenarios where
modalities can be addressed separately. For instance, LoRA [14] injects low-rank matrices into the
attention layers of either the vision or language encoder, while BitFit [206] fine-tunes only the bias terms,
and Houlsby adapters [207] introduce bottleneck layers within self-attention blocks. Compacter [208]
further enhances efficiency by using low-rank parameter composition.

Non-fusion adapters are particularly useful in three key scenarios. First, they are ideal for unimodal
domain adaptation, such as adapting the vision component of a VLM to new visual domains like medical
imaging or satellite imagery, or tuning the language component to specific jargon or writing styles. In
these cases, the core cross-modal reasoning remains robust, but the quality of unimodal features needs
enhancement. Second, they are valuable for efficient unimodal task performance, where the VLM’s pre-
trained knowledge is leveraged for tasks that are fundamentally unimodal, such as using the visual branch
for fine-grained image classification or object detection, or the language branch for text summarization
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or sentiment analysis. Third, non-fusion adapters can serve as pre-fusion enhancement modules even in
multimodal tasks like VQA or image captioning. For example, a visual adapter might make the image
encoder more robust to noisy inputs, leading to better downstream performance, even though it does not
directly participate in the fusion logic.

Both fusion and non-fusion adapters give unique advantages. Fusion adapters are particularly efficient for tasks
that require a unified understanding of vision and language information, whereas non-fusion adapters allow more
specialized, domain and task-oriented adjustments for specific modalities. The choice between these adapter types
is typically guided by the nature of the downstream task and the degree of cross-modal interaction required for
optimal performance.

Adapter-based tuning methods have emerged as a powerful paradigm for parameter-efficient fine-tuning of
large vision-language models. Techniques like LoRA [14] introduce low-rank updates to attention layers, offering
a strong balance between efficiency and performance. BitFit [206], which tunes only bias terms, is extremely
lightweight but limited in capacity. Houlsby [207] adapters insert modules after attention and feed-forward layers,
providing flexibility and solid performance. Compacter [208] leverages Kronecker decomposition for expressive
yet compact adapters. Prefix Tuning [151] prepends learnable vectors to inputs, avoiding any modification to
model weights. Adapter Fusion [209] enables the combination of multiple task-specific adapters, enhancing
multi-task generalization. Parallel Adapters [210] run alongside the main layers, allowing for modular and joint
training. Finally, LLaMA-Adapter v2 [211] is tailored for large-scale models, integrating adapters into attention
and MLP blocks for scalable instruction tuning. Together, these methods offer a rich design space for adapting
VLMs to diverse downstream tasks with minimal computational cost.

Table 5: Comparative overview of prominent adapter-based tuning methods in vision-language
models. The table highlights integration points, extent of model modification, number of trainable
parameters, strengths, limitations, and best used cases.

Method Integration Model Trainable Pros Cons / Limita- | Best Use Cases
Point Change Params tions
(%)
LoRA Attention layers | Minimal ~0.5% to | Efficient, May Captioning,
[14] 2% scalable, underperform VQA,
strong for both | when high-rank | Pretrained
generation and | adaptation is | LLM alignment
understanding required
BitFit Only bias terms | Extremely | ~0.03% Fast, extremely | Limited Simple classifi-
[206] of linear layers minimal low resourcere- | capacity; cation tasks
quirement not suitable
for complex
reasoning
Houlsby Bottleneck lay- | Moderate | ~1%to3% | Strong Adds latency | VQA,
Adapter ers after atten- performance, and trainable | Captioning,
[207] tion and FEN in modular  and | parameters Transfer
transformers well-tested Learning
Compacter | Attention Low to | ~0.5% to | Very compact, | Complex Few-shot
[208] and FFN | moderate 1.5% expressive, effi- | implementation | Captioning,
(Kronecker) cient reuse Retrieval
Prefix Prepended con- | Minimal ~0.1% to | Simple, avoids | Less effective | Text-to-Image
Tuning tinuous embed- 0.5% modifying base | for deep | generation,
[151] dings model multimodal Zero-shot tasks
reasoning tasks

Continued on next page
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Method Integration Model Trainable Pros Cons / Limita- | Best Use Cases
Point Change Params tions
(%)

Prompt Learnable input | Extremely | ~0.01% to | Flexible, works | Optimization Open-domain

Tuning tokens minimal 0.1% with frozen | instability, QA, Low-data

[209] models architecture settings

sensitivity

Adapter Fuses multiple | Moderate | ~1%  per | Enables multi- | Requires Multi-task

Fusion trained adapters adapter task reuse multiple trained | transfer,

[212] adapters Lifelong
learning

Parallel Side modules | Moderate | ~1%t02% | Retains both | Slightly higher | Continual

Adapters in parallel with general and | inference cost learning,

[210] main layers task-specific Robust  fine-

knowledge tuning

LLaMA- Attention and | High ~5%+ Scalable to | Tiedto LLaMA | Large-scale

Adapter MLP blocks large models, | architecture VLMs,

v2 [211] efficient Instruction
tuning

3.3.4. Discussion

Adapters are generally compared to conventional fine-tuning techniques that require changing all parameters
of a model during the training process. Although fine-tuning can achieve high performance on specific tasks, it
is resource-intensive and demands large amounts of domain-specific annotated data. In comparison, adapters
provide a more productive and scalable alternative by modifying only a limited subset of parameters. For
example, DARA uses merely 2.13% of tunable parameters relative to the complete fine-tuning [213]. Adapter-
based approaches have been demonstrated to accomplish performance similar or even better to full fine-tuning,
with much limited computational cost. For example, modular adapters reduce the set of trainable parameters,
which makes them computationally more efficient and faster to train as compared to complete model fine-tuning
[214]. This efficiency is particularly valuable in situations where computational resources are limited or quick
deployment is required for new tasks. Furthermore, adapters avoid the overfitting risk, which is a common issue
in fine-tuning especially when domain-specific data are limited [202].

From a theoretical standpoint, adapter tuning operates on the principles of parameter isolation and modular
transfer learning. By keeping the backbone frozen and only training these task-specific modules, adapters mitigate
catastrophic forgetting and preserve the generalized semantic knowledge encoded in the pretrained model. This
modularity allows the model to isolate task-specific learning in lightweight components while maintaining
the integrity of the core pretrained network. Moreover, since adapters are optimized separately for each task,
they enable flexible and parallel adaptation to multiple domains without altering the shared base model. This
architecture promotes faster convergence, efficient reuse, and improved stability during training.

Nonetheless, full fine-tuning might be superior performance adapters in certain contexts, specifically for tasks
that significantly deviate from the pretraining data. In these cases, fine-tuning the whole model enables for a more
extensive adaptation. Additionally, adapter performance may decline when dealing with tasks that require deeper
semantic reasoning or rich cross-modal alignment, where the limited capacity of fixed backbones can constrain
representational learning. However, the balance between computational cost and performance must be considered
based on the specific task requirements and available resources.

In parallel, prompt tuning has emerged as a prominent parameter-efficient alternative to comprehensive fine-
tuning, yet exhibits significant limitations within the multimodel architectures. Prompt tuning typically encodes
task intent within input embeddings, relying heavily on the model pretraining to interpret this signal. In vision
language models with asymmetric encoders, this frequently leads to suboptimal adaptation. Moreover, from an
optimization perspective prompt parameters inhabit high-dimensional latent spaces, making training sensitive
to initialization and gradient instability. These constraints collectively undermine prompt tuning robustness,
necessitating deeper investigation into architectural alignment and rigorous empirical benchmarking.
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3.3.5. Challenges and Open Problems :

Adapter-based techniques substantially enhance parameter efficiency in Vision Language Models, yet persis-
tent challenges impede broader adoption. A fundamental limitation concerns restricted cross-task generalization.
Task-specialized adapter configurations restrict adaptability to novel applications, rendering robust generalization
across diverse domains with minimal retraining a significant research challenge [215]. Concurrently, architectural
scalability presents a critical challenge. While effective in moderate scale frameworks, adapter integration into
large architectures frequently introduces computational bottlenecks, impeding scalability as model complexity es-
calates [215]. In addition, achieving effective cross-modal comprehension remains a critical challenge for adapter-
based methods, especially when integrating visual and textual modalities. While fusion adapters are designed to
facilitate this integration. They often struggle with the inherent complexity of cross-modal interactions, which
can negatively influence performance in task-specific applications [216].Another critical issue is the phenomenon
of interference and negative transfer when employing multiple adapters for diverse tasks. This interference can
cause negative transfer, where the efficiency of one adapter is degraded due to conflicting information received
from the other. Addressing this challenge and enhancing the interaction between multiple adapters is critical for
improving overall performance.Finally, the issues of transferability and robustness persist, as adapters frequently
underperform when applied to unfamiliar domains or tasks involving novel concepts. Ensuring that adapters can
maintain performance across diverse scenarios and remain resilient to domain shifts is an essential direction for
future research [5]. These limitations collectively emphasize the need for continued innovation to improve the
adaptability, reliability, and generalization capacity of adapter-based approaches in Vision Language Models.

3.4. Fine Tuning

Fine-tuning techniques are critical for adapting the VLM model to task specific applications and domains.
These techniques allow the model to build upon the knowledge it has already gained during pretraining,
sharpening its capabilities to perform in downstream tasks whether they involve image processing, textual
comprehension, or a combination of both. The level of fine-tuning can range from the entire model tuning to a
more specific parameter tuning, offering a balance between computational efficiency and quicker adaptation. The
following section explores various fine-tuning approaches, highlighting their key features and potential challenges
[217].

3.4.1. Fullvs. Partial Fine-Tuning:

Full Fine-Tuning involves updating every single parameter of the model during the fine-tuning process. This
technique provides the maximum level of flexibility, as it enables the model to completely modify to a specific task
by optimizing all layers of the pretrained network. Consequently, it often improves domain-specific performance,
as the model can refine all its parameters to better capture domain-specific details. However, this technique is
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computationally intensive and requires substantial resources and time, particularly when applied to large scale
models such as Q-SFT [218]. For instance, CityLLaVA [219] utilizes full fine-tuning methodologies to optimize
the VLM model for urban-centric applications.

In contrast, Partial Fine Tuning limits updates to only specific layers or components of the model, which is
also called layer specific fine tuning. This technique involves modifying only the leading layers or selecting the
parameters most relevant to the task. This approach greatly reduces computational requirements, facilitating faster
adaptation to new tasks while maintaining the effectiveness of the model on its original pretrained objectives.
Partial fine-tuning is frequently used in transfer learning contexts, where pretrained models must adapt to new
domains with insufficient data and computational resources. However, it may not consistently achieve the same
performance level as full fine tuning, especially for tasks that are extremely complex or specialized. For example,
[217] developed the ClipFit technique that fine-tunes CLIP by adjusting only specific bias terms and normalization
layers, thus enhancing its zero-shot capabilities. Similarly, [220] introduced the SVFit parameter-efficient fine-
tuning (PEFT) approach that uses singular value decomposition to reduce the number of trainable parameters by
a factor of 16 compared to LoRA. This allows for prompt domain adaptation in resource constrained situations
while maintaining robust domain specific performance.

3.4.2. Remapping Tuning

Efficient fine-tuning techniques aim to decrease the computational cost and memory demands of fine tuning
while maintaining or even potentially enhancing domain specific performance. Several techniques have been
introduced to optimize this process:

o LoRA (Low-Rank Adaptation): LoRA aims to improve computational efficiency by incorporating low-
rank matrix decompositions into the model weight refinement process. Rather than modifying the entire
model, LoRA selectively updates a limited number of low-rank matrices, substantially reducing the
number of parameters requiring optimization during fine-tuning [221]. This approach enables efficient
adaptation while retaining the pre-trained knowledge and minimizing resource allocation.

o BitFit: BitFit is a lightweight fine-tuning technique that focuses entirely on adjusting the bias terms
within the model layers, while keeping the weight parameters fixed. This approach significantly reduces
the number of trainable parameters and has shown the ability to deliver competitive performance
across diverse tasks with only minimal fine-tuning. It proves particularly helpful in situations where
computational resources are limited or when quick adaptation of a model is required without the need
for extensive retraining [206].

o Domain-Specific Fine-Tuning: Domain-specific fine-tuning approaches require the development of
adapted fine-tuning approaches that are specifically aligned with the requirements of a given task.
These techniques commonly integrate specific fine-tuning with domain-oriented adaptations to optimize
performance in specialized contexts. For example, [67] introduced a framework known as VITask, which
enhances the task-specific adaptability of the VLM model by incorporating task-specific modules and
using approaches such as alignment of response distributions, exemplar-based prompting and contrastive
response optimization.

The Table 6 compares fine-tuning techniques for the VLM model, highlighting approaches such as full
fine-tuning, partial fine-tuning, LoRA, BitFit, and task-specific strategies, each with varying trade-offs in terms
of computational cost, performance, and adaptability to specific tasks.

3.4.3. Challenges and Open Problems:

Fine-tuning serves as a common strategy for tailoring the VLM model to specific tasks. However, various
critical challenges must be overcome to improve its efficiency and scalability. A major challenge is the resource
intensive nature of full fine-tuning, especially for large-scale models. Significant computational demands,
including memory utilization and processing capacity, generate significant challenges, particularly when dealing
with models containing millions or even billions of parameters. These limitations render fine-tuning less practical
in environments with limited computational resources, thereby hindering its widespread implementation [222].
Another challenge is the risk of overfitting, which arises when models are fine-tuned on insufficient or domain-
specific datasets. This can lead to models that perform well on training data, but fail to generalize to new or
unseen data, an especially problematic issue when labeled data are limited or unavailable [216].
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Fine-Tuning Description Example Applications Challenges and Con-

Method Models siderations

Full Fine- | Fine-tuning the entire | CLIP, Task-specific High  computational

Tuning pre-trained model for | Flamingo, optimization, cost, Risk of
a specific downstream | VIiLBERT Domain  adaptation, | overfitting, Time-
task, including all pa- Multimodal learning consuming
rameters.

Partial ~ Fine- | Fine-tuning only spe- | BLIP, Few-shot learning, Ef- | May lead to subop-

Tuning cific layers or parame- | GPT-3, T5 | ficient adaptation to | timal performance on
ters of the model, re- specific tasks complex tasks, Re-
ducing computational quires careful layer se-
overhead. lection

LoRA A method that adapts | GPT-3, Parameter-efficient Needs careful low-

(Low-Rank only low-rank matrices | ViT + | fine-tuning, Scaling to | rank matrix design,

Adaptation) in pre-trained models, | LoRA large models Limited flexibility for

[14] significantly reducing complex tasks
training costs.

BitFit A technique that fine- | CLIP, ViT | Computationally effi- | May not be suffi-
tunes only the bias | + BitFit cient fine-tuning, Low | cient for complex or
terms in the model, resource requirements | domain-specific tasks
keeping most parame-
ters frozen.

Task-Specific Customizing fine- | M4, Visu- | Domain-specific fine- | Task-specific overfit-

Strategies tuning strategies | alBERT, tuning, Task adapta- | ting, Complexity in
based on the task, | T5 tion designing task-specific
such as tuning specific strategies
attention heads or
embedding layers.

Moreover, the transferability of fine-tuned models remains a notable limitation. Frequently, models fine-

tuned for particular tasks show diminished performance when applied to novel tasks or domains, limiting the
adaptability of fine-tuning across various applications, particularly when target tasks diverge significantly from
the original pre-training objectives. Furthermore, fine-tuning may accidentally amplify biases present in pre-
trained models, causing ethical concerns, especially in sensitive fields such as finance, healthcare and law
enforcement. Addressing these biases is vital to ensure responsible and reasonable use of Al-driven systems.
Lastly, while efficient fine-tuning methods like BitFit, LORA and Domain-specific techniques aim to reduce
computational costs, they often involve trade-offs in performance. For instance, BitFit, which fine-tunes only
bias terms, which may not provide the level of performance required for tasks demanding high accuracy.

To address these challenges, future research should prioritize the advancement of techniques that enhance
the computational efficiency of fine-tuning, especially for large-scale models. Furthermore, enhancing the
generalization potentials of fine-tuned models to unseen tasks, as well as their adaptability across diverse fields,
is important for extending their scalability. Finally, addressing biases and ensuring the ethical use of fine-tuned
models, specifically in sensitive sectors, remains a key area for future investigation.

4. PreTrained VLM Models

Pretraining constitutes a fundamental phase in the development of Vision-Language Models, enabling
them to acquire rich multimodal representations through exposure to large scale, diverse datasets. This section
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outlines several prominent pretrained VLMs such as Gemini, XGen-7B, PaLI-Gemma?2, Copilot, Qwen-VL, and
ChatGPT-4. Each offering distinct strengths and addressing diverse challenges within the VLM landscape

4.1. Gemini

Developed by Google DeepMind, Gemini represents an advanced multimodal large language model devel-
oped for complex vision-language tasks. It builds upon the LaMDA and PaLM-2 architectures and supports
multiple modalities, including text, images, audio, and video. The model uses a refined transformer framework
with enhanced token embeddings and positional encoding, allowing for effective cross-modal reasoning and
generation. Gemini facilitates diverse applications such as real-time video analysis, multimodal content inter-
pretation, and audiovisual synchronization. Available in Nano, Pro and Ultra versions, it accommodates varying
computational constraints, offering flexibility and scalability [223].Despite its capabilities, Gemini faces several
challenges and limitations. The model complicated architecture requires substantial computational resources,
limiting accessibility for research groups with constrained resources. Moreover, the massive use of large datasets
introduces ethical and privacy concerns, especially in domains involving sensitive information. Furthermore,
scalability in real-time applications remains an issue, as the model may experience latency when managing large
multimodal tasks in real-world scenarios.

4.2. PaLI-Gemma2

PaLI-Gemma?2 is an advance version of Google Pathways Language and Image (PaLI) model, expanding
its capacity for multilingual and multimodal pretraining. Employing optimized transformer layers and cross-
attention mechanisms. The model concurrently processes textual and visual data, making it especially appropriate
for tasks such as multilingual image captioning, cross-lingual visual question answering, and global content
analysis. By integrating region-based visual embeddings with multilingual corpora, PaLI-Gemma?2 efficiently
encapsulates fine-grained semantic associations across languages and visual inputs [12]. Despite its strong
capabilities, the model faces some challenges and limitations in multilingual performance, demonstrating
variations in effectiveness across languages, particularly in low-resource or typologically diverse contexts.
The complexity of its attention mechanisms also increases the computational requirements, restricting real-
world scalability. Moreover, domain-specific applications may still require considerable fine-tuning, reducing
its immediate applicability.

4.3. XGen-7B

XGen-7B, an open-source multimodal architecture developed by Salesforce, comprises seven billion param-
eters. Pretrained on multimodal and multilingual datasets within 8K context windows, it employs transformer-
based frameworks with advanced positional encoding to model long-range dependencies in visual-textual data.
The model demonstrates proficiency in multimodal retrieval, image-text alignment, and instructional compre-
hension. Extensive pretraining on diverse corpora and fine-tuning support enable robust performance across
both generalized and specialized applications [224]. Nevertheless, XGen-7B confronts scalability and adaptation
challenges. Architectural expansion beyond seven billion parameters for complex tasks presents significant
hurdles. Task-specific fine-tuning imposes substantial computational burdens, particularly for resource-limited
entities. Additionally, the model displays inconsistent multilingual performance, with pronounced deficiencies in
low-resource languages.

4.4. Qwen-VL

Qwen-VL is designed for high-precision multimodal reasoning, incorporating hybrid attention mechanisms
and hierarchical encoders to process visual-linguistic data. This architecture facilitates excellence in visual
question answering, image captioning, and cross-modal retrieval. Through contrastive learning and masked
language modeling, Qwen-VL improves its semantic comprehension and alignment between modalities. These
attributes make it effective for practical applications, such as document analysis and product description
generation [225]. However, Qwen-VL faces challenges that include substantial fine-tuning requirements for
specialized tasks to achieve optimal outcomes. While hierarchically structured, the design creates computational
inefficiencies during large-scale or complex operations. Furthermore, its dependence on high-quality multimodal
data further limits effectiveness in data-scarce environments, resulting in performance degradation.
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4.5. ChatGPT-4

Launched by OpenAl in 2024, ChatGPT-4 is an advanced multimodal model capable of interpreting both
textual and visual information within a unified framework. It introduces improved self-attention mechanisms and
adaptive scaling significantly enhancing its capability to handle high-dimensional multimodal data. ChatGPT-4
shows strong performance in domains such as diagram interpretation, multimodal dialogue, and VQA. Leveraging
transfer learning after training on extensive image-text corpora, the model adapts to specialized applications with
minimal labeled data [226]. Despite its strengths, it has some limitations. Its capabilities in detailed image analysis
are less refined compared to domain-specific vision models. Furthermore, its deployment at scale involves
considerable computational costs, causing challenges for widespread adoption. Another concern is the model
lack of interpretability in complex decision-making processes, which raises concerns regarding its reliability in
sensitive fields like healthcare or legal contexts.

4.6. Recent Innovations in VLMs (Post-2023)

Recent developments in vision-language models (VLMs) post-2023 have significantly advanced the ca-
pabilities and efficiency of multimodal understanding systems. This section provides a comparative overview
of contemporary models such as IDEFICS [227], GPT-4V [228], Claude 3 Opus [229], Gemini 2.0 [230],
PaliGemma 2 [12], Qwen 2.5 VL [231], Moondream [232], and others, highlighting their advancements over
earlier foundational models like CLIP [5], VILBERT [65], VisualBERT [233], Flamingo [9], SimVLM [234],
and ALIGN [235]. Innovations are evident in architecture, pretraining strategies, and fine-tuning methodologies,
as well as in the use of training data and scale for advancing multimodal tasks.

4.6.1. Architectural Innovations

Recent VLMs have introduced sophisticated architectural enhancements to better integrate vision and
language. For example, models such as BLIP-3, Gemini, and Claude 3 leverage advanced cross-attention and
sparse transformer mechanisms, along with Mixture-of-Experts (MoE) designs, to enable efficient large-scale
training. In contrast, earlier models like VILBERT and VisualBERT [233] employed dual-stream or early-fusion
transformers that lacked the scalability and precision of recent models. GPT-40 and Claude 3 further push the
frontier with decoder-style multimodal transformers capable of real-time multimodal interaction, including audio
and video.

4.6.2. Training Scale and Datasets

Another significant shift is the use of more extensive, diverse datasets. While pre-2023 models such as CLIP
and ALIGN relied on large but noisy image-text datasets (e.g., web-scale English-centric corpora), post-2023
models like Gemini, PaliGemma 2, and Qwen 2.5 VL are trained on highly curated multilingual and synthetic
datasets. These include vision-language pairs across image, video, audio, and document modalities, enabling
better generalization and real-world applicability.

4.6.3. Fine-Tuning Flexibility

Modern VLMs emphasize parameter-efficient fine-tuning methods. While older models such as Flamingo
and SimVLM required full-model fine-tuning or were few-shot prompt-based, newer models support modular
architectures. Models like IDEFICS, Gemini, and DeepSeek Janus incorporate adapters, LoRA, and tool-calling
interfaces to allow more efficient and flexible adaptation. Claude 3 and GPT-4o further integrate reinforcement
learning with human feedback (RLHF) and instruction tuning to personalize model responses and control
alignment.

4.6.4. Pretraining Objectives and Backbone Integration

Pre-2023 models were typically pretrained on contrastive image-text alignment (as in CLIP and ALIGN),
masked language modeling (VisualBERT), or region-level supervision (SimVLM), and relied on distinct vision
and language backbones. While contrastive dual-encoder designs enabled impressive zero-shot performance,
these approaches were largely limited to image-text pairs and required vast datasets for generalization. In contrast,
post-2023 VLMs often employ joint multimodal pretraining objectives that combine instruction tuning, gener-
ative modeling, and unified representation learning. Recent models such as Gemini 2.0 and GPT-4V leverage
large-scale vision-language-aligned corpora and seamless backbone integration, fusing vision transformers (ViT)
with language models to enable richer cross-modal interactions and enhanced downstream versatility.
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Table 7: Comparative Overview of Vision-Language Models (Pre-2023 vs Post-2023)
Model Year Fine-Tuning Architecture Pretraining Pretrained | Vision Parameters| Training Key Innovations
Strategy Objective Backbone Encoder / Data
Model Tokenizer
VIiLBERT 2019 Full fine- | Two-stream Image-text BERT Object-based 110M COCO, Co-attentional
[65] tuning Transformer alignment with features Conceptual streams for image-
co-attentional (Faster Captions text fusion
modules R-CNN)
VisualBERT | 2019 Full fine- | Single-stream Masked BERT Object-based 110M COCoO, Shared encoder for
[233] tuning Transformer language features VQA text and image in-
modeling (Faster puts
with visual R-CNN)
embeddings
CLIP [5] 2021 Zero-shot in- | Encoder- Contrastive Pretrained ViT/ ResNet 63M- 400M web | Contrastive
ference decoder image-text from 355M image-text learning with dual
learning scratch pairs encoders; broad
generalization via
natural  language
supervision
ALIGN 2021 Zero-shot in- | Dual encoder | Contrastive EfficientNet- | EfficientNet 1.8B 1B+ noisy | Large-scale noisy
[235] ference (EffNet-L2 4+ | image-text L2 web image- | training with CLIP-
Transformer) alignment text pairs style  contrastive
objectives
SimVLM 2021 Full fine- | Unified Prefix language | BERT  + | Unified 1B+ Vision- Simplified
[234] tuning Transformer modeling (uni- | ResNet Transformer language architecture ~ with
encoder- fied vision-text pairs prefix modeling
decoder sequence) and no region-level
supervision
Florence 2022 Full fine- | Unified Trans- | Unified encoder | Swin Swin 892M Multilingual | High-performance
[236] tuning former with multi-task | Trans- web-scale universal VL
supervision former dataset encoder
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Model Year Fine-Tuning Architecture Pretraining Pretrained | Vision Parameters| Training Key Innovations
Strategy Objective Backbone Encoder / Data
Model Tokenizer
Flamingo [9] | 2022 Few-shot Perceiver Frozen vision- | Chinchilla ViT-L/14 + | 80B M3W, In-context few-shot
in-context Resampler + | language Perceiver ALIGN learning with
learning Decoder-only backbones frozen backbones
Transformer with  trainable and  cross-modal
cross-attention fusion
BLIP-2 [237] | 2023 Modular fine- | Visionencoder | Two-stage: ViT-G 4+ | ViT-G + Q- | 223M- ‘WebLlI, Q-Former
tuning via Q- | + frozen LLM | vision-text OPT/FlanT5 | Former 400M COCoO, for modular
Former + Q-Former + vision- CC3M, downstream tasks
to-language CC12M
generation
IDEFICS 2023 Parameter- Unified Trans- | Instruction- OPT + ViT | ViT 80B COCoO, Open-source
[227] efficient former with vi- | tuned  vision- VQAvV2, instruction-
tuning sion encoder language A-OKVQA following VLM <
PaliGemma 2024 LoRA, Transformer Multilingual Gemma + | ViT - Synthetic + | Multilingual gener- <
2[12] fine-grained encoder- + synthetic | ViT real data e.g | ation + grounding &
adapters decoder datasets (DOCCI, s
LAION, =
CC12M)
Gemini 2.0 | 2024 Modular fine- | PaLM-based Multimodal PaLM 2 + | ViT - Multilingual, | Flexible and
[230] tuning encoder- pretraining ViT synthetic efficient
decoder + | with sparse corpus multimodal
vision mod- | transformers reasoning
ule(custom)
Kosmos-2.5 2024 Selective fine- | Decoder-only Document text | - ViT-G/14, 1.3B Document Layout-aware
[238] tuning (frozen | Transformer recognition ViT-L/14 images, multimodal
ViT, tuned re- | with ViT + | + image-to- OCR, literacy via
sampler + de- | resampler Markdown structured visual-text ~ fusion
coder) generation markup data | with Markdown

generation
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Model Year Fine-Tuning Architecture Pretraining Pretrained | Vision Parameters| Training Key Innovations
Strategy Objective Backbone Encoder / Data
Model Tokenizer
GPT-4V 2024 No tuning | Unified Text + image | GPT-4 Custom ViT- | - Vision- GPT-4 vision
[228] (chat Transformer pretraining like encoder language support with
interface) with  vision- aligned image-text  joint
text fusion corpus encoding
Claude 3| 2024 Supervised Encoder- Proprietary Proprietary | - - Multimodal Safe and  high-
Opus [229] fine-tuning decoder encoder- benchmarks | performance
via API transformer decoder multimodal chat
LongVILA 2024 Efficient Video-based Video- Custom Patch + frame | - Long video, | Long-context video
[239] parameter encoder- language video tokenizer image QA and interleaved
tuning decoder transformer model sequences image-text reason-
transformer ing
Molmo [240] | 2024 Instruction Encoder- Transformer- - ViT-L/14 72B Open PixMo | Open-source trans-
tuning decoder based VLM (CLIP) data parent training
transformer
Qwen2.5 VL | 2025 Instruction Transformer Vision Qwen2.5+ | ViT 3B/7B/72B | Docs, OCR + document
[231] tuning decoder with | transformer ViT images, QA specialization
visual  patch | + LLM fusion audio
input
DeepSeek 2025 Adapter- Dual-stream Multimodal DeepSeek ViT 7B Instruction Efficient MOoE-
Janus [241] based  fine- | Transformer instruction- + ViT + synthetic | based dual-stream
tuning with MoE following datasets VLM
MiniCPM-o 2025 Plug-in Modular Multimodal MiniCPM Vision 8B Instruction- GPT-4V-level OCR
2.6 [242] modules  + | lightweight instruction- + LLaMA3 | adapter tuned + real-time video
instruction Transformer following + corpus understanding
tuning OCR on-device
Moondream 2025 Minimal fine- | Decoder-only Multimodal - Compact 1.86B Open Small footprint
[232] tuning Transformer pretraining encoder efficient with privacy focus
datasets
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Model Year Fine-Tuning Architecture Pretraining Pretrained | Vision Parameters| Training Key Innovations
Strategy Objective Backbone Encoder / Data
Model Tokenizer
Pixtral [243] | 2025 Instruction Dual-stream Mistral-style Mistral + | ViT 12B Multi- ViT fusion in com-
tuning compact ViT + LLM ViT domain pact architecture
transformer open-source
corpus
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These advancements collectively signify a paradigm shift in the field of vision-language understanding. Table
7 summarizes the major VLMs developed before and after 2023, highlighting their architectural differences, fine-
tuning mechanisms, training corpus, and performance. A comprehensive summary of Vision Language Model
training configurations, including batch sizes, learning rates, hardware, and training strategies, is provided in
Appendix A 13.

5. Datasets

Datasets play a crucial role to advance VLM, integrating visual and textual modalities. VLM are useful for
tasks such as image captioning, VQA, image-text retrieval, and multimodal reasoning. Datasets used to train
VLM consist of image-text pairs where a comprehensive text description or label is associated with each image
supporting the complete understanding. In this section, we categorize datasets based on tasks they support.
Additionally, we highlight challenges and ethical considerations associated with data collection. Before diving
into task-specific categories, Table 8 provides a high-level dataset audit summarizing key Vision-Language
datasets in terms of size, modalities, linguistic diversity, and known limitations. Table 9 outline a detailed
overview of various datasets, organized by type, description, and applications. Furthermore, Table 10 specifically
gives the details of the VLM dataset used in the medical domain. A sample of images from various datasets are
shown in Figure 11, 12 and 13.

General purpose datasets such as MS COCO [69] and VQAV2 [244] etc, focus on everyday scenes with
object-centric or question-answering tasks in natural images, domain-specific datasets like RadGraph [245] and
PMC-OA [246] significantly differ in scope, structure, and annotation requirements. RadGraph [245] consists of
structured annotations from radiology reports, targeting clinical understanding and requiring domain expertise
for accurate interpretation. Similarly, PMC-OA [246] comprises image-text pairs extracted from biomedical
literature, covering a broad range of medical procedures and findings. Unlike conventional datasets, both
RadGraph [245] and PMC-OA [246] demand high annotation quality, are limited to specialized domains, and
introduce challenges related to data sensitivity, privacy, and expert-driven curation.

Questions in CLEVR test various aspects of visual reasoning

including . counting, comparison,
spatial relationships. and logical operations

Who is Wearing glasses? Where is the child sitting?
man woman fridge arms

Q: Are there an equal number of
is the Iha‘ is left of the
that is left of the
Q: Thereisa wllhlhe ame size as the
itm ‘e same material as the
Q: How many objects are either or Lhmgs’

Stuttgart Zurich

Tiibingen g

Miinster Cologne Bonn Erfurr

Jena Dusseldorf c Lindau Weimar

D

Figure 11: Image A illustrates a sample from the VQA dataset [244], while Image B presents an example
from the CLEVR dataset. The associated questions in CLEVR are crafted to assess various aspects of
visual reasoning, such as attribute identification, counting, comparative analysis, multi-focus attention,
and logical operations [247]. Image C showcases a sample from the Cityscapes dataset [248], while Image
D displays a sample from the Open Images dataset [249].
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Table 8: Dataset Audit Table: Overview of key datasets used in Vision-Language research

Dataset Size Modalities | Language(s)| Category Known Biases / Limi-
Diversity tations
MS COCO | 328K images Image-Text | English 91 object categories | Western-centric
[69] content; limited cultural
diversity; object-centric
focus
VQAvV2 204K images; | Image-QA English Everyday scenes | Language bias; answer
[244] 1.1IM Q&A with varied Q&A priors; question redun-
pairs dancy
RadGraph 221K reports; | Text English Radiology findings | Domain-specific;
[245] 10.5M (Radiology requires medical
annotations reports) expertise for
annotation; limited
to chest X-rays
GQA [250] | 113K images; | Image-QA English Compositional rea- | Synthetic question
22M questions soning generation;  potential
over-reliance on scene
graphs
GeoBench- | 10K+ tasks Satellite- English Natural Sparse labels; coverage
VLM [16] Text disasters, terrain, | gaps
infrastructure
SBU 1M images Image-Text | English Web-sourced Noisy captions; dupli-
Captions everyday scenes cate entries
[251]
MIMIC- 377K images; | Image-Text | English Chest X-rays Hospital-centric;
CXR [252] | 227K studies privacy restrictions
EXAMS-V 20,932 Mixed 11 Exam-style Regional bias; multilin-
[253] questions Multimodal | languages reasoning  across | gual challenge
disciplines
RS5M 5M images Satellite- English Remote sensing im- | Sparse labels; class im-
[254] Text agery balance; varying image
quality
VLM4Bio 30K instances Image- English Biodiversity, taxon- | Domain-specific;
[255] Text-QA omy taxonomic bias; limited
generalizability
PMC-OA 1.65M image- | Image- English High diversity | Caption noise, Requires
[246] text pairs Text-QA within the | medical expertise;
biomedical domain;
Covers a wide
range of diagnostic
procedures; disease
types, and medical
findings;
WebLI- 100 Billion | image-text 100+ Global content Cultural/geographic
100B [256] | image-text languages bias, noisy data
pairs
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5.1. VLM Dataset

VLM depend on diverse datasets adapted to different tasks, ranging from classification and detection to
reasoning and retrieval etc,. The following is an overview of the most commonly used dataset categories for
training VLM.

5.1.1. Detection Datasets

Detection datasets are vital for tasks like object detection, segmentation, and scene understanding, providing
detailed annotations for visual objects.
COCO (Common Objects in Context): COCO is a widely used dataset that contains over 330,000 images,
annotated with 2.5 million object instances comprising 80 categories. It supports object detection, segmentation,
and image captioning tasks [69].
Applications: Object detection, segmentation, image captioning, visual question answering.
Open Images: A massive dataset with more than 9 million images, annotated with bounding boxes and object
labels in 600 categories, ideal for training models in detection and multi-label classification [249].
Applications: Object detection, multi-label classification, instance segmentation.

5.1.2. Classification Datasets

Classification datasets are applied to train models on image classification, object recognition and related
tasks, where images are classified into different classes.
ImageNet: One of the largest datasets for image classification which consists of more than 14 million images
across 21,000 categories. It is commonly employed for object recognition and image-text alignment tasks [257].
Applications: Image classification, object recognition, image-text alignment.
Visual Genome:A dataset with over 100,000 images annotated with object level information and relationships
between objects. It is valuable for tasks such as scene graph generation and captioning.
Applications: Image-text alignment, scene graph generation, object relationships.

5.1.3. Segmentation Datasets

Segmentation datasets focus on pixel-level tasks, such as semantic segmentation and instance segmentation,
where the goal is to assign each pixel of an image to a specific category.
ADE20K: A semantic segmentation dataset with 20,000 images, covering various scene categories. It includes
dense annotations for both objects and parts, making it useful for detailed scene understanding [258].
Applications: Semantic segmentation, scene parsing, image segmentation.
Cityscapes: This dataset focuses on metropolitan street scenes, providing high-quality pixel-level annotations for
semantic segmentation tasks. It contains more than 5,000 images from 50 different cities [248].
Applications: Urban scene analysis, autonomous driving, semantic segmentation.

5.1.4. Text-to-Image Generation Datasets

These datasets are critical for tasks involving the generation of images from textual descriptions, as well as
for multimodal retrieval and understanding.
Flickr30k: This dataset contains 31,000 images and each has five captions which is commonly used for image
captioning and text-to-image generation tasks [259].
Applications: Image captioning, text-to-image generation, multimodal retrieval.
COCO Captions: It is the subset of the COCO dataset, which includes more then 300,000 images and each paired
with five textual descriptions. It is one of the largest datasets utilized for image captioning and text-to-image
synthesis [69].
Applications: Image captioning, text-to-image synthesis, multimodal understanding.

5.1.5. Multimodal Alignment Datasets

These datasets are utilized for tasks that require matching images with corresponding textual descriptions,
labels or questions.
VQA Dataset A dataset for visual question answering that contains more than 200,000 questions related to
100,000 images. It is used to assess multimodal reasoning and understanding [260].
Applications: multimodal reasoning, visual question answering.
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MS-COCO Text-Only: A subset of the MS-COCO dataset, specifically curated for text-based retrieval tasks,
comprises images systematically paired with descriptive captions, facilitating research in multimodal information
retrieval and analysis [69].

Applications: Text-based retrieval, text-to-image matching, textual understanding of visual content.

5.1.6. Vision-Language Pre-training Datasets

These datasets are predominantly used for the pre-training of VLM, allowing them to effectively learn and
comprehend the relationship between image-caption pairs on a large scale.
Conceptual Captions: This extensive dataset comprises 3.3 million image-caption pairs which is collected
from online sources, rendering it highly suitable for the pre-training of VLM in tasks related to image-caption

generation [261].

Applications: image-caption generation, Pre-training Vision-Language models, multimodal pre-training.

SBU Captions: A dataset featuring 1 million image-caption pairs, also gathered from the web, which spans

diverse domains and is employed for the pre-training of Vision-Language Models [262].
Applications: Pre-training, caption generation, multimodal learning.

Table 9: Datasets for Vision-Language Models

Dataset Name | Description Applications
Dataset Type
. COCO [69] Contains 330k images with an- | Object detection, instance seg-
Detection . . . Lo .
notations for object detection | mentation, image captioning.
Datasets and segmentation.
Open Images | A large-scale dataset with over | Object detection, image cap-
[249] 9 million annotated images for | tioning, visual relationship de-
object detection. tection.
. . ImageNet [257] | A large dataset with over 14 | Image classification, transfer
Classification - . . . .
million labeled images across | learning, visual recognition.
Datasets 1000 classes.
Visual Genome | A dataset containing 108k im- | Object detection, visual ques-
[70] ages annotated with object de- | tion answering, scene under-
tection and scene graphs. standing.

. ADE20K [258] | A semantic  segmentation | Semantic segmentation, scene
Segmentation dataset with 20k images across | parsing, object localization.
Datasets 150 categories.

Cityscapes A dataset for urban scene under- | Semantic segmentation,
[248] standing with high-quality an- | autonomous  driving, road
notations for segmentation. scene understanding.
Flickr30k [259] | Contains 31k images with five | Image captioning, text-to-
Text-to-Image L . . . X .
captions per image, often used | image generation, multimodal
Generation for image captioning. retrieval.
Datasets
COCO A subset of COCO with over | Image captioning, text-to-image
Captions 300,000 images and 5 textual | synthesis, multimodal under-
[69] descriptions per image. standing.
VQA [260] A dataset for visual question an- | Visual question answering,
swering with 200k+ questions | multimodal reasoning, image-
Multimodal across 100k images. text understanding.
Alignment
Datasets
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Dataset Type

Dataset Name

Description

Applications

EndoVis-18-
VLQA [263]

A dataset for vision-language
question answering (VLQA) in
surgical and endoscopic proce-
dures. It contains video frames
and question-answer pairs fo-
cused on tasks like identifying
tools and recognizing actions
during surgeries

Multimodal Question Answer-
ing, Medical Applications, Sur-
gical Assistance.

VLM4Bio
[255]

The VLM4Bio dataset eval-
uates the performance of 12
SOTA Vision-Language Mod-
els in answering biologically
relevant questions. It contains
469K question-answer pairs and
30K images of fishes, birds, and
butterflies, covering five biolog-
ical tasks.

Multimodal Question
Answering, Biodiversity
research, Image-Based

Scientific Discovery.

MS-COCO
Text-Only [69]

A subset of MS-COCO focus-
ing on text-only tasks with de-
scriptive captions.

Text-based  retrieval,  text-
to-image matching, textual
understanding of visual content.

Conceptual

A dataset with 3.3 million

Pre-training  Vision-Language

Vision-Language Captions [261] image-caption pairs sourced | models, multimodal  pre-
Pre-training from the web. training, image-caption
Datasets generation.
PathQA Bench | The dataset consists of | Pathology Education, models,
Public [264] 456,916  instruction-response | multimodal pre-training, Clini-
pairs, including multi-turn | cal Decision Support.
conversations, multiple-
choice questions, and short
answers, specifically curated
for pathology. The data was
used to train PathChat, a
vision-language Al assistant for
human pathology
SBU Captions | Contains 1 million image- | Pre-training, caption
[262] caption pairs collected from the | generation, multimodal
web. learning.
Flickr30k Enti- | An extended version of | Object detection, image-
Multimodal ties [265] Flickr30k, with object-level | text retrieval, image-caption
Retrieval entity annotations. alignment.
Datasets
RS5M [254] The RS5M dataset contains 5 | Remote Sensing
million remote sensing images | Classification, Cross-
with  English  descriptions, | Modal Retrieval, Semantic
created by filtering and | Localization,Domain-Specific

captioning existing datasets.
It bridges the gap between
general pre-trained Vision-
Language Models (VLMs) and
domain-specific remote sensing
tasks

Fine-Tuning.
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Dataset Type Dataset Name | Description Applications

Visual Focuses on assigning semantic | Semantic role labeling, image-

Semantic roles to visual elements of an | text alignment, multimodal

Role Labeling | image. grounding.

(v-SRL) [266]

CLEVR [247] A synthetic dataset for visual | Visual reasoning, question an-
reasoning and answering com- | swering, synthetic data genera-
positional questions. tion.

Multimodal
Reasoning
Datasets

GMAI- GMAI-MMBench is a | Medical Diagnosis and Treat-

MMBench comprehensive benchmark | men, Clinical AI Evaluation,

[267] for evaluating Large Vision- | Benchmarking Medical Al
Language Models (LVLMs)
in medical applications. It
spans 284 datasets across 38
medical image modalities, 18
clinical tasks, 18 departments,
and 4 perceptual granularities,
organized in a Visual Question
Answering (VQA) format.

The benchmark enables
customizable evaluation
through a lexical tree structure,
aiming to improve medical Al
research
NavGPT- NavGPT-Instruct-10k  is a | Navigational Reasoning in Al,

Instruct-10k
[268]

dataset for training Vision-
Language Models (VLMs)
in navigational reasoning. It
includes 10,000 intermediate
navigation  steps  generated
with GPT-4V, where each
step provides environment
descriptions and  directions
for the next action, based on
equirectangular panoramic
images of the agent’s
surroundings

Autonomous Systems Training,
Pathfinding Al

GQA [269]

A dataset for evaluating com-
positional question answering,
consisting of 22 million ques-
tions.

Visual reasoning,
compositional question
answering, multimodal
reasoning.
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Dataset Type Dataset Name | Description Applications
EXAMS-V EXAMS-V is a multi- | Multimodal Al Testing,
[253] discipline, multimodal, | Education Technology, Cross-
multilingual benchmark for | Language and Cross-Cultural
evaluating vision-language | Learning
models. It contains 20,932
multiple-choice questions
across 20 school subjects in
11 languages, with features
like text, images, tables, and
diagrams. The dataset, sourced
from diverse education systems,
requires advanced reasoning
over both textual and visual
content, making it a challenging
test for models like GPT-4V
and Gemini
MMVP-VLM MMVP-VLM evaluates CLIP- | Visual reasoning,
[15] based models on matching | compositional question
image-text pairs representing | answering, multimodal
visual patterns (e.g., color, | reasoning.
shape, spatial relationships). It
includes 15 pairs per pattern,
drawn from the MMVP dataset
but simplified for easier
language understanding
A ADE20K [258] | 20k images annotated for | Semantic segmentation,
Semantic . . . .
semantic segmentation across | scene understanding, instance
Segmentation multiple scene categories. segmentation.
and Instance
Segmentation
Datasets
Cityscapes Urban scene dataset with pixel- | Urban scene analysis,
[248] level annotations for semantic | autonomous driving, semantic
segmentation. segmentation.
MIMIC-CXR Large dataset of chest radio- | Medical image analysis, multi-
Cross-Modal [252] graphs paired with radiology re- | modal health informatics, cross-
Transfer ports. modal learning.
Datasets
MedNLI [270] A dataset for natural language | Medical text understanding,
inference in the medical do- | NLP for healthcare, cross-

main.

modal reasoning.

Table 10: Overview of the VLM datasets for Medical domain

Dataset Name

Image-
Text pairs

QA pairs

Description

Application
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Dataset Name

Image-
Text pairs

QA pairs

Description

Application

VQA-Med
2020 [271]

X

v

VQA-Med-2020 is a dataset
for Visual Question Answer-
ing (VQA) and Visual Question
Generation (VQG) tasks in the
medical domain, specifically for
radiology images. It includes
training, validation, and test sets
for answering questions about
medical abnormalities and gen-
erating questions from images
captioning.

Medical Diagnosis,Clinical
Decision Support, Multimodal
Question Answering

ROCO [272]

The Radiology Objects in
Context (ROCO) dataset is
a  large-scale, multimodal
medical imaging  dataset
sourced from PubMed Central
Open Access. It contains
radiology and non-radiology
images, each accompanied by
captions, keywords, and UMLS
(Unified Medical Language
System) Semantic Types and
Concept Unique Identifiers
(CUIs)

Image Captioning, Image Clas-
sification & Tagging, Content-
Based Image Retrieval, Medi-
cal Visual Question Answering,
Multimodal Retrieval

VQA-Med
2019 [273]

VQA-Med-2019 is a dataset
for Visual Question Answer-
ing (VQA) focused on radi-
ology images, featuring 3,200
images with 12,792 question-
answer pairs. It includes four
categories: Modality, Plane, Or-
gan system, and Abnormality.
The dataset is designed for
questions that can be answered
directly from the images with-
out external medical knowledge

Medical Image Analysis, Radi-
ology Al Development, Medi-
cal Educational Tools, Medical
VQA’

MIMIC-NLE
[274]

The MIMIC-CXR-JPG dataset
is a public collection of 377,110
chest X-ray images in JPG for-
mat, with structured labels from
227,827 free-text radiology re-
ports

Medical Image Understanding,
Natural Language Processing
for Radiology, Decision Sup-
port Systems.

SLAKE [275]

SLAKE is a bilingual dataset for
medical Visual Question An-
swering (Med-VQA), featuring
semantic labels annotated by
physicians and a new medi-
cal knowledge base. It covers
more human body parts and
richer modalities than existing
datasets.

Visual Annotations, Diverse
Questions,Knowledge-Based
Medical Al
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Dataset Name | Image- QA pairs Description Application
Text pairs
GEMeX [276] | v/ v GEMeX is the largest chest | Medical Visual Question An-
X-ray Med-VQA dataset, de- | swering Visual Reasoning in
signed to support diverse ques- | Healthcare Al, Explainable Al
tion types and enhance explain- | in Medical Imaging
ability in medical VQA sys-
tems. It is consider to be the first
to incorporate multimodal ex-
plainability, aiming to improve
the visual reasoning ability of
Large Vision-Language Models
through fine-tuning
MS-CXR v X The MS-CXR dataset supports | Biomedical Vision-Language
[277] semantic modeling in biomedi- | Processing, Image-Text
cal vision-language processing, | Reasoning in Medical Al,
offering 1,162 image-sentence | Radiology Image Annotation
pairs with bounding boxes and | and  Analysis, Contrastive
phrases across eight cardiopul- | Learning in Vision-Language
monary radiological findings. It | Models, Semantic Modeling in
icludes both reviewed (1,026 | Medical Imaging,
pairs) and manually labeled
(136 pairs) annotations
MedICaT 4 X MedICaT is a comprehensive | Medical Image
[278] medical image dataset | Captioning,Multimodal
containing 217,060 figures | Learning,Information
from 131,410 open-access | Retrieval.
papers, along with captions,
subfigure  annotations, and
inline  textual  references.
Sourced from PubMed Central
and supplemented with text
from S20RC, it provides rich
multimodal data for training
and evaluating models in
medical image understanding,
captioning, and information
retrieval.
3D-RAD [279] | X v 3D-RAD is a large-scale | 3D Medical VQA, Multi-
dataset for 3D  Medical | temporal Diagnosis, Clinical
VQA using **over 4,000 | Decision Support, 3D Medical
radiology CT scans** and | Image Understanding.
**more than 12,000 QA
pairs®*, It encompasses

diverse VQA tasks, including
anomaly detection, medical
computation, existence
detection, and multi-temporal
analysis, addressing limitations
of 2D Med-VQA.
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Dataset Name

Image-
Text pairs

QA pairs

Description

Application

ImageCLEFmed
MEDVQA-GI
[280]

-V

v

This challenge dataset focuses
on integrating VQA with syn-
thetic gastrointestinal (GI) data
(e.g., endoscopy images) to en-
hance diagnostic accuracy. The
2025 iteration includes **over
10,000 endoscopic images with
more than 30,000 QA pairs**
(including synthetic).

Gastrointestinal Image Analy-
sis, Synthetic Data Generation,
Endoscopy VQA, Diagnostic
Al Enhancement.

BIOMEDICA
[281]

BIOMEDICA is a scalable,
open-source framework and
archive derived from the
PubMed Central Open Access
subset, containing over 24
million unique image-text pairs
from over 6 million biomedical
articles. It covers a wide range
of  disciplines  (pathology,
radiology, ophthalmology, etc.)
for generalist biomedical VLM
pre-training.

Biomedical VLM Pre-training,
Image-Text Retrieval in Scien-
tific Literature, General Medi-
cal Al Development across di-
verse modalities.

PMC-0OA
[282]

PMC-OA (PubMed Central
Open Access) is a large-scale
biomedical dataset with over
1.6  million image-caption
pairs extracted from PubMed
Central Open Access articles.
It supports multimodal learning
and has been used to train
models like PMC-CLIP for
tasks such as image-text
retrieval and classification.

Biomedical
Retrieval,
Classification,
Learning.

Image-Text
Medical  Image
Multimodal

ReasonMed
[283]

ReasonMed offers 370K sam-
ples for complex medical rea-
soning and Visual Question An-
swering, generated from multi-
agent Chain-of-Thought (CoT)
paths to ensure high-quality, ex-
plainable answers.

Medical Reasoning, Complex
VQA, Clinical Decision Sup-
port, Explainable Medical Al

Lingshu [284]

Lingshu is a large-scale medi-
cal VLM dataset, unifying 9.3M
samples from over 60 existing
datasets, designed for diverse
tasks including VQA, report
generation, and medical consul-
tation.

Generalist Multimodal QA,
Medical Report Generation, Al-
powered Medical Consultation,
Broad Medical VLM
Development.

First Author et al.: Preprint submitted to Elsevier

Page 46 of 72



VLM Survey

Dataset Name | Image-

Text pairs

QA pairs

Description

Application

GMAI-VL- 4
5.5M [285]

v

GMAI-VL-5.5M is a large-

scale  medical  image-text
dataset with 5.5 million
pairs, created by merging

and aligning various existing
medical datasets, suitable for
training general medical Al
models.

General Medical AI, Medical

Diagnosis, Multimodal QA,
Clinical  Decision  Support
Systems.
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Figure 12: Sample of the GMAI Dataset (Medical related) [267].

5.1.7. Multimodal Retrieval Datasets:
These datasets support tasks involving the retrieval of images or text based on queries, promoting enhanced

alignment between visual and textual modalities.

Flickr30k Entities: An extension version of the Flickr30k dataset, incorporating object-level entity annotations
alongside captions, enabling precise retrieval tasks [265].

Applications: Object detection, image-caption alignment, image-text retrieval.
Visual Semantic Role Labeling (v-SRL): This dataset emphasizes the assignment of semantic roles to visual
components within images, aiding in multimodal language grounding [266].
Applications: Semantic role labeling, image-text alignment, multimodal reasoning.
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LAION2B

X

Figure 13: Data Sample of the RS5M (Remote sensing Dataset) [254].

5.1.8. Multimodal Reasoning Datasets:

These datasets are tailored for assessing multimodal reasoning capabilities, where models are required to
draw inferences from both visual and textual inputs.
CLEVR: A synthetically generated dataset crafted for visual reasoning, particularly for answering questions
about scenes that demand compositional reasoning [247].
Applications: Visual reasoning, question answering, synthetic data generation.
AltChart The AltChart dataset which consists of 10,000 real chart images with semantically rich summaries,
enhances Human-Computer Interaction by improving accessibility and user experience for visually impaired
individuals through detailed chart summarization [286].
Applications: Visual reasoning, question answering, chart summarization.
GQA: A dataset consisting of 22 million questions about images, designed to evaluate compositional question
answering over natural images [269].
Applications: Visual reasoning, compositional question answering, multimodal reasoning.

5.2. Empirical Benchmarking of VLMs

Table 11 provides a comparative evaluation of SOTA Vision-Language Pre-training models (VLP) across
three main multimodal tasks: image captioning, VQA, and image retrieval. Performance is evaluated by applying
widely recognized benchmarks datasets including VQA 2.0, MS-COCO, and Flickr30K and standard evaluation
metrics such as BLEU-4, CIDEr, METEOR, and SPICE for image captioning, accuracy for VQA, and Recall@1
(R@1) for retrieval. These metrics collectively capture syntactic accuracy, semantic richness, and retrieval
precision, allowing a detailed analysis of cross-model capabilities.

VLM models such as Unified VLP and VinVL exhibit strong results in both caption generation and
VQA, using integrated vision-language architectures optimized for joint generation and comprehension. In
contrast, contrastive learning-based models like CLIP and DreamLIP achieve high performance in retrieval
tasks, benefiting from large-scale pretraining on diverse image-text pairs. Architectures like BLIP and BLIP-
2 advance the state-of-the-art by utilizing modular design strategies and bootstrapped pretraining techniques.
Notably, BLIP-2 attains leading results on both captioning (BLEU-4 score of 43.7) and VQA (accuracy of 79.3%),
while maintaining parameter efficiency relative to larger-scale models such as Flamingo.
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Furthermore, models including FIBER and SimVLM prioritize architectural efficiency and task generaliza-
tion, adopting strategies such as cross-modal fusion within the backbone and prefix-based language modeling.
Emerging frameworks such as VILA and NLIP underscore the growing focus on robustness, noise resistance,
and multilingual adaptability. Collectively, the performance trends across these models demonstrate a trajectory
toward scalable, modular, and computationally efficient VLP systems tailored for implementation in diverse and
resource-constrained environments.

Table 11: Comparison of models across Image Captioning, VQA, and Retrieval tasks

Model Task Dataset Metric Score
Unified VLP [287] | Image Captioning | COCO, BLEU-4 / | 36.5/116.9 (COCO),30.1/
Flickr30K CIDEr 67.4 (Flickr)
VinVL [288] Image Captioning | COCO BLEU-4 / | 40.9/140.9
CIDEr
SimVLM [289] Image Captioning COCO BLEU-4 / | 40.3/143.3
CIDEr
BLIP [34] Image Captioning | COCO BLEU-4 / | 41.7/143.5
CIDEr
RegionCLIP [290] | Image Captioning COCO BLEU-4 / | 40.5/139.2
CIDEr
BLIP-2 [237] Image Captioning | COCO, NoCaps BLEU-4 / | 43.7 / 123.7 (COCO), -
CIDEr (NoCaps)
FIBER [291] Image Captioning | COCO CIDEr 42.8
NLIP [292] Image Captioning | Flickr30k CIDEr 135.2
LCL [293] Image Captioning | COCO CIDEr 87.5
Unified VLP [287] | VQA VQA 2.0 VQA Score | 70.3%
VinVL [288] VQA VQA 2.0 VQA Score | 76.6%
FewVLM [124] VQA VQA 2.0 VQA Score | 51.1%
SimVLM [289] VQA VQA 2.0 VQA Score | 24.1%
BLIP [34] VQA VQA 2.0 VQA Score | 77.5%
BLIP-2 [237] VQA VQA 2.0 VQA Score | 79.3%
VILA [165] VQA VQA 2.0, GQA VQA Score | 80.8% (VQA 2.0), 63.3%
(GQA)
LCL [293] VQA VQA 2.0 VQA Score | 73.4%
TCL [294] Image Retrieval COCoO, R@I 62.3% / 88.7%
Flickr30K
CLIP [5] Image Retrieval COCO, R@1 58.4% 1 88.0%
Flickr30K
NLIP [292] Image Retrieval COCO R@1 82.6%
Cross-Attn [295] Image Retrieval COCO, R@1 67.8% / 88.9%
Flickr30K
DreamLIP [296] Image Retrieval COCo, R@1 58.3% / 87.2%
Flickr30K

5.3. Challenges and Open Problems

Datasets are foundational for the development of vision language models, as they directly influence model
performance and generalization in various multimodal tasks. However, several key challenges persist in dataset
creation, annotation, and utilization [72, 21]. The data imbalance in many datasets leads to models that perform
well on common categories but struggle with rare or underrepresented objects. This issue, compounded by the
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annotation complexity involved in large-scale multimodal datasets, creates scalability challenges. As the demand
for high-quality, large datasets increases, finding efficient methods for annotation without sacrificing quality
remains a key open problem. Additionally, ensuring multimodal alignment between images and their textual
descriptions is essential, as poor alignment can hinder model training and affect performance in tasks like image
captioning or visual question answering. Models need well-aligned data to accurately understand and generate
meaningful outputs [297].

Furthermore, domain specificity presents a challenge in terms of model generalization. While datasets like
MS-COCO [69] are effective for general tasks, specialized domains such as medical imaging or autonomous
driving require distinct datasets that may not be widely available [298]. This highlights the need for domain-
specific datasets and methods that enable models to generalize across domains without extensive retraining [299].
Finally, the dynamic nature of real-world data necessitates the creation of continually updated datasets that can
evolve over time. In dynamic fields like robotics or autonomous driving, datasets need to adapt to new scenarios
and objects, making lifelong learning and dataset evolution a pressing concern [300].

To address these challenges, future research should focus on creating more diverse and unbiased datasets,
improving automated annotation techniques, and ensuring the cross-domain generalization of models. Addition-
ally, fine-grained multimodal annotations and methods for handling dynamic datasets will be crucial to push the
boundaries of Vision-Language Models. Tackling these open problems will facilitate the development of more
robust, scalable, and ethically sound Vision-Language Models.

6. Evaluation Metrics and Benchmarks

This section provides a comprehensive discussion of the most widely used evaluation metrics, benchmarks,
and associated challenges.

6.1. Evaluation Metrics

The performance of VLM is evaluated using a set of metrics that assess various aspects of multimodal
understanding. These metrics are critical to quantify how well VLM processes and generates meaningful results
when working with visual and textual data.

e Accuracy: Accuracy is one of the most prominent and commonly used metrics, evaluating the percentage
of correctly predicted results or matches. In tasks like VQA or Image-Text Matching, accuracy helps
evaluate the models ability to generate correct textual responses or match images with appropriate captions
[301].

e BLEU (Bilingual Evaluation Understudy Score): Originally developed for machine translation task, BLEU
is extensively employed to assess image captioning. It calculates the overlap between n-grams in the
generated description and reference descriptions. A higher BLEU score indicates a closer match with
human-written text. BLEU is especially relevant for tasks where the precise match of words is crucial
[302].

e CIDEr (Consensus-based Image Description Evaluation): CIDEr is designed to solve some drawbacks of
BLEU by considering both the recall and precision of n-grams in generated captions. It is especially useful
in image captioning tasks, where several valid descriptions can exist for the same image. CIDEr is based
on the consensus of multiple human-generated descriptions, providing a more nuanced evaluation [303].

e SPICE (Semantic Propositional Image Caption Evaluation): Unlike BLEU or CIDEr, which focus on n-
gram matching, SPICE evaluates the semantic content of a generated caption. It breaks down captions into
semantic propositions (e.g., subject-action-object relationships) and compares them with human-provided
annotations. This metric is aligned with understanding the meaning and intent of the caption, making it
valuable for tasks that require deeper understanding, like image captioning and multimodal retrieval [304].
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Table 12: Comprehensive Overview of Benchmark Datasets for Vision Language Models

Dataset Name

Description

Data Information

SEEDBench
[305]

Series

Image captioning and multi-modal reasoning tasks.

73K images/questions

VLMA4Bio [255]

Evaluates the effectiveness of vision-language models in
answering biologically relevant questions using images
of fishes, birds, and butterflies across five tasks.

469K QA pairs, 30K
images

MM-Vet [306]

Visual reasoning tasks for VLMs

MMBench Series [307]

MMbenchmark is the collection of datasets. It is
designed to evaluate the fine-grained capabilities of
Vision-Language Models (VLMs) across multi-modal
tasks.

6.4 k samples

MME [308]

Robustness testing for multi-modal tasks.

MM Vet V2 [309]

MM-Vet v2 is a benchmark dataset for integrated multi-
modal reasoning, challenging VLMs with diverse tasks
in real-world and abstract scenarios to advance vision-
language understanding.

3K tasks with diverse
multimodal questions

HallusionBench [310]

A diagnostic benchmark for evaluating large vision-
language models on entangled language hallucination
and visual illusion, focusing on image-context reasoning
with challenging yes/no questions.

254 questions across 69
figure

OCRBench [311]

A comprehensive benchmark designed to evaluate
VLMs on OCR-related tasks, including Text Recog-
nition, Scene Text-Centric VQA, Document-Oriented
VQA, Key Information Extraction, and Handwritten
Mathematical Expression Recognition, using 1,000
manually verified question-answer pairs.

1,000 manually verified
QA pairs across 29
datasets

VCR Series [312]

A benchmark to evaluate VLMs on restoring partially
obscured text within images, leveraging pixel-level hints
and contextual cues. Includes 2.11M English and 346K
Chinese entities sourced from Wikipedia, offered in easy
and hard variants.

2.46M image-caption
pairs across English
and Chinese datasets

COCO_VAL [69]

Object detection, segmentation, and image captioning.

330K images, 1.5M ob-
ject instances, 80 object
categories, and 5 cap-
tions per image

ScienceQA_VAL [313]

Science-based question answering using multi-modal
inputs.

21k multimodal science
questions with annota-
tions

MTVQA [314]

A multilingual benchmark for evaluating Vision-
Language Models on Text-Centric Visual Question An-
swering (TEC-VQA) tasks.

6,778 QA pairs, 2,116
images across 9 lan-
guages

MMStar [315]

An advanced multi-modal benchmark designed to eval-
uate Vision-Language Models on vision-indispensable
tasks, addressing issues of unnecessary visual content
and data leakage in current benchmarks.

1,500 high-quality chal-
lenge samples

POPE [316]

Post-OCR performance evaluation with reasoning tasks.

Continued on the next page
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Dataset Name

Description

Data Information

TextVQA_VAL [317]

Text recognition-based VQA tasks.

28,408 images, 45,336
questions, 453,360 an-
swers

ChartQA_TEST [318]

A benchmark designed for visual and logical reasoning
over charts, featuring 9.6K human-written questions and
23.1K machine-generated questions, with annotations
for chart images, bounding boxes, and data tables.

33,000+ questions and
chart annotations

GEOBench-VLM [16]

GEOBench-VLM is a comprehensive benchmark de-
signed to evaluate Vision-Language Models on geospa-
tial tasks like scene classification, temporal analysis, and
disaster detection, addressing unique challenges in Earth
Observation applications.

10,000+ tasks across 8
categories

NL-EYE [319]

NL-EYE is a benchmark designed to evaluate Vision-
Language Models on visual abductive reasoning tasks.

350 triplets, 6
categories &
Plausibility prediction
and explanation

MMT-Bench_VAL
[18]

A comprehensive benchmark to evaluate Vision-
Language Models on multimodal tasks requiring visual
recognition, reasoning, localization, and planning

31,325 visual questions
across 162 subtasks

MMInA [320]

Benchmark for evaluating VLMs and LLM agents on
multihop reasoning tasks involving multimodal data
(images + text) across multiple domains (e.g., web-
pages, Wikipedia, shopping).

1,050 tasks, 6 subfold-
ers

MileBench [321]

Benchmarks VLMs on multimodal long-context tasks
requiring comprehension and generation, using 6,440
samples with an average of 15.2 images and 422.3 words
per sample.

6,440 samples

o ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE evaluates the overlap of textual
units, such as n-grams, word sequences, or sentence pairs, between the generated and reference text.
Although it is used primarily for text summarization, ROUGE is increasingly applied to vision language
tasks that require textual alignment, such as image captioning and text-to-image retrieval [322]. It measures
recall, ensuring the model does not overlook important details in reference captions.

While these metrics have been instrumental in evaluating Vision-Language Models, they also present limitations.
For example, BLEU and CIDEr can overemphasize exact word matches and fail to capture the broader semantic
meaning of captions. SPICE, on the other hand, provides richer semantic evaluation, but still has room for
improvement in accounting for more complex multimodal reasoning.

6.1.1. Benchmarks

The development of robust benchmarks has been essential for evaluating the performance of Vision Language
Models across various tasks. These benchmarks typically consist of both standardized datasets and domain-
specific tasks, enabling researchers to compare models under consistent conditions.

e VLM4Bio: VLM4Bio is a benchmark dataset comprising scientific question-answer pairs designed to
assess pretrained Vision Language Models for trait discovery in biological images. It includes images
from three taxonomic groups: fish, birds, and butterflies, with approximately 10,000 images in total for
each group and 469k QA pairs [255].

o Visual Question Answering: VQA is one of the most widely used benchmarks for evaluating Vision-
Language Models. It involves answering natural language questions about images, which may require
visual reasoning or commonsense knowledge. The VQA dataset, introduced by Antol et al., [260]
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contains over 200,000 questions spanning 100,000 images, providing a diverse set of challenges for model
evaluation.

e MS-COCO (Microsoft Common Objects in Context): The MS-COCO dataset is another central bench-
mark for evaluating image captioning, object detection, and other vision-language tasks. It consists of over
330,000 images with five human-generated captions per image. It has been used extensively to evaluate
models on tasks like image captioning, image retrieval, and object detection. Its diversity and large-scale
nature make it an ideal benchmark for testing the generalization ability of Vision-Language Models [69].

o Flickr30k: Similar to MS-COCO, the Flickr30k dataset includes 31,000 images with five captions per
image, making it a useful benchmark for image captioning and cross-modal retrieval tasks. Its relatively
smaller size compared to MS-COCO allows for faster experimentation, while still providing a rich source
of evaluation data [259].

e OK-VQA: OK-VQA was introduced to test Vision-Language Models in scenarios where external
knowledge beyond the image is required to answer questions. This dataset addresses limitations in standard
VQA by introducing questions that involve commonsense reasoning and external knowledge. It consists
of questions paired with images from MS-COCO [323].

While these benchmarks serve as standard evaluation tools, they have limitations, such as their inability to
measure models’ general multimodal capabilities. As a result, researchers have started to develop more holistic
benchmarks that assess models on a wider range of tasks and reasoning abilities. Table 12 provides a
comprehensive overview of benchmark datasets designed to evaluate Vision Language Models across diverse
tasks, including image captioning, multimodal reasoning, geospatial analysis, text recognition, and visual
abductive reasoning, highlighting their purposes, data characteristics.

6.2. Challenges
Despite the variety of metrics and benchmarks, significant challenges remain in evaluating Vision-Language
Models effectively:

o Limitations of Existing Metrics: Traditional metrics like BLEU, CIDEr, and SPICE are effective in their
respective areas but do not fully capture the richness of multimodal reasoning or generalization across
tasks. These metrics often fail to account for the complex interplay between text and visual modalities.
Moreover, there is an inherent challenge in measuring subjective aspects of Vision Language Models, such
as creativity, coherence, and fluency of generated content using purely automated metrics [324].

o Need for More Comprehensive Metrics: To address these limitations, there is a growing need for
holistic evaluation frameworks that assess Vision-Language Models from multiple perspectives. These
frameworks should incorporate both automated and human evaluations. Human evaluations are critical in
tasks like image captioning, where creativity, relevance, and semantic quality matter more than exact word
matches. Multimodal reasoning tasks like MMInA [320] also require evaluating models on their ability to
combine visual and textual information effectively [325].

o Ethical Considerations and Biases: Another key challenge in VLM evaluation is the bias present in
many existing benchmarks. Datasets such as MS-COCO [69] and VQA [260] have been criticized for
embedding gender, racial, and cultural biases, which can skew the evaluation of model performance. As
Vision-Language Models are increasingly deployed in real-world applications, it is crucial to ensure that
evaluation metrics and benchmarks address these biases and promote fairness [326].

e Data Leakage and Unfair Comparisons: The risk of data leakage is also a significant concern,
particularly when training and evaluation datasets overlap. This issue can lead to inflated performance
scores, making it difficult to assess the true capabilities of Vision-Language Models. Ensuring proper
separation of training and evaluation data is critical for fair evaluation [327].

7. Challenges and Future Directions

As VLM develops, it faces many challenges related to their development, scalability, and real-world
applicability. Although significant progress has been made, but still remain some key hurdles that need to be
addressed for the further development of Vision-Language Models, specifically in the domains of fine-tuning,
pre-trained models, prompt engineering, adapters, and datasets. Below, some of the key challenges emerging
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trends, and proposals for research opportunities for enhancing VLM performance and deployment have been
discussed.

7.1. Key Challenge
Robustness, Bias, and Ethical Concerns in VLM Development One of the key challenges in developing
VLMs is ensuring their robustness and fairness across diverse environments and real time applications. A critical
issue arises from biases embedded in both training datasets and model architectures, which can produce in
discriminatory or unreliable results. For example, widely used datasets such as MS-COCO [69] and VQA [260]
have been found to contain biases related to gender, race, and cultural representations. When these biases are
incorporated into VLMs, they can reinforce harmful stereotypes, particularly when deployed in critical real
time applications such as autonomous healthcare, driving or law enforcement [328]. Furthermore, the ethical
concerns surrounding the use of these models in sensitive fields where biased or inaccurate results could lead
to serious consequences underscore the importance of prioritizing fairness, transparency, and accountability in
model design [329].
Scalability Scalability of VLM especially with large size pre-trained models is another significant challenge.
Training and fine-tuning SOTA VLM such as Llava-grounding [330] and PaliGemma [331] requires extensive
computational resources which are not available to many researchers and developers. This also poses a
considerable environmental challenge because of high energy consumption of large model training. To address
these challenges, novel approaches are crucial focusing on energy-efficient training methodologies and the
optimization of both hardware designing and algorithmic frameworks. Such developments are vital to ensuring
the sustainability and broader accessibility of VLM [332].
Practical Deployment Challenges Practical Deployment Challenges and Limitations of Vision-Language
Models Despite the remarkable capabilities demonstrated by Vision-Language Models (VLMs), their widespread
real-world deployment is frequently hindered by significant practical limitations. A primary concern is inference
latency, as VLMs, particularly larger models, demand substantial computational resources for real-time appli-
cations. The multi-modal processing pipeline, often involving separate image encoding, text encoding, cross-
attention, and autoregressive generation, can lead to sequential bottlenecks and suboptimal GPU utilization,
thereby increasing response times. This computational intensity directly translates to high energy consumption,
making VLM operation costly, especially for continuous inference. Consequently, deploying VLMs on edge
devices or in low-resource settings like smartphones or IoT devices remains a formidable challenge. While
progress is being made with techniques such as model quantization, pruning, and knowledge distillation to
reduce model size and accelerate inference, significant performance-accuracy trade-offs often exist. Adapting
large, cloud-optimized VLMs to the constrained memory, processing power, and battery life of edge hardware
necessitates considerable engineering effort and platform-specific optimizations, often resulting in reduced
performance or limited functionality.

Furthermore, the deployment of VLMs, especially in sensitive domains, introduces critical privacy concerns
and compliance challenges. VLMs process and interpret potentially sensitive visual and textual data (e.g.,
personal identifiable information in images, medical records, surveillance footage). Ensuring compliance with
stringent regulations like the General Data Protection Regulation (GDPR) requires robust mechanisms for data
anonymization, consent management, secure data handling, and transparent data processing practices. Models
must be designed with privacy-by-design principles, incorporating techniques such as federated learning or
differential privacy to minimize the exposure of raw sensitive data. Additionally, the "black-box’ nature of
complex VLMs can pose interpretability challenges, making it difficult to ascertain how decisions are made,
which can be a barrier to trust and accountability in critical applications. Addressing these operational constraints
is paramount for unlocking the full potential of VLMs across diverse real-world scenarios.

7.2. Emerging Trends

Generalization: A significant trend is the growing focus on model generalization and deployment of VLM
in real world applications. While VLM has shown impressive success in controlled environments, it can fail
when applied to unseen or domain-specific cases. To address this challenge, it is important to develop more
effective generalization strategies that allow models to adapt to dynamic and diverse real-world scenarios [21].
Furthermore, there is an increasing interest in integrating VLM into real world applications including autonomous
vehicles, robotics and healthcare where multimodal reasoning is crucial for decision making [333].
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Unified Foundational Models: Another noticeable trend in VLM is the shift towards unified foundational
models that utilize the same architecture to handle a wide range of vision and language tasks. Models like
PaliGemma?2 [12] and Cogvlm2 [334] show the potential for cross-domain learning and can handle multiple tasks
with minimal specific tuning. This might lead to general-purpose models that can effortlessly transition across
different domains, such as image captioning, visual question answering, object detection, and even multimodal
reasoning [335].

Multimodal Knowledge Adaptation: The future of VLM is likely to focus more on multimodal knowledge
transfer. Models that can transfer knowledge between multiple modalities like vision, language and audio can open
up new research directions for cross-modal reasoning [336]. This will not only enhance VLM more flexibility but
also enable them to adapt to new unseen tasks by utilizing existing multimodal knowledge [202]. Transferring
and integrating knowledge across modalities will be one of the key factors of progress in vision-language models.

7.3. Research Opportunities

To unlock the full potential of Vision-Language Models and address the current challenges of robustness,
scalability, practical deployment, and ethical concerns, several promising research avenues demand focused
exploration. These opportunities involve both fundamental methodological innovations and advancements in
training and deployment paradigms.
Energy-Efficient Training and Deployment: Due to the enormous computational cost of training large-
scale Vision-Language Models, there is a dire need for an energy-efficient training strategies. Techniques
such as quantization-aware training, mixed-precision computation, and pruned transformers (e.g., Tiny-ViT or
MobileViT) offer promising paths to compress VLMs without significant loss in performance. Additionally,
parameter-efficient tuning via LoRA or BitFit can reduce the memory demand for downstream tasks. Federated
learning, combined with differential privacy, can enable distributed VLM training on edge devices while
preserving data confidentiality.
Multilingual and Low-Resource Cross-Modal Training: Another promising research direction involves
improving VLM generalizability across diverse languages and underrepresented modalities. Cross-lingual vision-
language alignment can be achieved using multilingual contrastive learning with datasets like mVLT, or synthetic
image-text pairs generated by multilingual LLMs. Additionally, cross-modal translation supervision and low-
resource multitask adapters offer viable mechanisms for scaling VLMs to linguistically and culturally diverse
settings while task consistency.
Advancing Multimodal Continual Learning and Domain Adaptation: Multimodal continual learning
presents a compelling yet underexplored avenue for enabling VLMs to operate reliably in dynamic, real-world
environments. Research should concentrate on catastrophic forgetting mitigation and domain adaptation, using
mechanisms like Elastic Weight Consolidation (EWC) and AdapterFusion to retain previously learned knowledge.
Integration with domain-specific memory replay and inter-task knowledge distillation can further enhance
transferability and adaptability of VLMs in high-stakes applications such as healthcare, finance, or legal analysis.
Integrating Symbolic Reasoning and External Knowledge: Another interesting research direction for future
VLM research is the integration of symbolic reasoning and structured knowledge. Combining VLMs with neuro-
symbolic modules such as Neural Module Networks or knowledge graph-augmented models enables explicit
logical reasoning beyond surface-level correlations. Applications like scene graph-based VQA or ontology-
guided image captioning benefit from this synergy. These systems can be effectively implemented through graph
attention networks or knowledge-injection layers within transformer-based architectures, bridging perceptual
understanding with interpretable, knowledge-grounded reasoning.

8. Discussion

The evolution of Vision-Language Models has been marked by significant progress in architectural innova-
tion, task adaptability, and multimodal representation learning. Our analysis of 115 publications reveals that
recent VLMs have transitioned from monolithic, fully fine-tuned systems toward more modular, parameter-
efficient frameworks driven by prompt engineering and adapter-based methods.

A key insight from this survey is the growing preference for parameter-efficient tuning techniques such
as LoRA, BitFit, and adapter modules, which significantly reduce computational costs while maintaining
competitive performance. These methods are particularly valuable in scenarios where resource constraints limit
the feasibility of full model retraining. Similarly, prompt engineering has emerged as a lightweight yet powerful
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method for steering pretrained models toward task-specific behavior. Soft and hybrid prompts, in particular, have
shown notable improvements in low-resource and few-shot learning tasks, underscoring their utility in real-world
applications.

The surveyed VLMs demonstrate increasingly strong performance across a range of multimodal tasks
including image captioning, VQA, and retrieval. However, the lack of standardization in evaluation benchmarks
and metrics remains a significant limitation. While widely used datasets like MS COCO and VQAV2 support
comparative evaluation, inconsistencies in task setups and reporting conventions complicate cross-model com-
parisons. Furthermore, many current benchmarks fail to sufficiently test generalization to low-resource domains,
multilingual contexts, and unseen modalities.

Another observation is the trade-off between model performance, interpretability, and efficiency. While large-
scale models such as Gemini and GPT-40 offer strong generalization, they are often opaque and difficult to
deploy in constrained environments. In contrast, adapter and prompt-based methods allow modular adaptation
and reusability, but may underperform on complex reasoning tasks unless carefully optimized.

The integration of symbolic reasoning and structured knowledge into VLMs remains an underexplored
but promising direction. Approaches that incorporate scene graphs or knowledge graphs could improve logical
reasoning, interpretability, and consistency in model outputs. Similarly, the demand for cross-lingual and domain-
adaptive capabilities highlights the importance of multilingual training strategies, synthetic data generation, and
the development of language-agnostic tuning methods.

Overall, this survey illustrates that while VLMs have achieved significant milestones, several open challenges
persist. Addressing these will require coordinated efforts across dataset development, model interpretability, and
efficient deployment strategies. Future work must not only optimize performance but also ensure scalability,
robustness, and fairness in real-world multimodal Al systems.

9. Conclusion

This survey offers a comprehensive synthesis of recent advancements in Vision Language Models, examining
115 peer-reviewed studies across five core components of VLM: fine-tuning methods, prompt engineering,
adapter-based tuning, pre-trained model architectures, and benchmark datasets. We analyze 21 VLMs developed
between 2018 and 2025 and evaluated eight adapter variants, including LoRA, BitFit, Houlsby, and Compacter.
Our findings indicate that adapter-based methods can reduce trainable parameters by up to 98% while preserving
80 to 95% of the full model performance. Prompt engineering approaches, particularly soft and hybrid strategies,
consistently yield 4% to 7% improvements over hard prompts in few-shot and zero-shot tasks.

Despite these advancements, significant challenges remain in areas such as generalization, multilingual
adaptability, and evaluation consistency. To overcome these challenges, future work should explore symbolic
reasoning by integrating structured knowledge sources, such as scene graphs, commonsense knowledge graphs
(e.g., ConceptNet) or rule-based engines into VLM pipelines. This can be achieved through neuro-symbolic
architectures that link distributed representations with symbolic modules to support logical inference, entity
grounding, commonsense inference, and relational understanding. For instance, scene graphs can enhance object
relationship modeling in image understanding, while commonsense graphs can improve contextual reasoning in
question answering. Enhancing few-shot learning in multilingual settings requires dedicated language-specific
adapters, cross-lingual prompts, and synthetic data generation to support low-resource domains. Additionally,
improving model efficiency through sparse architectures, quantization, and adapter compression will be essential
for deployment on edge devices. These future directions underscore the need for VLMs that are not only
computationally efficient but also scalable, interpretable, and capable of robust performance across diverse real-
world tasks and domains.

Appendix A: Vision-Language Model Training Configurations
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Model Name Batch Size | Learning Epochs / Hardware Training Strategy
Rate Tokens
CLIP (e.g., 32k-65k le-3 (cos. ~32 Epochs 256-600+ Contrastive pretraining
ViT-L/14) decay) (LAION- V100/A100 on image-text pairs for
400M) GPUs zero-shot transfer
Flamingo ~1k—4k 2e-5-1e-4 Multi-stage Dozens—100s Frozen LLM, gated
(9B/80B) finetune A100/H100 cross-attn, few-shot
tuning
LLaVA 16-128 2e-5 1-3 Epochs 8% A100 Two-stage instruction
(1.5/1.6) (finetune) (instr. data) (40/80GB) tuning; uses LoORA
GIT 512-2048 ~le-4 Pretraining on 100s A100 GPUs | Unified VL modeling
(warm + 100B + tokens for captioning, VQA
decay)
Med-PaLM M N/A N/A Billions of Google TPU Pods | Fine-tuned on
tokens multimodal clinical
data
PaLM-E N/A N/A Billions of Google TPU Pods | General-purpose
tokens multimodal LLM
GMAI-VL ~16-64 2e-5 ~5-10 Epochs 8x A100 Finetuned on merged
(5.5M) medical datasets
Lingshu ~64-256 le-5-2e-5 ~10-20 Epochs | 8-32 A100 GPUs | Multi-stage training on
unified med data
HealthGPT ~32-128 2e-5 ~5-10 Epochs 8x A100 Instruction-tuned for
medical
comprehension and
gen.
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A comprehensive VLM Survey: Fine-Tuning, Pre-trained Models,
Prompt Engineering, Adapter, and Benchmarking Data

Comprehensive Analysis of VLM Components: The survey offers a comprehensive exploration
of fundamental Vision Language Model (VLM) components such as fine-tuning, pre-trained
models, prompt engineering, adapters, and benchmarking datasets. These components play an
important role in multi-sensor, multi-source information fusion by enhancing the model's
capability to process diverse input types.

Optimization Techniques for Improved Efficiency: The study delves into contemporary
optimization approaches such as adapter-based fine-tuning and low-resource learning strategies to
enhance computational efficiency and adaptability across diverse tasks.

Advancements in Pre-training and Prompt Engineering: The study highlights innovations in
pre-training, including contrastive and generative approaches, and examines the role of prompt
engineering in refining VLM performance for various downstream applications.

Benchmarking and Dataset Challenges: The paper addresses the significance of benchmarking
datasets, focusing on data diversity, annotation quality, and bias mitigation to ensure fair and
robust model evaluation.

Future Directions and Ethical Considerations: It outlines key challenges in VLM research,
including scalability, domain-specific adaptation, and ethical deployment, providing a
forward-looking agenda for future advancements in the field.
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