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AIoT-Blockchain Security for Supply Chain Threats
in IEC 61850 Substations Using Informer-Powered

Reinforcement Learning
Lilia Tightiz, Member, IEEE,, L. Minh Dang and Ki-Woong Park, Member, IEEE

Abstract—IEC 61850 substations enable fast-speed digital
communication among intelligent electronic devices (IEDs) for
power system automatic control, monitoring, and protection.
Their remote configurability and interoperability, however, make
them vulnerable to highly advanced cyberattacks, mainly supply
chain attacks. While existing methods, such as intrusion detec-
tion systems (IDS) and machine learning (ML)-based anomaly
detection, provide partial protection, they often lack resilience
against evolving attacks and real-time mitigation capabilities.
We present an artificial intelligence of things (AIoT) blockchain
security framework that uses Informer-augmented proximal
policy optimization (PPO) for adaptive cyber defense, along with
Hyperledger Fabric, for tamper-proof and automated security
enforcement. The novelty of the proposed framework over state-
of-the-art research lies in its combination of anomaly detection,
dynamic threat mitigation, and auditable policy execution. Our
security tests demonstrate robustness against zero-day and syn-
thetic adversarial attacks, while preserving privacy and integrity.
Experimental findings demonstrate that Informer-PPO attains
98.4% detection accuracy and 35 ms response time, represent-
ing improvements of 3.6%, 5.0%, and 9.1% in accuracy and
32.7%, 51.4%, and 63.2% faster response time compared to
Transformer-PPO, long short-term memory (LSTM)-PPO, and
convolutional neural network (CNN)-PPO baselines, respectively.
Blockchain-enabled policy enforcement is accomplished within
42–50 ms, facilitating scalable real-time protection for IEC 61850
substations.

Index Terms—IEC 61850, Supply Chain Security, Proximal
Policy Optimization, Informer, Blockchain, Cybersecurity, Smart
Grid.

I. INTRODUCTION1

THE digital communication-based automated and remote2

control processes changed the automation of substations,3

productivity, and real-time monitoring. The IEC 61850 pio-4

neered such a global extent of open communication between5

substation devices. Interoperability and high-speed data ex-6

change through IEC 61850 enable real-time tracking of a7

substation’s IEDs [1]. Smooth communication is provided with8

the key protocols such as generic object-oriented substation9

event (GOOSE) messages, which enable event-driven data10

exchange with high rates; sampled value (SV) messages,11
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which allow precise synchronization of measurement data; and 12

manufacturing message specification (MMS) messages, which 13

enable remote monitoring and control in supervisory control 14

and data acquisition (SCADA) systems. 15

However, the digitalization and interoperability provided 16

by IEC 61850 also introduce crucial security vulnerabilities. 17

These involve message injection, spoofing, tampering, and 18

unauthorized firmware updates that attackers can use to create 19

significant disruptions [2]. The 2015 Ukraine power grid 20

cyberattack is a well-known instance of how hacked substation 21

communication systems can lead to large-scale blackouts and 22

infrastructure collapses [3], [4]. In particular, supply chain vul- 23

nerabilities, i.e., malicious firmware updates and unauthorized 24

IED configurations, have emerged as a key threat vector. Al- 25

though traditional IDS and ML approaches offer pattern-based 26

anomaly detection, they are often ineffective against zero-day 27

attacks and novel threat vectors [5]. Reinforcement learning 28

(RL), a subfield of ML, is particularly beneficial for adaptive 29

cyber-physical systems, as it can learn optimal mitigation 30

actions through interactions with the environment and without 31

requiring any labeled data [23]. These characteristics position 32

RL as a highly promising solution for real-time substation 33

cybersecurity. However, RL approaches are confronted by 34

computational inefficiencies as well as stability problems when 35

applied in high-dimensional, time-critical applications such as 36

IEC 61850 substations [7]. 37

To overcome these limitations, researchers have investigated 38

augmenting technologies like blockchain, which provides data 39

integrity, secure device identity, and tamper-proof logs via 40

decentralized consensus protocols [8]. While blockchain is 41

inherently reactive to integrity enforcement, it is not inherently 42

sensitive to rapidly evolving cyber threats and lacks real-time 43

flexibility. Likewise, while RL is adaptive, it lacks the ability to 44

capture temporal dependencies over long horizons in evolving 45

attack patterns. 46

To this end, we propose a holistic security framework 47

that integrates synergistically long-range anomaly detection 48

through Informer-based time series modeling, adaptive threat 49

mitigation through PPO-based reinforcement learning, and 50

tamper-proof enforcement through blockchain smart contracts. 51

The combined system fills the essential gap in existing substa- 52

tion cybersecurity solutions by providing real-time detection, 53

learning-based response, and verifiable policy enforcement. 54

Besides, while this study primarily targets IEC 61850 55

substations, the AIoT-Blockchain framework developed herein 56

readily applies to larger smart grid networks and other IoT- 57
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supported systems. Its modular characteristics of anomaly58

detection, reinforcement learning-based decision-making, and59

blockchain-based enforcement can be used to protect dis-60

tributed energy resources, microgrids, electric vehicle charging61

systems, and smart city energy management systems, where62

dynamic cyber-physical threat landscapes and decentralized63

device authentication are similarly critical.64

Based on the aforementioned motivations and design con-65

siderations, the key contributions of this paper are summarized66

as follows:67

• Informer-Powered PPO for Cyber Threat Mitigation:68

We propose an Informer-powered PPO reinforcement69

learning approach that can learn long-range temporal70

dependencies to identify and prevent sophisticated cyber-71

attacks on IEC 61850 substations.72

• Blockchain-Enhanced Supply Chain Security: We73

leverage blockchain technology for device authentication,74

firmware integrity, and tamper-proof security logging.75

• Smart Contract-based Autonomous Threat Response:76

We utilize smart contracts for autonomous, policy-based77

enforcement of mitigation actions with little human in-78

volvement.79

• Performance Validation and Comparative Evalu-80

ation: We evaluate the framework on Kitsune and81

ERENO datasets and benchmark it against CNN-PPO,82

LSTM-PPO, and Transformer-PPO baselines. The system83

achieves 98.4% and 97.6% detection accuracy with an84

average response latency of 35 ms, outperforming the85

baselines and recent state-of-the-art approaches, as de-86

tailed in Tables III and V.87

The rest of this paper is organized as follows. Section88

II presents a summary of existing literature on IEC 6185089

cybersecurity, focusing on existing ML-based, RL-based, and90

blockchain-based solutions and their shortcomings. Section III91

presents the envisioned AIoT-Blockchain security architecture,92

with a specific focus on informer-based anomaly detection,93

PPO-based adaptive threat mitigation, and blockchain-based94

enforcement through smart contracts. Section IV describes the95

experimental configuration for the implementation setup, the96

deployed datasets, the experimental evaluation, and the perfor-97

mance metrics. Section V presents the experimental results,98

scalability evaluations, security analyses, and considerations99

for real-world deployment. Section VI concludes the paper100

by highlighting main findings and directions for the future,101

including adversarial robustness and scalable deployment.102

II. LITERATURE REVIEW103

Cybersecurity research for IEC 61850 substations has104

evolved in a number of domains, including IDS, ML, RL, and105

blockchain-based authentication. While significant progress106

has been achieved, most existing solutions tackle individual107

components of the security stack and do not offer an end-to-108

end solution that ensures long-term anomaly detection, adap-109

tive mitigation, and tamper-proof enforcement. This section110

reviews the relevant contributions and identifies their strengths111

and limitations in the context of IEC 61850 substations.112

Duman et al. [11], [12] studied supply chain security 113

in IEC 61850 substations using attack graphs and security 114

posture metrics. In their 2019 work [11], the authors simulated 115

attack scenarios to count risks, while their 2024 follow-up 116

[12] proposed cost-effective control actions. Although these 117

research studies are useful for attack surface understanding and 118

defense prioritization, they do not impose adaptive detection 119

or mitigation methods in real-time. 120

Ustun et al. [13] proposed an ML-based IDS that identifies 121

anomalies in GOOSE messages. Their supervised system 122

performs adequately to identify attacks that are known with la- 123

beled data. However, the heavy dependence on labeled datasets 124

makes such systems ineffective against zero-day attacks or 125

emerging intrusions. In a similar direction, Nhung-Nguyen 126

et al. [14] designed a deep neural network-based IDS for 127

GOOSE traffic, demonstrating high detection accuracy under 128

controlled conditions. Yet, like other supervised systems, it 129

lacked mitigation mechanisms and provided no latency eval- 130

uation, leaving questions about its applicability in real-time 131

substation operations. Lian et al. [15] further emphasized these 132

shortcomings of conventional IDS architectures, concluding 133

that most will fail to generalize in rapidly evolving substation 134

environments. 135

Blockchain-based authentication frameworks have also been 136

investigated. Ghosh et al. [16] put forward a blockchain- 137

based decentralized authentication framework for smart grids, 138

highlighting tamper-proof device identity. Gayo et al. [17] 139

expanded on that by integrating blockchain with IEC 61850 140

communication for secure microgrid hardware. While the two 141

systems ensure data integrity and auditability, they do not 142

employ adaptive learning to react dynamically to threats. In 143

parallel, Park et al. [18] developed a machine learning-based 144

anomaly detection system for SV and GOOSE traffic that 145

further attempted to classify whether anomalies stemmed from 146

malicious activity or benign faults. This partial restoration 147

capability represents a step toward adaptivity, but their study 148

still lacked blockchain integration and did not report latency, 149

limiting its applicability in real-time critical infrastructure. Be- 150

yond cybersecurity, blockchain technology and AIoT have also 151

shown promise in other areas of supply chain management. 152

Lakhan et al. [19], for example, proposed a blockchain-enabled 153

AIoT framework for improving sustainable supply chain sys- 154

tems through improved inventory transparency, logistics opti- 155

mization, reducing operating expenses, and reducing carbon 156

footprints. All these developments reflect the widespread ap- 157

plicability of AIoT and blockchain beyond security. However, 158

specific to AIoT-enabled critical infrastructure, particularly 159

real-time control systems such as IEC 61850 substations, cy- 160

bersecurity challenges remain comparatively under-explored. 161

This paper directly addresses this gap by proposing an inte- 162

grated AIoT-Blockchain architecture for substation resiliency. 163

In the area of RL, Mohamed et al. [22] utilized RL to sim- 164

ulate adversarial strategies on frequency and voltage controls. 165

Although this work focuses on increasing the complexity of 166

attacks, no countermeasures are designed in this work. Said et 167

al. [24] used Q-learning in an attempt to design an IDS with 168

the ability to learn new threats. However, Q-learning and its 169

variants are not efficient with scalability and convergence in 170

the context of large state spaces, as noted by Shateri et al.171

[26] (DDQN) and Cai et al. [27] (DQN) in their respective172
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TABLE I: Comparison of Our Informer-PPO Approach with IEC 61850 Security Studies and Related Methods

Approach Attack Modeling ML RL Blockchain Adaptive Key Results Strengths (+) / Weaknesses (–)

Duman et al. (2019) [11] Attack Graphs ✗ ✗ ✗ ✗ k-Supply metric for substa-
tion supply chain

+ Early quantitative metric
– No IDS or mitigation

Duman et al. (2024) [12] Risk Metrics ✗ ✗ ✗ ✗ HFS improves posture un-
der budget limits

+ Practical hardening guidance
– No anomaly detection

Mohamed et al. (2023) [22] Grid RL ✗ ✓ ✗ ✗ RL-based attacker strategies + Captures adversarial complexity
– No countermeasures

Ghosh et al. (2024) [16] Device Auth ✗ ✗ ✓ ✗ Blockchain-based device
authentication

+ Tamper-proof authentication
– No IDS adaptivity

Ustun et al. (2021) [13] IDS ML ✓ ✗ ✗ ✗ 95.1% detection on GOOSE + Good supervised accuracy
– No zero-day coverage

Said et al. (2024) [24] RL-based IDS ✗ ✓ ✗ ✗ Q-learning IDS for DDoS + Learns new threats
– Limited scalability

Jin et al. (2022) [29] PPO Security ✗ ✓ ✗ ✗ PPO scheduling in cloud
computing

+ RL stability
– Not IEC 61850-specific

Nhung-Nguyen et al. (2024) [14] IDS for GOOSE ✓ ✗ ✗ ✗ ≈98% detection accuracy + High accuracy
– No mitigation, latency unreported

Park et al. (2024) [18] Attack/Fault Cls. ✓ ✗ ✗ ✓ Attack–fault classification
for SV/GOOSE

+ Partial restoration logic
– No blockchain, latency unre-
ported

Zaboli & Hong (2025) [30] GenAI ADS ✓ ✗ ✗ ✗ >98% detection using syn-
thetic GOOSE

+ Zero-day detection
– Detection-only, no RL or en-
forcement

Our Approach (Informer-PPO) RL+Blockchain ✓ ✓ ✓ ✓ 98.4% Kitsune, 97.6%
ERENO, 35 ms latency

+ Unified IDS + RL + Blockchain
+ Real-time mitigation with on-
chain verification
– Prototype consensus; production
deployments should adopt RAFT

studies. These methods are efficient in small cases but face173

computational inefficiencies in large substation domains.174

Jin et al. [29] explored the application of PPO to cloud175

computing security environments. PPO offers improved train-176

ing stability because of its clipped objective function and is177

thus more suited than traditional RL methods. However, PPO178

alone cannot effectively learn long-range dependencies that179

are inherent in complex cyberattack patterns, and its utility180

in dynamic infrastructure like substations is therefore limited.181

More recently, Zaboli & Hong [30] proposed a Generative182

AI-based anomaly detection system for IEC 61850 substa-183

tions. Their approach introduced synthetic, protocol-compliant184

GOOSE datasets to enhance training balance and realism, and185

achieved strong anomaly detection accuracy. Yet, the system186

remained detection-only, with no integration of RL-driven187

adaptivity or blockchain-secured enforcement, which limits its188

practical deployment in real-time substation defense.189

To surpass these limitations, Informer-based time-series190

models have been shown to be effective tools. Informer,191

founded on ProbSparse self-attention, is efficient in capturing192

long-range temporal dependencies at reduced computational193

costs. Sun et al. [31] demonstrated the application of Informer194

in energy management, achieving effective memory usage and195

improved detection performance. Shi et al. [32] developed196

InforTest, an anomaly detection framework based on Informer197

for robotic systems. These studies confirm Informer’s ability to198

detect long patterns in complex data. However, none of them199

combine Informer with RL or use it in a real-time substation200

application.201

Even though this study focuses primarily on substation en- 202

vironments, the applicability of suggested long-term anomaly 203

detection integration with adaptive RL and blockchain-secured 204

enforcement also extends to more generic IoT-fueled cyber- 205

physical systems. Certain applications, such as smart city 206

infrastructure, distributed energy resources, and industrial in- 207

ternet of things (IIoT) applications, might utilize the modular 208

nature of the framework in enhancing resilience in security in 209

a similar fashion. 210

Table I provides a comparative summary of both IEC 61850- 211

focused security studies and related works in reinforcement 212

learning, machine learning, and blockchain that inform sub- 213

station defense design. Some recent efforts have advanced 214

supervised anomaly detection for GOOSE traffic, others have 215

introduced fault-aware classification and partial restoration 216

capabilities, and still others have applied generative models for 217

synthetic data-driven anomaly detection. Yet these approaches 218

remain limited to isolated components of the security stack. 219

None of them unify long-term anomaly detection, adaptive 220

reinforcement learning, and decentralized blockchain enforce- 221

ment within a single framework. Our Informer–PPO system 222

is the first to integrate these dimensions, delivering real-time 223

detection, auditable on-chain policy execution, and scalable 224

mitigation tailored for IEC 61850 substations. 225

III. PROPOSED FRAMEWORK 226

Increasing complexity in supply chain attacks on IEC 61850 227

substations demands an adaptive and robust security frame- 228

work that can dynamically detect, mitigate, and prevent evolv- 229

ing threats. The AIoT-Blockchain security framework herein 230

integrates Informer-based deep learning models for anomaly 231

detection, RL for adaptive threat mitigation, and blockchain232

for data integrity assurance and device authentication. Unlike233
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Fig. 1: System overview of the Informer–PPO framework with blockchain-verified enforcement.

traditional IDSs relying on pre-defined rules or static machine234

learning-based systems, the suggested framework leverages235

PPO-based RL to learn optimal attack mitigation policies236

in real-time continuously. The proposed framework consists237

of four key components. AIoT-based anomaly detection with238

Informer models for processing IEC 61850 traffic and supply239

chain-focused anomaly detection before propagation. Supply240

chain integrity through blockchain guarantees that every device241

deployed and firmware patches are verified and untampered.242

RL-based adaptive attack mitigation selects optimal counter-243

measures against recognized threats in real-time. Automated244

security response via smart contracts provides real-time se-245

curity policy enforcement with zero human intervention. Fig.246

1 illustrates the envisioned system design by integrating an247

anomaly detection module, IoT-enabled sensors, RL-based248

decision-making, blockchain authentication, and an automated249

security response mechanism. These hardware components250

combined form a robust cybersecurity system for IEC 61850251

substations and effectively deter or counter possible cyberat-252

tacks. The following are descriptions of each module and its253

purpose.254

A. AIoT-Enabled Data Acquisition and Anomaly Detection255

IEC 61850 process, bay, and station levels (Fig. 1) generate256

high-frequency, time-critical telemetry. Our sensors and taps257

collect (i) electrical measurements from current transformers 258

(CTs), voltage transformers (VTs), and circuit breakers (CBs) 259

through merging units (MUs) that transmit sampled value 260

(SV) streams, (ii) protection/control events from intelligent 261

electronic devices (IEDs), and (iii) network traffic such as 262

GOOSE, SV, and MMS. Although routable GOOSE (R- 263

GOOSE) and routable SV (R-SV) support wide-area operation, 264

this work focuses on classical substation links and leaves wide- 265

area threat detection for future investigation. 266

Given a multivariate sequence Xt−n:t, we compute an 267

anomaly score 268

At = g(Xt−n, . . . , Xt) , (1)

and raise an alert when At > θ. Here, g(·) is learned from 269

historical telemetry to model normal behavior, and θ is a 270

calibrated threshold. The score At is fed into the RL state 271

along with device-integrity indicators, enabling mitigation 272

policies that are sensitive to both traffic dynamics and supply 273

chain status. 274

B. Blockchain for Device Integrity and Supply Chain Authen- 275

ticity 276

To resist device impersonation and unauthorized firmware 277

changes, we adopt a permissioned blockchain for provenance 278

and audit. Each asset (IED, CT, VT, MU, CB) carries an 279

immutable identity record and firmware hash on-chain; up- 280

dates must match signed, approved artifacts. Time-critical 281

protections such as GOOSE blocking remain off-chain to282

respect sub-4 ms deadlines, whereas non-time-critical actions,283
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such as quarantine, rollback, and credential revocation, are284

enforced via smart contracts to ensure non-repudiation and285

verifiable policy compliance. Implementation details of con-286

sensus, leader election, validation, and block addition are given287

in Section IV and empirically linked to enforcement latency288

in Section V-D. For experimental verification, we used the289

SOLO consensus algorithm for its deterministic ordering and290

low overhead; for deployment, a RAFT ordering service is291

recommended, as it provides crash-fault tolerance through292

leader election, heartbeat synchronization, and log replication,293

thereby ensuring robust block ordering prior to peer validation294

and commit (see Section IV).295

Each device Di is anchored by a cryptographic digest:296

H(Di) = Hash(Device ID,Manufacturer, Firmware Version),
(2)

and every firmware update Ft is validated against this record297

before commit. The blockchain enforces:298

1) Device provenance: immutable registration of IEDs,299

CTs, VTs, MUs, and CBs;300

2) Firmware integrity: rollback or rejection of updates not301

matching ledger hashes;302

3) Tamper-proof event logging: auditable records of con-303

figuration and access changes.304

Smart contracts operationalize these checks by isolating com-305

promised devices, revoking unauthorized access, or logging306

security violations. Where latency permits, GOOSE and MMS307

commands are cross-verified against blockchain records, while308

critical protection flows remain off-chain to meet sub-4 ms309

deadlines. The end-to-end enforcement path, including en-310

dorsement policies, membership service provider (MSP) iden-311

tity checks, access control list (ACL) enforcement, multi-312

version concurrency control (MVCC) validation, and final313

block commit, is described in Section IV, with performance314

results in Section V-D.315

C. RL-Based Adaptive Threat Mitigation (PPO with Informer)316

To effectively address cyberattacks in IEC 61850 substations317

in practice, our solution in this paper combines the decision-318

making capability of PPO with the long-sequence modeling319

capability of Informer. The complex structure and integration320

of this Informer-PPO framework are elaborated in the follow-321

ing three parts.322

1) Reinforcement Learning Setup for Cyber Mitigation:323

The increasing sophistication and evolving nature of cyber-324

attacks on IEC 61850 substations necessitate a mitigation325

process capable of continuous learning and adaptation. In the326

direction of such a framework, the proposed methodology327

integrates PPO-based RL and an added improvement from328

Informer in both the Actor and Critic networks. This approach329

enables the system to continuously update decision-making330

policies to counter cyberattacks with the help of long-range331

temporal dependencies in time-series data.332

RL learns within the framework of a Markov decision333

process (MDP), where an agent is paired with an environment334

to learn an optimal policy that maximizes cumulative rewards. 335

The state space S in this case is the current security posture 336

of the substation, consisting of real-time IEC 61850 network 337

data, anomaly scores, device integrity status, and historical 338

attack trend. The action space A is possible mitigation actions, 339

i.e., quarantining an infected device, rolling back firmware to 340

a verified state, or blocking suspicious network traffic. The 341

system transitions to states based on policy π(a|s), which takes 342

security states to the best responses to threats. 343

At each timestep t, the RL agent receives a state st, selects 344

an action at, and transitions to the next state st+1, where the 345

reward rt captures the effectiveness of the employed security 346

action. We developed a reward function that promotes optimal 347

threat response by rewarding effective mitigation while penal- 348

izing missed attacks (false negatives) more heavily than false 349

alarms (false positives). This ensures a security-first approach 350

while minimizing unnecessary operational disruptions. It is 351

defined as: 352

rt = α1Rmitigation − α21FN − β1Roperational disruption

− β21FP − γ1inaction
(3)

where: 353

• 1FN is an indicator function that equals 1 if a false 354

negative (missed attack) occurs, and 0 otherwise. 355

• 1FP is 1 if a false positive security action is triggered, 356

and 0 otherwise. 357

• 1inaction is 1 if no action is taken when an attack occurs, 358

and 0 otherwise. 359

• Rmitigation measures the effectiveness of security actions 360

(0 ≤ R ≤ 1). 361

• Roperational disruption measures the negative impact of a se- 362

curity action on system operations. 363

• α1, α2, β1, β2, γ are tunable weights. 364

This arrangement rewards proper attack detection and re- 365

sponse, punishes missed attacks more than false alarms, and 366

discourages pointless security measures that may cause inter- 367

ruptions in normal activities. 368

To optimize learning of the policy, PPO is employed, which 369

improves the earlier policy gradient techniques by offering 370

a clipped surrogate objective to stabilize training. The PPO 371

objective function is defined as: 372

J(θ) = E

[
min

(
πθ(at|st)
πθold(at|st)

At,

clip
(

πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
At

)] (4)

where: 373

• θ is the set of trainable parameters in the current policy 374

network (Actor), 375

• πθ and πθold are the current and past policy probabilities 376

of taking action at in state st, respectively, 377

• At is the advantage estimate quantifying the relative value 378

of action at in state st, 379

• ϵ is the clipping parameter (typically between 0.1 and 380

0.2) employed to clip the policy update ratio, preventing 381

destabilizing updates. 382
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PPO, using this clipped equation, provides strong convergence383

by constraining large deviations between successive policy384

improvements.385

2) Informer-Augmented Actor-Critic Networks: While PPO386

provides stable and efficient policy optimization through its387

clipped objective, the effectiveness of cyber-mitigation in388

IEC 61850 substations depends critically on the representa-389

tional ability of the neural network architecture. Advanced390

attacks, such as staged firmware injections or distributed391

GOOSE spoofing, evolve across long horizons; capturing392

these requires models that can extract long-term temporal393

dependencies rather than short-range correlations.394

To this end, we employ the Informer architecture [33] as395

the function approximator for both Actor and Critic networks.396

Informer is a transformer variant designed for long-sequence397

forecasting, using ProbSparse self-attention to prioritize the398

most informative keys. This reduces complexity from O(L2)399

to O(L logL), enabling efficient modeling of thousands of400

timesteps while preserving accuracy for rare or stealthy pat-401

terns in substation traffic.402

Formally, the Actor network parameterized by θA maps an403

observed state st to a probability distribution over mitigation404

actions:405

πθA(at|st) = softmax (InformerθA(st)) , (5)

where InformerθA(st) is the encoded representation of st and406

θA are the Actor’s parameters. The Critic network parameter-407

ized by θC estimates the state-value function:408

VθC (st) = InformerθC (st), (6)

where θC denotes the Critic parameters.409

This joint use of Informer ensures temporal consistency: the410

Actor leverages long-range dependencies for adaptive action411

selection, while the Critic evaluates rewards with extended412

context, stabilizing PPO training. By comparison, CNN-based413

IDSs capture only short local patterns, LSTMs suffer from414

vanishing gradients and short-term bias, and standard Trans-415

formers incur quadratic complexity that is prohibitive for416

long telemetry streams. Informer’s sparsity-aware mechanism417

overcomes these limitations, dynamically attending to delayed418

or rare behaviors such as stealthy device compromises.419

Therefore, the Informer-augmented PPO framework pro-420

vides a principled solution to the scalability and responsiveness421

challenges of IEC 61850 cybersecurity. It delivers real-time422

decision-making under bursty and asynchronous traffic, offer-423

ing resilience against multi-stage intrusions while remaining424

computationally feasible for deployment.425

3) Fusion Architecture and Operational Workflow: Build-426

ing on the Actor–Critic formulation, the Informer encoder-427

decoder backbone jointly supports policy learning and value428

estimation, enabling long-range temporal dependencies in429

GOOSE, SV, and IED telemetry to be captured for adaptive430

mitigation.431

During training, the PPO agent interacts with a simulated432

adversarial environment in which cyberattacks are dynamically433

generated from historical incidents. Across episodes, the agent434

iteratively reduces the gap between predicted and observed435

outcomes, converging to policies that yield stable and effective 436

countermeasures. 437

At runtime, mitigation actions are prioritized by operational 438

urgency. Time-critical responses, such as breaker tripping or 439

blocking compromised GOOSE traffic, are executed directly 440

through SCADA/IED interfaces to comply with IEC 61850’s 441

strict sub-4 ms deadlines. Non-time-critical actions, including 442

device quarantine, firmware rollback, or credential revocation, 443

are encapsulated in digitally signed blockchain transactions. 444

These are validated asynchronously and immutably recorded, 445

ensuring tamper-proof auditability without introducing latency 446

to urgent protective functions. 447

This dual-path execution mechanism balances the imme- 448

diacy of direct enforcement with the decentralized trust of 449

blockchain-backed actions. By decoupling urgent protections 450

from consensus delays, the framework ensures both opera- 451

tional safety and verifiable compliance. 452

D. Automated Security Enforcement via Smart Contracts 453

Preventing cyberattacks on IEC 61850 substations requires 454

adaptive responses that are both timely and tamper-proof. 455

Conventional centralized enforcement is prone to delays and 456

manipulation. In our framework, blockchain smart contracts 457

autonomously enforce security policies, ensuring that RL- 458

selected countermeasures are applied without human interven- 459

tion. Once the PPO agent determines the optimal action, it is 460

encapsulated in a digitally signed transaction and validated 461

on the ledger, rendering responses such as device quarantine, 462

firmware rollback, or credential revocation immutable and 463

auditable. 464

The sequence of enforcement proceeds as follows: 465

1) Threat detection and policy selection: The RL agent 466

chooses an optimal countermeasure based on AIoT 467

telemetry and historical attack context. 468

2) Contract invocation: The chosen action is submitted to 469

a designated smart contract. 470

3) Validation and execution: The contract checks policy 471

rules and context, verifies authorization, and enforces the 472

action. 473

4) Tamper-proof logging: The decision and its outcome 474

are irreversibly recorded on the blockchain for auditabil- 475

ity. 476

1) Mathematical Model for Security Enforcement: A smart 477

contract SC is a self-executing function that maps an action 478

request at to an execution decision Et, considering system 479

constraints: 480

Et = SC(at, P, C) (7)

where, at is the security action determined by PPO at time t. 481

P is the set of pre-defined policy rules (e.g., firmware rollback 482

conditions, access control policies). C is the current security 483

context, comprising device authentication status and substation 484

operating state. Smart contract logic is designed to ensure that: 485

Et =

{
execute at, if (at ∈ P ) and (C is compliant)
reject at, otherwise

(8)

This blocks illegitimate security actions only from being 486

enforced and prevents unauthorized interference. 487
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Algorithm 1 Adaptive Cyber Defense via Informer-PPO with Smart Contract Enforcement

1: Input: IEC 61850 telemetry streams (GOOSE, SV, MMS); initialized PPO parameters (θA, θC) and hyperparameters
(γ, λ, ϵ, η); blockchain connection and deployed smart contracts (InvokeContract(), VerifyAndEnforce()).

2: Output: Trained policy π⋆
θA

; per-timestep mitigation decisions at; commit receipts (MitigationCommitted); audit
log entries {Lt}.

3: Start
4: Initialize replay buffer B ← ∅
5: for each training episode do
6: Collect telemetry st from IEC 61850 traffic
7: Compute anomaly score and device integrity status
8: Construct augmented state s′t ← [st, anomaly score, device status, attack history]
9: Select action at ∼ πθA(s

′
t) using policy in Eq. 5

10: Apply at in simulator; observe reward rt and next state s′t+1

11: Store transition (s′t, at, rt, s
′
t+1) in buffer B

12: Estimate advantage At with PPO objective (Eq. 4)
13: Update Actor θA and Critic θC via clipped loss
14: if at requires blockchain enforcement then
15: Construct signed payload T ← Sign(at, timestamp, deviceID)
16: Submit payload: InvokeContract(T )
17: Et ← VerifyAndEnforce(T ) {returns commit event}
18: Log enforcement Lt ← (T , Et)
19: end if
20: end for
21: End

2) Types of Security Actions Enforced by Smart Contracts:488

The smart contract platform supports various security en-489

forcement actions that are activated according to the anomaly490

severity:491

• Device Quarantine: When an IED, CT, VT, MUs, or CB492

is detected to act suspiciously, the smart contract isolates493

it from the network so that the attack is not propagated494

further.495

• Firmware Rollback: If a device’s firmware has been tam-496

pered with or changed in any fashion, the contract exam-497

ines its original authenticated version on the blockchain498

and causes a rollback.499

• Revocation of Access: All unauthorized access attempts500

are tracked, and if detected, the smart contract revokes501

access or rejects malicious traffic.502

3) Blockchain-Based Auditability and Compliance: Every503

enforced security measure is cryptographically signed and504

immutable on the blockchain. This ensures:505

• Non-repudiation: Every security event can be traced back506

to its source.507

• Tamper resistance: Once a measure has been enforced, it508

cannot be changed.509

• Regulatory compliance: Enforcement based on smart510

contracts is cybersecurity policy compliant for critical511

infrastructure.512

4) Interaction Between Smart Contracts and RL-Based513

Mitigation: Upon selecting an action by the PPO agent,514

the intelligent contract carries it out automatically, making515

unauthorized or late modifications impossible. The seamless516

integration facilitates real-time mitigation of cyber threats517

without losing the integrity and robustness of IEC 61850518

substations. With the combination of RL-adaptive decision- 519

making and blockchain-enforced automated compliance, this 520

approach promises a tamper-evident, autonomous, and secure 521

cybersecurity solution for modern power substations. 522

To officially initiate blockchain enforcement, all action at 523

created by RL is converted into a digitally signed transaction 524

payload named T . This payload includes action, timestamp, 525

and device ID, and is uploaded to the blockchain smart 526

contract for verification and enforcement. After receiving T , 527

the smart contract processes T , verifies against policy and 528

context, and sends an execution result Et as to whether or 529

not the action was approved and enforced. These transactional 530

variables are reflected in the control flow described by Algo- 531

rithm 1. This algorithm summarizes the end-to-end operational 532

logic of our proposed RL-blockchain framework, outlining 533

how the system collects real-time substation data, determines 534

the optimal mitigation actions using the Informer-PPO agent, 535

and enforces them through smart contracts on the blockchain. 536

IV. IMPLEMENTATION & EXPERIMENTAL SETUP 537

A. Simulation Environment and Blockchain-Based Enforce- 538

ment 539

A simulation model of the IEC 61850 digital substation 540

system was developed using OMNeT++, a network simulator 541

based on discrete events, and the NS3 network communication 542

simulation framework between IEDs, CTs, VTs, MUs, CBs, 543

SCADA, and HMI devices. The testbed simulates real-time 544

GOOSE, SV, and MMS traffic under benign and adversarial 545

settings, including supply chain-driven attacks, to validate the 546

resilience of the framework to coordinated substation attacks. 547
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TABLE II: Summary of Datasets Used: Simulated Attacks, Features, and Preprocessing Pipeline

Dataset Attack Scenar-
ios

Protocol(s) Main Features Preprocessing and Use in Paper

Biswas et al. [29] 9 cyberattacks
+ 3 benign

GOOSE Breaker status, cur-
rent values, stNum,
sqNum, timestamps

Feature extraction from .pcapng
and .csv, scenario-level label-
ing, substation configuration lan-
guage (SCL)-based time-series
alignment. Used for supervised
training and GOOSE anomaly de-
tection.

Kitsune [30] 9 real-world at-
tack scenarios

transmission
control protocol
(TCP)/internet
protocol (IP), address
resolution protocol
(ARP), secure sockets
layer (SSL)

115-dimensional
statistical features
(packet flow, timing,
entropy)

Informer pretrained on real traf-
fic anomalies. Validates general-
ization under real network noise.
Used for cross-domain transfer
learning.

ERENO [31] 7 attack scenar-
ios

GOOSE, SV Protocol timing, flow
statistics, replay and
injection markers

Used for benchmarking detection
robustness on industrial control
systems (ICS)-specific attacks. At-
tacks are annotated, and data is
high-fidelity from substation sim-
ulation.

Custom OMNeT++–
NS3

5 synthetic at-
tacks

GOOSE, SV, MMS
(simulated)

Device identity, con-
trol message content,
firmware hashes

Simulated MMS spoofing, unau-
thorized IEDs, and firmware in-
jection. Used to test blockchain
enforcement (rollback/quarantine)
and RL-triggered response.

Blockchain-Based Enforcement System: A multi-peer 548

Hyperledger Fabric network was implemented to establish549

a tamper-proof security enforcement system for IEC 61850550

substations. The three key constituents of the blockchain551

network are:552

• Ordering Service – Ensures transaction consistency and553

blocks are committed in sequence.554

• Peer Nodes – Every peer node consists of a distributed555

ledger, verifying firmware updates, authentication logs,556

and security actions.557

• Certificate Authority (CA) – Provides cryptographic iden-558

tity management for IEDs so that the network is joined559

only by enrolled and authenticated devices.560

Transaction and block addition path: (1) The RL agent561

submits a proposal to endorsing peers that satisfy a 2-of-3562

organizations policy. (2) Endorsers simulate chaincode and563

return signed read/write sets (with MVCC versions). (3) The564

client assembles endorsements and sends the transaction to the565

orderer. (4) The ordering service batches transactions using566

BatchTimeout/MaxMessageCount and cuts a block. (5)567

Each peer validates the block by checking (i) endorsement568

policy signatures, (ii) MSP/identity, and (iii) MVCC conflicts.569

(6) Valid transactions are committed to the ledger and applied570

to world-state; invalid ones are flagged but not applied. On571

commit, an application event (MitigationCommitted) is572

emitted and used to mark a mitigation as verified.573

Smart Contract Logic: Go-written smart contracts were574

used as Chaincode on peer nodes to enforce security policy575

automatically. The contracts compare firmware update re-576

quests with cryptographic hashes of blockchain-stored, signed577

firmware versions. In the case of a discrepancy, the con-578

tract triggers automatic security enforcement actions such as579

firmware rollback or device quarantine. 580

Integration with RL-Based Security System: The 581

blockchain interacts with the RL-based security system 582

through a RESTful API, which offers: 583

• Threat response enforcement – Receiving attack mitiga- 584

tion directives from the PPO RL-based Informer augmen- 585

tation. 586

• Tamper-proof security logging – Saving security actions 587

(quarantine, rollback, access revocation) immutably on 588

the blockchain ledger. 589

• Real-time firmware integrity validation – Providing on- 590

going attestation to SCADA and IEDs. 591

Each transaction is hashed for auditability and non- 592

repudiation. Dynamic simulation of transaction load was em- 593

ployed to examine performance involving enforcement latency 594

and scalability under adversarial stress. 595

B. Blockchain Configuration and System Parameters 596

The Hyperledger Fabric network was initialized with three 597

peer organizations and a single ordering service. During 598

prototyping and experiments in a controlled environment, 599

the SOLO consensus algorithm was utilized. With SOLO, 600

transactions are deterministically ordered with low latency and 601

overhead, making it suitable for early experimental verification 602

of blockchain-based enforcement in IEC 61850 substations. 603

For deployment, however, we recommend a crash-fault- 604

tolerant RAFT ordering service. RAFT elects a leader among 605

orderers using randomized timeouts and heartbeat messages; 606

the leader serializes transactions into a replicated log, and once 607

a majority of orderers confirm replication, a block is cut and 608
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broadcast to peers. Client SDKs automatically redirect requests 609

to the active leader after re-election, making leader changes610

transparent to applications.611

Each of the smart contract transactions, as implemented612

in our Hyperledger Fabric testbed deployment, included a613

hashed firmware signature, device ID, and enforcement ac-614

tion, such as firmware rollback or device quarantine. The615

transaction lifecycle proceeded through the standard Fabric616

endorsement–ordering–commit path: (1) the RL agent sub-617

mits a proposal to endorsing peers; (2) endorsers simulate618

the chaincode and return signed read/write sets with version619

metadata; (3) the client assembles endorsements and submits620

to the orderer; (4) the ordering service batches transactions and621

cuts a block; (5) each peer validates the block by checking622

endorsement policy signatures, MSP identities, and MVCC623

version conflicts; and (6) valid transactions are committed to624

the ledger and applied to world state, while invalid ones are625

flagged but preserved for audit. Upon commit, an application626

event (MitigationCommitted) is generated, and a miti-627

gation is considered verified only after this event is received.628

All performance tests were conducted on a 12-core Intel629

CPU and 32 GB RAM workstation. To address IEC 61850630

substation operational requirements, Hyperledger Fabric was631

selected as the blockchain platform over others such as632

Ethereum and Corda. Fabric has native support for permis-633

sioned networks, low-latency transaction endorsement, and634

modular chaincode architecture, all of which are fundamental635

to security-critical industrial infrastructures. Unlike Ethereum,636

Fabric eliminates gas fees, enables private data sharing among637

selected participants, and ensures deterministic transaction638

finality in controlled membership networks. While Corda has639

some privacy advantages and financial optimization features,640

it is less flexible in its modular smart contract design or641

as versatile overall as Fabric for substation cybersecurity642

enforcement.643

Blockchain performance testing results with transaction644

throughput and latency details are given in Sections V.D and645

V.E.646

C. Dataset Description and Trace Composition647

This research hires four datasets to pretrain, train, and648

experiment with the proposed RL-based anomaly enforcement649

and detection framework. The datasets consist of two publicly650

available IEC 61850-specific datasets (Biswas et al. [34] and651

ERENO) [35], a general-purpose real-world network intrusion652

dataset (Kitsune) [36], and one synthesized custom dataset653

created within our OMNeT++–NS3 substation testbed. Table II654

summarizes each dataset’s attack scenarios, protocol coverage,655

extracted features, and preprocessing. The IEC 61850 Security656

Dataset by Biswas et al. [34] includes 12 scenarios, 9 cyberat-657

tacks, and 3 benign, exclusively concerning GOOSE protocol658

communications. They include attacks such as GOOSE flood-659

ing, spoofed state/sequence number manipulation, false cur-660

rent injection, and control message tampering. Each scenario661

comprises ‘.pcapng‘ traces with timestamped GOOSE packets662

among 18 IEDs and corresponding ’.csv’ logs of present663

magnitude and breaker status. Preprocessing consisted of ex-664

tracting timestamps, GOOSE control fields (stNum, sqNum),665

and aligning them with SCL configuration files for time-series666

structural modeling. For estimating generalization on real data, 667

we used the Kitsune Network Attack Dataset [36], with nine 668

labeled attack scenarios recorded from an operational IoT 669

surveillance network. Although it does not cover IEC 61850 670

protocols, it covers ARP spoofing, replay injection, and denial- 671

of-service (DoS) attacks impersonating real traffic anomalies. 672

We pre-trained the Informer model on Kitsune to learn gen- 673

eralized adversarial patterns and then fine-tuned it on IEC 674

61850-specific datasets. The ERENO IEC 61850 IDS Dataset 675

[35] was utilized for the realistic evaluation of substation- 676

centric attacks. It contains seven scenarios of GOOSE and SV 677

traffic under replay, flooding, and masquerading conditions. 678

Each data instance includes network-level flow features and 679

labels indicating whether an attack occurred. This data set 680

was used to test the resilience of our model in high-fidelity 681

substation environments. To test attack vectors not present 682

in any public dataset, we have developed a custom dataset 683

within the OMNeT++–NS3 environment. This simulated data 684

set includes GOOSE, SV, and MMS traffic. Attack scenarios 685

include unapproved IED registration, firmware injection, and 686

MMS spoofing. We used this dataset to test our blockchain- 687

enforcement logic, e.g., automatic rollback and quarantine 688

responses triggered by RL-based detection outputs. These 689

aggregated datasets enable end-to-end training and validation 690

in both realistic and diverse adversarial environments. The 691

public datasets offer the promise of benchmarking relevance, 692

whereas our synthetic traces enable testing of state-of-the-art 693

scenarios involving protocol-level and control-level substation 694

attack threats. 695

D. Synthetic Attack Generation in OMNeT++–NS3 696

To complement public data sets and study complex policy 697

enforcement behaviors, new adversarial test cases were created 698

on our OMNeT++–NS3-based IEC 61850 substation testbed. 699

Such test cases include attack vectors beyond the bounds 700

of existing data sets, for example, spoofed MMS control 701

messages, malicious IED registration attempts, and firmware 702

injection on device integrity. The anomaly detection module 703

and the blockchain response system were tested across these 704

synthetic threats. 705

The subsequent types of attacks were specifically designed 706

to initiate blockchain-enforced actions, such as firmware roll- 707

back and device quarantine, in a bid to combat unauthorized 708

behavior and maintain substation stability. 709

Scenario Categories: The public and synthetic traces 710

combined dataset is organized as follows: 711

1) Normal Operations: 712

• Authentic exchanges on GOOSE, SV, and simulated 713

MMS protocols. 714

• Secure firmware update logs on the blockchain 715

ledger. 716

• Verified exchanges among SCADA, IEDs, MUs, 717

CTs, and VTs. 718

2) Cyberattack Situations: 719

• Firmware Injection Attacks: Illegal firmware up- 720

dates that compromise device functionality. 721
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• IEC 61850 Message Spoofing: Spoofed GOOSE 722

messages duplicating valid protection and control723

signals.724

• Unauthorized Device Alterations: Attempts to reg-725

ister insurgent IEDs or alter installed substation726

equipment.727

• Data Manipulation Attacks: Present and voltage728

measurement tampering affecting the operation of729

the relay.730

• DoS Attacks: Disrupting substation network com-731

munications by flooding with excessive traffic.732

E. Evaluation Metrics733

To rigorously evaluate our Informer-PPO–Blockchain se-734

curity framework, we use a complete set of measures that735

quantify detection performance, mitigation effectiveness, and736

enforcement delay, as follows:737

1) Anomaly Detection Measures: To contrast the perfor-738

mance of different IDS architectures (rule-based, CNN-739

PPO, LSTM-PPO, Transformer-PPO, and Informer-740

PPO), we utilized the following typical classification741

measures:742

• Precision: The number of predicted anomalies that743

were actual attacks.744

Precision =
TP

TP + FP
(9)

• Recall (Sensitivity): The number of actual attacks745

detected correctly.746

Recall =
TP

TP + FN
(10)

• False Positive Rate (FPR): The proportion of normal747

events incorrectly classified as attacks.748

FPR =
FP

FP + TN
(11)

• False Negative Rate (FNR): The proportion of actual749

attacks missed by the model.750

FNR =
FN

FN + TP
(12)

• F1-Score: Harmonic mean between recall and pre-751

cision.752

F1 =
2 · Precision · Recall
Precision + Recall

(13)

• Matthews Correlation Coefficient (MCC): Measures753

the quality of binary classifications even in the754

presence of class imbalance.755

MCC =
TP · TN − FP · FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
(14)

where:756

• TP: True Positives (properly detected attacks)757

• TN: True Negatives (properly ignored normal traf-758

fic)759

• FP: False Positives (normal traffic incorrectly la-760

beled as attacks)761

• FN: False Negatives (detection failures, failed-to-762

detect attacks) 763

These metrics were calculated on test subsets of 764

every dataset—Biswas [34], ERENO [35], and Kit- 765

sune [36]—to provide insight into real-world, protocol- 766

specific, and cross-domain generalizability. 767

2) Attack Mitigation Metric: To quantify the effectiveness 768

of the RL agent in selecting effective responses under 769

adversarial conditions, we use mitigation success rate 770

(MSR), calculated as follows: 771

MSR =
Number of Correctly Mitigated Attacks

Total Number of Attack Attempts
×100%

(15)
The mitigation of a threat is considered accomplished 772

when the chosen RL action is both optimal for the threat 773

type and system policy and is successfully enforced and 774

confirmed by smart contract enforcement logs on the 775

blockchain. This metric reflects the end-to-end perfor- 776

mance of the detection + decision-making + enforcement 777

loop. 778

3) System Responsiveness Metrics 779

• Detection + Mitigation Latency: Average time (in 780

ms) from when an anomaly is detected to when the 781

RL agent makes an action decision. 782

• Blockchain Enforcement Latency: Time to validate, 783

authorize, and execute a security action on-chain. 784

These measures were recorded with timestamp logs in 785

the OMNeT++–NS3 testbed and Hyperledger Fabric 786

chaincode responses. 787

V. RESULTS & DISCUSSION 788

This section gives a comprehensive evaluation of the pro- 789

posed Informer-PPO–Blockchain system on a range of perfor- 790

mance indicators, including accuracy of anomaly detection, 791

mitigation efficiency, model convergence, computational over- 792

head, and enforcement of blockchain. All experiments were 793

conducted on a custom IEC 61850 substation simulation setup 794

in OMNeT++–NS3, with adversarial scenarios taken from 795

three datasets: a synthetic IEC 61850 testbed, the Biswas et al. 796

[34] dataset, and two additional benchmark datasets included, 797

Kitsune [36] and ERENO [35], for generalization and ro- 798

bustness across heterogeneous cyber-physical infrastructures. 799

Performance metrics are defined in Section IV.E and used 800

throughout this section for consistency and reproducibility. 801

A. Anomaly Detection Performance 802

Table III illustrates the performance of four compar- 803

ison methods—rule-based IDS, CNN-PPO, LSTM-PPO, 804

Transformer-PPO, and proposed Informer-PPO, in anomaly 805

detection as evaluated on four different datasets: our own 806

in-house custom-developed synthetic IEC 61850 testbed, the 807

Biswas et al. [34], Kitsune [36], and ERENO [35]. Important 808

metrics include accuracy, precision, recall, F1-score, FPR, 809

FNR, and MCC, all of which are discussed in Section IV.E. 810
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TABLE III: Anomaly Detection Performance Across Datasets and Models

Model Dataset Accuracy (%) Precision Recall F1-Score FPR (%) FNR (%) MCC

Rule-Based IDS Synthetic Testbed 85.4 0.78 0.82 0.80 7.9 13.6 0.65
CNN-PPO Synthetic Testbed 90.9 0.86 0.87 0.87 4.6 9.2 0.76
LSTM-PPO Synthetic Testbed 93.3 0.89 0.91 0.90 3.0 6.7 0.82
Transformer-PPO Synthetic Testbed 94.7 0.91 0.92 0.91 2.6 5.4 0.85
Informer-PPO Synthetic Testbed 95.9 0.93 0.94 0.94 2.1 4.3 0.88

Rule-Based IDS Biswas dataset 87.3 0.80 0.84 0.82 7.1 12.3 0.69
CNN-PPO Biswas dataset 91.2 0.87 0.88 0.88 4.3 8.6 0.78
LSTM-PPO Biswas dataset 93.6 0.90 0.92 0.91 3.1 6.2 0.84
Transformer-PPO Biswas dataset 94.8 0.92 0.92 0.92 2.5 5.2 0.86
Informer-PPO Biswas dataset 96.1 0.94 0.94 0.94 2.0 4.0 0.89

CNN-PPO Kitsune dataset 90.1 0.86 0.85 0.86 5.7 8.9 0.75
LSTM-PPO Kitsune dataset 94.0 0.91 0.92 0.91 3.2 5.8 0.85
Transformer-PPO Kitsune dataset 95.2 0.93 0.94 0.93 2.4 4.6 0.88
Informer-PPO Kitsune dataset 98.4 0.97 0.98 0.98 1.1 2.3 0.94

CNN-PPO ERENO dataset 89.5 0.85 0.83 0.84 6.0 9.1 0.74
LSTM-PPO ERENO dataset 92.4 0.88 0.91 0.89 3.8 6.0 0.81
Transformer-PPO ERENO dataset 94.2 0.90 0.92 0.91 2.7 5.8 0.84
Informer-PPO ERENO dataset 97.6 0.95 0.96 0.95 1.5 3.1 0.91

On the synthetic IEC 61850 testbed, emulating time-critical 811

GOOSE/SV communication patterns and baseline substa-812

tion cyber-traffic, the Informer-PPO achieves 95.9% accu-813

racy, significantly outperforming Transformer-PPO (94.7%),814

LSTM-PPO (93.3%), CNN-PPO (90.9%), and rule-based IDS815

(85.4%). The model also demonstrated an improved balance816

between F1-score (0.94) and MCC (0.88), indicating good817

quality of prediction even under conditions of class imbalance.818

Synthetic testbeds, however, fail to capture real-world noise819

and operating diversity, yet they represent important controlled820

settings for establishing baseline detection performance and821

validating convergence stability before deployment on dy-822

namic infrastructures.823

On the Biswas dataset, which records structured IEC 61850824

substation attack flows, Informer-PPO achieved 96.1% accu-825

racy and a high MCC of 0.89, outperforming all Transformer-826

, CNN-, and LSTM-based RL counterparts. The detection827

capability of the model for stealthy firmware injection and828

spoofing behavior further enhances its usability for protocol-829

layer anomaly detection.830

Inference on the Kitsune dataset, with realistic anomalies831

and heterogeneous IoT traffic, showed that the Informer-PPO832

generalizes well. It was 98.4% accurate with nearly perfect833

precision (0.97) and recall (0.98). This result shows excellent834

resistance to noise and cross-domain traffic patterns that were835

not observed at pretraining. Compared to Transformer-PPO836

(95.2%), CNN-PPO (90.1%), and LSTM-PPO (94.0%), the837

Informer-based structure provided greater temporal coverage838

and reduced FNR by a large margin.839

For the ERENO dataset, simulating real-time hardware-840

based IEC 61850 operational environments with real-time841

GOOSE/SV payloads, Informer-PPO again led the pack with842

97.6% accuracy, 0.95 F1-score, and 0.91 MCC. This points843

towards the ability of the framework to react to timing-critical844

event sequences as well as communication delays, both of845
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Fig. 2: Training Process of RL Agent: Cumulative Reward
Over Episodes

which have been victimized by sequence models earlier.846

These results indicate that Informer-PPO not only performs 847

significantly better on synthetic and benchmark datasets but 848

also lays a solid foundation for subsequent real-time mitigation 849

and blockchain-secured policy enforcement. 850

B. RL Agent Training and Convergence 851

We monitored the average episodic reward over training for 852

all PPO-based models to compare the RL agents’ learning 853

dynamics and convergence behavior. The cumulative reward 854

curves over 4,000 episodes on the synthetic IEC 61850 testbed 855

are presented in Fig. 2, where all models were trained from 856

scratch to enable fair baseline comparisons. 857

The Informer-PPO model described achieves faster and 858

more convergent convergence than its Transformer-, CNN- 859

, and LSTM-based counterparts. Specifically, Informer-PPO 860

stabilizes its cumulant reward after ∼1,100 episodes, while 861

Transformer-PPO converges slightly later, around 1,400 862

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3632117

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sejong Univ. Downloaded on December 22,2025 at 05:21:05 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

With Transfer Learning

Without Transfer Learning

R
e
ca

ll
0.82

0.80

0.78

0.76

0.74

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

(a) Early Recall Comparison

With Transfer Learning

Without Transfer Learning

F
a

ls
e 

P
o

si
ti

v
e 

R
a

te

0.080

0.075

0.070

0.065

0.060

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

0.085

(b) Early False Positive Rate Comparison

Fig. 3: Effect of Transfer Learning on Fine-Tuning Perfor-
mance of Informer-PPO pretrained on Kitsune.

episodes. LSTM-PPO requires approximately 1,800 episodes 863

to converge, and CNN-PPO experiences noisier and slower864

learning beyond 2,500 episodes. Baseline PPO has the slowest865

learning trajectory with instability in reward accumulation866

during the training process. Informer’s ProbSparse attention867

enables it to learn long-term temporal dependencies without868

memory bottlenecks or computational inefficiencies, which are869

typical issues with recurrent or dense-attention models.870

For cross-domain adaptability evaluation, Informer-PPO871

was first pre-trained on the Kitsune dataset and then fine-872

tuned on the Biswas and ERENO datasets. Transfer learning873

achieved an early-stage recall gain of 6.3% and FPR reduction874

of 1.7% over scratch training. Results, as represented in875

Figures 3a and 3b, confirm the ability of knowledge transfer876

to facilitate quicker convergence and enhancement of general-877

izability across other cyber-physical environments.878

Furthermore, the Informer-PPO consistently exhibited lower879

reward variance over episodes (Fig. 2), reflecting enhanced880

training stability. This combination of stable training, fast881

convergence, and effective domain transfer is an indication 882

of the dominance of Informer-PPO for real-time smart grid 883

security applications. 884

C. Attack Mitigation Success Rate 885

In RL–based cybersecurity systems for critical infrastruc- 886

ture, effectively mitigating detected threats is as essential as ac- 887

curately detecting them. The proposed architecture integrates 888

a policy execution layer backed by a smart contract deployed 889

on a Hyperledger Fabric blockchain network, enabling coun- 890

termeasures such as firmware rollback, device isolation, and 891

access revocation for the reinforcement learning agent. 892

MSR, which is defined in Section IV.E, calculates the 893

percentage of successful mitigation of attacks out of total 894

attempts. A mitigation action qualifies as a success only when 895

the selected policy is enforced on-chain and marked as verified 896

by the blockchain network. 897

To demonstrate this dimension numerically, Fig. 4 shows 898

the MSR of four RL-based agents, CNN-PPO, LSTM- 899

PPO, Transformer-PPO, and Informer-PPO, on four sam- 900

ple IEC 61850 attack types: firmware injection, GOOSE 901

spoofing, unauthorized configuration, and data manipulation. 902

The Informer-PPO agent shown here consistently has the 903

highest success rate, over 92% in all categories, and up to 904

93.1% for unauthorized configuration events. Transformer- 905

PPO performs better than LSTM-PPO, achieving MSR scores 906

around 90–91% across different attack scenarios. LSTM-PPO 907

performs fairly (approximately 88–90%), while CNN-PPO 908

demonstrated comparatively lower mitigation success rates 909

(approximately 84–86%), indicating challenges in modeling 910

sequential adversarial patterns. 911

This relative performance gap is primarily attributed to the 912

temporal modeling capacity of the Informer architecture. Com- 913

pared to CNNs, which rely on localized kernels, and LSTMs, 914

which are plagued by memory decay and vanishing gradients 915

when dealing with long sequences, and Transformers, which 916

struggle with computational scalability for longer sequences, 917

the Informer employs a ProbSparse attention mechanism. It 918

can thus maintain global temporal context and dynamically 919

re-prioritize necessary time steps, enabling it to forecast multi- 920

stage attack development and select context-aware mitigation 921

policies. 922

These results build upon the Informer-PPO’s advantage 923

in temporal reasoning, response consistency, and compliance 924

with on-chain policies, making it perfect for real-time protec- 925

tion in smart substations. 926

D. Latency and Computational Overhead 927

This subsection examines the end-to-end anomaly preven- 928

tion pipeline’s response latency and computational overhead 929

to ascertain the proposed framework’s real-time viability in 930

IEC 61850 substations, including the RL agent inference and 931

blockchain-based implementation. 932

1) Response Time Analysis: As evident from Table V, 933

the Informer-PPO model presented here has an average 934
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Fig. 4: Comparative Mitigation Success Rate by Model and Threat Type.

end-to-end response time of 35 ms for anomaly de- 935

tection and mitigation, outperforming Transformer-PPO936

(52 ms), LSTM-PPO (72 ms), CNN-PPO (95 ms), and937

the baseline IDS (110 ms). This latency includes both938

the inference time of the RL agent and actuation delays939

initiated through smart contracts. These values make the940

use of Informer-PPO in actual field deployment feasible941

in substation settings that demand rapid detection-to-942

mitigation switching.943

2) Blockchain Enforcement Delay: Blockchain adoption944

introduces additional processing delays to enforcement945

and verification, as shown in Fig. 5. Delays of more946

than three critical security measures, firmware rollback,947

access revocation, and device quarantine were all exe-948

cuted with standard transaction loads with Hyperledger949

Fabric. The following delays were incurred:950

• Firmware Rollback: 42 ms951

• Access Revocation: 50 ms952

• Device Quarantine: 37 ms953

Although higher than IEC 61850’s protection messaging954

deadline (e.g., 4 ms for GOOSE), these latencies are955

acceptable for non-time-critical control flows such as956

firmware integrity checking and policy-based segmenta-957

tion. Thus, blockchain enforcement is not employed in958

time-critical layers but supports auditability and tamper-959

proof logging for events initiated by the RL agent.960

3) Blockchain Transaction Lifecycle and Validation: The961

observed enforcement delays are directly tied to the962

Fabric transaction processing pipeline. Each mitigation963

request is first endorsed by peers according to a 2-964

of-3 organizations policy, where endorsers simulate the965

chaincode and return signed read/write sets with version966

metadata. The client then assembles these endorsements967

and submits the transaction to the ordering service. In968

our benchmarks, a SOLO orderer was used for determin-969

ism and low overhead; in deployment, a RAFT cluster970

would be used to provide crash-fault tolerance through971

leader election, heartbeat messages, and replicated logs.972

The orderer batches transactions using BatchTimeout973

TABLE IV: Ordering and validation parameters of the Fabric
testbed used in latency and throughput experiments.

Parameter Value

Endorsement policy 2 of 3 organizations
BatchTimeout 100 ms (bench); 50–100 ms (deploy)
MaxMessageCount 20 (bench); 10–50 (deploy)
World state LevelDB; MVCC enabled
Event MitigationCommitted on valid commit

and MaxMessageCount, cuts a block, and broadcasts974

it to peers. Peers verify endorsement signatures, MSP 975

identities, and MVCC read-set consistency before com- 976

mitting valid transactions to the ledger and discard- 977

ing invalid ones. Upon commit, an application event 978

(MitigationCommitted) is emitted, which the RL 979

agent uses to confirm that a mitigation has been enforced 980

and audit-logged. This path explains why enforcement 981

actions such as firmware rollback (42 ms) and device 982

quarantine (37 ms) remain within practical non-time- 983

critical thresholds while still achieving tamper-proof 984

auditability. The ordering and validation parameters that 985

shaped these latency measurements are summarized in 986

Table IV. 987

4) Computational Load and Hardware Feasibility: 988

Informer-PPO was executed on a testbed with a 12-core 989

Intel CPU and 32 GB of memory. While the Informer 990

architecture improves long-range dependency handling, 991

it requires slightly more computational power than 992

Transformer-PPO, and notably more than CNN or 993

LSTM equivalents. Inference load profiling shows 994

that any policy choice, i.e., attention scoring and 995

output action selection, completes under 12 ms on a 996

single-threaded CPU core with PyTorch optimizations. 997

GPU acceleration is recommended for high-frequency 998

deployments, especially in multi-substation situations 999

where agents handle diverse traffic in parallel. Future 1000

iterations may benefit from integrating quantized infer- 1001

ence or model distillation to reduce model complexity 1002
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TABLE V: Average detection and mitigation response latency
for different models.

Model Avg. Response Time (ms)

Baseline IDS 110

CNN-PPO 95
LSTM-PPO 72
Transformer-PPO 52
Informer-PPO 35

37 ms

50 ms

42 ms

0

10

20

30

40

50

60

T
ra

n
sa

ct
io

n
 D

el
a

y
 (

m
s)

Firmware Rollback Access Revocation Device Quarantine

Fig. 5: Blockchain Enforcement Delay by Action Type. Aver-
age transaction time for firmware rollback, access revocation,
and device quarantine executed via Hyperledger Fabric.

at the cost of policy fidelity. 1003

5) Resource and Bandwidth Requirements: In addition to1004

computational considerations, network bandwidth re-1005

quirements for the proposed system remain practical for1006

real-world deployments. Typical IEC 61850 telemetry1007

traffic, including GOOSE, SV, and MMS messages,1008

generates less than 1–2 KB/sec per device under normal1009

substation operating conditions. AIoT-driven edge-level1010

preprocessing ensures only anomalous or suspicious1011

behavior is forwarded to the upper-level decision planes.1012

It keeps total network traffic low even as it scales up1013

to thousands of devices. Furthermore, the blockchain1014

enforcement transactions emulated in the framework,1015

being light in weight (approximately 220–300 bytes per1016

transaction), impose minimal extra bandwidth demands.1017

These aspects combined make the feasibility of real-1018

time anomaly countermeasures and policy enforcement1019

possible without overloading the computation and com-1020

munication infrastructure.1021

E. Blockchain Enforcement and Scalability1022

The effectiveness of blockchain integration in substation1023

environments depends not only on enforcement capability but1024

also on scalability under changing rates of transactions. This1025

subsection discusses the system’s performance at higher policy1026

submission rates, with attention to throughput, latency, and1027

consensus stability.1028

Under stress testing, the Hyperledger Fabric network wit-1029

nessed a steady 20–25 transactions per second (TPS) with1030

TABLE VI: Blockchain performance metrics under policy
load.

Metric Observed Value

Average Throughput (TPS) 20–25
Average Enforcement Latency 1.7–3.2 seconds
Transaction Payload Size 220–300 bytes
Consensus Mode SOLO (benchmark setting)
Degradation Observed None up to 25 TPS

policy enforcement latency ranging between 1.7 and 3.2 sec-1031

onds based on the transaction density. The transaction payload 1032

was between 220 and 300 bytes, having no impact on the 1033

stability of execution. Transaction payloads varied between 1034

220 and 300 bytes with no perceivable impact on execution 1035

stability. Such values guarantee the blockchain component’s 1036

sufficiency for enforcing non-time-critical security responses, 1037

such as configuration rollback, access revocation, and device 1038

quarantine. 1039

Table VI summarizes the blockchain’s behavior observed. 1040

No performance impact was observed at a rate of up to 25 TPS, 1041

reflecting sufficient headroom for deployment in substations 1042

with low policy change rates. 1043

The SOLO consensus protocol was used for benchmarking 1044

in stress testing due to its low resource requirements and ease 1045

of use. However, as SOLO does not deliver distributed crash or 1046

Byzantine fault tolerance, it is unsuitable for production-grade 1047

deployments. Therefore, future implementations will incorpo- 1048

rate formally stronger consensus protocols such as crash fault 1049

tolerance using leader election (RAFT) or practical Byzantine 1050

fault tolerance (PBFT) in order to enhance resilience, security, 1051

and scalability across multi-site substation infrastructures. 1052

To enable large-scale smart grid infrastructures, additional 1053

architectural improvements are suggested, such as: 1054

• Transaction batching to reduce per-operation overhead. 1055

• Chaincode optimization to accelerate endorsement and 1056

commit processes. 1057

• Sharded blockchain instances to enable simultaneous 1058

policy verifications across autonomous substations. 1059

These enhancements, although not achieved in the current 1060

work, would enable broader deployment of the proposed 1061

framework across multi-site substations that are linked by 1062

wide-area networks (WANs). The modular Informer-PPO ar- 1063

chitecture combined with federated blockchain enforcement 1064

provides a promising avenue toward scalable and tamper- 1065

evident anomaly mitigation across geographically distributed 1066

cyber-physical infrastructures. 1067

Beyond handling blockchain transactions, the broader scala- 1068

bility of the proposed security framework for substations with 1069

thousands of devices is achieved through architectural modu- 1070

larity and hierarchical distribution. Specifically, Informer-PPO 1071

agents can be instantiated at multiple levels, where local- 1072

level agents process anomaly detection and make preliminary 1073

mitigation decisions for subsets of IEDs and IoT sensors. Only 1074

high-severity or indeterminate cases are forwarded to higher- 1075

level decision layers to reduce system-wide computational and 1076

communication overhead. Moreover, edge-level AIoT prepro- 1077
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TABLE VII: Quantitative Comparison of Detection Accuracy and Mitigation Capability in Related Works

Reference Detection Accuracy Mitigation Support Avg. Response Latency

Duman et al. (2019) [11] No real detection model ✗ Not Reported
Duman et al. (2024) [12] No detection model (hardening only) ✗ Not Reported
Ustun et al. (2021) [13] 95.1% (SVM, GOOSE) ✗ Not Reported
Mohamed et al. (2023) [22] N/A (Attacker Simulation) ✗ N/A
Nhung-Nguyen et al. (2024) [14] 98% (GOOSE/DNN) ✗ Not Reported
Park et al. (2024)[18] ML ADS (SV+GOOSE), attack/fault classification ✓ Not Reported
Zaboli & Hong (2025) [30] >98% (GenAI ADS, synthetic GOOSE datasets) ✗ Not Reported
Proposed Work 98.4% (Kitsune), 97.6% (ERENO) ✓ 35 ms

cessing enables real-time anomaly filtering, thereby allowing 1078

core RL decision engines to remain scalable even under1079

high device densities. Based on observed inference latencies1080

and typical data generation rates, preliminary extrapolation1081

suggests that the framework can realistically support over1082

5,000–10,000 device deployments with real-time mitigation1083

capacity, given moderate event rates and decentralized control1084

optimization. Future work will validate these estimates in1085

large-scale experimental testbeds.1086

F. Temporal Modeling Comparison1087

Modeling temporal dependencies is also critical in cyber-1088

physical threat scenarios where attacks manifest as causally1089

related sequences of events rather than isolated anomalies.1090

To meet this challenge, the Informer-PPO model presented1091

here leverages a self-attention mechanism that prefers temporal1092

relevance over positional locality.1093

Classical convolutional encoder-based PPO implementa-1094

tions (CNN-PPO) are limited by the lack of ability to recog-1095

nize cross-timestep dependencies beyond pre-defined receptive1096

fields. Recurrent variants like LSTM-PPO, while sequence-1097

aware, are usually plagued by gradient instability and memory1098

issues in long or irregular event sequences. Transformer-based1099

PPO models fix some of these limitations by applying global1100

attention across sequences, yet they suffer from high com-1101

putational complexity (O(L2)) and attention diffusion when1102

handling extremely long or noisy sequences.1103

Conversely, the Informer encoder employs ProbSparse at-1104

tention to enable the agent to selectively hear critical temporal1105

anchors throughout the observation period—regardless of se-1106

quence length. This boosts the agent’s ability to coordinate its1107

mitigation maneuvers with delayed system impacts and cross-1108

episode interactions, which are frequently found in coordinated1109

or stealthy cyberattacks.1110

This architecture enhances the temporal generalization ca-1111

pability of the policy network, allowing it to capture compact1112

yet context-aware representations of dynamic system states.1113

The learned policies provide increased predictive stability and1114

more temporally coherent decision-making, making Informer-1115

PPO extremely well-suited for anomaly-based control systems1116

of smart substations.1117

G. Comparative Analysis with Related Works1118

Table VII summarizes recent works on IEC 61850 substa-1119

tion security, anomaly detection, and adaptive defense.1120

Earlier studies by Duman et al. [11], [12] focused on1121

attack graph analysis and security hardening, but without 1122

deployable anomaly detection or mitigation. Ustun et al. [13] 1123

applied SVM for GOOSE traffic analysis, achieving moderate 1124

accuracy but lacking mitigation support and latency evaluation. 1125

Mohamed et al. [22] concentrated on attacker simulations 1126

rather than real intrusion detection. 1127

More recent efforts improved detection but remain limited 1128

in enforcement. Nhung-Nguyen et al. [14] demonstrated deep 1129

neural network-based detection on GOOSE traffic, but with- 1130

out mitigation or latency results. Park et al. [18] combined 1131

anomaly detection with attack–fault classification across SV 1132

and GOOSE traffic and proposed partial restoration, though 1133

latency metrics were not reported. Zaboli & Hong [30] intro- 1134

duced a Generative AI-based anomaly detection system that 1135

achieved high accuracy on synthetic GOOSE datasets, but 1136

without blockchain integration or measured response times. 1137

In contrast, the proposed Informer–PPO framework achieves 1138

high accuracy on both public Kitsune and ERENO datasets, 1139

integrates real-time adaptive mitigation, and uniquely provides 1140

blockchain-based smart contract validation. The framework 1141

maintains an average response latency of 35 ms, positioning 1142

our work as the only end-to-end defense framework addressing 1143

both technical performance and practical deployability for 1144

IEC 61850 substations. 1145

H. Security and Privacy Analysis 1146

The security of the provided framework relies on two 1147

collaborating layers: (1) the robustness of the learned RL 1148

policies to detect and respond to dynamic attacks and (2) 1149

the guarantee of integrity provided by the blockchain-based 1150

enforcement mechanism. The security and privacy of the 1151

proposed framework are examined across four dimensions: 1152

integrity of mitigation execution, resilience to adversarial 1153

evasion, robustness against zero-day and synthetic adversarial 1154

attacks, and protection of sensitive data during inference and 1155

enforcement. 1156

1) Integrity and Tamper Resistance: All mitigation actions 1157

are represented as digitally signed transactions and 1158

executed through smart contracts on a permissioned 1159

blockchain network. This architecture ensures that when 1160

a policy action is initiated, it cannot be modified or 1161

replayed without validation agreement. Distributed en- 1162

dorsement and immutable block commitment prevent 1163

rollback attacks and unauthorized overrides of security 1164
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TABLE VIII: Security Properties and Their Implementation in the Proposed Framework

Security Property How It’s Achieved

Integrity Blockchain immutability via peer endorsement
Non-repudiation Signed action logs via smart contracts
Resilience to evasion RL-based dynamic decision policies
Zero-day robustness Synthetic adversarial testing and cross-domain generalization (Informer-PPO)
Tamper resistance Verified mitigation through chain consensus
Privacy protection Anonymized payloads, permissioned chain access

responses, satisfying the minimum requirements for non- 1165

repudiation and auditability.1166

2) Policy Spoofing and Evasion Resilience: As policy ac-1167

tions are learned along state–action trajectories over1168

time and not from static rule-matching, the RL agent is1169

inherently more robust to evasion attacks by attackers.1170

In contrast to conventional threshold-based systems that1171

may be probed by attackers, Informer-PPO’s stochastic1172

exploration and long-term reward modeling complicate1173

reverse-engineering of the decision boundary. Further,1174

the blockchain backend guarantees that even if an agent1175

is tricked into taking a wrong step, that step gets1176

recorded, traced, and audited for forensic examination.1177

3) Privacy Concerns: The system is based upon abstracted1178

attributes that are derived from protocol events, such1179

as GOOSE/SV metadata and action logs and does1180

not require access to user-level or personal identifiers.1181

Transaction payloads sent to the blockchain are small1182

and anonymized at the device layer such that privacy-1183

sensitive information is never revealed or stored in an1184

unsecured state.1185

4) Robustness to Zero-Day and Synthetic Adversarial At-1186

tacks: The proposed framework demonstrates strong1187

resilience against zero-day threats and synthetic adver-1188

sarial attacks. Through targeted adversarial testing using1189

novel attack scenarios such as spoofed MMS control1190

messages, unauthorized IED registration, and firmware1191

injection, the system consistently achieved high detec-1192

tion and mitigation effectiveness, even without prior1193

exposure to these threat patterns. Moreover, the adap-1194

tive learning mechanisms of the Informer-PPO agent1195

enabled successful generalization across heterogeneous1196

environments, significantly reducing FPR and maintain-1197

ing reliable anomaly detection performance in unfa-1198

miliar operational domains. These capabilities confirm1199

the framework’s ability to defend against emerging and1200

previously unseen cyber threats in critical infrastructure1201

environments.1202

A summary of the key security properties assured by the1203

proposed framework and their corresponding implementation1204

mechanisms is provided in Table VIII. All logged events1205

are securely accessible only to permissioned nodes within1206

the consortium network, ensuring that sensitive information1207

remains protected from unauthorized access.1208

I. Experimental Deployment Considerations1209

Despite validating the proposed framework through simula- 1210

tion experiments with laboratory-controlled testing, the actual 1211

implementation of the AIoT-Blockchain security system in 1212

IEC 61850 substations will require specific hardware and 1213

networking environments. Industrial-strength edge-computing 1214

nodes colocated alongside substations are proposed to imple- 1215

ment the Informer-PPO model inference engine as well as a 1216

blockchain client. Typical hardware specifications would be at 1217

least 16 CPU cores and 64 GB RAM, with the possibility of 1218

GPU acceleration for real-time anomaly detection and action 1219

generation. At least 1 Gbps LAN Ethernet throughput with 1220

internal latency below 5 ms is necessary to support seam- 1221

less telemetry ingestion and security enforcement. Blockchain 1222

transactions for non-time-critical security operations, such 1223

as firmware verification and device quarantine, are asyn- 1224

chronously propagated to avoid interference with time-critical 1225

protection processes. In large-scale smart grid deployments, 1226

secure WAN links and backup blockchain nodes are advised to 1227

ensure resilience, high availability, and fault tolerance between 1228

substations. 1229

J. Real-World Deployment Considerations 1230

To enable non-disruptive deployment in live IEC 61850 1231

substations, the evolved framework can first be deployed in 1232

passive monitoring mode. Using this mode, AIoT sensors 1233

and an Informer-PPO-based anomaly detection system would 1234

run concurrently with existing operational SCADA systems 1235

without interfering with the operational controls. Identified 1236

anomalies would be logged for offline analysis to determine 1237

the model’s reliability. Upon validation, the framework can 1238

proceed to an advisory state in which the mitigation steps 1239

are reviewed first by human operators prior to enforcement. 1240

Finally, upon demonstrated consistency in performance and 1241

operational trust, autonomous blockchain-enforced mitigation 1242

can be deployed progressively for non-time-critical security 1243

operations. This phased integration strategy ensures opera- 1244

tional safety, prevents deployment risks, and facilitates the 1245

implementation of the system in substation environments 1246

without major architectural modifications. 1247

VI. CONCLUSION 1248

This paper presented an AIoT–Blockchain security frame- 1249

work that integrates Informer-augmented PPO for adaptive 1250

cyber defense and blockchain-based authentication within 1251

IEC 61850 substations. The proposed framework achieved 1252

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3632117

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sejong Univ. Downloaded on December 22,2025 at 05:21:05 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

a detection accuracy of 98.4% and an average response 1253

latency of 35 ms, representing accuracy gains of 3.4-9.2%1254

and response time reductions of 33-63% compared with1255

Transformer-PPO, LSTM-PPO, and CNN-PPO baselines.1256

Blockchain-based enforcement added only 42-50 ms for non-1257

time-critical actions such as firmware rollback and device1258

quarantine, ensuring tamper-proof policy execution without1259

compromising operational feasibility. These findings demon-1260

strate that real-time, auditable, and scalable cybersecurity is at-1261

tainable within substation constraints. Nonetheless, blockchain1262

latency constrains its application in primary protection, scala-1263

bility under high-frequency updates remains a challenge, and1264

resilience against adaptive adversarial attacks warrants further1265

investigation. The modular design of the framework allows its1266

extension to broader IIoT ecosystems, including microgrids,1267

distributed energy resources, and smart cities.1268
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