
T
a
v
i
P
c

©
(

Journal Pre-proof

A Comprehensive review on AIoT applications for intelligent EV
charging/discharging ecosystem

Lilia Tightiz, L. Minh Dang, Joon Yoo, Sanjeevikumar Padmanaban

PII: S2590-1745(25)00220-X
DOI: https://doi.org/10.1016/j.ecmx.2025.101088
Reference: ECMX 101088

To appear in: Energy Conversion and Management: X

Received date : 3 October 2024
Revised date : 2 May 2025
Accepted date : 25 May 2025

Please cite this article as: L. Tightiz, L.M. Dang, J. Yoo et al., A Comprehensive review on AIoT
applications for intelligent EV charging/discharging ecosystem. Energy Conversion and
Management: X (2025), doi: https://doi.org/10.1016/j.ecmx.2025.101088.

his is a PDF file of an article that has undergone enhancements after acceptance, such as the
ddition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
ersion of record. This version will undergo additional copyediting, typesetting and review before it
s published in its final form, but we are providing this version to give early visibility of the article.
lease note that, during the production process, errors may be discovered which could affect the
ontent, and all legal disclaimers that apply to the journal pertain.

2025 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ecmx.2025.101088
https://doi.org/10.1016/j.ecmx.2025.101088
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofA Comprehensive Review on AIoT Applications for Intelligent

EV Charging/Discharging Ecosystem

Lilia Tightiza, L. Minh Dangb,c, Joon Yooa,∗, Sanjeevikumar Padmanaband,∗∗

aSchool of Computing, Gachon University, 1342 Seongnamdaero, Seongnam-si, Gyeonggi-do, 13120, Korea
bthe Institute of Research and Development, Duy Tan University, Da Nang , 550000, Vietnam

cFaculty of Information Technology, Duy Tan University, Da Nang , 550000, Vietnam
dDepartment of Electrical Engineering, IT and Cybernetic, University of South-Eastern , Norway–Campus

Porsgrunn, 7430, Norway

Abstract

As a prompt solution to air pollution, global warming, and fossil fuel shortages, electric vehicle
(EV) penetration has been massively increasing. Spontaneously, higher EV utilization increases
electricity demand. With the advent of vehicle-to-grid (V2G) technology, EVs play the pro-
sumers’ role in the power system. However, this role necessitates an intelligent EV charging
ecosystem (IEVC-eco) that coordinates all components effectively, transforming EVs from a po-
tential threat of power system overload into a valuable resource for ancillary services. AI and
IoT (AIoT) are robust technologies, and with their contribution, the idea of IEVC-eco will be-
come true. Therefore, in this paper, in addition to the IEVC-eco elements and tool determination,
we investigate their AIoT requirements, including communication protocols, standards, and op-
timization techniques. Additionally, due to the importance of electric vehicle charging station
(EVCS) recommendation tools, we endeavor to provide an efficient framework as a versatile
gadget that considers all IEVC-eco stakeholders’ desires.

Keywords: Smart grid, EV charging/discharging planning, Interoperability, IoT, Privacy

1. Introduction1

Planning a decarbonized world as a principal solution to survive the planet’s inhabitants has2

provoked efforts to eliminate fossil fuels from its most reliant customers, i.e., transportation fleets3

and electricity providers [1]. While vehicle electrification was considered transportation’s free-4

emission solution, renewable energy sources (RES) played the eco-friendly role of electric power5

producers [2]. However, the role of EVs in the energy sector is twofold. Though EVs affect6

emissions alleviation positively, they increasingly become the principal customers of the power7

system according to the anticipation of being roughly half of the new car sales in 2030 [3]. The8

electrified transportation system burdens several issues on the power system by uncoordinated9
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ofcharging, including surges in peak load, overload on transformers and power lines, voltage and10

frequency disturbances, and the necessity for flexibility services [2, 4].11

Figure 1 illustrates the effects of EV penetration on the economy, power system, and environ-12

ment. In this figure, the beneficial impacts are highlighted in green. It is significant to note that13

the orange color indicates undesirable outcomes. Transformers and feeders overload results from14

the high penetration of EVs and uncoordinated charging. Moreover, EV charging occurs during15

peak hours, making it necessary to upgrade the power system. Voltage and frequency instability16

and harmonic distortions due to power electronic components of EV chargers are other troubles17

some EVs pose to the power system [5]. However, V2G technology and EV charging/discharging18

planning can mitigate undesirable effects [6, 7, 8, 9].19

1.1. Background20

The current limitations and potential solutions to broadening EV penetration by different21

aspects, including EV owners, power system operators, and EV manufacturers, are illustrated22

in Figure 2. The EV owners’ main hindrance is the range anxiety that discourages the spread23

of EV usage. A range of anxiety occurs when an EV cannot reach its destination due to low24

battery charge and is unable to find a charging station [10]. The development of the number25

of EVCS and special stand-alone EVCS based on RES and energy storage systems (ESS) is26

the most effective solution to this obstacle. Charging technology evolutions also mitigate this27

hindrance by introducing onboard chargers, wireless chargers, and EV charging slot finders.28

Since more than 30% of EV price is due to its battery cost, retraining battery health is one of the29

principal concerns of EV manufacturers [11]. Battery thermal management and battery recycling30

are remedies to this issue [12, 13, 14, 15, 16]. Policymakers also can alleviate EV manufacturers’31

concerns about EV acceptance in transportation fleets by assigning subsidies for EV purchasing32

and tax exemptions for EV owners and improving public awareness of EVs’ role in protecting33

the environment [17, 18].34

Previously addressed issues like power system instability, degradation of power quality, and35

increasing peak load are the results of uncoordinated EV charging. It is possible to coordinate36

EV charging to alleviate EVs’ undesirable effects on the grid as storage devices and demand37

response (DR) programs become more prevalent. Meanwhile, V2G accelerates EV presence38

amendment in power systems from troublesome to ancillary service providers [19, 20]. By V2G,39

an individual EV joins the building energy management system’s (BEMS) DR programs or a40

group of parked EVs in the lot, ties into the power system through an aggregator, and trades41

electricity in a bidirectional power flow [21].42

Due to the current relatively low penetration of EVs and lack of proper V2G infrastructure,43

V2G projects are yet in their initial stages and are currently small-scale [22]. Successful V2G44

implementation and controlled EV integration into the grid require addressing several major chal-45

lenges, including the random behavior of EV owners, the lack of interoperable infrastructures,46

and data security. Additionally, mass adoption of EVs is limited by range anxiety, poor charging47

facilities, and high battery costs, whereas power system operators are hampered by peak load48

surges, voltage instability, and complex grid integration.49

To overcome such challenges, a paradigm shift toward an AIoT-based structure is required in50

order to realize optimal bidirectional power and data exchange, optimized charging coordination,51

and offer safe and harmonious communication between actors. Alongside, policy initiatives52

such as EV subsidies and dynamic pricing regimes can promote EV penetration and strengthen53

their role as providers of ancillary services for upcoming power grids [23, 24]. Even though54

these are huge obstacles, ongoing research has explored some of the facets of EV integration,55
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ofincluding infrastructure planning, charging optimization, and secure data exchange, which will56

be discussed in the following section.57
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Table 1: Previous Survey Comparison
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[32, 33] x ✓ x x ✓ x x x x x x x x x x x x x x x x x
[34] x x x x ✓ x x x x x x x x x x x x x x x x x
[35, 36] x x ✓ ✓ x x x x x x x x x x x x x x x x x x
[37] x x x ✓ x x x x x x x x x x x x x x x x x x
[38, 39] x x ✓ x x ✓ x x x x x x x x x x x x x x x x
[40] x x ✓ x x ✓ x x ✓ x x x x x x x x x x x x x
[41] x ✓ ✓ x x ✓ x x x x x x x x x x x x x x x x
[20, 42] x x x x x ✓ ✓ x x x x x x ✓ ✓ ✓ ✓ x x x x x
[43] x ✓ x x x ✓ x x x x x x x x x x x x x x x x
[44] x x ✓ x x ✓ ✓ x ✓ x x x x x x x x x x x x x
[45] x x x x x ✓ x x ✓ x x x x x x x x x x x x x
[46] x x x x ✓ ✓ x x x x x x x x x x x x x x x x
[47] x ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x x x x x x x ✓ x x x x x
[12, 13, 14] x x x x x x x ✓ x x x x x x x x x x x ✓ x x
[48, 49, 50, 51, 16, 52, 53, 54] x x x x x x ✓ x x x x x x x x x x x x x x x
[55] x x ✓ x x x ✓ x x x x x x x x x x x x x x x
[56, 57, 58, 59] x ✓ x x x x ✓ x x x x x x x x x x x x x x x
[60, 61] x x x x x x x x ✓ x x x x x x x x x x x x x
[62, 63, 64, 65, 66] x x x x x x x x x ✓ x x x ✓ x x ✓ x x x x x
[67] x x x x x x x x x x ✓ ✓ x x x x x x x x x x
[68, 69] x ✓ x x x x x x x x ✓ ✓ x x x x x x x x x x
[70, 71] x x x x x x x x x x x ✓ x x x x x x x x x x
[72, 73] x x x x x x x x x x x x ✓ x x x x x x x x x
[74] x x ✓ ✓ x x x x x x x x x x x ✓ x x x x x x
[5] x x x x x x x x x x x x x ✓ ✓ x ✓ x x x x x
[75, 76] x x x x x x x x x x x x x x x ✓ x x x x x x
[77, 78, 79, 80] x x x x x ✓ x x x ✓ x x x ✓ x x ✓ x x x x x
[81] x ✓ ✓ x x ✓ x x x ✓ x x x ✓ x x ✓ x x x x x
[82, 83, 84, 85] x x x x x ✓ x x x x x x x x x x ✓ x x x x x
[86] x x x x x x x x x ✓ x x x x x x ✓ x x x x x
[87] x x x x x x x x x x x x x x x x ✓ x x x x x
[88, 89, 90, 91] x ✓ x x ✓ ✓ ✓ x x x ✓ x x x x ✓ ✓ x x x x x
[92] x x x x x x x x x x x x x x x x x ✓ x x x x
[93] x x x x x x x x x x x x x x x x x x ✓ x x x
[6, 7, 8, 9, 19, 94, 95, 96, 97, 98, 99, 100, 101] x x x x x x x x x x x x x x x x x x x ✓ ✓ x
[102, 103] x x x x x x x x x x x x x x x x x x x x x ✓
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of1.2. Related Work58

To address these multi-faceted aforementioned challenges—spanning from EV infrastruc-59

ture limitations and power grid limitations to optimization and security challenges—scholars60

have proposed a wide array of strategies for enhancing EV integration with smart grids. Ear-61

lier research has highlighted critical areas like charging station placement, battery management,62

demand-side response, V2G interaction, and secure data exchange. However, most of the exist-63

ing work is fragmented and usually addresses each technical aspect in isolation without providing64

an integrated AIoT-driven solution. To enhance the classification of such research, we catego-65

rize the existing literature in Table 1 into six general categories. EV infrastructure reviews,66

integration into power systems, integration into BEMS, penetration factors, battery management67

systems (BMS), and charging strategies and models are all included in this category. A large68

and growing body of literature has investigated different technologies and planning of EVCS,69

batteries, AI applications, and communication as the main EV fleet infrastructures. Researchers70

considered EVCS sizing and placement, standards, RES deployment, ESS deployment, charging71

piles, battery charger control strategies, and wireless chargers in the context of improving EVCS72

components and performance. EVCS penetration directly affects EV acceptability because of73

the reduction in the EV drivers’ anxiety range. Therefore, EVCS placement and sizing are major74

areas of interest within the field of EV infrastructure. This category of EV-related review litera-75

ture is in conjunction with the effect of EVs on power systems, and scholars have considered this76

effect in EVCS planning [25, 26, 27, 28, 29, 30, 31].77

Other essential elements of EV infrastructure that scholars consider are EV charger types78

and topologies. Ref [32] is one of the initial studies that introduced different types of EVCS,79

sockets, and standards for EV infrastructures. EV on-board charger application investigated in80

[34] to solve the issue of EVCS shortage number. Recently, Rachid et al. [33] presented a81

comprehensive review of EV charger topologies and standards. In addition to EV charger types82

and topologies, Rubino et al. [35] studied the integration of EV chargers to distributed energy83

resources and ESS. The authors in this paper analyzed worldwide pilot projects on the wireless84

charging system and mitigation of EV effects on the power system by smart charging. Ali et al.85

[37] explored ESS applications in the form of single ESS, multi-ESS, and swappable ones as a86

response to the surge of interest in stand-alone EVCS.87

Bhatti et al. proposed a comprehensive review of PV-based EVCS requirements in [38]. The88

authors in this paper highlighted power converter control strategies for stand-alone and grid-89

connected PV-based EVCS. In addition to overcoming the shortage of EVCS, RES can help90

mitigate the adverse effects of EVs on the power grid. As a result, it has been the subject of91

many comprehensive analyses in this area [39, 40, 41, 36]. The advent of EV DC fast chargers92

highlighted the role of converters among other EV infrastructures [42]. With the same line of93

thought, several comprehensive reviews studied power converters’ topologies and standards [43,94

44, 45, 46].95

Wireless EV charging has received considerable scholarly attention in recent years. The96

design and development of inductively coupled power transfer (ICPT) have been explored in97

[47, 48, 49, 50, 51, 16, 52, 53, 104] as a crucial technology for EV wireless charging systems98

implementation. In addition to studying ICPT topologies and designations, Joseph et al. [55]99

studied its integration with RES, whereas its relevant international standards and existing models100

have been studied in [56, 57, 58, 59]. Asa et al. [54] reviewed safety concerns of electromagnetic101

field emissions of wireless EV charging systems as an obstacle to hiring this technology.102

In addition to serving as a fuel tank, the battery is an essential part of the EV because it103

stores electrical energy, enabling V2G technology and the EV’s function as a generator in the104

5
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preserving battery lifetime encourages scholars to investigate methods of the battery management106

system to monitor battery operation [60, 61].107

Another area of the literature study focused on EVs is EV charging infrastructure opti-108

mization. Optimization algorithms and solutions hired to solve cost functions arranged based109

on different stakeholders’ benefits were classified and analyzed in such efforts [62, 63, 64].110

Pandyaswargo examined practical AI-based projects focused on traffic management, EV charg-111

ing system optimization, and autonomous driving from around the world to recognize challenges112

in deploying AI in the mobility industry [65]. Abdullah et al. [66] studied reinforcement learning113

(RL) applications in EV charging and discharging scheduling.114

Bi-directional interaction between charging facilities and EVs to plan the EV charging is an-115

other aspect that reduces the driver’s range of anxiety and mitigates the impact of EV charging116

on the power system. Therefore, communication infrastructure is another EV fleet infrastructure117

that has been the subject of literature reviews [67]. As privacy is one of the concerns in data ex-118

change, it is also a vital area of study in EV communication. Elghanem et al. studied radio access119

technology and its relevant privacy requirements in EV communication [68]. After realizing EV120

charging environment actors, Unterwegel et al. [69] determined corresponding standards for dif-121

ferent EV charging scenarios and the literature privacy gap in utilizing these scenarios. With the122

same line of thought, Metere et al. [70] studied cryptographic algorithms to provide security in123

smart charging and V2G. According to the distributed structure of EV charging infrastructures,124

Zhimomi et al. [71] investigated blockchain applications to provide secure communication in125

this ecosystem.126

Researchers have explored a wide range of features related to the integration of EVs into the127

power system, including their integration into the microgrid, charging/discharging scheduling,128

DR contribution, integration structure requirements, and their effects on the power system. Kur129

et al. [72] investigated the architecture, control, protection, and EMS requirements of microgrids130

integrated with EVs. Moreover, a survey on EV integration into building energy management131

systems (BEMS) as a flexible load was accomplished on [73].132

Yang et al. [74] examined all the modern power system requirements to join EVs and dis-133

tributed generators (DG), including control techniques, power flow calculations, risk manage-134

ment, and planning for networks and devices. Islam et al. in [75] and Inci et al. in [76] con-135

sidered EV integration to power systems by the vehicle-to-everything (V2X) term and classified136

them into V2H, V2V, V2L, V2G, and V4G. The authors in this paper studied the benefits and137

hindrances of each technology implementation. Under the category of EV integration to the138

power system, Anwar et al. [5] analyzed EV scheduling management as a participant in the139

DR program. For this management, however, other studies discussed different structures and140

optimization methods [77, 78, 79, 80, 81]. EV impact on the power system from system and141

equipment points of view has been studied in [82, 83, 84, 85, 86, 87, 88, 89, 90, 91]. Shahriar et142

al. [92] explored modeling and prediction of EV charging as a basis for EV load prediction using143

various machine learning algorithms. Limmer [93] examined EV charging pricing mechanisms144

to control EV load.145

EV penetration relies on technologies, policies, and standards. It was discussed by several146

scholars how EVCS and batteries should be developed in certain countries [6, 7, 8, 94, 95, 96, 97,147

98], while others presented roadmaps for improving EV components, including motors, batteries,148

and body materials, as well as developing standard business models for EV market [9, 19, 99,149

100, 101]. EV ecosystem participants’ standard and communication protocol prerequisites were150

discussed in [102]. As a widely used protocol for the smart charging environment, open charge151

6
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Yet, A comprehensive review of optimization tools and IoT requirements of IEVC-eco ar-153

rangement is not available, according to Table 1.154

1.3. Objectives and Contributions155

While various studies have explored EV charging infrastructure, optimization techniques,156

and security concerns, a unified framework integrating AIoT solutions to optimize the IEVC-eco157

remains largely unexplored. To bridge this gap, this study systematically identifies key actors,158

their objectives, and their required interactions within the EV charging and discharging ecosys-159

tem. Therefore, this study identifies the actors, their objectives, and their required interactions160

within the EV charging and discharging ecosystem. Here, we consider EVCS as one of the smart161

city infrastructures and EV to be an active element of the smart grid that enables participation in162

the DR program with V2G technology. Here, we consider EVCS under smart city infrastructure163

and EVs as dynamic elements of the smart grid, enabling participation in DR programs through164

V2G technology. To mitigate the aforementioned problems, we propose in this research an in-165

teroperable EV discharging and charging scheduling model utilizing standardized protocols. It166

also refers to privacy-preserving techniques in ensuring safe data exchange and decision-making167

processes within the EV ecosystem.168

Building upon these identified challenges and objectives, the key contributions of this paper169

are summarized as follows:170

• Determination of IoT requirements for IEVC-eco arrangement.171

• Identification of optimization tools more specified on AI application in IEVC-eco.172

• Study on the state-of-the-art solutions in optimization of IEVC-eco stakeholders perfor-173

mances.174

• Accelerate EV integration to the smart grid with recognition of interoperability require-175

ments in the EV ecosystem and provide a roadmap to accelerate this integration.176

• Study on privacy requirements in each level of optimization and communication.177

• Arrangement of an interoperable, secure, and distributed framework for EV charging/discharging178

slot finder as the backbone infrastructure of IEVC-eco, according to our findings.179

1.4. Paper Organization180

This paper is designed to introduce explicitly and methodically the integration of AIoT so-181

lutions into the IEVC-eco. To achieve this, the paper is structured as follows, and each section182

deals with the most significant problem side and the solutions. Section 2 deals with the structure183

of IEVC-eco, detailing its most significant components and involved stakeholders for charging184

and discharging. Section 3 discusses the AIoT necessities and communication protocols, describ-185

ing the principal technological facilitators necessary for efficient and secure EV-grid interaction.186

Section 4 explores smart charging optimization methods, presenting various approaches to en-187

hancing scheduling, cost efficiency, and grid stability. Section 5 covers challenges, issues, and188

future perspectives of EV-smart grid integration, mentioning the key concerns of interoperabil-189

ity, privacy, scalability, and the evolving nature of AI-based EV management. Finally, Section 6190

concludes the paper by summarizing the findings and offering potential future research directions191

7
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for AIoT-enabled EV charging ecosystems. The overall structure and interrelation of the paper’s192

sections are illustrated in Figure 3 to provide a visual overview for readers.193

194

2. IEVC-eco Framework and Stakeholders195

To establish a successful IEVC-eco, a clear understanding of the participating entities and196

supporting technological infrastructure must be achieved. This section clarifies the essential197

components and entities in the EV ecosystem and also delves into the composition of EV charg-198

ing infrastructure, including charging technology, power flow approach, and communication pro-199

tocols. Analysis serves as a foundation for defining AIoT requirements covered in subsequent200

sections.201

2.1. IEVC-eco Stakeholders and Their Roles202

Power system operators, EV charging point operators (CPO), electro-mobility service providers203

(EMSP), electric vehicle owners, original equipment automobile manufacturers (OEM), and E-204

mobility clearing houses are principal members of the EV fleet, according to Figure 4.205

CPO and EMPS provide technical support and management services for EVCSs. Each CPO206

is responsible for controlling one or more charging points. They are responsible for installing207

the hardware and software requirements of EV land owners who possess the EVCS. In addition208

8
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chargers for small-scale or stand-alone EVCS inside cities. CPOs integrate EVCS into the power210

grid with G2V and V2G technologies. Providing back-end and front-end services, CPO enables211

smart charging. EV users register their charging request amount, locations, and preferred time in212

the front-end mobile app provided by CPO. Additionally, back-end services that consider power213

grid limitations and other available energy resources, such as RESs, microgrids, and responsive214

loads, allow for a flexible power system. Another role of CPO is determining prices for EV215

owners who utilize its charging infrastructure.216

EMSP, also called a mobility operator, collaborates with CPO to offer EV drivers the most217

suitable charging point. The EMSP applies its brand to front-end and back-end services provided218

by CPOs and operates the EV business model by issuing bills and invoices for drivers. EMSP fa-219

cilitates charging payments through the app or RFID cards. CPO and EMSP negotiate with each220

other through the roaming platform, which is also called the e-mobility clearing house. ERoam-221

ing, following the concept of roaming in wireless telecommunication, facilitates exchanging EV222

users of different CPOs. Therefore, registered EV drivers of each region or country CPOs can223

use the other region CPOs’ infrastructure. With the help of eRoaming, EMSP can coordinate224

with many CPOs. Recently the main objective of CPOs is scalability to cover more charging225

points and customers. Aggregated CPOs will motivate EMSP to directly connect to CPOs and226

weaken the role of eRoaming in the EV ecosystem. OEM includes all EV technology require-227

ments providers, including EV manufacturers, battery producers, maintenance service providers,228

and even data communication technology providers. The transmission system operator (TSO) is229

responsible for the uninterruptible electrification of customers by providing a balance between230

the amount of power consumed on the distribution side and power generated on the power sup-231

plier side. The distribution system operator (DSO) is the operator of the power distribution232

network that is responsible for the establishment, operation, and maintenance of the local public233

electricity grid.234
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Figure 4: EV ecosystem main components
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Table 2: EV Charging Specifications

Voltage Type
• DC
• AC

Connection
Type

Conductive • Onboard

Contactless
Wireless Charging

Electromagnetic Field

• Inductive power transfer
• Coupled magnetic resonance
• Laser
• Microwave
• Radiowave

Electric Field • Capacitive power transfer
Mechanical Force

Battery Swapping

Power Flow
Direction

Unidirectional
• G2V
• V1G

Bidirectional V2X

• V2V
• V2B
• V2H
• V2L
• V2G
• V4G

Rate of
Delivered Power

SAE J1772
Level 1 Household outlet (AC/120V) 1.4 kW or 1.8 kW

Level 2 Household outlet or EV charging point
(AC/208-240V) 2.5 kW ∼ 19.2 kW

Level 3 Household outlet or EV charging point
(AC/208-600V) Up to 240 kW

IEC 61851-1

Mod 1 Household outlet (AC/230V) with no safety

Mod 2
Household outlet (AC/230V)
with in-cable control & protection • Up to 3.7 kW (residential)

• Up to 7.4 kW (industrial)

Mod 3 EV charging point with control,
protection, and communication 3.7 ∼ 43 kW

Mod 4 DC charging Over 150 kW

Connector
Types

AC Connectors
(IEC 62196-2)

• Type 1 / SAE J1772
• Type 2 /MENNEKES
• Type 3 / SCAME

DC Connectors
(IEC 62196-3)

• AA / CHAdeMO
• BB / Chinese standard (GB/T 20234.3)
• CC & DD / Not defined yet
• EE / CCS-1
• FF / CCS-2

Both AC & DC Connec-
tors

Tesla Connector

This paper addresses the AI and IoT requirements for EV charging coordination to maximize235

profitability for stakeholders of EV smart charging systems. Furthermore, the high penetration236

of EVs and RES has already transformed the conventional unidirectional power grid into a bidi-237

rectional smart grid. Therefore, we adopted EV ecosystem components represented in Figure 4238

based on our paper objective and modified the components’ role according to their equivalent239

smart grid entities shown in Figure 5.240

2.2. Charging Infrastructure and Energy Interaction Models241

According to Figure 5, there are four levels of stakeholders in EV fleet structures, including242

EV users, EVCS, aggregators, and TSO/DSO. Each level includes its components and AIoT243

concerns. The first level of EV stakeholders consists of EV users, whose AIoT requirements244

are described in Sections 3 and 4. The second level of the EV stakeholders is where the EV245
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the EV charger position is different in the rate of charging and application. EV charger types are247

onboard, offboard, and wireless.248

The onboard chargers facilitate the charging of EVs directly from household outlets. Japan249

and North American (NA) countries divide the charging rate of onboard chargers based on the250

society of automotive engineers (SAE) J1772 standard into two levels, including 1.44 kW and251

19.2 kW. This rate in European countries is determined according to mod1, mod2, and mod3 of252

the IEC 61851-1 standard. Because of the low charging rate of onboard chargers and being a253

burden on EV weight, offboard chargers are introduced with higher charging rates. The offboard254

chargers are located in charging stations and provide DC voltage for EV batteries and are called255

fast chargers due to providing charging rates of up to 240 kW according to SAE J1772 and over256

150 kW as mentioned in IEC 61851-1. Wireless EV charging is another effort to solve the anxiety257

rate of drivers, especially in the form of on-road wireless charging. Instead of using a wired con-258

nection, electromagnetic fields, electric fields, or mechanical forces transfer electricity to EVs.259

Among these methods, inductive power transfer, which is a subcategory of the magnetic field,260

has higher efficiency, and laser and radio waves have lower efficiency [105]. Power transmitters261

installed under the road charge EVs as they travel on the road. It makes on-road wireless charging262

a high achievement to neglect EVCS installation and battery production footprints [106].263

The power direction in EVCP can be unidirectional or bidirectional. G2V and V1G are264

technologies that are used in unidirectional power transfer. G2V represents uncoordinated EV265

charging when there are no interactions between EV and power suppliers about the charging266

schedule. As a result of this uncoordinated charging, peak demands will arise on the power sys-267

tem. The V1G is an intelligent type of unidirectional charging since scheduling EV charging is268

based on EV owner and power supplier requirements. One example of a demand-side manage-269

ment scheme is V1G [107]. With the help of optimization algorithms, V1G makes a tradeoff270

between the preferences of EV drivers and electricity suppliers based on various factors, such as271

electricity cost and power demand. Residential EVCPs and low-scale EVCSs located in work-272

places and commercial buildings are the best locations to implement V1G. This technology shifts273

EV charging to off-peak hours or during RES power output availability. The bidirectional power274

transfer of EVs provides an enhanced form of smart charging. In addition to coordination with275

the grid, EVs can provide ancillary services with reserved energy. This capability of delivering276

power to the grid appears in different categories, such as V2H, V2B, V2V, V2L, V2G, and V4G,277

depending on the location of EVCP [108, 109]. By joining DR programs in smart homes and278

commercial buildings, EVs support V2H and V2B. V2V implies power exchange between EVs279

in EVCSs and public places. Similar to V2H and V2B, the energy reserved in EV batteries sup-280

plies buildings through V2L. However, V2L is characterized by reliability provision in supplying281

critical loads, such as hospitals, water treatments, communication base stations, and data centers282

in any contingencies due to the unavailability of a power grid [75]. Large-scale EVCSs support283

V2G in which EVs deliver power to the power supply, which can be a utility grid or microgrid284

[110, 111]. Similar to V2H and V2B, the energy reserved in EV batteries supplies buildings285

through V2L. However, V2L is characterized by reliability provision in supplying critical loads,286

such as hospitals, water treatment plants, communication base stations, and data centers in any287

contingencies due to the unavailability of a power grid. V4G is the technology for joining EVs288

to the grid that provides ancillary services, such as reactive power and harmonic compensation289

services, during EV charging and discharging [112, 113]. EVs through V4G also can contribute290

in voltage and frequency regulations [114]. V2H, V2B, V2V, and V2G facilitate participating291

EV owners in the electricity market. By combining the energy of each EV, aggregators enable292
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more, flexibilities coming from RESs will be strengthened with V2G when their excessive power294

generation can be used for EV charging or preserved in EVs as ESSs and injected into the power295

system in contingencies and RESs’ absence [116].296

The other main elements of the EV charging system are the connectors used to connect EVs297

to EVCP. There are three types of AC connectors, according to part 2 of IEC 62196 [117].298

DC connectors include five configurations specified in IEC 62196-3 [118]. AA configuration is299

mainly used in NA countries and Japan, whereas BB configuration is used exclusively in China300

due to following the domestic standard GB/T 20234.3.301

V2V

V4G V2G

V2H

V2LV2B

V1G

Figure 6: Types of EV integration to the grid

3. IoT Requirements and Communication Protocols302

IEVC-eco relies on the IoT, which connects all physical objects across the globe. IoT compo-303

nents and their functions require being taken into consideration while planning the EV charging304

and discharging timetable. Therefore, in this section, we considered an IoT platform for IEVC-305

eco in addition to protocols and data exchange requirements.306

3.1. IoT Platform Arrangement for IEVC-eco307

IoT platforms follow layers and cloud styles [119]. The layer style is composed of three to308

six layers. The six-layer types include perception, adaptability, network, processing, application,309

and business. Several services that are deployed as IoT system components define the cloud-style310

category. We harmonized both styles with EV charging ecosystem requirements and represent311
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each IoT layer, its main constituents, research findings, and field applications.313

3.1.1. IoT Layers in the IEVC-eco314

The detailed explanation of every IoT layer, its major components, characteristics, and how315

it is beneficial to the EV charging infrastructure is as follows.316

Perception Layer317

The perception layer is the foundation of the EV charging infrastructure, where actuators and318

sensors capture real-time operating and environmental data from EVs, EVCSs, and power system319

assets. As evident in Figure 6, its principal constituents are:320

• Voltage and current sensors for power flow monitoring and energy distribution.321

• Global positioning system (GPS) sensors for EV dynamic location and navigation.322

• Temperature and humidity sensors for battery and environmental monitoring.323

• Smart meters for accurate measurement of consumed energy.324

These sensors play a significant role in balancing energy distribution in EVCSs. For instance,325

Tesla Supercharger stations employ real-time voltage sensors and energy meters to dynamically326

manage power distribution across several charging units. This enhances charging efficiency,327

reduces power fluctuations, and avoids overloading [120].328

Access Layer329

The access layer acts as a middleman, an intermediary between data transfer from sensors to330

higher-level communication networks, and enables secure local processing. The principal com-331

ponents, as illustrated in Figure 6, are:332

• Feeder IEDs for monitoring power distribution.333

• Transformer IEDs for voltage regulation and load balancing.334

• EVCS IEDs for regulating real-time charging operations.335

• BMS modules for SoC computations and battery health monitoring.336

• Edge computing nodes are used to reduce latency in data transfer and computation.337

To mitigate grid congestion and optimize charging efficiency, edge computing is applied in the338

access layer to pre-process data before it is transported to cloud services. For example, Pacific339

Gas & Electric (PG&E) installed smart meters in conjunction with IoT-enabled BMS units that340

dynamically adjust EV charging rates based on real-time grid demand and electricity market341

conditions [121]. Local processing guarantees data privacy, minimizes network bottlenecks, and342

stabilizes the grid.343
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• The network layer is involved in the seamless communication of data between the EV345

charging infrastructure. The principal networking technologies employed are as follows in346

Figure 6:347

• Wifi, Bluetooth, and Zigbee for short-range data transfer between EVs and EVCSs.348

• Fiber optics for high-speed, low-latency data transfer over long distances.349

• Cellular networks (3G, 4G, 5G, 6G) for secure cloud-based communication.350

• Roadside Units (RSU) for vehicle-to-infrastructure (V2I) interaction.351

The network layer plays a vital role in delivering seamless data exchange among EVs, EVCSs,352

and the power grid. Wifi technology is mostly applied for communication between EVs and353

EVCS with short-distance, real-time data sharing. On the other hand, fiber optic networks are354

applied for high-bandwidth, long-distance communication among EVCSs and utility substations355

to enable imperceptible signal degradation for long distances. Utilization of 5G connectivity in356

the EV charging infrastructure is gaining traction since it supports ultra-low latency and high-357

reliability communication, which is critical to ensure safe, real-time V2G communication. With358

more 5G infrastructure, grid responsiveness, and V2G coordination should be increased further,359

reducing communication bottlenecks and making the system more robust [122].360

Processing Layer361

The processing layer enables data storage, aggregation, and computation-driven decision-making362

for smart EV charging and discharging. From Figure 7, some of the key processing components363

are:364

• Cloud computing platforms for elastic data storage and AI-driven analytics.365

• SCADA systems for supervisory control of EVCS infrastructure and grid interaction.366

• Aggregators for synchronizing energy demand and supply optimization.367

Cloud analytics here enables proactive energy management and decision-making by the users.368

Tesla’s Charge Stats, for instance, employs cloud computing to provide real-time insights into369

drivers’ EV charging behaviors, energy use, and optimal times to charge their batteries. Based370

on historic data and predictive analytics, the system maximizes energy savings for EV owners371

and encourages longest battery life [123].372

Application Layer373

The application layer provides user interaction and visualization for EV drivers, charging station374

operators, and grid stakeholders. Figure 7 recognizes key application-level technologies as:375

• EVCS finder apps are used to locate and reserve charging stations.376

• Energy management control panels to track charging status and pricing in real-time.377

• Remote control interfaces for operators to remotely modify EVCS parameters.378
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enables EV drivers to schedule, filter, and manage their charging sessions and offers integra-380

tion with smart home energy systems [124]. Such integration simplifies user convenience and381

stimulates cost-effective energy consumption through smart scheduling.382

Business Layer383

The business layer manages policy enforcement, stakeholder engagement, and money transac-384

tions in the EV charging network. As evident from Figure 6, significant business-layer entities385

are:386

• TSO/DSO to manage energy allocation on the grid.387

• EV owners and EVCS operators to coordinate charging demand.388

• Billing and payment systems to support automated charging transactions.389

A concrete case of business-layer integration is that of the Plug & Charge initiative by the Euro-390

pean Union, promoting simplification across networks with ease of access from multiple charging391

service providers for users using one common account, developing interoperability [125].392

Business Layer

Application Layer

Processing Layer

Network Layer

Access Layer

Perception Layer 

IoT devices: Sensors and actuators

Gateways: Local storages, Computation engines

Wired/Wireless Communication Infrastructures and 

protocols

Storages, Cloud computation

Data visualization

Stakeholders, Regulations, Billing management

Voltage Sensor Current Sensor GPS Sensor Temperature & 

Humidity Sensor
Smart Meter

RSU

Aggregator

BMS unit Feeder IED Transformer IED EVCS IED

Wifi Bluetooth Zigbee Fiber optics

EVCS finder app

TSO/DSO EV owner
Charging

 payment

Cloud data centers

EVCS 

EVCS owner

SCADA system

Figure 7: IoT layers in IEVC-eco

3.1.2. Research in IoT for IEVC-eco393

Many studies have focused on improving the EV charging infrastructure’s intelligence, trust-394

worthiness, and effectiveness using IoT approaches. Such studies tackle the system-level issues395

in the context of EV deployment, i.e., the cost barriers of EVs and the lack of EVCS, through396

adopting IoT mechanisms that favor V2X technologies, data-driven scheduling, and economical397

energy trading.398
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architecture and the way in which various layers come together to achieve smart EV charging400

and discharging. Using this foundation, Table .7 categorizes salient advances in research into401

functional layers and divides studies by technical topic, which ranges from slot assignment to402

battery health monitoring to dynamic pricing models.403

Substantial work has investigated several elements of the IEVC-eco. Major research direc-404

tions include:405

• BMS implementation406

• EV monitoring system407

• EV privacy provision in data interaction and charging payment408

• EV charging slot finder409

• EVCS privacy provision in data interaction and charging payment410

• EVCS monitoring system411

• EV charging price determination412

• EV optimal dispatch413

According to Figure 8, the IEVC-eco framework in the lower level contains the BMS unit, which414

controls battery parameters such as temperature, voltage, current, and other factors. There are415

mobile apps or websites for EV owners to only monitor the battery status [126, 127, 128] or416

Battery MC
wifi 

module

BMS

GPS

EV charging slot finder 

app/web portal

Cloud

Local 

Cloud

EV charging slot finder

EV monitoring System

EV privacy in data and payment system

EVCS monitoring system

EVCS privacy in data and payment system

Cloud

Agg. 

Cloud

wifi 

module

EV optimal dispatch

EV charging price determination

Power system

Research domain

Data flow

Figure 8: Research area and implementation techniques for IoT applications in IEVC-eco
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can simplify EV owners’ decisions to choose between V2G and G2V [132]. Additionally, it can418

be used for battery protection in EVCS during the charging process [133]. Another application419

of monitoring battery data along with V2I and V2V technology is to prevent accidents during420

driving due to battery failure [134]. Wifi technology, along with IoT protocols such as MQTT421

[132, 135, 134, 136, 137] or data distribution services (DDS) [138], is widely used in transfer-422

ring battery parameters to clouds as computing resources located at the edge between EVs and423

EVCSs, and electricity provider companies [139]. In some EV charging scheduling IoT frame-424

works, the edge cloud is anticipated between EVs and EVCSs. This edge cloud facilitates the425

privacy of EV owner data and decreases traffic data in an IEVC-eco. The edge cloud functions426

are as follows:427

• Receive user preference, EV parameters, EVCS availability and specifications, and charg-428

ing price.429

• Deploy data to implement charging/discharging scheduling utilizing optimization meth-430

ods.431

• Save the data in the database.432

• Provide EV charging modeling.433

• Transfer to EV owners’ apps or websites.434

• Providing security in data exchange and charging payment.435

EVCS and EVs coordinate with the utility grid through the aggregator cloud level. This436

computation level prepares local scheduling for each EVCS in its domain according to the re-437

ceived energy capacity from the utility grid. To use EVCS services and pay the charging fee,438

each EV has an exclusive, unique identifier (UID) authenticated by the aggregator-level cloud439

[140, 141]. The IoT framework facilitates EV charging price determination according to the440

time of EV charging [142]. The pricing mechanism prevents overload on the EVCS power line441

supplier [143] and encourages EV charging during the daytime, which results in the load profile442

peak shaving [144].443

Communication efficiency is yet another crucial parameter that has been researched in the444

case of V2G scheduling. Inala et al. [122] had highlighted the significance of bit error rate and445

latency of communication among EVs, EVCSs, and utility grids, and the need for strong and446

reliable communication protocols. To enhance reliability in EVCS systems, others have pro-447

posed the use of smart contracts using blockchain technology that compensate EVCS operators448

automatically for cases where users fail to make advance bookings, consequently reducing idle449

facilities and improving equity of services [145].450

3.1.3. Integration of IoT Layers in IEVC-eco451

The above-discussed individual IoT layers do not exist in isolation; instead, they are part452

of an integrated system that, together, enables the IEVC-eco. Each layer plays a crucial role453

in providing seamless data transmission and decision-making in the IEVC-eco, from real-time454

sensor measurements to cloud-based analytics and business operations.455

Figure 9 shows the EV charging/discharging slot finder as a typical smart device for IEVC456

scheduling. The figure highlights how data flows between different IoT layers to facilitate real-457

time optimization. On the EV side, BMS modules keep tracking and updating SoC, and EV458
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computing layer processes local data to forecast EV load profiles before requests are made to the460

aggregator level, where EV charging behaviors, price models, waiting times, and charging times461

are optimized. Grid operators at the TSO/DSO level make decisions on electricity allocation and462

price strategies based on overall demand.463

This convergence highlights the inherent significance of communication and interoperability464

among different components and parties. Enabling smooth interaction between these layers re-465

quires standardized data exchange processes, secure authentication procedures, and an extensible466

network infrastructure.467

3.2. Communication Protocols for Interoperability in IEVC-eco468

Figure 10 depicts communication technologies, standards, and types of data exchange in the469

IEVC-eco. The following communication protocols provide interoperability in this ecosystem470

over the globe.471

3.2.1. OCPP472

Open charge alliance (OCA) developed OCPP in 2009 as an open-source protocol to of-473

fer interoperability for interactions between electric vehicle supply equipment (EVSE) and the474

charging management system. EVSEs, which are OCPP clients, transfer data such as the amount475

of charging power or charging start/stop signals to the OCPP server in the EVCS management476

system (EVCSMS). This data will be used to schedule EV charging/discharging and maintenance477

of EVSE. OCPP 2.0 is the latest version published in 2018 to address security for EV owners in478

the billing process and interaction among EVSE and EV charging management systems [146].479

3.2.2. OCPI (Open Charge Point Interface)480

This standard assists EV owners in finding EVCS according to their position, charging price,481

and availability. Therefore, EV owners can use EVSE under different management systems and482

regulations and expedite the EV Roaming concept in the charging environment [147].483

3.2.3. OSCP484

OSCP is another protocol developed by OCA to provide interoperability in data exchange485

between EV aggregator and TSO/DSO. Predicted available power capacity by DSO will transfer486

with OSCP to EV aggregators [148].487

3.2.4. IEC 61850488

This standard offers an information model for power system elements and message format489

to communicate in the smart grid. Part 90-8 of this standard focuses on the EV mobility object490

model and arranges use cases for communication between EV, EVSE, and EVCSMS [149]. This491

standard was initially established to support online communication of IEDs in power system sub-492

stations. IEDs are microprocessor-based devices that provide control, monitoring, and protection493

in power systems. IEC 61850 defines a set of logical nodes for each IED to represent its func-494

tionalities. Each logical node includes data determined by several data objects. IEC 61850-7-420495

defines the whole IEVC-eco required data objects [150].496
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Figure 10: IEVC-eco communication protocols and data exchange requirements
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of3.2.5. ISO/IEC 15118497

EV integration to the smart grid through V2G implementation is supported by the interna-498

tional standard ISO/IEC 15118. This standard determines two types of messages, namely Supply499

equipment communication controller discovery protocol (SDP) messages and V2G messages.500

EV and EVCS exchange their Internet protocol (IP) address and port number using the user data-501

gram protocol (UDP) protocol with SDP messages. However, V2G message types transfer over502

transmission control protocol (TCP) to provide data integrity and authentication via transport503

layer security (TLS). The prominent feature of this standard is plug& charge. The billing system504

data exchange is confidential, integrated, and authentic. This feature shortcuts the process of505

using a credit card, RFID card, or QR code by EV drivers when secure automatic identification506

of a plugged EV into the EVSE is provided by digital certificates and public key infrastructure.507

3.2.6. IEC 2030.5508

This communication protocol, widely used in the U.S., designs an application profile to fa-509

cilitate EV aggregation for participating in DR.510

3.2.7. OpenADR511

Aggregated EV load or individual EV participation in DR facilitated by OpenADR. DR512

events exchange between DSO, aggregators, and the EVCSMS.513

3.2.8. IEC 63110514

This standard development began at the end of 2017 to provide an international interoper-515

able standard replacement for the OCPP protocol. This standard assists the IEVC-eco in three516

domains: the capacity of transferred energy, the EVCSMS, and EV fleet services. However,517

the development of this standard is still in progress. This standard supports other interoperable518

standards, such as IEC 61851 and CHAdeMo as charger standards, IEC 61850 object model and519

message transfer, and ISO 15118.520

4. Optimization Strategies for IEVC-eco521

The emphasis of this paper is not on a complete analysis of all computations and optimization522

methods applicable to the IEVC-eco. Instead, this section is concerned with describing the most523

prevalent and impactful AI-based optimization techniques that optimize the operation efficiency524

of IEVC-eco at various levels. Table 3 facilitates this discussion by detailing the specifications,525

typical applications, advantages, drawbacks, and key examples of each technique in the context526

of IEVC-eco.527

As illustrated in Figure 9, the IEVC-eco is structured on three distinct levels of optimization:528

the EV level, the EVCSMS/Aggregators level, and the TSO/DSO level. There is a specific529

approach to each level of optimization tailored to meet particular operating needs and restrictions.530

Through the association of some optimization methods with their application in the IEVC-531

eco in the real world, as meticulously listed in Table 3, this section has aimed at assisting in the532

identification of proper methods for successful application in reality.533

In the next subsections, we discuss the optimization methods of particular interest for each534

specified level of IEVC-eco, beginning with the EV level.535
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Table 3: IEV-eco computational techniques requirements

Methods for optimization and computation Applications in IEVC-eco Advantages (m)&Disadvantages (l) Examples

AI Machine
Learning

Supervised Learning

• EV load prediction

• EV owner behavior prediction

• SoC/SoH estimation

• RES output power prediction

• Charging/discharging price prediction

• Weather/Traffic/Event prediction

m Using labeled data provides more accurate results than unsuper-
vised learning

l Data cleaning is challenging

l High computation time of training process

l Subjected to over-fitting when trying to increase accuracy

• CNN [151]

• XGBoost [152, 153]

• ANN [154, 155]

• Random Forest [139, 153]

• regression [156, 157, 158]

Unsupervised Learning

• Recommendation System

• SoC/SoH estimation

• Anomaly Detection

m Less effort for data preprocessing compared to supervised learning

m Evoke hidden pattern that supervised learning unable to detect

l Provided pattern may be impossible to interpret

l Non-reliable output since of inaccessible labeled data for evalua-
tion

• LSTM [159, 160]

• Transfer learning [156]

RL

Value-based
• V2G planning in EV, EVCS, and

TSO/DSO level

• EV aggregator EMS provision

m Higher sample efficiency than policy-based methods

m More stable learning process than policy-based methods

m Better performance in large state space

l Subjected to overestimation

l Less efficiency in high-dimensional and continuous action spaces

• Q-learning [161]

• Hyperopia SARSA [162]

• DQN [163]

• GNN-Rainbow DQN [164]

• DDQN [165]

• fitted Q-iteration [166]

policy-based
• V2G planning in EV, EVCS, and

TSO/DSO level

• EV aggregator EMS provision

m Better convergence performance

m Well suited to high-dimensional and continuous action spaces

m Learn the stochastic policy

l Less sample efficiency

l Subjected to converge to a local optimum

l Since policy evaluation has high fluctuation in policy and an ineffi-
cient model

• [167]

. . . continued
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. . . continued
Methods for optimization and computation Applications in IEVC-eco Advantages (m)&Disadvantages (l) Examples

Actor-critic
• V2G planning in EV, EVCS, and

TSO/DSO level

• EV aggregator EMS provision

• m Less policy fluctuation compare to policy-based methods

• m higher sample efficiency than other RL methods

• l Actor and critic interfere with each other’s performances.

• l High complexity and computation time due to requiring two NN
training

• Human-machine DDPG [168]

• Safe DRL [169]

• DDPG [170, 171]

Multi-agent

• Online EV charging/discharging pric-
ing

• EV smart charging considering whole
stakeholders profit

• EV charging/discharging scheduling
in an interactive environment

m Solving multi-objective problems

m Considering both self-interests and other agents’ interests

m Support distributed optimization

l High computation cost

l Implementation is more challenging compared to single-agent

• [172, 173, 174, 175, 176, 177]

FederatedLearning
• Facilitate a multi-agent environment

of IEVC-eco implementation with pri-
vacy and low communication over-
head

m Provide extendable solution

m Efficient training process provision by combination with Muti-
agent RL

m Privacy provision

l Difficulties in hyper-parameters tuning

• [178, 179]

Game Theory
• Decentralized EV charg-

ing/discharging scheduling

• EV charging pricing determination

m Providing distributed controller

l High reliance on the assumption

l Difficulties in each decision maker strategies determination

l Does not support uncertainties conflicts

• [180, 181, 182]

Fuzzy Logic
EV charging/discharging scheduling

• m Support uncertainty in the environment

• l Require expert knowledge to weight decision-makers variables im-
portance

• l Providing more accurate solution costs in highly complex rules

• [138, 122, 183, 184]

Conventional
Techniques

MPC • EVCS scheduling considering uncer-
tainties

m Robust in respecting narrow constraints

l Inefficient in addressing uncertainty in IEVC-eco

l Complexity due to a large number of control parameters

l Difficult to provide precise modeling

• [185]

. . . continued
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. . . continued
Methods for optimization and computation Applications in IEVC-eco Advantages (m)&Disadvantages (l) Examples

Dynamic Programming
• Preemptive charging scheduling of EV

m Local and optimal solution can be determined

m Sample efficient

l Single, universal model for dynamic programming is not available

l Large memory is required to keep the solution of each subproblem

• [186]

Statistical Methods

Gaussian • EV load prediction

• EV owner behave prediction

m Support large-scale simulation

l False results due to producing negative results

Weiball

• EV load prediction

• EV owner behave prediction

• RES output prediction

m Provide reasonably accurate and fast prediction with limited infor-
mation

l Not able to keep track of data alteration during the time

• [187]

KDE • EV load prediction

• EV owner behave prediction

m No prior knowledge on data distribution is required

l Less efficiency in bounded data
• [163, 188]

Monte Carlo simulation • EV load prediction

• EV owner behave prediction

m Prediction without requiring solving the model analytically

l Rely on historical data

l Risk of underestimation due to considering the normal distribution
of data

• [189, 190]

Stochastic Methods

Temporal • EV load prediction

• EVCS load prediction

m Ideal for one EVCS or one EV load prediction

l Ideal for non-interactive EVCS load prediction
• ARIMA [191, 192, 193]

Spaiotemporal • EV load prediction

• EVCS load prediction

m Ideal for the cluster of EVCS load prediction

l Complex implementation

• Multi-variate probabilistic model
[194]

Queue • EVCS load prediction

• EVCS congestion prevention

m Simplicity in implementation and scalable

m Ideal for interactive EVCS load prediction

l Requiring deterministic assumptions that are not according to real-
ity

• [161]

. . . continued
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. . . continued
Methods for optimization and computation Applications in IEVC-eco Advantages (m)&Disadvantages (l) Examples

Stochastic
Optimization

Robust optimization • EV charging/discharging scheduling
considering uncertainties

m Support distributed optimization by multi-stage arrangement of the
system

l Issue on probability distribution function requirements for uncer-
tain parameters

l High computational cost due to complicated formulations

• [195, 188]

Stochastic programming • EV charging/discharging scheduling
considering uncertainties

m Do not require PDF for uncertain parameters compared to the sta-
tistical method

m Support distributed optimization by the bi-level arrangement of the
system

l High computational cost due to complicated formulations

• Stochastic random model [196]

Mixed-integer programming • EV charging scheduling in EVCS and
TSO/DSO level

m MILP guarantees optimal solution due to its non-convexity

m Supporting by several commercial solvers

l Inefficient in addressing uncertainty in IEVC-eco

l Subjected to the curse of dimensionality in large-size EV popula-
tion

l Complexity of MINLP due to nonlinearity and risk of non-
convexity

• MINLP [197, 198, 199, 200, 201,
202, 191]

• MIQP [203, 204]

Heuristic optimization
• EV charging/discharging scheduling

m Guarantees faster and near-optimal solution compared to mixed
integer-based methods

l Subjected to the curse of dimensionality in large-size EV popula-
tion

l Inefficient in addressing uncertainty in IEVC-eco

• PSO [205, 206, 207, 208]

• GA-Intelligent scatter search
[209]

• DE [135]

• ACO [141]

Other
Methods

Analytical Methods
• EV energy consumption modeling

m Easily integrate to EV slot finder app due to not requiring field tests

l High computation cost

l Not able to apply conditional factors such as traffic and weather
conditions

• [210]

. . . continued
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. . . continued
Methods for optimization and computation Applications in IEVC-eco Advantages (m)&Disadvantages (l) Examples

ADMM

• Providing privacy in EV charg-
ing/discharging scheduling

• Decentralized EV charg-
ing/discharging scheduling

m No requirement to precise arrangement of convex objective func-
tion

m Support high-dimensional problem

m Support distributed optimization

l Do not guarantee convergence in a finite number of iterations

• [211, 212, 213]

MCDM
• EV charging slot finder

m Scalability

m Support uncertainty

l Require expert knowledge to weight decision-makers variables im-
portance

• AHP [214]

• VIKOR [143]

• MOPSO-TOPSIS [102, 215]

Graph theory
• EV charging slot finder

m Support complex environment

m Suitable for finding shortest path problems

l Subjected to the curse of dimensionality in large-size problems

l Require expert knowledge to extract relation between variables

• [216]
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At the EV level, BMS and charging slot finder apps are crucial functionalities that require537

sophisticated optimization tools. As a crucial task of BMS, SoC estimation contributes signif-538

icantly to IEVC-eco. Among various tasks handled by BMS, accurate estimation of state of539

charge (SoC) and state of health (SoH) significantly enhances IEVC-eco.540

4.1.1. SoC Estimation541

SoC calculation is according to the experimental simulation of battery performance. There-542

fore, accuracy in battery modeling, historical data, and tracking of battery parameter alteration543

during EV movement comforts reliable SoC estimation. Battery chemistry and the age of the544

battery are other critical factors in SoC calculation. The estimated SoC will assist EV load daily545

load profile estimation. Scholars have considered analytical, statistical, stochastical, and ma-546

chine learning approaches to address the EV load pattern [217, 218]. Analytical methods try547

to estimate the EV power consumption model with the assistance of the dynamic parameters of548

EVs, such as the Virginia Tech comprehensive power-based EV energy consumption model (VT-549

CPEM) [210]. Using data-sheet-based information for analytical methods eliminates the need550

to collect experimental data. As a result, EV energy consumption analytical models can easily551

be incorporated into charging slot finder apps and websites. Statistical approaches simulate EV552

load by gathering field data and examining experimental relationships of various parameters.553

Gaussian as statistical approach and time series-based prediction methods, including conven-554

tional methods such as autoregressive integrated moving average (ARIMA) and machine learn-555

ing based such as long short-term memory (LSTM) and support vector machines (SVM), fitted556

EV charging profile prediction in EV, EVCS, and aggregator levels [219]. Although statistical557

methods, such as Gaussian, outperform analytical and machine learning-based methods in the558

case of computational cost, their predicted model accuracy is low. Due to its non-parametric559

characteristics, the kernel density estimator (KDE), as another statistical approach, models EV560

load and EV owner-driving behavior without requiring a prior understanding of data distribution561

[163, 188]. KDE’s main drawback is its low performance across data distribution boundaries.562

Battery performance modeling in [157] was done by regression tree, which showed less error and563

training time compared to linear regression, SVM, and narrow neural networks (NN). LSTM NN564

represented the highest accuracy in the SoC prediction of dynamic EV load compared to Auto565

ARIMA and random forest [159].566

The stochastic approach relies on EV spatial patterns, temporal characteristics, and queue567

theory in EV load modeling. Aggregated EVCS modeling can be supported by spatiotemporal568

and queue theory, whereas temporal modeling is suitable for individual EV or EVCS modeling569

[217].570

The EV slot finder program is the other aspect of the IEVC-eco’s EV-level capability that571

needs to be optimized, as was already indicated. EV owners utilize mobile apps for charg-572

ing/discharging schedules. This recommendation system receives user preferences such as travel573

plans, daily ahead SoC prediction, or real-time SoC. It requires optimization tools to select avail-574

able EVCS based on time, distance, and electricity trading price, and calculate EVCS waiting575

time, which is the summation of the charging process and traveling time to the EVCS to update576

the user. EV owners will select the offered EV charging/discharging plans. IEVC can be done577

as a daily ahead or online scheduling. Sarika et al. [139] implemented an EV charging station578

recommendation system based on a cloud format. EV drivers enter their preferences through the579

UI of the slot finder app, which has access to the EVCS database in the cloud. The EVCS that580

27



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofmeet EV owners’ requirements will be selected with the help of the random forest classification581

method.582

4.1.2. SoH Estimation583

Accurate estimation of the SoH of EV batteries is important for proper battery management,584

prognostic maintenance, and maximum lifecycle performance. Unlike SoC, which considers585

current battery capacity, SoH assesses a battery’s long-term degradation and remaining useful586

life. Aging of the battery is a function of several parameters, i.e., cycle life, temperature cycling,587

charge-discharge rate, and usage conditions, that combine to complicate SoH estimation.588

Among the various methods that have been proposed in the literature to address SoH esti-589

mation problems, data-driven and machine learning methods have been particularly dominant590

due to their high potential to model nonlinear battery aging behavior. Bayoumi et al. offered a591

comprehensive comparative study that outlined the strengths and weaknesses of various model-592

ing approaches, including direct measurement techniques, physics-based models, and data-driven593

models. The authors in this paper emphasized that data-driven approaches manage the variability594

of battery performance under various and shifting operating conditions effectively, outperforming595

conventional approaches in terms of accuracy and responsiveness [220].596

Among the new techniques that have emerged in recent years, ensemble learning models have597

been highly promising. Naresh et al. presented an ensemble of ensemble models (EEMs) of Ran-598

dom Forests, Gradient Boosting, and AdaBoost with a stacking-based meta-learning approach.599

This approach could efficiently analyze complex correlations between key battery parameters600

such as voltage profiles, temperature fluctuations, and charge-discharge cycles. The EEMs were601

highly accurate (99.9%) with near-error-free predictions [153].602

Deep learning methods have also emerged as a key among data-driven approaches, with603

the long short-term memory (LSTM) networks showing significant benefits. LSTM models are604

particularly useful in identifying temporal dependencies and complex degradation patterns in605

large and diversified battery data sets. Additionally, CNN-learned hybrid models integrated with606

LSTM networks have been shown to possess the capability to automatically extract key degrada-607

tion features from voltage and current profiles with high accuracy and efficiency in SoH predic-608

tions [221]. Safavi et al. validated this hybrid CNN-LSTM model using NASA battery datasets,609

demonstrating its superiority in automatically discovering valuable features without any human610

intervention, thus highly enhancing the predictive accuracy and robustness of SoH models [160].611

In addition, practical limitations such as imperfect and incomplete measurement periods have612

been addressed through the creation of weakly supervised learning methodologies. Such proce-613

dures use interval labeling techniques and adaptively weighted loss functions to enhance estima-614

tion accuracy with real-world application scenarios and thus adequately support scenarios where615

completely labeled, high-quality data cannot be acquired or are incomplete [222]. Emerging616

trends in SoH estimation predict a direction towards the integration of traditional electrochemi-617

cal models with advanced artificial intelligence techniques. Hybrid methodologies that combine618

physics-informed models with advanced AI techniques will presumably provide even better ac-619

curacy, reliability, and explainability in health prediction, hence practically facilitating proactive620

maintenance policy and prolonging battery life. Zhang et al. demonstrated the efficacy of Gaus-621

sian process regression (GPR) models combined with electrochemical impedance spectroscopy622

(EIS). Their model provided accurate battery capacity fade and remaining useful life (RUL) fore-623

casts, together with identifying significant impedance frequencies that define degradation, thus624

providing valuable insights for BMS [158]. Due to the complexity and evolving demands of625
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portance. Battery management at the vehicle level requires continual advancement, but it also627

serves as a keystone input into more advanced management and optimization processes at the628

EVCS/Aggregator level, influencing such tasks as energy management, load profile prediction,629

and congestion management, as discussed in Section 4.2.630

4.1.3. EV slot finder631

The EV slot finder applies various factors with different priorities based on stakeholders’632

insight. Though historical data deployment to determine EV load through machine learning633

methods will augment EV charging/discharging planning, difficulties in collecting data and poor634

data quality affect the accuracy of the results. There are methods, such as transfer learning, to635

overcome the lack of data. Fukushima et al. [156] represented a framework for an EVCS rec-636

ommendation system at the EV level that worked based on EV SoC prediction. The authors in637

this paper predicted new types of EVs and deployed transfer learning methods to overcome the638

lack of recent EV types of trip data. However, the EV slot finder and reservation system requires639

the following dynamicity of IEVC-eco and online solutions. While EVCS distance, number of640

charging piles, and EVCS technical characteristics are constant and commonly available through641

databases located in the cloud, the arrangement of interaction between EV and EVCS, waiting642

time, charging prices, desired level of SoC, and availability of EVCS are changing dynamically.643

Hariri et al. [138] implemented a multi-agent system for communication between EV and EVCS644

and aggregators with the help of the DDS protocol to provide a recommendation system for EV645

charging/discharging. The authors in this paper carried out the optimization at the EV level,646

to choose the best EVCS based on user preferences, including EVCS distance, SoC level, and647

trading power price. A fuzzy logic scheduler was also hired in [184] to provide an EV charg-648

ing/discharging slot finder while considering user preference similar to [138]. Multi-criteria649

decision-making (MCDM) optimization is one of the methods of weighting user preferences to650

assist online EV slot finders. Liu et al. [214] applied an analytic hierarchy process (AHP) to651

online data such as Charging price, EV arrival time, and desired SoC for EVCS selection. The652

authors in this paper weighted user expectations based on AHP to find the optimal action between653

G2V and V2V. VIKOR is another MCDM algorithm type employed in [143] to make online deci-654

sions on EVCS selection. Although MCDM algorithms and Fuzzy logic consider dynamic input655

variables in the EVCS finder app, weighting each criterion requires experts’ knowledge and is a656

complicated task.657

4.2. EVCS/Aggregator Level Optimization658

EVCSMS or a group of EVCS under the supervision of aggregators based on user prefer-659

ence, SoC level, offer available EVCS, charging price, and waiting time. Several tasks at the660

EVCS/EVC aggregator’s level that require computation and optimization include load profile661

prediction, energy management, congestion management, and profit maximization.662

4.2.1. Load profile prediction663

As discussed, EV charging/discharging behavior and EV load in the power system can be664

modeled based on SoC estimation. EV load prediction at the EVCS level depends on the va-665

lidity of traffic flow data, EV arrival and departure times, and daily travel patterns. One of666

the issues in EVCS is the uncertain estimation of EV arrival and departure times. This uncer-667

tainty can be handled using Poisson distributions, a method commonly used on historical data668
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forecasting[223]. ARIMA predicted the EVCS load profile based on the expected arrival and670

departure time and expected daily driving distance of the EV in [224]. The estimated EVCS671

load was used in day-ahead power system generation scheduling to minimize generation unit672

production and startup/shutdown costs. Wang et al. [192] used ARIMA in EVCS daily load673

profile prediction on a university campus. The authors in this paper utilized the predicted load674

profile to determine the charging price, while the user, through the mobile app, can choose their675

preference, such as price, departure time, and charging load profile. The economic dispatch of676

microgrid resources with the presence of EV was done with sequential quadratic programming677

(SQP) in [204]. The authors in this paper deployed a probability distribution function (PDF) to678

determine randomness in the initial SoC of the EV fleet. To overcome the inaccuracy of the PDF679

to catch temporal characteristics of EV charging behavior, Zhang et al. [151] utilized a mixture680

model. The authors in this paper applied a mixture model distribution to EV traffic flow esti-681

mated by a convolutional neural network (CNN) and, considering Markov MMCK queue theory,682

estimated fast EVCS load. The results showed CNN had a better performance in traffic flow683

modeling compared to a wide range of other NN methods, including back-propagation neural684

networks (BPNN), support vector machine (SVM), stacked auto-encoders, time-delayed neural685

networks (TDNN), growing deep belief network (DBN), and recurrent neural networks (RNN).686

4.2.2. Energy and congestion management687

Energy and congestion management in EVCSMS is an effort to minimize EV waiting time688

while maximizing EVCS profit. Energy management at the EV aggregator level was imple-689

mented in [168] to reduce the cost of energy purchasing from the grid, power loss, and battery690

degradation. The daily cost of an EV aggregator was reduced in [190] while regarding the power691

system’s maximum load profile. The authors of this study used the Monte Carlo simulation692

to test the sensitivity of EVCS smart charging strategy to user choices, including charging rate693

and waiting time. V2G schedular implemented in EVCS aggregator level with ant colony op-694

timization algorithm (ACO) method optimization [141]. In a multi-microgrid environment, EV695

is assigned to EVCS to achieve load demand equilibrium, while the EVCS community is graph696

theory-modeled [216].697

4.2.3. Profit maximization698

EVCS-maximizing profit is rarely considered in IEVC-eco optimization. EV charging pric-699

ing mechanism at the EVCS level is a tool for finding the answer to this issue. While EV charging700

prices calculated in household and office buildings merged in building EMS and DR programs,701

scholars rarely settled this issue in public EVCS by DSO price policies such as time of use702

(ToU) and real-time price (RTP) from a DR point of view. Game theory is one of the popular703

mechanisms in IEVC-eco pricing determination. Game theory is a mathematically based frame-704

work that simulates competing and independent interactions of decision-makers to optimize their705

performance. Non-cooperative game theory concentrates on the actions players should take in-706

dependently and logically, while cooperative game theory analyzes players’ performance opti-707

mization according to the value of their coalition. Differential game theory was hired in [180] to708

respect both EV and utility grid conflict of interest in DR participation of EV scheduling based709

on ToU price. Kim et al. [182] to prevent pricing strategies motivation in load profile valley710

time charging result in another peak load defined dynamic pricing strategies based on game the-711

ory. The authors in this paper considered a distributed arrangement for EVs as players to share712

their dynamic decisions on charging to determine the charging price according to the number of713
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Alsabbagh et al. [181] considered EV owner sensitivity to charging price and charging rate715

to determine their charging plan, where the charging fee is derived from their behavior at the716

power distribution level. However, there is the issue of strategy determination for each player717

in game theory to converge on the best solution, which is complex in the uncertain environment718

of IEVC-eco. Dang et al. [161] hired Q-learning to deal with the complexity of constraints that719

considering ToU as the method of pricing charging/discharging in a fast charging station (FCS)720

will add to the problem of EVCS scheduling. EV charging prices are calculated by two levels721

of decision-makers, including the government at the upper level and EVCS at the lower level in722

[208]. An EV charging reservation system to offer the shortest path to EVCS with the help of723

a deep deterministic policy gradient (DDPG) agent located in the edge cloud was arranged in724

[171]. Peak shaving for the EVCS load profile was provided using the ToU as a pricing mecha-725

nism. Lee et al. [163] modeled the EVCS load pattern using KDE and applied that as one of the726

EVCS environment states to scheduling V2G with deep Q-network (DQN). The authors in this727

study considered RTP as a method of EV charging price determination. Maximizing social wel-728

fare by government-determined charging prices for satisfying EV owners and obtaining charging729

prices to boost EVCS profit could find the tradeoff by the bi-level optimization method in this730

paper. Wang et al. [162] provide an online pricing mechanism to maximize EVCS profit using731

SARSA. Q-learning, SARSA, DQN, and DDPG are RL-based methods, which we will discuss732

more in the next section.733

4.3. Grid Level Optimization734

TSO and DSO play a crucial role in determining daily available power and electricity prices.735

With the increasing integration of EVs, these operators have significantly impacted the overall736

load patterns of power systems. The growth in EV penetration introduces higher-order com-737

plications, particularly peak load management across various countries, requiring sophisticated738

methods to examine these effects [225, 194, 189]. Despite these developments, this section ad-739

dresses how TSOs and DSOs leverage advanced planning and optimization techniques to achieve740

stability and efficiency. It further details how the evolving demands of EV integration are catered741

to by innovative charging/discharging planning, privacy and security solutions, and overall grid742

operations management to align grid operations to these evolving demands.743

4.3.1. EV charging/discharging planning744

Scholars addressed scheduling EV charging/discharging at different levels of IEVC-eco. This745

scheduling mainly follows unidirectional power flow for EV charging and bidirectional power746

flow, including charging and discharging through technologies such as V2G, V2V, and so on.747

The availability of EV charging schedules facilitates EV participation in the DR. EV charg-748

ing/discharging coordination has been scheduled with a wide range of centralized and distributed749

optimization algorithm solutions. From daily ahead to online, EV scheduling can be done con-750

sidering the time horizon of optimization methods.751

The problem formulation of IEVC scheduling includes several constraints, such as the amount752

of power generation in a specified region by TSO/DSO and EVCS available power, the SoC level753

of the EV, and EV owner preference. The objective function includes the minimization of costs754

or the maximization of profits for all stakeholders. The arrangement of bounded conditions and755

objective functions matches conventional methods such as mixed integer non-linear program-756

ming (MINLP) [201, 200, 198, 226]. Many studies have used MINLP optimization techniques757
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CVX, and GAMS are excellent methods for solving MINLP-based optimization issues, granting759

a license to use them comes at a price.760

In IEVC-eco, there are different levels of stakeholders, and their objectives may overlap. The761

goals of the utility grid are to reduce system overload and loss, whereas the EVCS and EV owners762

want to maximize profit and diminish charging costs, respectively. Therefore, distribution and763

bi-level optimization have received recent attention to be utilized in IEVC-eco.764

Meta-heuristic algorithms support solving the multi-objective problem of IEVC. Compared765

to conventional techniques such as MINLP, the meta-heuristics approach guarantees faster, near-766

optimal solution achievement. Searching for candidate solutions is the main task of meta-767

heuristics-based methods, which may result in ineffective policies for a large EV population.768

Genetic algorithm (GA)-particle swarm optimization (PSO) is a hybrid method that benefits from769

the effectiveness of GA in discrete space and PSO’s performance in the continuous environment770

to improve convergence speed and solution quality. GA-PSO is used in [207] to size EVCS and771

RESs to minimize power loss and voltage deviations and transfer EV charging time to the avail-772

able time of RESs’ power output. PSO searching speed was improved in [206] by self-adjusting773

PSO to schedule EVCS participation in DR.774

Optimizing bi-level problems is often simplified using the alternating direction method of775

multipliers (ADMM) technique based on dual decomposition because it can handle issues of776

high dimension and support a non-convex objective function. Hu et al. [211] deployed a hier-777

archically coupled ADMM-based optimization method on EV aggregators to minimize the DR778

scheduling error. The utility grid in the upper layer determines the DR planning of aggregators779

in a distributed manner. Each aggregator in the lower layer locally justifies EV charging and dis-780

charging, considering battery degradation minimization. To coordinate charging EVs in EVCS781

located in residential building blocks, an ADMM-based optimization is arranged in [212]. The782

authors in this paper considered charging EVs at lower electricity prices to decrease electricity783

bills while giving the highest priority to charging EVs with the lowest SoC. The privacy of EV is784

maintained by using decentralized ADMM, and the capacity of the transforms that supply EVCS785

is applied as problem constraints. ADMM convergence speed was improved in [213] with the786

SQP approach to solving the quadratic objective of cooperative transportation and distribution787

networks.788

4.3.2. Privacy and uncertainty in EV charging/discharging scheduling789

One of the significant current discussions in EV charging/discharging coordination is EV790

privacy consideration, which can be supported by cloud computing that is implemented utilizing791

bi-level distributed optimization [212, 213]. To maintain EV privacy, EV online participation in792

DR through G2V is planned by the distributed model predictive control (MPC) method [185].793

The smart charging recommendation system, which considers all stakeholders’ self-interests,794

may encounter misuse by users. Alinia et al. [227] deployed group strategy-proofness to avoid795

EV drivers’ false data injection in the on-arrival commitment policy in EVCS to provide max-796

imum social welfare for EV owners. To mitigate the effects of data error in communication797

between EVCS, substation, and EV, Sah et al. [155] set up a two-layer controller for V2G imple-798

mentation in an EVCS. The initial layer includes NN, which predicts that the utility grid voltage799

level will be replaced with false injected data due to communication link failure, and during the800

real-time charging/discharging scheduling performance. The second layer includes a Fuzzy logic801

controller that schedules V2G and G2V.802
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assume accurate knowledge about the uncertainty, such as linear programming, MINLP, meta-804

heuristic optimization methods, and MPC.805

As a branch of machine learning, RL handles model-free optimization. RL is a technique of806

learning through feedback. RL solves a problem by solving the Markov decision process (MDP)807

arrangement of the environment, which includes state, action, reward, and a transition function.808

In RL, an agent is in charge of determining the best course of action in each state by getting input809

from the environment as a reward for each action. RL consists of two categories: model-based810

and model-free. The stochastic problem of IEVC matches model-free RL characteristics. In811

model-free, we do not get access to the accurate environment model. An agent by exploration812

will make experiences in the environment and exploit what is learned from exploration results.813

Model-free RL follows three approaches to solving problems: policy-based, value-based,814

and actor-critic. In value-based methods, we evaluate each pair of actions and states by the value815

function and try to find a path to the destination by finding pairs of states and actions with higher816

values. Therefore, policy in value-based methods is implicitly derived from the value function.817

Policy-based defines an explicit policy and finds a solution based on the optimum policy. Policy-818

based methods converge to the optimum solution at a higher speed than value-based methods.819

However, there is the risk of finding local minima instead of global ones. While Q-learning,820

SARSA, DQN, and Dual-DQN (DDQN) are value-based approaches, REINFORCE, proximal821

policy optimization (PPO), and trust region policy optimization (TRPO) are policy-based algo-822

rithms. Actor-critic is an effort to utilize the advantages of both value-based and policy-based823

methods. The actor, who is responsible for selecting actions, is policy-based, and the critic, who824

evaluates the selected action by the actor, works according to value-based methods. DDPG, soft825

actor-critic (SAC), asynchronous advantage actor-critic (A3C), and twin delayed deep determin-826

istic policy gradient algorithm (TD3) are examples of actor-critic techniques.827

The deep RL (DRL) method by combining NN with RL is another progress in the case of828

using RL, where deep NN tries to support high-dimensional problems that representative pure829

RL procedures, such as Q-learning and SARSA, failed to solve. However, by modifying the830

size of the Q-table, such as the objective and limitation of the problem as a feature function831

applying to standard states and actions, SARSA could handle the high-dimensional maximiz-832

ing EVCS profits problem in [162]. However, in some scenarios, objectives and constraints are833

unknown or fluctuate, such as EV owner preference, which is already referred to as the dynam-834

icity of input variables. RL can also handle the issue of each stakeholder being aggressive in835

its objectives by modifying the exploration and exploitation processes. To prevent too aggres-836

sive EVCS, Wang et al. deployed average profits instead of an ϵ-greedy policy. The authors837

in this paper represented that their method converged better to the optimal solution compared838

with other exploration approaches such as Robust simulation-based policy improvement (RSPI),839

sample-average approximation (SSA), and ϵ-greedy.840

DQN, as an enhanced Q-learning method, deploys NN to defeat the complexity of predict-841

ing the value function of pairs of states and actions in high-dimensional problems. DQN also842

improved by utilizing an experience buffer as a container to keep the agent’s experience in the843

exploration environment. This functionality makes DQN robust by offering sample efficiency.844

DQN in EVCS was hired in [163] to optimize EV charging schedules. Yet, IEVC actions, such845

as battery charging/discharging, are continuous, while DQN provides discrete action spaces.846

DDPG is an actor-critic method used in EV charging and discharging environments that pro-847

vide continuous action space [170, 171]. However, there is a risk of overestimation in deploying848

DQN-based algorithms, including DDPG, since they consider the max function in their approach849
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management of EV aggregators by injecting expert knowledge through rule-based frequency and851

voltage constraints, improving exploration, and shaping rewards.852

853

5. Challenges, Issues, and Future Trends in EV-Smart Grid Integration854

Smartening the EV charging ecosystem confronts several challenges and issues, including855

interoperability, cybersecurity concerns, and the utilization of appropriate optimization methods.856

5.1. Utilization of Appropriate Optimization Methods857

AI optimization is a dynamic and rapidly developing set of methods that are increasingly at858

the heart of the efficiency, intelligence, and responsiveness of EV charging/discharging systems.859

Such systems, which are central to the transition to decarbonized transport and low-carbon en-860

ergy grids, need to be underpinned by robust and scalable optimization technologies that can861

cope with high-dimensional, stochastic, and multi-agent domains in real time. Although the ini-862

tial work was mostly model-free reinforcement learning due to its flexibility and ability to make863

decisions, the scope has expanded manifold since then. Methods such as large language models864

(LLMs), transformer networks, and Informer models are being studied increasingly based on865

their scalability, long-sequence modeling capability, and use towards distributed and temporal866

settings.867

This section continues in the same vein by considering both the evolving landscape of opti-868

mization in the IEVC-eco and the overall evolution of AI optimization methods and proposing869

directions for their integration. This three-layered examination presents an integrated view of870

how AI optimization shapes the future of smart, secure, and sustainable IEVC-eco.871

5.1.1. Current development directions in IEVC-eco872

Among different optimization methods, model-free RL effectively supports the stochastic873

and multistage decision-making process of EV charging/discharging planning. However, there874

are some issues and challenges related to deploying RL that we will address here, including875

complex implementation, high computational costs, and privacy.876

IEVC-eco includes several stakeholders who follow their interests and constraints. There-877

fore, some crucial duties need extra care to ensure their safe performance while adhering to their878

limitations. As an illustration, the appropriate level of EV charging is necessary to apply in our879

policy to maintain. Several methods, including reward shaping and constraint MDP, will sat-880

isfy constraints. The evaluation of agent performance in RL involves receiving feedback from881

the environment through reward. Hence, constraints’ effects will be incorporated as a penalty882

when forming reward signals. However, it requires prior knowledge to arrange rewards with883

coefficients that guide the agent’s policy to explore the safe area. Weighting the combination of884

different objectives is another approach to respect the multi-objective characteristics of IEVC.885

Multi-objective DRL using several reward signals and value functions is another solution. Pro-886

viding a constrained MDP and solving it through safe DRL is a solution that has one objective887

while respecting the restrictions of the problem and other aspects.888

Considering IEVC as a multi-objective problem and applying solutions such as finite MDP889

and reward shaping, it still suffers from high computation costs. Deploying a centralized ap-890

proach in the IEVC arrangement suffers from a lack of scalability. Multi-agent is another RL-891

based approach that provides optimization solutions under the distributed methods category. In a892
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system, each agent endeavors to maximize their goals.894

Moghaddam et al. [175] hired a cooperative multi-agent RL algorithm for EV charging895

schedules. The authors in this paper considered two agents, including the utility grid and EVCS,896

with the objectives of shifting EV load to off-peak hours and maximizing profit, respectively. In897

this study, the utility grid controls load by providing the charging price through online monitoring898

of the network and applying it as a reward for EVCS actions. To establish charging/discharging899

costs, Zou et al. [172] proposed a double auction system for prosumer communities. The authors900

in this paper considered maximizing social welfare for EV owners and prosumer communities901

while satisfying the desired EV charging level of auction losers. To decide on compensating for902

the power shortage of the prosumer communities by purchasing power from the grid, the multi-903

agent RL could tackle the stochastic behavior of RES and EV owners’ decisions. Although this904

study tackled the selfish behavior of each agent by considering double action and introducing905

global agents to justify the greedy behavior of the agents, their coordination is still ambiguous,906

especially in the case of time. As a solution to time synchronization in [173], a distributed RL-907

based multi-agent system for electric taxi charging scheduling, a time agent, a synchronize utility908

agent, an EV agent, an EVCS agent, and an agent for traffic data provision with the precision of909

one second.910

Dong et al. [177] trained EV agents in a centralized multi-agent-based architecture, but EVs911

independently chose to participate in V2G to maintain the privacy of EV drivers. However, in-912

dependent EV agents may behave selfishly, which could be defeated by defining a global reward913

to justify the desires of each EV agent. With the same line of thought, Zhang et al. [176] offered914

an EV charging recommendation system based on multi-agent RL with centralized training and915

distributed execution. The authors in this paper considered multiple objectives, including min-916

imizing waiting time, charging costs, and failure to accept system suggestions by EV owners.917

While Dong et al. [177] considered EVs and the utility grid to be agents of this multi-agent918

structure, the recommendation system prepared by Zhang et al. [176] included EVs and EVCS919

as agents. However, planning EVs and arranging intelligent charging requires the cooperation920

of EVs, EVCSs, and the utility grid. Federated learning is a new approach to distributed ma-921

chine learning by facilitating learning in edge devices and minimizing the amount of shared data922

in a collaborative environment while offering privacy to all participants. The EVCS privacy in923

load prediction by the aggregator was provided by federated learning in [178], while EVCS just924

shared their trained model.925

Distributed, privacy, generalization, and fair training are the main characteristics of federated926

learning that can be used in conjunction with multi-agent reinforcement learning. FedAvg is927

one of the popular federated learning-based methods that uses the average weighted of all agent928

parameters to train a model for each agent. This approach will increase the fluctuation in agent929

performance because of its inaccuracy. There is another approach called FedFormer to tune the930

agent’s performance through sharing encoders network.931

Although Federated learning is a robust method to support the distributed environment of932

IEVC-eco, it suffers from complexity in local and global parameter determination. Additionally,933

Wang et al. [179] proved that hiring federated learning cannot guarantee the privacy of interac-934

tions among EV, EVCS, and the utility grid individually and endanger the system by spoofing and935

man-in-the-middle attacks during the agents’ interactions. Therefore, additional arrangements,936

such as validation agents by authentication is unavoidable.937
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Recent advances in AI optimization extend much beyond problem-specific solutions and now939

encompass a variety of architectures, algorithms, and frameworks that are capable of solving940

complex optimization problems in real-time, distributed, and privacy-constrained environments.941

Broader advances have the potential to reconstruct existing optimization challenges in the IEVC-942

eco with more powerful, generalizable, and scalable instruments. To position the emerging figure943

of optimization technologies, the present subsection refers to several pivotal developments in AI944

that hold direct or near-future relevance for the global IEVC-eco.945

The following developments illustrate major trends defining the shape of future intelligent946

optimization systems:947

• Transformer-Based and Time-Series Optimization Models: Transformer models have emerged948

as the superior model in AI due to their capacity to represent long-range dependencies and949

process in parallel efficiently. Originally developed for natural language processing, trans-950

formers have subsequently been used for optimization and decision-making in the high-951

dimensional time domain. Informer and FedFormer, for instance, were competitive in952

long-sequence time series prediction and federated learning scenarios. Due to their ability953

to handle asynchronous, distributed input, they become better suited for load forecasting,954

energy demand forecasting, and real-time adaptive scheduling on EV charging networks.955

• LLMs for Optimization-Aware Reasoning: LLMs, traditionally used in generative appli-956

cations, are now being fine-tuned for symbolic reasoning, logic programming, and meta-957

optimization [228]. In EV infrastructures, LLMs can be used to help with code generation958

for algorithmic decision-making, policy synthesis, and multi-agent system coordination.959

With their natural generalization ability and scalability, they hold promise in multi-modal960

data interpretation, strategic recommendation, and control synthesis, particularly when961

used with lightweight agent-side models or in a hierarchical planning framework.962

• Federated and Privacy-Preserving Optimization: With privacy emerging as the key con-963

cern in collaborative optimization, federated learning has gained popularity across fields.964

FedAvg was the de facto standard, but newer approaches such as FedFormer and secure ag-965

gregation with homomorphic encryption are changing the manner in which models can be966

trained among distributed agents with minimal data exposure. These frameworks not only967

improve learning precision in non-independent and identically distributed (IID) data envi-968

ronments but also address scalability and robustness challenges through the implementa-969

tion of asynchronous training, hierarchical aggregation, and compression-aware protocols970

[229].971

• Secure and Ethical AI for Decision Optimization: AI optimization techniques are increas-972

ingly inclusive of security-aware and ethically constrained learning objectives. These in-973

clude differential privacy, adversarial robustness testing, and fairness-aware optimization974

techniques, which are of considerable significance in IEVC-eco, where real-time con-975

trol intersects with consumer rights, safety-critical decision-making, and infrastructure976

integrity [230].977

The comparative summary of existing and future AI optimization techniques relevant to the978

IEVC-eco is shown in Table 4.979

36



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table 4: Integration of Advanced AI Techniques into IEVC-eco

Challenge Existing Solution Emerging AI Approaches Impact on IEVC-eco
Demand Forecasting Time-series models, RL-based predictors Informer, FedFormer, Transformer-

based Forecasting
Improves long-range load prediction accu-
racy

Real-Time Control Model-free RL, rule-based controllers Real-time DRL, Transformer-
enhanced Scheduling

Enhances adaptability and decision latency

Privacy and Data Sharing FedAvg, centralized logging Federated Learning, Homomorphic
Encryption

Preserves privacy, supports collaboration

System Coordination Multi-agent RL, double auctions LLM-assisted Coordination, Secure
Multi-agent Systems

Optimizes stakeholder objectives safely

Ethical & Secure Operation Manual review, fixed pricing policies Fairness-aware Optimization, Dif-
ferential Privacy

Increases trust, equity, and compliance

5.2. Interoperability980

As discussed in Section 2, IEVC-eco includes several stakeholders. Each of them utilizes981

heterogeneous elements, technologies, and applications. This diversity isolates IEVC-eco ele-982

ments from each other in a vertical arrangement. In this manner, data is generated and consumed983

in each domain separately. However, IEVC-eco requires whole entities to communicate in an984

open system supporting interoperability. IEVC-eco components can communicate with and de-985

liver services to one another thanks to this feature. The information model and communication986

technologies should be designed with the aim of achieving interoperability, which is defined as987

an understandable language for all system elements.988

There are different aspects to providing interoperability in IEVC-eco, including seamless989

charging connectors, interoperable communication among stakeholders, a publicly accessible990

charging payment system, and unified standardization. Table 2 represents the different types of991

available charging connectors. The Types 1 and 2 charging interfaces are not exclusive to plugs.992

The combined charging system (CSS) is a significant effort to provide the infrastructure that sup-993

ports both AC and DC fast charging systems. Since shortening the time of charging EVs and994

lighter vehicles due to using off-board chargers, fast charging-based EVCS is spreading drasti-995

cally around the world. However, the lack of a unique standard for fast EV chargers increases996

the complexity of EVCS functions and expenses, causing EV drivers’ range anxiety to rise.997

Interoperability in communication has two aspects: the information model and the message998

format. IEC 61850 is a standard that supports interoperability in both directions. IEC 61850999

enables seamless integration of EVs, EVCS, and EV aggregators into power systems. Using IEC1000

61850 logical nodes for EV and EVCS, V2G and G2V are implemented in an Ethernet-based1001

parking lot communication network [231]. While fast response-required actions in [232], such1002

as start and stop charging, are mapped onto the GOOSE protocol of IEC 61850, MMS-based1003

messages carry charging requests. In this study, the ideal method for sending measurement data,1004

such as the SoC level, is via SV messages. Aggregated EVs provided ancillary services such as1005

load restoration, while GOOSE messages supported the real-time interaction requirement of this1006

arrangement [233]. IEC 61850 also facilitates a common language between EVs, PVs, and smart1007

meters to participate in building EMS [234]. There are cybersecurity concerns about employing1008

the GOOSE message, even with IEC 62351 deployment as a secured extension of the IEC 618501009

standard. Yet, secure DDS as an IoT protocol is already used to provide security features in1010

IEC 61850-based message interactions in the smart grid. This arrangement also facilitates using1011

the existing internet infrastructure safely and reduces the cost of a dedicated communication1012

infrastructure [235].1013

Any EVCS operating under the CPO’s control may take a variety of proprietary payment1014

methods, including applications and access cards. As discussed in Section 2, ISO 15118 facil-1015

itates open payment through the plug-and-play feature and its security requirements. There is1016
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customer side. Interoperability is viable by e-roaming between charging networks to release any1018

membership or account requiring charging payment. The recent version of ISO 15118, published1019

in April 2022, was a sign of progress in this area by clarifying several plug-and-play installation1020

processes in EVs. This recent version also covers the security concerns gap of the previous ver-1021

sion in communication between EV and EVCS by mandating TLS and cryptography algorithms1022

[125].1023

Despite the efforts indicated above to ensure interoperability provision for IEVC-eco, unified1024

standardization is still an open issue. Deployed standards vary from country to country and even1025

in provinces and states within a country. Although standard implantation is inclusive on a global1026

scale, there is a lack of consistency in its implementation due to various interpretations.1027

5.3. Cybersecurity Concerns1028

Although IoT provides connectivity to implement IEVC-eco, it also endangers entities in1029

this environment with security and privacy concerns. This concern can be categorized into three1030

levels: EVs, EVCSs, and communication infrastructures.1031

5.3.1. EV cybersecurity concerns and solutions1032

BMS and EV charging slot finder apps or websites are targets of EV-level hackers. The EV1033

battery’s efficiency and long life depend on BMS performance.1034

The BMS estimates and controls the humidity, temperature, and battery SoC levels. In the1035

data exchange between BMS and EVCS to estimate the SoC, there is a risk of attack and manipu-1036

lation of battery parameters, such as voltage and current [236]. Consequently, battery degradation1037

or failure will result from charging batteries beyond predefined boundaries [237]. EV informa-1038

tion, including location, charging/discharging profile, identity, and payment, will be shared with1039

EVCS, and there is a risk of tampering with and spoofing the data. The other security issue1040

related to EV interactions is the vulnerability of charging slot reservation apps and websites to1041

denial-of-service (DOS) or distributed denial-of-service (DDOS) attacks and making redundant1042

reservations. Attackers disrupt the optimization process of EV charging scheduling by using1043

phishing attacks against charging slot finder apps or websites. The wrong DR incentives are in-1044

jected into apps to encourage EV charging during peak hours and impose instability on the power1045

system [238]. There is also the risk of sniffing the ID of EVs and impersonating them for charge1046

billing. Additionally, this scenario can happen in communication between EVCS and aggrega-1047

tors. Authentication, anomaly detection, blocking IP, cryptography, tamper-proof hardware, and1048

intrusion detection are solutions for BMS cybersecurity attacks.1049

Various machine learning techniques are put into practice for anomaly detection and intrusion1050

detection as prominent solutions for BMS cybersecurity attacks. Rahman et al. [239] deployed1051

NN to predict SoC level, and the cyberattack on BMS is detectable by comparing it with the1052

measured one. By injecting malware into the CAN bus, mobile apps can conduct cyberattacks.1053

This data intrusion was detected by DNN in [240]. A study in [241] showed a phishing attack1054

on the EV slot finder app to take the departure time data of EVs to EVCS, and data intrusion in1055

communication between DSO and aggregators made the demand and consumption of the power1056

grid unbalanced. This instability resulted in EVs charging lower than the desired SoC level and1057

grid congestion.1058

The use of blockchain to provide security in networking, access control, and data trans-1059

mission has recently attracted considerable interest. Blockchain can accommodate the essential1060
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cation. Interactions in IEVC-eco will be immutable by logging time, data, and the history of1062

participant blocks through authentication handled by cryptography. Smart contracts enhanced1063

the authentication techniques concept, where predefined codes in the blockchain automatically1064

run agreements and asset transfers without requiring a trusted intermediary. BMS firmware is1065

protected from cyberattacks by the cryptographic hash and smart contract in [242]. Authentica-1066

tion augmentation by utilizing blockchain alleviates man-in-the-middle and DoS cyberattacks at1067

each level of security concerns in IEVC-eco.1068

Table 5: IEVC-eco cyber attack types and solutions

Attack level in IEVC-eco Type of attack Attack target Solutions

EV [243, 244]
BMS

• DoS

• DDoS

• Spoofing

• Man-in-the-middle

• Tampering

• Battery degradation

• Battery failure

• Safety hazards

• Authentication

• Anomaly detection [239]

• Blocking IP

• Tamper-proof hardware

• Intrusion detection [239]

• Blockchain [242]

Charging slot finder apps/Websites

• DoS

• DDoS

• Spoofing

• Phishing attack

• Man-in-the-middle

• Tampering

• Identity theft

• Payment fraud

• Using EV as an entry point for spreading malware to IEVC-eco

• Power grid instability

• Authentication

• Blocking IP

• Firewall

• Reputation-based schemes

EVCS [243, 245]

• DoS

• Man-in-the-middle

• Spoofing

• Energy repudiation

• Information Leaking

• Prank

• Electricity theft

• Identity theft

• Payment fraud

• Intentional Overcharging/discharging battery

• Using EVCS as an entry point for spreading malware to IEVC-eco

• Power grid instability

• Anomaly detection [246]

• Authentication

• Firewall

• Intrusion detection [246,
247, 248]

• Reputation-based schemes

Communication medium and protocols

• DoS

• Man-in-the-middle

• Eavesdropping

• Side Channels

• Jamming

• Prank

• Users’ private information theft

• Identity theft

• Payment fraud

• Intentional Overcharging/discharging battery

• Using EVCS as an entry point for spreading malware to IEVC-eco

• Power grid instability

• Authentication

• Encryption

• Intrusion detection [240]

5.3.2. EVCS cybersecurity concerns and solutions1069

The functionality of EVCS as a bridge for supplying EVs with power highlights the threat1070

of EVCS’s cybersecurity attacks since they affect both EVs and the power grid. Throughout the1071

charging schedule, EVCSs collect personal data from EV owners, such as charging profiles and1072

payment information. Another duty of EVCS is to control and monitor the charging process for1073

EVs using data on energy usage and charging status.1074

Cyberattacks on EVCS can take different forms, such as DoS, man-in-the-middle, sniffing,1075

and information leakage. EVCS becomes inaccessible for EV owners due to DoS attacks that1076

manipulate the charging process and overload the network with traffic. Another attack that allows1077
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Figure 11: An overview of optimized EV charging slot finder considering whole stakeholders’ requirements

for the sniffing of EV owners’ personal information and payment details is a man-in-the-middle1078

attack. The entire IEVC-eco is attacked by using EVCS as a point of entry.1079

As EVCS transfer power, rated up to 350 kW, cybersecurity attackers become more con-1080

cerned about intruding on EV and EVCS interactions. As a result, the power systems would1081

be burdened with voltage instability [249]. The hidden Markov decision process was hired in1082

[246] to detect intrusions and anomalies in the interaction between EV and fast EVCS. The de-1083

cision tree technique and filtered classifier are used in [247] to identify malicious traffic and1084

prevent DDoS attacks on EVCS. However, to offer EVCS infrastructure security against spread-1085

ing covert cyberattacks to the system hardware, a proactive mechanism for intrusion detection1086

in the physical layer is needed in addition to the network layer. This idea is followed in [248]1087

for EVCS cybersecurity implementation using LSTM to detect DDoS attacks, considering their1088

effect on the electrical parameters of EVCS infrastructure.1089

5.3.3. Communication medium and protocols, cybersecurity concerns and solutions1090

The communication vulnerability of IEVC-eco can be divided into in-vehicle communica-1091

tion and outside-vehicle communication. In-vehicle communication includes wired and wireless1092

communication. Cyberattacks threaten the CAN protocol, which is commonly used in vehicles1093

to communicate. CAN communications provide confidentiality and authentication through en-1094

cryption [250]. Based on a modified SVM in [251], anomalies were detected in CAN data.1095

Wifi and Bluetooth communication technologies utilized in the mobile app to control the1096

charging process of EVs in the smart home, or EVCS, are vulnerable to man-in-the-middle at-1097

tacks. Such attacks by manipulating charging justifications, such as the current level, resulted in1098

physical damage to smart homes, EVCS, or EVs [252]. Navigation and dynamic SoC estimation1099

in IEVC-eco are estimated with GPS data. Therefore, any GPS false data due to GPS spoofing1100

or jamming inserted in charging and discharging scheduling optimization algorithms affects the1101

system’s operation [253]. Roadside units (RSU), as communication infrastructure facilitating1102

interactions between EVs and higher levels of IEVC-eco, are subject to eavesdropping.1103

• Lack of real-time test by cyber-physical hardware-in-the-loop1104
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tributed network protocol (DNP3), Modbus, and time synchronization information such1106

as pulse per second (PPS), precision time protocol (PTP), simple network time protocol1107

(SNTP), and IEEE 1588 in cyberattack scenarios.1108

• Lack of specific standards to address BMS requirements, especially cybersecurity concerns1109

[254, 255].1110

• Due to the complexity and distributed nature of IEVC-eco, the security of each party’s1111

provision by means of intrusion detection and firewall implementation is not viable. There1112

is a requirement for coordination among all stakeholders, considering their authorities,1113

operations, and roles in security provision [256].1114

• There is an abundance of studies on different types of cyberattacks on EV, EVCS, and1115

power systems; however, studies on how to deal with and restore the system after attacks1116

are limited [257].1117

According to the interoperability, security, and optimization requirements of IEVC-eco, we1118

arranged the EV slot finder shown in Figure 11, considering all stakeholders in this environ-1119

ment. Each agent represents stakeholders, including EV owners, EVCS, EV aggregators, and1120

the TSO/DSO. Multi-agent reinforcement learning, with the assistance of federated learning, ar-1121

ranges cloud-edge-based distributed optimization. Each agent has its optimization performance1122

at the edge level; the local agent provides each agent’s scheduling, while aggregators at the edge1123

computing level coordinate EV and EVCS performances. TSO/DSO, as a global agent, schedules1124

charging/discharging at the aggregator level. The presented framework benefits from federated1125

learning to decrease the bandwidth requirements for data exchange. The other advantage of our1126

proposal is using IEC 61850 for the data model and message format to provide interoperability.1127

The IoT protocol deployed here should support distributed environments, such as DDS or exten-1128

sible messaging and presence protocol (XMPP), which is beneficial for the system by avoiding1129

the construction of new infrastructure for communication. As was previously mentioned, feder-1130

ated learning is still open to malicious attacks, but adopting IoT protocols that support security1131

defeats this hindrance.1132

5.4. Empirical Validation and Practical Application of IEVC-eco1133

It is essential to acknowledge that while the IEVC-eco framework has been conceptually de-1134

veloped in this work, the proposed IEVC-eco framework itself is theoretically conceived without1135

any supporting simulations or case studies applied to demonstrate the practical viability of the1136

synergistic AIoT approach in the first place. Nevertheless, the literature available, summarized1137

in Table .7, provides overwhelming implicit evidence for feasibility in practice. Experiments ref-1138

erenced in Tables .7 and 3 explicitly demonstrate the successful deployment of the same AI and1139

IoT technologies for EV load forecasting, charging schedules, grid optimization, and anomaly1140

detection, with real-world efficacy and practicability. Rigorous simulation and case study veri-1141

fication will be conducted as future work using well-established simulation environments (e.g.,1142

MATLAB/Simulink, Python) and publicly available realistic datasets (EV charging patterns, grid1143

demand profiles, renewable energy generation). This direct empirical examination will lead to1144

the development of operational confidence in the IEVC-eco system and the direct identification1145

of feasibility issues.1146
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of6. Conclusion1147

This research explores AIoT applications in the IEVC-eco with respect to how AI optimiza-1148

tion techniques and IoT infrastructures can together contribute to the complexity of the ecosys-1149

tem. Through a comprehensive literature review, we discovered that while there has been re-1150

markable advancement in meeting IoT needs—e.g., communication protocols, data guidance,1151

and compatibility—the bulk of the solutions that have been proposed so far are very conceptual1152

or simulation-based, with minimal actual implementation. Our investigation highlighted the ben-1153

efits of AI-driven methodologies, particularly reinforcement learning, in addressing uncertainty1154

and interactions among IEVC-eco stakeholders like EV users, EVCS operators, aggregators, and1155

grid operators. Machine learning models outperformed conventional statistical methods in fore-1156

casting EV load profiles, and multi-agent reinforcement learning was particularly effective in1157

addressing distributed scheduling problems in a privacy-preserving manner with federated learn-1158

ing mechanisms.1159

To address the gaps in current research, we proposed an overall framework for EV slot1160

scheduling that makes it compatible with standardized communication protocols like IEC 618501161

and supports secure distributed decision-making using federated multi-agent reinforcement learn-1162

ing. This framework is designed to address the basic challenges of scalability, privacy, and un-1163

certainty and to accommodate the operational needs of all participants. Real-world deployment,1164

however, remains a persistent challenge. Future research must focus on the empirical simulation1165

and real testbed validation of such frameworks, on hybrid AI approaches to adaptive scheduling,1166

and on edge computing architectures that can support decentralized optimization in real-time.1167

Moreover, cybersecurity, user behavior modeling, and large-scale interoperability barriers have1168

to be overcome to enable a secure and intelligent EV charging infrastructure. Ultimately, the1169

application of AI and IoT technologies holds significant potential to make EV integration an1170

innovative, efficient, and sustainable extension of the smart grid.1171
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Appendix .1. Nomenclatures1177

Table .6: Acronyms.

Abbreviation Description
A3C Asynchronous advantage actor-critic
ACO Ant colony optimization algorithm
AHP Analytic hierarchy process
AI and IoT AIoT
ARIMA Autoregressive integrated moving average
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BESS Battery energy storage systems
BEMS Building energy management system
BMS Battery management systems
BPNN Back-propagation neural networks
CNN Convolutional neural network
CPO Charging point operators
CSS Combined charging system
DBN Deep belief network
DDQN Dual deep Q-learning
DDPG Deep deterministic policy gradient
DDS Data distribution services
DER Distributed energy resources
DG Diesel generator
DNN Deep neural network
DNP3 Distributed network protocol
DDoS Distributed denial-of-service
DoS Denial-of-service
DPG Deterministic policy gradient
DQN Deep Q-network
DR Demand response
DRL Deep reinforcement learning
DSO Distribution system operator
EEM Ensemble of ensemble models
EIS Electrochemical impedance spectroscopy
EMS Energy management system
EMSP Electromobility service providers
ESS Energy storage systems
EVs Electric vehicles
EVCP EV charging point
EVCS Electric vehicle charging station
EVCSMS EVCS management system
EVSE Electric vehicle supply equipment
FCS Fast charging station
GA genetic algorithm
GPR Gaussian process regression
GPS Global positioning system
GRU Gated recurrent unit
ICPT Inductively coupled power transfer
IEVC Intelligent EV charging/discharging
IEVC-eco Intelligent EV charging/discharging ecosystem
IID Independent and identically distributed
IP Internet protocol
KDE Kernel density estimator
LLM Large language model
LSTM Long short-term memory neural networks
MCDM Multi-criteria decision-making
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MDP Markov decision process
MINLP Mixed-integer nonlinear programming
MPC Model predictive control
NA North American
NN Neural networks
OEM Original equipment automobile manufacturers
OCA Open charge alliance
OCPI Open charge point interface
OCPP Open charge point protocol
PCC Point of common coupling
PDF Probability distribution function
PPO Proximal policy optimization
PSO Particle swarm optimization
PPS Pulse per second
PTP Precision time protocol
PVs Photovoltaics
RES Renewable energy sources
RL Reinforcement learning
RNN Recurrent neural networks
RSPI Robust simulation-based policy improvement
RSU Roadside Units
RTP Real-time price
RUL Remaining useful life
SAC Soft-actor critic
SAE Society of automotive engineering
SDP Supply equipment communication controller discovery protocol
SNTP Simple network time protocol
SoC State of charge
SoH State of health
SQP Sequential quadratic programming
SSA Sample-average approximation
SVM Support vector machines
TCP Transmission control protocol
TD3 Twin delayed deep deterministic policy gradient algorithm
TDNN Time-delayed neural networks
TL Transfer learning
TLS Transport layer security
ToU Time of use
TRPO Trust region policy optimization
TSO Transmission system operator
UDP User datagram protocol
UID Unique identifier
V2G Vehicle-to-grid
V2X Vehicle-to-everything
VTCPEM Virginia Tech comprehensive power-based EV energy consumption model
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Appendix .2. Classification of studies on IoT arrangement for IEVC-eco8

Table .7: Classification of studies on IoT arrangement for IEVC-eco

Ref Application Objective EV Type EVCS Type AI/IoT
IoT Model Specification

Framework Implementation

Mobile app routing
system

Connectivity and implementation environment Computing
environment

EV EVCS Power
system

EV Aggregator

[212]
2015

EV optimal
dispatch EV privacy N.S.

Residential
building
parking

AIoT Yes N.A.∗ N.A. CAN wired
wireless N.S.∗∗ N.S. N.S.

[138]
2018

EV
charging slot
finder

User
preference
satisfication

N.S. N.S. AIoT Yes N.S. Google map
HTTP
DDS protocol
Laptop

HTTP
DDS
protocol
Laptop

Smart Grid
Testbed N.S. N.S.

[258]
2018

EV
charging slot
finder

Mobile
app N.S. N.S. IoT Yes N.S. Google map

HTTP
websockets

ESP8266
wifi
GSM

N.S. N.S. N.A.

[144]
2018 Load balance

EV
charging price
determination

N.S. RES-based IoT Yes N.A. N.A.
GSM
MATLAB

GSM
MATLAB N.A. N.A. N.A.

[132]
2018 BMS G2V/V2G N.S. N.S. IoT Yes

Firebase
cloud
mobile app

ESP8266
wifi
MQTT
Protocol

N.A. N.A. N.A.
Adafruit
IO N.A.

[259]
2018

EVCS
monitoring
system

V2G N.S. RES-based IoT Yes N.S. N.A.
MATLAB
Simulink
Battery

MATLAB
Simulink N.S. N.A. N.S.

[259]
2018

Smart
residential
EVCS

V2G
based on
ToU

N.S. RES-based IoT Yes N.A. N.A.
Battery
MATLAB
Simulink

MATLAB
Simulink N.S. N.S. N.S.

[129]
2019

EV
charging slot
finder

User
preference
satisfication

N.S. N.S. IoT Yes
Website
HTML GPS

HW using
Li-ion
battery
CAN Bus

N.A. N.A. WAMP N.A.

[127]
2019

online
monitoring
app

EV
monitoring
system

N.S. N.S. IoT N.S. N.A. N.A.
Raspberry Pi
cellular
network

N.A. N.A Cloud N.A.

[197]
2019

EV
charging slot
finder

EV
privacy N.S.

parking lot
supply by
MG

AIoT Yes N.S. GPS Wifi Wifi N.S. N.S. N.S.

[145]
2019

EV optimal
dispatch

EV
charging price
determination

N.S. Fast charging IoT
IoT and
Blockchain
framework

N.S. N.S. N.S. N.S. N.S. N.S. N.S.

[260]
2019

EVCS
security

EV
authentication
app

N.S. N.S. IoT
IoT and
Blockchain
framework

Xamarin N.A.
ESP8266
wifi
module

wifi
Ethernet N.A.

Amazon
web service N.A.

[261]
2020

EV
charging slot
finder

EV
privacy N.S. N.S. AIoT Yes

PHP
programming
language

Google map

LTC 4150,
ESP 8266
wifi module
and Arduino

Fast EVCS
AC level II N.A. cloud SQL N.A.

[130]
2020

EV
charging slot
finder

User
preference
satisfication

N.S. N.S. IoT Yes
thinkspeak
app

Google
map

ESP8266
wifi
module

N.A. N.A.
thinkspeak
Cloud N.A.

[135]
2020

EV optimal
dispatch

power
grid
balance

N.S. N.S. AIoT Yes N.A. N.A. N.S. N.S.
ZigBee
MQTT
protocol

N.A N.A.
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Table .7: (continued from previous page)

Ref Application Objective EV Type EVCS Type AI/IoT
IoT Model Specification

Framework Implementation

Mobile app routing
system

Connectivity and implementation environment Computing
environment

EV EVCS
Power
system EV Aggregator

[262]
2020 BMS V2G

scheduling N.S N.S AIoT Yes
Android
mobile
App

N.A.
ESP8266
wifi

balanced
charging
plate
board

B6 AC
Li-po
battery
charger
TCP/IP
over
wifi

Raspberry Pi
TCP/IP
over
wifi

Cloud
HTTP

[128]
2020 BMS Smart

OBC N.S. N.S. IoT Yes
Android
studio Google map

ESP8266
wifi N.S. N.A. N.S N.S.

[140]
2020

EV
charging slot
finder

EV
privacy N.S. N.S. IoT Yes N.A. GPS N.S. N.S. N.S. N.S. N.S.

[263]
2020 WPT

Transferring
data
between
onborad charger
and transmitter

N.S.
Wireless
charging IoT Yes N.A. N.A.

ESP8266
wifi

ESP8266
wifi N.A.

ThingSpeak
cloud N.A.

[264]
2020 BMS

battery charging
and swapping
decision

N.S. Swapping IoT
IoT and
Blockchain
framework

web
app N.A.

Raspberry pi
Python libraries
Web3.py
and PyOTA

N.S. N.A. N.S. N.S.

[134]
2021

EV
charging slot
finder

V2V
V2I N.S. N.S. IoT Yes

thinkspeak
app GPS

MATLAB
HTTP
MQTT
protocol

N.A. N.A.
thinkspeak
Cloud N.A.

[136]
2021

EV
charging slot
finder

User
preference
satisfication

N.S. N.S. IoT Yes
Firebase
cloud
mobile app

ESP8266
wifi
MQTT
Protocol

N.A. N.A.
Adafruit
IO N.A.

[142]
2021

Dynamic
pricing for
V2G

EV
privacy N.S. N.S. N.S Yes N.A. N.S. N.S. N.S. N.S. N.S. N.S.

[122]
2021

Reliable
network for
V2G

V2G
scheduling N.S. N.S. AIoT Yes N.S. N.A. wifi

wifi,
Optical
fiber

Optical
fiber MATLAB MATLAB

[154]
2022 BMS

SoC
prediction N.S. N.S. AIoT Yes

Firebase
cloud
mobile app

N.A.
ESP8266
wifi
module

N.A. N.A.
Firebase
Cloud N.A.

[133]
2022 BMS

SoH
monitoring N.S. RES-based IoT Yes

Bylnk
mobile app N.A.

ESP8266
wifi
module

N.A. N.A. N.S. N.A.

[126]
2022

BMS and
EVCS monitoring

online EV
monitoirng
during
G2V/V2G

N.S. N.S. IoT Yes
thinkspeak
app N.A.

Thinkspeak
Cloud
MATLAB

Thinkspeak
CAN bus
MATLAB

N.A.
Cloud
MATLAB N.A.

[139]
2022

EV
charging slot
finder

User
preference
satisfication

N.S. N.S. AIoT Yes
streamlit
API

bikemap.net
route
planner

N.S. N.S. N.A.
streamlit
cloud N.A.

[131]
2022

BMS and
EVCS
monitoring

User
preference
satisfication

N.S N.S. IoT Yes N.S. N.S. N.S N.S. N.A. N.S. N.A.
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Table .7: (continued from previous page)

Ref Application Objective EV Type EVCS Type AI/IoT
IoT Model Specification

Framework Implementation

Mobile app routing
system

Connectivity and implementation environment Computing
environment

EV EVCS
Power
system EV Aggregator

[141]
2022

EV optimal
dsipatch

V2G scheduling
EV privacy PHEV N.S. AIoT Yes N.S. N.S.

ISCP-PV
wifi

HW using
Li-ion
battery
Wired/Wireless

N.S. N.S. N.S.

[143]
2023

Minimize
EV
waiting time

Focus on
EV-EVCS
interactions

N.S. N.S. AIoT N.S. N.S. N.S.

LPWAN
Minicast
protocol
Cooja
simulator

LPWAN
Minicast
protocol
Cooja
simulator

N.A.
Distributed
Framework N.A.

[137]
2023 BMS

charging/
discharging
monitoring

N.S. N.A. IoT Yes Angular technol-
ogy

N.A.

Toyota
Prius
battery
MQTT
protocol

N.S. N.A. N.S. N.A.

∗ N.A.: Not applicable, ∗∗ N.S.: Not specified9

0
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Highlights 

 This paper presents an AIoT-driven EV charging ecosystem optimizing 
stakeholder benefits.

 A novel V2G framework integrates renewable energy sources into EV charging 
infrastructure.

 AI-based optimization techniques enhance EV charging scheduling and grid 
stability.

 Privacy and interoperability challenges are addressed through secure, scalable 
solutions.
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