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Abstract—IEC 61850 substations enable fast-speed digital
communication among intelligent electronic devices (IEDs) for
power system automatic control, monitoring, and protection.
Their remote configurability and interoperability, however, make
them vulnerable to highly advanced cyberattacks, mainly supply
chain attacks. While existing methods, such as intrusion detec-
tion systems (IDS) and machine learning (ML)-based anomaly
detection, provide partial protection, they often lack resilience
against evolving attacks and real-time mitigation capabilities.
We present an artificial intelligence of things (AIoT) blockchain
security framework that uses Informer-augmented proximal
policy optimization (PPO) for adaptive cyber defense, along with
Hyperledger Fabric, for tamper-proof and automated security
enforcement. The novelty of the proposed framework over state-
of-the-art research lies in its combination of anomaly detection,
dynamic threat mitigation, and auditable policy execution. Our
security tests demonstrate robustness against zero-day and syn-
thetic adversarial attacks, while preserving privacy and integrity.
Experimental findings demonstrate that Informer-PPO attains
98.4% detection accuracy and 35 ms response time, represent-
ing improvements of 3.6%, 5.0%, and 9.1% in accuracy and
32.7%, 51.4%, and 63.2% faster response time compared to
Transformer-PPO, long short-term memory (LSTM)-PPO, and
convolutional neural network (CNN)-PPO baselines, respectively.
Blockchain-enabled policy enforcement is accomplished within
42-50 ms, facilitating scalable real-time protection for IEC 61850
substations.

Index Terms—IEC 61850, Supply Chain Security, Proximal
Policy Optimization, Informer, Blockchain, Cybersecurity, Smart
Grid.

I. INTRODUCTION

HE digital communication-based automated and remote

control processes changed the automation of substations,
productivity, and real-time monitoring. The IEC 61850 pio-
neered such a global extent of open communication between
substation devices. Interoperability and high-speed data ex-
change through IEC 61850 enable real-time tracking of a
substation’s IEDs [1]. Smooth communication is provided with
the key protocols such as generic object-oriented substation
event (GOOSE) messages, which enable event-driven data
exchange with high rates; sampled value (SV) messages,
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which allow precise synchronization of measurement data; and
manufacturing message specification (MMS) messages, which
enable remote monitoring and control in supervisory control
and data acquisition (SCADA) systems.

However, the digitalization and interoperability provided
by IEC 61850 also introduce crucial security vulnerabilities.
These involve message injection, spoofing, tampering, and
unauthorized firmware updates that attackers can use to create
significant disruptions [2]. The 2015 Ukraine power grid
cyberattack is a well-known instance of how hacked substation
communication systems can lead to large-scale blackouts and
infrastructure collapses [3], [4]. In particular, supply chain vul-
nerabilities, i.e., malicious firmware updates and unauthorized
IED configurations, have emerged as a key threat vector. Al-
though traditional IDS and ML approaches offer pattern-based
anomaly detection, they are often ineffective against zero-day
attacks and novel threat vectors [5]. Reinforcement learning
(RL), a subfield of ML, is particularly beneficial for adaptive
cyber-physical systems, as it can learn optimal mitigation
actions through interactions with the environment and without
requiring any labeled data [23]. These characteristics position
RL as a highly promising solution for real-time substation
cybersecurity. However, RL approaches are confronted by
computational inefficiencies as well as stability problems when
applied in high-dimensional, time-critical applications such as
IEC 61850 substations [7].

To overcome these limitations, researchers have investigated
augmenting technologies like blockchain, which provides data
integrity, secure device identity, and tamper-proof logs via
decentralized consensus protocols [8]. While blockchain is
inherently reactive to integrity enforcement, it is not inherently
sensitive to rapidly evolving cyber threats and lacks real-time
flexibility. Likewise, while RL is adaptive, it lacks the ability to
capture temporal dependencies over long horizons in evolving
attack patterns.

To this end, we propose a holistic security framework
that integrates synergistically long-range anomaly detection
through Informer-based time series modeling, adaptive threat
mitigation through PPO-based reinforcement learning, and
tamper-proof enforcement through blockchain smart contracts.
The combined system fills the essential gap in existing substa-
tion cybersecurity solutions by providing real-time detection,
learning-based response, and verifiable policy enforcement.

Besides, while this study primarily targets IEC 61850
substations, the AloT-Blockchain framework developed herein
readily applies to larger smart grid networks and other IoT-
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supported systems. Its modular characteristics of anomaly
detection, reinforcement learning-based decision-making, and
blockchain-based enforcement can be used to protect dis-
tributed energy resources, microgrids, electric vehicle charging
systems, and smart city energy management systems, where
dynamic cyber-physical threat landscapes and decentralized
device authentication are similarly critical.

Based on the aforementioned motivations and design con-
siderations, the key contributions of this paper are summarized
as follows:

o Informer-Powered PPO for Cyber Threat Mitigation:
We propose an Informer-powered PPO reinforcement
learning approach that can learn long-range temporal
dependencies to identify and prevent sophisticated cyber-
attacks on IEC 61850 substations.

o Blockchain-Enhanced Supply Chain Security: We
leverage blockchain technology for device authentication,
firmware integrity, and tamper-proof security logging.

« Smart Contract-based Autonomous Threat Response:
We utilize smart contracts for autonomous, policy-based
enforcement of mitigation actions with little human in-
volvement.

o Performance Validation and Comparative Evalu-
ation: We evaluate the framework on Kitsune and
ERENO datasets and benchmark it against CNN-PPO,
LSTM-PPO, and Transformer-PPO baselines. The system
achieves 98.4% and 97.6% detection accuracy with an
average response latency of 35 ms, outperforming the
baselines and recent state-of-the-art approaches, as de-
tailed in Tables IIT and V.

The rest of this paper is organized as follows. Section
IT presents a summary of existing literature on IEC 61850
cybersecurity, focusing on existing ML-based, RL-based, and
blockchain-based solutions and their shortcomings. Section III
presents the envisioned AloT-Blockchain security architecture,
with a specific focus on informer-based anomaly detection,
PPO-based adaptive threat mitigation, and blockchain-based
enforcement through smart contracts. Section IV describes the
experimental configuration for the implementation setup, the
deployed datasets, the experimental evaluation, and the perfor-
mance metrics. Section V presents the experimental results,
scalability evaluations, security analyses, and considerations
for real-world deployment. Section VI concludes the paper
by highlighting main findings and directions for the future,
including adversarial robustness and scalable deployment.

II. LITERATURE REVIEW

Cybersecurity research for IEC 61850 substations has
evolved in a number of domains, including IDS, ML, RL, and
blockchain-based authentication. While significant progress
has been achieved, most existing solutions tackle individual
components of the security stack and do not offer an end-to-
end solution that ensures long-term anomaly detection, adap-
tive mitigation, and tamper-proof enforcement. This section
reviews the relevant contributions and identifies their strengths
and limitations in the context of IEC 61850 substations.

Duman et al. [11], [12] studied supply chain securitys
in IEC 61850 substations using attack graphs and securitiyz

posture metrics. In their 2019 work [11], the authors simulated
attack scenarios to count risks, while their 2024 follow-up
[12] proposed cost-effective control actions. Although these
research studies are useful for attack surface understanding and
defense prioritization, they do not impose adaptive detection
or mitigation methods in real-time.

Ustun et al. [13] proposed an ML-based IDS that identifies
anomalies in GOOSE messages. Their supervised system
performs adequately to identify attacks that are known with la-
beled data. However, the heavy dependence on labeled datasets
makes such systems ineffective against zero-day attacks or
emerging intrusions. In a similar direction, Nhung-Nguyen
et al. [14] designed a deep neural network-based IDS for
GOOSE traffic, demonstrating high detection accuracy under
controlled conditions. Yet, like other supervised systems, it
lacked mitigation mechanisms and provided no latency eval-
uation, leaving questions about its applicability in real-time
substation operations. Lian et al. [15] further emphasized these
shortcomings of conventional IDS architectures, concluding
that most will fail to generalize in rapidly evolving substation
environments.

Blockchain-based authentication frameworks have also been
investigated. Ghosh et al. [16] put forward a blockchain-
based decentralized authentication framework for smart grids,
highlighting tamper-proof device identity. Gayo et al. [17]
expanded on that by integrating blockchain with IEC 61850
communication for secure microgrid hardware. While the two
systems ensure data integrity and auditability, they do not
employ adaptive learning to react dynamically to threats. In
parallel, Park et al. [18] developed a machine learning-based
anomaly detection system for SV and GOOSE traffic that
further attempted to classify whether anomalies stemmed from
malicious activity or benign faults. This partial restoration
capability represents a step toward adaptivity, but their study
still lacked blockchain integration and did not report latency,
limiting its applicability in real-time critical infrastructure. Be-
yond cybersecurity, blockchain technology and AloT have also
shown promise in other areas of supply chain management.
Lakhan et al. [19], for example, proposed a blockchain-enabled
AloT framework for improving sustainable supply chain sys-
tems through improved inventory transparency, logistics opti-
mization, reducing operating expenses, and reducing carbon
footprints. All these developments reflect the widespread ap-
plicability of AloT and blockchain beyond security. However,
specific to AloT-enabled critical infrastructure, particularly
real-time control systems such as IEC 61850 substations, cy-
bersecurity challenges remain comparatively under-explored.
This paper directly addresses this gap by proposing an inte-
grated AloT-Blockchain architecture for substation resiliency.

In the area of RL, Mohamed et al. [22] utilized RL to sim-
ulate adversarial strategies on frequency and voltage controls.
Although this work focuses on increasing the complexity of
attacks, no countermeasures are designed in this work. Said et
al. [24] used Q-learning in an attempt to design an IDS with
the ability to learn new threats. However, Q-learning and its
variants are not efficient with scalability and convergence in
the context of large state spaces, as noted by Shateri et al.
{26] (DDQN) and Cai et al. [27] (DQN) in their respective
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TABLE I: Comparison of Our Informer-PPO Approach with IEC 61850 Security Studies and Related Methods

Strengths (+) / Weaknesses (-)

Approach Attack Modeling ML RL Blockchain Adaptive Key Results
Duman et al. (2019) [11] Attack Graphs X X X
Duman et al. (2024) [12] Risk Metrics X X X
Mohamed et al. (2023) [22] Grid RL X v X
Ghosh et al. (2024) [16] Device Auth X X v
Ustun et al. (2021) [13] IDS ML X X
Said et al. (2024) [24] RL-based IDS X v X
Jin et al. (2022) [29] PPO Security X v X
Nhung-Nguyen et al. (2024) [14] IDS for GOOSE v X X
Park et al. (2024) [18] Attack/Fault Cls. v X X
Zaboli & Hong (2025) [30] GenAl ADS X X
Our Approach (Informer-PPO) RL+Blockchain v v v

X k-Supply metric for substa-
tion supply chain

X HFS improves posture un-
der budget limits

X RL-based attacker strategies

X Blockchain-based
authentication

X 95.1% detection on GOOSE

device

+ Early quantitative metric
— No IDS or mitigation

+ Practical hardening guidance
— No anomaly detection

+ Captures adversarial complexity
— No countermeasures

+ Tamper-proof authentication
— No IDS adaptivity

+ Good supervised accuracy

— No zero-day coverage

+ Learns new threats

— Limited scalability

+ RL stability

— Not IEC 61850-specific

+ High accuracy

— No mitigation, latency unreported
+ Partial restoration logic

— No blockchain, latency unre-
ported

+ Zero-day detection

— Detection-only, no RL or en-
forcement

+ Unified IDS + RL + Blockchain
+ Real-time mitigation with on-
chain verification

— Prototype consensus; production
deployments should adopt RAFT

X Q-learning IDS for DDoS

X PPO scheduling in cloud
computing
X ~298% detection accuracy

v Attack—fault classification
for SV/GOOSE

X >98% detection using syn-
thetic GOOSE

v 98.4%  Kitsune, 97.6%
ERENO, 35 ms latency

studies. These methods are efficient in small cases but face
computational inefficiencies in large substation domains.

Jin et al. [29] explored the application of PPO to cloud
computing security environments. PPO offers improved train-
ing stability because of its clipped objective function and is
thus more suited than traditional RL methods. However, PPO
alone cannot effectively learn long-range dependencies that
are inherent in complex cyberattack patterns, and its utility
in dynamic infrastructure like substations is therefore limited.
More recently, Zaboli & Hong [30] proposed a Generative
Al-based anomaly detection system for IEC 61850 substa-
tions. Their approach introduced synthetic, protocol-compliant
GOOSE datasets to enhance training balance and realism, and
achieved strong anomaly detection accuracy. Yet, the system
remained detection-only, with no integration of RL-driven
adaptivity or blockchain-secured enforcement, which limits its
practical deployment in real-time substation defense.

To surpass these limitations, Informer-based time-series
models have been shown to be effective tools. Informer,
founded on ProbSparse self-attention, is efficient in capturing
long-range temporal dependencies at reduced computational
costs. Sun et al. [31] demonstrated the application of Informer
in energy management, achieving effective memory usage and
improved detection performance. Shi et al. [32] developed
InforTest, an anomaly detection framework based on Informer
for robotic systems. These studies confirm Informer’s ability to
detect long patterns in complex data. However, none of them
combine Informer with RL or use it in a real-time substation
application.

Even though this study focuses primarily on substation ens:
vironments, the applicability of suggested long-term anomabys

detection integration with adaptive RL and blockchain-secured
enforcement also extends to more generic IoT-fueled cyber-
physical systems. Certain applications, such as smart city
infrastructure, distributed energy resources, and industrial in-
ternet of things (IloT) applications, might utilize the modular
nature of the framework in enhancing resilience in security in
a similar fashion.

Table I provides a comparative summary of both IEC 61850-
focused security studies and related works in reinforcement
learning, machine learning, and blockchain that inform sub-
station defense design. Some recent efforts have advanced
supervised anomaly detection for GOOSE traffic, others have
introduced fault-aware classification and partial restoration
capabilities, and still others have applied generative models for
synthetic data-driven anomaly detection. Yet these approaches
remain limited to isolated components of the security stack.
None of them unify long-term anomaly detection, adaptive
reinforcement learning, and decentralized blockchain enforce-
ment within a single framework. Our Informer—PPO system
is the first to integrate these dimensions, delivering real-time
detection, auditable on-chain policy execution, and scalable
mitigation tailored for IEC 61850 substations.

III. PROPOSED FRAMEWORK

Increasing complexity in supply chain attacks on IEC 61850
substations demands an adaptive and robust security frame-
work that can dynamically detect, mitigate, and prevent evolv-
ing threats. The AloT-Blockchain security framework herein
integrates Informer-based deep learning models for anomaly
getection, RL for adaptive threat mitigation, and blockchain
for data integrity assurance and device authentication. Unlike
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Fig. 1: System overview of the Informer—PPO framework with blockchain-verified enforcement.

traditional IDSs relying on pre-defined rules or static machine
learning-based systems, the suggested framework leverages
PPO-based RL to learn optimal attack mitigation policies
in real-time continuously. The proposed framework consists
of four key components. AloT-based anomaly detection with
Informer models for processing IEC 61850 traffic and supply
chain-focused anomaly detection before propagation. Supply
chain integrity through blockchain guarantees that every device
deployed and firmware patches are verified and untampered.
RL-based adaptive attack mitigation selects optimal counter-
measures against recognized threats in real-time. Automated
security response via smart contracts provides real-time se-
curity policy enforcement with zero human intervention. Fig.
1 illustrates the envisioned system design by integrating an
anomaly detection module, IoT-enabled sensors, RL-based
decision-making, blockchain authentication, and an automated
security response mechanism. These hardware components
combined form a robust cybersecurity system for IEC 61850
substations and effectively deter or counter possible cyberat-
tacks. The following are descriptions of each module and its

purpose.

A. AloT-Enabled Data Acquisition and Anomaly Detection

IEC 61850 process, bay, and station levels (Fig. 1) generate
high-frequency, time-critical telemetry. Our sensors and taps
collect (i) electrical measurements from current transformees.
(CTs), voltage transformers (VTs), and circuit breakers (CBsg

through merging units (MUs) that transmit sampled value
(SV) streams, (ii) protection/control events from intelligent
electronic devices (IEDs), and (iii) network traffic such as
GOOSE, SV, and MMS. Although routable GOOSE (R-
GOOSE) and routable SV (R-SV) support wide-area operation,
this work focuses on classical substation links and leaves wide-
area threat detection for future investigation.

Given a multivariate sequence X;_,.;, we compute an
anomaly score

Ay :g(thvuuth)v (D

and raise an alert when A, > 6. Here, g(-) is learned from
historical telemetry to model normal behavior, and 6 is a
calibrated threshold. The score A; is fed into the RL state
along with device-integrity indicators, enabling mitigation
policies that are sensitive to both traffic dynamics and supply
chain status.

B. Blockchain for Device Integrity and Supply Chain Authen-
ticity

To resist device impersonation and unauthorized firmware
changes, we adopt a permissioned blockchain for provenance
and audit. Each asset (IED, CT, VT, MU, CB) carries an
immutable identity record and firmware hash on-chain; up-
dates must match signed, approved artifacts. Time-critical
protections such as GOOSE blocking remain off-chain to
respect sub-4 ms deadlines, whereas non-time-critical actions,
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such as quarantine, rollback, and credential revocation, are
enforced via smart contracts to ensure non-repudiation and
verifiable policy compliance. Implementation details of con-
sensus, leader election, validation, and block addition are given
in Section IV and empirically linked to enforcement latency
in Section V-D. For experimental verification, we used the
SOLO consensus algorithm for its deterministic ordering and
low overhead; for deployment, a RAFT ordering service is
recommended, as it provides crash-fault tolerance through
leader election, heartbeat synchronization, and log replication,
thereby ensuring robust block ordering prior to peer validation
and commit (see Section IV).
Each device D; is anchored by a cryptographic digest:

H(D;) = Hash(Device ID, Manufacturer, Firmware Version),

2
and every firmware update F; is validated against this record
before commit. The blockchain enforces:

1) Device provenance: immutable registration of IEDs,
CTs, VTs, MUs, and CBs;

2) Firmware integrity: rollback or rejection of updates not
matching ledger hashes;

3) Tamper-proof event logging: auditable records of con-
figuration and access changes.

Smart contracts operationalize these checks by isolating com-
promised devices, revoking unauthorized access, or logging
security violations. Where latency permits, GOOSE and MMS
commands are cross-verified against blockchain records, while
critical protection flows remain off-chain to meet sub-4 ms
deadlines. The end-to-end enforcement path, including en-
dorsement policies, membership service provider (MSP) iden-
tity checks, access control list (ACL) enforcement, multi-
version concurrency control (MVCC) validation, and final
block commit, is described in Section IV, with performance
results in Section V-D.

C. RL-Based Adaptive Threat Mitigation (PPO with Informer)

To effectively address cyberattacks in IEC 61850 substations
in practice, our solution in this paper combines the decision-
making capability of PPO with the long-sequence modeling
capability of Informer. The complex structure and integration
of this Informer-PPO framework are elaborated in the follow-
ing three parts.

1) Reinforcement Learning Setup for Cyber Mitigation:
The increasing sophistication and evolving nature of cyber-
attacks on IEC 61850 substations necessitate a mitigation
process capable of continuous learning and adaptation. In the
direction of such a framework, the proposed methodology
integrates PPO-based RL and an added improvement from
Informer in both the Actor and Critic networks. This approach
enables the system to continuously update decision-making
policies to counter cyberattacks with the help of long-range
temporal dependencies in time-series data.

RL learns within the framework of a Markov decision
process (MDP), where an agent is paired with an environment
to learn an optimal policy that maximizes cumulative rewards.
The state space .S in this case is the current security posture

of the substation, consisting of real-time IEC 61850 network
data, anomaly scores, device integrity status, and historical
attack trend. The action space A is possible mitigation actions,
i.e., quarantining an infected device, rolling back firmware to
a verified state, or blocking suspicious network traffic. The
system transitions to states based on policy 7(a|s), which takes
security states to the best responses to threats.

At each timestep ¢, the RL agent receives a state s;, selects
an action ay, and transitions to the next state s, 1, where the
reward r; captures the effectiveness of the employed security
action. We developed a reward function that promotes optimal
threat response by rewarding effective mitigation while penal-
izing missed attacks (false negatives) more heavily than false
alarms (false positives). This ensures a security-first approach
while minimizing unnecessary operational disruptions. It is
defined as:

Tt = 0q Rmitigation - a2]lFN - 51 Roperational disruption

3)
- ﬁQﬂFP - ’7]1inaction

where:

e Ipny is an indicator function that equals 1 if a false
negative (missed attack) occurs, and O otherwise.

o Ipp is 1 if a false positive security action is triggered,
and O otherwise.

o Tinaciion 1s 1 if no action is taken when an attack occurs,
and 0 otherwise.

o Ruitgaion measures the effectiveness of security actions
O<R<LD.

o Roperational disruption Measures the negative impact of a se-
curity action on system operations.

e Qay, s, 1, [, are tunable weights.

This arrangement rewards proper attack detection and re-
sponse, punishes missed attacks more than false alarms, and
discourages pointless security measures that may cause inter-
ruptions in normal activities.

To optimize learning of the policy, PPO is employed, which
improves the earlier policy gradient techniques by offering
a clipped surrogate objective to stabilize training. The PPO
objective function is defined as:

J(0) = E| min 7ﬂ9(at|8t> ‘)
T Oota (at |St) @)
clip (<|>1 _ e,m) A,
T Oo1a (at ‘St)
where:

o 0 is the set of trainable parameters in the current policy
network (Actor),
o my and my,, are the current and past policy probabilities
of taking action a; in state s;, respectively,
o A, is the advantage estimate quantifying the relative value
of action a; in state s;,
e ¢ is the clipping parameter (typically between 0.1 and
a5 0.2) employed to clip the policy update ratio, preventing
s destabilizing updates.
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PPO, using this clipped equation, provides strong convergence
by constraining large deviations between successive policy
improvements.

2) Informer-Augmented Actor-Critic Networks: While PPO
provides stable and efficient policy optimization through its
clipped objective, the effectiveness of cyber-mitigation in
IEC 61850 substations depends critically on the representa-
tional ability of the neural network architecture. Advanced
attacks, such as staged firmware injections or distributed
GOOSE spoofing, evolve across long horizons; capturing
these requires models that can extract long-term temporal
dependencies rather than short-range correlations.

To this end, we employ the Informer architecture [33] as
the function approximator for both Actor and Critic networks.
Informer is a transformer variant designed for long-sequence
forecasting, using ProbSparse self-attention to prioritize the
most informative keys. This reduces complexity from O(L?)
to O(Llog L), enabling efficient modeling of thousands of
timesteps while preserving accuracy for rare or stealthy pat-
terns in substation traffic.

Formally, the Actor network parameterized by 6 maps an
observed state s; to a probability distribution over mitigation
actions:

mga(at|sy) = softmax (Informerga (s¢)) , ()

where Informerga (s;) is the encoded representation of s; and
64 are the Actor’s parameters. The Critic network parameter-
ized by 6¢ estimates the state-value function:

Ve (s¢) = Informerye (s¢), (6)

where ¢ denotes the Critic parameters.

This joint use of Informer ensures temporal consistency: the
Actor leverages long-range dependencies for adaptive action
selection, while the Critic evaluates rewards with extended
context, stabilizing PPO training. By comparison, CNN-based
IDSs capture only short local patterns, LSTMs suffer from
vanishing gradients and short-term bias, and standard Trans-
formers incur quadratic complexity that is prohibitive for
long telemetry streams. Informer’s sparsity-aware mechanism
overcomes these limitations, dynamically attending to delayed
or rare behaviors such as stealthy device compromises.

Therefore, the Informer-augmented PPO framework pro-
vides a principled solution to the scalability and responsiveness
challenges of IEC 61850 cybersecurity. It delivers real-time
decision-making under bursty and asynchronous traffic, offer-
ing resilience against multi-stage intrusions while remaining
computationally feasible for deployment.

3) Fusion Architecture and Operational Workflow: Build-
ing on the Actor—Critic formulation, the Informer encoder-
decoder backbone jointly supports policy learning and value
estimation, enabling long-range temporal dependencies in
GOOSE, SV, and IED telemetry to be captured for adaptive
mitigation.

During training, the PPO agent interacts with a simulated
adversarial environment in which cyberattacks are dynamically
generated from historical incidents. Across episodes, the agent
iteratively reduces the gap between predicted and observed

outcomes, converging to policies that yield stable and effective
countermeasures.

At runtime, mitigation actions are prioritized by operational
urgency. Time-critical responses, such as breaker tripping or
blocking compromised GOOSE traffic, are executed directly
through SCADA/IED interfaces to comply with IEC 61850’s
strict sub-4 ms deadlines. Non-time-critical actions, including
device quarantine, firmware rollback, or credential revocation,
are encapsulated in digitally signed blockchain transactions.
These are validated asynchronously and immutably recorded,
ensuring tamper-proof auditability without introducing latency
to urgent protective functions.

This dual-path execution mechanism balances the imme-
diacy of direct enforcement with the decentralized trust of
blockchain-backed actions. By decoupling urgent protections
from consensus delays, the framework ensures both opera-
tional safety and verifiable compliance.

D. Automated Security Enforcement via Smart Contracts

Preventing cyberattacks on IEC 61850 substations requires
adaptive responses that are both timely and tamper-proof.
Conventional centralized enforcement is prone to delays and
manipulation. In our framework, blockchain smart contracts
autonomously enforce security policies, ensuring that RL-
selected countermeasures are applied without human interven-
tion. Once the PPO agent determines the optimal action, it is
encapsulated in a digitally signed transaction and validated
on the ledger, rendering responses such as device quarantine,
firmware rollback, or credential revocation immutable and
auditable.

The sequence of enforcement proceeds as follows:

1) Threat detection and policy selection: The RL agent
chooses an optimal countermeasure based on AloT
telemetry and historical attack context.

2) Contract invocation: The chosen action is submitted to
a designated smart contract.

3) Validation and execution: The contract checks policy
rules and context, verifies authorization, and enforces the
action.

4) Tamper-proof logging: The decision and its outcome
are irreversibly recorded on the blockchain for auditabil-
ity.

1) Mathematical Model for Security Enforcement: A smart
contract SC' is a self-executing function that maps an action
request a; to an execution decision &, considering system
constraints:

gt:SC(CLt,P,C) (7)

where, a; is the security action determined by PPO at time .
P is the set of pre-defined policy rules (e.g., firmware rollback
conditions, access control policies). C' is the current security
context, comprising device authentication status and substation
operating state. Smart contract logic is designed to ensure that:

if (a; € P) and (C is compliant)
otherwise

execute a,

&= ®)

reject ay,

This blocks illegitimate security actions only from being
enforced and prevents unauthorized interference.
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Algorithm 1 Adaptive Cyber Defense via Informer-PPO with Smart Contract Enforcement

1: Input: IEC 61850 telemetry streams (GOOSE, SV, MMS); initialized PPO parameters (64,6c) and hyperparameters
(7, A\, €,m); blockchain connection and deployed smart contracts (InvokeContract (), VerifyAndEnforce ()).
2: Output: Trained policy 7y ; per-timestep mitigation decisions a;; commit receipts (MitigationCommitted); audit

log entries {L;}.
: Start
. Initialize replay buffer B < @&
: for each training episode do

Compute anomaly score and device integrity status

Construct augmented state s} < [s;, anomaly score, device status, attack history]

3
4
5
6:  Collect telemetry s; from IEC 61850 traffic
7
8
9

Select action a; ~ 7y, (s}) using policy in Eq. 5

10:  Apply a; in simulator; observe reward 7, and next state s},

11:  Store transition (s}, a;, 7, 53, ) in buffer B

12:  Estimate advantage A; with PPO objective (Eq. 4)
13:  Update Actor 04 and Critic ¢ via clipped loss
14:  if a; requires blockchain enforcement then

15: Construct signed payload 7 <+ Sign(ay, timestamp, devicelD)
16: Submit payload: TnvokeContract(T)

17: & < VerifyAndEnforce(T) {returns commit event}

18: Log enforcement £; < (7, &;)

19:  end if

20: end for

21: End

2) Types of Security Actions Enforced by Smart Contracts:
The smart contract platform supports various security en-
forcement actions that are activated according to the anomaly
severity:

o Device Quarantine: When an IED, CT, VT, MUs, or CB
is detected to act suspiciously, the smart contract isolates
it from the network so that the attack is not propagated
further.

o Firmware Rollback: If a device’s firmware has been tam-
pered with or changed in any fashion, the contract exam-
ines its original authenticated version on the blockchain
and causes a rollback.

o Revocation of Access: All unauthorized access attempts
are tracked, and if detected, the smart contract revokes
access or rejects malicious traffic.

3) Blockchain-Based Auditability and Compliance: Every
enforced security measure is cryptographically signed and
immutable on the blockchain. This ensures:

« Non-repudiation: Every security event can be traced back
to its source.

o Tamper resistance: Once a measure has been enforced, it
cannot be changed.

o Regulatory compliance: Enforcement based on smart
contracts is cybersecurity policy compliant for critical
infrastructure.

4) Interaction Between Smart Contracts and RL-Based
Mitigation: Upon selecting an action by the PPO agent,
the intelligent contract carries it out automatically, making
unauthorized or late modifications impossible. The seamless
integration facilitates real-time mitigation of cyber threats
without losing the integrity and robustness of IEC 61850

substations. With the combination of RL-adaptive decision-
making and blockchain-enforced automated compliance, this
approach promises a tamper-evident, autonomous, and secure
cybersecurity solution for modern power substations.

To officially initiate blockchain enforcement, all action a;
created by RL is converted into a digitally signed transaction
payload named 7. This payload includes action, timestamp,
and device ID, and is uploaded to the blockchain smart
contract for verification and enforcement. After receiving 7,
the smart contract processes 7, verifies against policy and
context, and sends an execution result £ as to whether or
not the action was approved and enforced. These transactional
variables are reflected in the control flow described by Algo-
rithm 1. This algorithm summarizes the end-to-end operational
logic of our proposed RL-blockchain framework, outlining
how the system collects real-time substation data, determines
the optimal mitigation actions using the Informer-PPO agent,
and enforces them through smart contracts on the blockchain.

IV. IMPLEMENTATION & EXPERIMENTAL SETUP

A. Simulation Environment and Blockchain-Based Enforce-
ment

A simulation model of the IEC 61850 digital substation
system was developed using OMNeT++, a network simulator
based on discrete events, and the NS3 network communication
simulation framework between IEDs, CTs, VTs, MUs, CBs,
SCADA, and HMI devices. The testbed simulates real-time
GOOSE, SV, and MMS traffic under benign and adversarial
settings, including supply chain-driven attacks, to validate the
resilience of the framework to coordinated substation attacks.
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TABLE II: Summary of Datasets Used: Simulated Attacks, Features, and Preprocessing Pipeline

Dataset Attack Scenar-  Protocol(s) Main Features Preprocessing and Use in Paper
ios
Biswas et al. [29] 9 cyberattacks GOOSE Breaker status, cur-  Feature extraction from .pcapng
+ 3 benign rent values, stNum, and .csv, scenario-level label-
sgNum, timestamps ing, substation configuration lan-
guage (SCL)-based time-series
alignment. Used for supervised
training and GOOSE anomaly de-
tection.
Kitsune [30] 9 real-world at-  transmission 115-dimensional Informer pretrained on real traf-
tack scenarios control protocol  statistical features  fic anomalies. Validates general-
(TCP)/internet (packet flow, timing, ization under real network noise.

protocol (IP), address
protocol
(ARP), secure sockets

resolution

layer (SSL)

entropy)

Used for cross-domain transfer
learning.

ERENO [31] 7 attack scenar- GOOSE, SV Protocol timing, flow  Used for benchmarking detection
ios statistics, replay and  robustness on industrial control
injection markers systems (ICS)-specific attacks. At-
tacks are annotated, and data is
high-fidelity from substation sim-
ulation.
Custom OMNeT++- 5 synthetic at- GOOSE, SV, MMS Device identity, con- Simulated MMS spoofing, unau-
NS3 tacks (simulated) trol message content, thorized IEDs, and firmware in-

firmware hashes jection. Used to test blockchain
enforcement (rollback/quarantine)

and RL-triggered response.

Blockchain-Based Enforcement System: A multi-peer
Hyperledger Fabric network was implemented to establish
a tamper-proof security enforcement system for IEC 61850
substations. The three key constituents of the blockchain
network are:

e Ordering Service — Ensures transaction consistency and
blocks are committed in sequence.

o Peer Nodes — Every peer node consists of a distributed
ledger, verifying firmware updates, authentication logs,
and security actions.

« Certificate Authority (CA) — Provides cryptographic iden-
tity management for IEDs so that the network is joined
only by enrolled and authenticated devices.

Transaction and block addition path: (1) The RL agent
submits a proposal to endorsing peers that satisfy a 2-of-3
organizations policy. (2) Endorsers simulate chaincode and
return signed read/write sets (with MVCC versions). (3) The
client assembles endorsements and sends the transaction to the
orderer. (4) The ordering service batches transactions using
BatchTimeout/MaxMessageCount and cuts a block. (5)
Each peer validates the block by checking (i) endorsement
policy signatures, (ii) MSP/identity, and (iii)) MVCC conflicts.
(6) Valid transactions are committed to the ledger and applied
to world-state; invalid ones are flagged but not applied. On
commit, an application event (MitigationCommitted) is
emitted and used to mark a mitigation as verified.

Smart Contract Logic: Go-written smart contracts were
used as Chaincode on peer nodes to enforce security policy
automatically. The contracts compare firmware update re-
quests with cryptographic hashes of blockchain-stored, signed
firmware versions. In the case of a discrepancy, the con-

gract triggers automatic security enforcement actions such as
firmware rollback or device quarantine.

Integration with RL-Based Security System: The
blockchain interacts with the RL-based security system
through a RESTful API, which offers:

o Threat response enforcement — Receiving attack mitiga-
tion directives from the PPO RL-based Informer augmen-
tation.

o Tamper-proof security logging — Saving security actions
(quarantine, rollback, access revocation) immutably on
the blockchain ledger.

o Real-time firmware integrity validation — Providing on-
going attestation to SCADA and IEDs.

Each transaction is hashed for auditability and non-
repudiation. Dynamic simulation of transaction load was em-
ployed to examine performance involving enforcement latency
and scalability under adversarial stress.

B. Blockchain Configuration and System Parameters

The Hyperledger Fabric network was initialized with three
peer organizations and a single ordering service. During
prototyping and experiments in a controlled environment,
the SOLO consensus algorithm was utilized. With SOLO,
transactions are deterministically ordered with low latency and
overhead, making it suitable for early experimental verification
of blockchain-based enforcement in IEC 61850 substations.

For deployment, however, we recommend a crash-fault-
tolerant RAFT ordering service. RAFT elects a leader among
orderers using randomized timeouts and heartbeat messages;
the leader serializes transactions into a replicated log, and once
a majority of orderers confirm replication, a block is cut and
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broadcast to peers. Client SDKs automatically redirect requestss
to the active leader after re-election, making leader changes
transparent to applications.

Each of the smart contract transactions, as implemented
in our Hyperledger Fabric testbed deployment, included a
hashed firmware signature, device ID, and enforcement ac-
tion, such as firmware rollback or device quarantine. The
transaction lifecycle proceeded through the standard Fabric
endorsement—ordering—commit path: (1) the RL agent sub-
mits a proposal to endorsing peers; (2) endorsers simulate
the chaincode and return signed read/write sets with version
metadata; (3) the client assembles endorsements and submits
to the orderer; (4) the ordering service batches transactions and
cuts a block; (5) each peer validates the block by checking
endorsement policy signatures, MSP identities, and MVCC
version conflicts; and (6) valid transactions are committed to
the ledger and applied to world state, while invalid ones are
flagged but preserved for audit. Upon commit, an application
event (MitigationCommitted) is generated, and a miti-
gation is considered verified only after this event is received.

All performance tests were conducted on a 12-core Intel
CPU and 32 GB RAM workstation. To address IEC 61850
substation operational requirements, Hyperledger Fabric was
selected as the blockchain platform over others such as
Ethereum and Corda. Fabric has native support for permis-
sioned networks, low-latency transaction endorsement, and
modular chaincode architecture, all of which are fundamental
to security-critical industrial infrastructures. Unlike Ethereum,
Fabric eliminates gas fees, enables private data sharing among
selected participants, and ensures deterministic transaction
finality in controlled membership networks. While Corda has
some privacy advantages and financial optimization features,
it is less flexible in its modular smart contract design or
as versatile overall as Fabric for substation cybersecurity
enforcement.

Blockchain performance testing results with transaction
throughput and latency details are given in Sections V.D and
V.E.

C. Dataset Description and Trace Composition

This research hires four datasets to pretrain, train, and
experiment with the proposed RL-based anomaly enforcement
and detection framework. The datasets consist of two publicly
available IEC 61850-specific datasets (Biswas et al. [34] and
ERENO) [35], a general-purpose real-world network intrusion
dataset (Kitsune) [36], and one synthesized custom dataset
created within our OMNeT++-NS3 substation testbed. Table II
summarizes each dataset’s attack scenarios, protocol coverage,
extracted features, and preprocessing. The IEC 61850 Security
Dataset by Biswas et al. [34] includes 12 scenarios, 9 cyberat-
tacks, and 3 benign, exclusively concerning GOOSE protocol
communications. They include attacks such as GOOSE flood-
ing, spoofed state/sequence number manipulation, false cur-
rent injection, and control message tampering. Each scenario
comprises ‘.pcapng‘ traces with timestamped GOOSE packets
among 18 IEDs and corresponding ’.csv’ logs of present
magnitude and breaker status. Preprocessing consisted of ex-
tracting timestamps, GOOSE control fields (stNum, sgNum),

and aligning them with SCL configuration files for time-series
structural modeling. For estimating generalization on real data,
we used the Kitsune Network Attack Dataset [36], with nine
labeled attack scenarios recorded from an operational IoT
surveillance network. Although it does not cover IEC 61850
protocols, it covers ARP spoofing, replay injection, and denial-
of-service (DoS) attacks impersonating real traffic anomalies.
We pre-trained the Informer model on Kitsune to learn gen-
eralized adversarial patterns and then fine-tuned it on IEC
61850-specific datasets. The ERENO IEC 61850 IDS Dataset
[35] was utilized for the realistic evaluation of substation-
centric attacks. It contains seven scenarios of GOOSE and SV
traffic under replay, flooding, and masquerading conditions.
Each data instance includes network-level flow features and
labels indicating whether an attack occurred. This data set
was used to test the resilience of our model in high-fidelity
substation environments. To test attack vectors not present
in any public dataset, we have developed a custom dataset
within the OMNeT++-NS3 environment. This simulated data
set includes GOOSE, SV, and MMS traffic. Attack scenarios
include unapproved IED registration, firmware injection, and
MMS spoofing. We used this dataset to test our blockchain-
enforcement logic, e.g., automatic rollback and quarantine
responses triggered by RL-based detection outputs. These
aggregated datasets enable end-to-end training and validation
in both realistic and diverse adversarial environments. The
public datasets offer the promise of benchmarking relevance,
whereas our synthetic traces enable testing of state-of-the-art
scenarios involving protocol-level and control-level substation
attack threats.

D. Synthetic Attack Generation in OMNeT++-NS3

To complement public data sets and study complex policy
enforcement behaviors, new adversarial test cases were created
on our OMNeT++-NS3-based IEC 61850 substation testbed.
Such test cases include attack vectors beyond the bounds
of existing data sets, for example, spoofed MMS control
messages, malicious IED registration attempts, and firmware
injection on device integrity. The anomaly detection module
and the blockchain response system were tested across these
synthetic threats.

The subsequent types of attacks were specifically designed
to initiate blockchain-enforced actions, such as firmware roll-
back and device quarantine, in a bid to combat unauthorized
behavior and maintain substation stability.

Scenario Categories: The public and synthetic traces
combined dataset is organized as follows:

1) Normal Operations:

« Authentic exchanges on GOOSE, SV, and simulated
MMS protocols.
e Secure firmware update logs on the blockchain
ledger.
o Verified exchanges among SCADA, IEDs, MUs,
CTs, and VTs.
2) Cyberattack Situations:

o Firmware Injection Attacks: Illegal firmware up-
dates that compromise device functionality.
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o IEC 61850 Message Spoofing: Spoofed GOOSE:
messages duplicating valid protection and control
signals.

o Unauthorized Device Alterations: Attempts to reg-
ister insurgent IEDs or alter installed substation
equipment.

o Data Manipulation Attacks: Present and voltage
measurement tampering affecting the operation of
the relay.

o DoS Attacks: Disrupting substation network com-
munications by flooding with excessive traffic.

E. Evaluation Metrics

To rigorously evaluate our Informer-PPO-Blockchain se-
curity framework, we use a complete set of measures that
quantify detection performance, mitigation effectiveness, and
enforcement delay, as follows:

1) Anomaly Detection Measures: To contrast the perfor-

mance of different IDS architectures (rule-based, CNN-
PPO, LSTM-PPO, Transformer-PPO, and Informer-
PPO), we utilized the following typical classification
measures:
o Precision: The number of predicted anomalies that
were actual attacks.

TP
TP+ FP
o Recall (Sensitivity): The number of actual attacks

detected correctly.

Precision =

©))

TP
TP+ FN
« False Positive Rate (FPR): The proportion of normal

events incorrectly classified as attacks.
B FP
~ FP+TN

« False Negative Rate (FNR): The proportion of actual
attacks missed by the model.

Recall = (10)

FPR (11)

FN
FNR= ——— 12
FN+TP (12)
e F1-Score: Harmonic mean between recall and pre-

cision. 9 . Precisi Recall
- Precision - Reca

F; = 13

! Precision 4+ Recall (13)

o Matthews Correlation Coefficient (MCC): Measures
the quality of binary classifications even in the
presence of class imbalance.

TP-TN - FP-FN

MCC =

Citation information: DOI 10.1109/JI0T.2025.3632117

o FN: False Negatives (detection failures, failed-to-
detect attacks)

722

These metrics were calculated on test subsets of
every dataset—Biswas [34], ERENO [35], and Kit-
sune [36]—to provide insight into real-world, protocol-
specific, and cross-domain generalizability.

Attack Mitigation Metric: To quantify the effectiveness
of the RL agent in selecting effective responses under
adversarial conditions, we use mitigation success rate
(MSR), calculated as follows:

2)

Number of Correctly Mitigated Attacks

MSR =
Total Number of Attack Attempts

15)
The mitigation of a threat is considered accomplished
when the chosen RL action is both optimal for the threat
type and system policy and is successfully enforced and
confirmed by smart contract enforcement logs on the
blockchain. This metric reflects the end-to-end perfor-
mance of the detection + decision-making + enforcement
loop.
3) System Responsiveness Metrics

o Detection + Mitigation Latency: Average time (in
ms) from when an anomaly is detected to when the
RL agent makes an action decision.

o Blockchain Enforcement Latency: Time to validate,
authorize, and execute a security action on-chain.

These measures were recorded with timestamp logs in
the OMNeT++-NS3 testbed and Hyperledger Fabric
chaincode responses.

V. RESULTS & DISCUSSION

This section gives a comprehensive evaluation of the pro-
posed Informer-PPO-Blockchain system on a range of perfor-
mance indicators, including accuracy of anomaly detection,
mitigation efficiency, model convergence, computational over-
head, and enforcement of blockchain. All experiments were
conducted on a custom IEC 61850 substation simulation setup
in OMNeT++-NS3, with adversarial scenarios taken from
three datasets: a synthetic IEC 61850 testbed, the Biswas et al.
[34] dataset, and two additional benchmark datasets included,
Kitsune [36] and ERENO [35], for generalization and ro-
bustness across heterogeneous cyber-physical infrastructures.
Performance metrics are defined in Section IV.E and used
throughout this section for consistency and reproducibility.

A. Anomaly Detection Performance

V(T P+FP)(TP+FN)(TN+FP)(TN+F
(14)

where:
o TP: True Positives (properly detected attacks)
e TN: True Negatives (properly ignored normal traf-
fic)
o FP: False Positives (normal traffic incorrectly la-
beled as attacks)

N) Table II illustrates the performance of four compar-
ison methods—rule-based IDS, CNN-PPO, LSTM-PPO,
Transformer-PPO, and proposed Informer-PPO, in anomaly
detection as evaluated on four different datasets: our own
in-house custom-developed synthetic IEC 61850 testbed, the
Biswas et al. [34], Kitsune [36], and ERENO [35]. Important
metrics include accuracy, precision, recall, Fl-score, FPR,
FNR, and MCC, all of which are discussed in Section IV.E.
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TABLE III: Anomaly Detection Performance Across Datasets and Models

Model Dataset Accuracy (%) Precision Recall F1-Score FPR (%) FNR (%) MCC
Rule-Based IDS Synthetic Testbed 85.4 0.78 0.82 0.80 7.9 13.6 0.65
CNN-PPO Synthetic Testbed 90.9 0.86 0.87 0.87 4.6 9.2 0.76
LSTM-PPO Synthetic Testbed 93.3 0.89 091 0.90 3.0 6.7 0.82
Transformer-PPO  Synthetic Testbed 94.7 0.91 0.92 0.91 2.6 5.4 0.85
Informer-PPO Synthetic Testbed 95.9 0.93 0.94 0.94 2.1 4.3 0.88
Rule-Based IDS Biswas dataset 87.3 0.80 0.84 0.82 7.1 12.3 0.69
CNN-PPO Biswas dataset 91.2 0.87 0.88 0.88 4.3 8.6 0.78
LSTM-PPO Biswas dataset 93.6 0.90 0.92 0.91 3.1 6.2 0.84
Transformer-PPO  Biswas dataset 94.8 0.92 0.92 0.92 2.5 5.2 0.86
Informer-PPO Biswas dataset 96.1 0.94 0.94 0.94 2.0 4.0 0.89
CNN-PPO Kitsune dataset 90.1 0.86 0.85 0.86 5.7 8.9 0.75
LSTM-PPO Kitsune dataset 94.0 0.91 0.92 0.91 3.2 5.8 0.85
Transformer-PPO  Kitsune dataset 95.2 0.93 0.94 0.93 2.4 4.6 0.88
Informer-PPO Kitsune dataset 98.4 0.97 0.98 0.98 1.1 2.3 0.94
CNN-PPO ERENO dataset 89.5 0.85 0.83 0.84 6.0 9.1 0.74
LSTM-PPO ERENO dataset 924 0.88 0.91 0.89 3.8 6.0 0.81
Transformer-PPO  ERENO dataset 94.2 0.90 0.92 0.91 2.7 5.8 0.84
Informer-PPO ERENO dataset 97.6 0.95 0.96 0.95 1.5 3.1 0.91
On the synthetic IEC 61850 testbed, emulating time-critical s ysp| — Informer-pPO

GOOSE/SV communication patterns and baseline substa- - Lmero e /\r(\ ,‘ '\

tion cyber-traffic, the Informer-PPO achieves 95.9% accu- 200l Basniing PO I/\@'\/. A \;\; ’Z\// 45

racy, significantly outperforming Transformer-PPO (94.7%), ; n/‘%\‘gf..""l{:/

LSTM-PPO (93.3%), CNN-PPO (90.9%), and rule-based IDS
(85.4%). The model also demonstrated an improved balance
between Fl-score (0.94) and MCC (0.88), indicating good
quality of prediction even under conditions of class imbalance.
Synthetic testbeds, however, fail to capture real-world noise
and operating diversity, yet they represent important controlled
settings for establishing baseline detection performance and
validating convergence stability before deployment on dy-
namic infrastructures.

On the Biswas dataset, which records structured IEC 61850
substation attack flows, Informer-PPO achieved 96.1% accu-
racy and a high MCC of 0.89, outperforming all Transformer-
, CNN-, and LSTM-based RL counterparts. The detection
capability of the model for stealthy firmware injection areds
spoofing behavior further enhances its usability for protocol-
layer anomaly detection.

Inference on the Kitsune dataset, with realistic anomalies
and heterogeneous IoT traffic, showed that the Informer-PPO
generalizes well. It was 98.4% accurate with nearly perfect
precision (0.97) and recall (0.98). This result shows excellent
resistance to noise and cross-domain traffic patterns that were
not observed at pretraining. Compared to Transformer-PPO
(95.2%), CNN-PPO (90.1%), and LSTM-PPO (94.0%), the
Informer-based structure provided greater temporal coverage
and reduced FNR by a large margin.

For the ERENO dataset, simulating real-time hardware-
based IEC 61850 operational environments with real-time
GOOSE/SV payloads, Informer-PPO again led the pack with
97.6% accuracy, 0.95 Fl-score, and 0.91 MCC. This points
towards the ability of the framework to react to timing-critical
event sequences as well as communication delays, both of

y /:_ v

150

100

Accumulated Reward

50

2000 2500 3000

Episodes

0 500 1000 1500 3500 4000

Fig. 2: Training Process of RL Agent: Cumulative Reward
Over Episodes

which have been victimized by sequence models earlier.

These results indicate that Informer-PPO not only performs
significantly better on synthetic and benchmark datasets but
also lays a solid foundation for subsequent real-time mitigation
and blockchain-secured policy enforcement.

B. RL Agent Training and Convergence

We monitored the average episodic reward over training for
all PPO-based models to compare the RL agents’ learning
dynamics and convergence behavior. The cumulative reward
curves over 4,000 episodes on the synthetic IEC 61850 testbed
are presented in Fig. 2, where all models were trained from
scratch to enable fair baseline comparisons.

The Informer-PPO model described achieves faster and
more convergent convergence than its Transformer-, CNN-
, and LSTM-based counterparts. Specifically, Informer-PPO
stabilizes its cumulant reward after ~1,100 episodes, while
Transformer-PPO converges slightly later, around 1,400
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Fig. 3: Effect of Transfer Learning on Fine-Tuning Perfor-
mance of Informer-PPO pretrained on Kitsune.

episodes. LSTM-PPO requires approximately 1,800 episodes
to converge, and CNN-PPO experiences noisier and slower
learning beyond 2,500 episodes. Baseline PPO has the slowest
learning trajectory with instability in reward accumulation
during the training process. Informer’s ProbSparse attention
enables it to learn long-term temporal dependencies without
memory bottlenecks or computational inefficiencies, which are
typical issues with recurrent or dense-attention models.

For cross-domain adaptability evaluation, Informer-PPO
was first pre-trained on the Kitsune dataset and then fine-
tuned on the Biswas and ERENO datasets. Transfer learning
achieved an early-stage recall gain of 6.3% and FPR reduction
of 1.7% over scratch training. Results, as represented in
Figures 3a and 3b, confirm the ability of knowledge transfer
to facilitate quicker convergence and enhancement of general-
izability across other cyber-physical environments.

Furthermore, the Informer-PPO consistently exhibited lower
reward variance over episodes (Fig. 2), reflecting enhanced

training stability. This combination of stable training, fast
convergence, and effective domain transfer is an indication
of the dominance of Informer-PPO for real-time smart grid
security applications.

C. Attack Mitigation Success Rate

In RL-based cybersecurity systems for critical infrastruc-
ture, effectively mitigating detected threats is as essential as ac-
curately detecting them. The proposed architecture integrates
a policy execution layer backed by a smart contract deployed
on a Hyperledger Fabric blockchain network, enabling coun-
termeasures such as firmware rollback, device isolation, and
access revocation for the reinforcement learning agent.

MSR, which is defined in Section IV.E, calculates the
percentage of successful mitigation of attacks out of total
attempts. A mitigation action qualifies as a success only when
the selected policy is enforced on-chain and marked as verified
by the blockchain network.

To demonstrate this dimension numerically, Fig. 4 shows
the MSR of four RL-based agents, CNN-PPO, LSTM-
PPO, Transformer-PPO, and Informer-PPO, on four sam-
ple IEC 61850 attack types: firmware injection, GOOSE
spoofing, unauthorized configuration, and data manipulation.
The Informer-PPO agent shown here consistently has the
highest success rate, over 92% in all categories, and up to
93.1% for unauthorized configuration events. Transformer-
PPO performs better than LSTM-PPO, achieving MSR scores
around 90-91% across different attack scenarios. LSTM-PPO
performs fairly (approximately 88-90%), while CNN-PPO
demonstrated comparatively lower mitigation success rates
(approximately 84-86%), indicating challenges in modeling
sequential adversarial patterns.

This relative performance gap is primarily attributed to the
temporal modeling capacity of the Informer architecture. Com-
pared to CNNs, which rely on localized kernels, and LSTMs,
which are plagued by memory decay and vanishing gradients
when dealing with long sequences, and Transformers, which
struggle with computational scalability for longer sequences,
the Informer employs a ProbSparse attention mechanism. It
®4n thus maintain global temporal context and dynamically
re-prioritize necessary time steps, enabling it to forecast multi-
stage attack development and select context-aware mitigation
policies.

These results build upon the Informer-PPO’s advantage
in temporal reasoning, response consistency, and compliance
with on-chain policies, making it perfect for real-time protec-
tion in smart substations.

D. Latency and Computational Overhead

This subsection examines the end-to-end anomaly preven-
tion pipeline’s response latency and computational overhead
to ascertain the proposed framework’s real-time viability in
IEC 61850 substations, including the RL agent inference and
blockchain-based implementation.

1) Response Time Analysis: As evident from Table V,
the Informer-PPO model presented here has an average
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Fig. 4: Comparative Mitigation Success Rate by Model and Threat Type.

end-to-end response time of 35 ms for anomaly de-
tection and mitigation, outperforming Transformer-PPO
(52 ms), LSTM-PPO (72 ms), CNN-PPO (95 ms), and
the baseline IDS (110 ms). This latency includes both
the inference time of the RL agent and actuation delays
initiated through smart contracts. These values make the
use of Informer-PPO in actual field deployment feasible
in substation settings that demand rapid detection-to-
mitigation switching.

Blockchain Enforcement Delay: Blockchain adoption
introduces additional processing delays to enforcement
and verification, as shown in Fig. 5. Delays of moré'
than three critical security measures, firmware rollback,
access revocation, and device quarantine were all exe-
cuted with standard transaction loads with Hyperledger
Fabric. The following delays were incurred:

o Firmware Rollback: 42 ms
e Access Revocation: 50 ms
e Device Quarantine: 37 ms

Although higher than IEC 61850’s protection messaging
deadline (e.g., 4 ms for GOOSE), these latencies are
acceptable for non-time-critical control flows such as
firmware integrity checking and policy-based segmenta-
tion. Thus, blockchain enforcement is not employed in
time-critical layers but supports auditability and tamper-
proof logging for events initiated by the RL agent.

Blockchain Transaction Lifecycle and Validation: The
observed enforcement delays are directly tied to the
Fabric transaction processing pipeline. Each mitigation
request is first endorsed by peers according to a 2-
of-3 organizations policy, where endorsers simulate the
chaincode and return signed read/write sets with version
metadata. The client then assembles these endorsements
and submits the transaction to the ordering service. In
our benchmarks, a SOLO orderer was used for determin-
ism and low overhead; in deployment, a RAFT cluster
would be used to provide crash-fault tolerance through
leader election, heartbeat messages, and replicated logs.
The orderer batches transactions using BatchTimeout

JABLE IV: Ordering and validation parameters of the Fabric
testbed used in latency and throughput experiments.

Parameter

Value

Endorsement policy

2 of 3 organizations

BatchTimeout 100 ms (bench); 50-100 ms (deploy)
MaxMessageCount 20 (bench); 10-50 (deploy)

World state LevelDB; MVCC enabled

Event MitigationCommitted on valid commit

4)

and MaxMessageCount, cuts a block, and broadcasts
it to peers. Peers verify endorsement signatures, MSP
identities, and MVCC read-set consistency before com-
mitting valid transactions to the ledger and discard-
ing invalid ones. Upon commit, an application event
(MitigationCommitted) is emitted, which the RL
agent uses to confirm that a mitigation has been enforced
and audit-logged. This path explains why enforcement
actions such as firmware rollback (42 ms) and device
quarantine (37 ms) remain within practical non-time-
critical thresholds while still achieving tamper-proof
auditability. The ordering and validation parameters that
shaped these latency measurements are summarized in
Table IV.

Computational Load and Hardware Feasibility:
Informer-PPO was executed on a testbed with a 12-core
Intel CPU and 32 GB of memory. While the Informer
architecture improves long-range dependency handling,
it requires slightly more computational power than
Transformer-PPO, and notably more than CNN or
LSTM equivalents. Inference load profiling shows
that any policy choice, i.e., attention scoring and
output action selection, completes under 12 ms on a
single-threaded CPU core with PyTorch optimizations.
GPU acceleration is recommended for high-frequency
deployments, especially in multi-substation situations
where agents handle diverse traffic in parallel. Future
iterations may benefit from integrating quantized infer-
ence or model distillation to reduce model complexity
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TABLE V: Average detection and mitigation response latency
for different models.

Model Avg. Response Time (ms)
Baseline IDS 110
CNN-PPO 95
LSTM-PPO 72
Transformer-PPO 52
Informer-PPO 35

60

50 ms

Transaction Delay (ms)

Firmware Rollback Access Revocation

Device Quarantine

Fig. 5: Blockchain Enforcement Delay by Action Type. Aver-
age transaction time for firmware rollback, access revocation,
and device quarantine executed via Hyperledger Fabric.

at the cost of policy fidelity.

5) Resource and Bandwidth Requirements: In addition to
computational considerations, network bandwidth re-
quirements for the proposed system remain practical for
real-world deployments. Typical IEC 61850 telemetry
traffic, including GOOSE, SV, and MMS messages,
generates less than 1-2 KB/sec per device under normal
substation operating conditions. AloT-driven edge-level
preprocessing ensures only anomalous or suspicious
behavior is forwarded to the upper-level decision planes.
It keeps total network traffic low even as it scales up
to thousands of devices. Furthermore, the blockchain
enforcement transactions emulated in the framework,
being light in weight (approximately 220-300 bytes per
transaction), impose minimal extra bandwidth demands.
These aspects combined make the feasibility of real-
time anomaly countermeasures and policy enforcement
possible without overloading the computation and com-
munication infrastructure.

E. Blockchain Enforcement and Scalability

The effectiveness of blockchain integration in substation
environments depends not only on enforcement capability but
also on scalability under changing rates of transactions. This
subsection discusses the system’s performance at higher policy
submission rates, with attention to throughput, latency, and
consensus stability.

Under stress testing, the Hyperledger Fabric network wit-
nessed a steady 20-25 transactions per second (TPS) with

TABLE VI: Blockchain performance metrics under policy
load.

Metric Observed Value

20-25

1.7-3.2 seconds

220-300 bytes

SOLO (benchmark setting)
None up to 25 TPS

Average Throughput (TPS)
Average Enforcement Latency
Transaction Payload Size
Consensus Mode

Degradation Observed

policy enforcement latency ranging between 1.7 and 3.2 sec-
onds based on the transaction density. The transaction payload
was between 220 and 300 bytes, having no impact on the
stability of execution. Transaction payloads varied between
220 and 300 bytes with no perceivable impact on execution
stability. Such values guarantee the blockchain component’s
sufficiency for enforcing non-time-critical security responses,
such as configuration rollback, access revocation, and device
quarantine.

Table VI summarizes the blockchain’s behavior observed.
No performance impact was observed at a rate of up to 25 TPS,
reflecting sufficient headroom for deployment in substations
with low policy change rates.

The SOLO consensus protocol was used for benchmarking
in stress testing due to its low resource requirements and ease
of use. However, as SOLO does not deliver distributed crash or
Byzantine fault tolerance, it is unsuitable for production-grade
deployments. Therefore, future implementations will incorpo-
rate formally stronger consensus protocols such as crash fault
tolerance using leader election (RAFT) or practical Byzantine
fault tolerance (PBFT) in order to enhance resilience, security,
and scalability across multi-site substation infrastructures.

To enable large-scale smart grid infrastructures, additional
architectural improvements are suggested, such as:

o Transaction batching to reduce per-operation overhead.

o Chaincode optimization to accelerate endorsement and
commit processes.

e Sharded blockchain instances to enable simultaneous
policy verifications across autonomous substations.

These enhancements, although not achieved in the current
work, would enable broader deployment of the proposed
framework across multi-site substations that are linked by
wide-area networks (WANs). The modular Informer-PPO ar-
chitecture combined with federated blockchain enforcement
provides a promising avenue toward scalable and tamper-
evident anomaly mitigation across geographically distributed
cyber-physical infrastructures.

Beyond handling blockchain transactions, the broader scala-
bility of the proposed security framework for substations with
thousands of devices is achieved through architectural modu-
larity and hierarchical distribution. Specifically, Informer-PPO
agents can be instantiated at multiple levels, where local-
level agents process anomaly detection and make preliminary
mitigation decisions for subsets of IEDs and IoT sensors. Only
high-severity or indeterminate cases are forwarded to higher-
level decision layers to reduce system-wide computational and
communication overhead. Moreover, edge-level AIoT prepro-
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TABLE VII: Quantitative Comparison of Detection Accuracy and Mitigation Capability in Related Works

Reference

Detection Accuracy

Mitigation Support  Avg. Response Latency

Duman et al. (2019) [11]
Duman et al. (2024) [12]

Ustun et al. (2021) [13]
Mohamed et al. (2023) [22]
Nhung-Nguyen et al. (2024) [14]
Park et al. (2024)[18]

Zaboli & Hong (2025) [30]
Proposed Work

No real detection model
No detection model (hardening only)
95.1% (SVM, GOOSE)
N/A (Attacker Simulation)
98% (GOOSE/DNN)
ML ADS (SV+GOOSE), attack/fault classification
>98% (GenAl ADS, synthetic GOOSE datasets)
98.4% (Kitsune), 97.6% (ERENO)

Not Reported
Not Reported
Not Reported
N/A
Not Reported
Not Reported
Not Reported
35 ms

WX N X X X X X

cessing enables real-time anomaly filtering, thereby allowimg:
core RL decision engines to remain scalable even under
high device densities. Based on observed inference latencies
and typical data generation rates, preliminary extrapolation
suggests that the framework can realistically support over
5,000-10,000 device deployments with real-time mitigation
capacity, given moderate event rates and decentralized control
optimization. Future work will validate these estimates in
large-scale experimental testbeds.

F. Temporal Modeling Comparison

Modeling temporal dependencies is also critical in cyber-
physical threat scenarios where attacks manifest as causally
related sequences of events rather than isolated anomalies.
To meet this challenge, the Informer-PPO model presented
here leverages a self-attention mechanism that prefers temporal
relevance over positional locality.

Classical convolutional encoder-based PPO implementa-
tions (CNN-PPO) are limited by the lack of ability to recog-
nize cross-timestep dependencies beyond pre-defined receptive
fields. Recurrent variants like LSTM-PPO, while sequence-
aware, are usually plagued by gradient instability and memory
issues in long or irregular event sequences. Transformer-based
PPO models fix some of these limitations by applying global
attention across sequences, yet they suffer from high com-
putational complexity (O(L?)) and attention diffusion when
handling extremely long or noisy sequences.

Conversely, the Informer encoder employs ProbSparse at-
tention to enable the agent to selectively hear critical temporal
anchors throughout the observation period—regardless of se-
quence length. This boosts the agent’s ability to coordinate its
mitigation maneuvers with delayed system impacts and cross-
episode interactions, which are frequently found in coordinated
or stealthy cyberattacks.

This architecture enhances the temporal generalization ca-
pability of the policy network, allowing it to capture compact
yet context-aware representations of dynamic system states.
The learned policies provide increased predictive stability and
more temporally coherent decision-making, making Informer-
PPO extremely well-suited for anomaly-based control systems
of smart substations.

G. Comparative Analysis with Related Works

Table VII summarizes recent works on IEC 61850 substa-
tion security, anomaly detection, and adaptive defense.

178 Earlier studies by Duman et al. [11], [12] focused on
attack graph analysis and security hardening, but without
deployable anomaly detection or mitigation. Ustun et al. [13]
applied SVM for GOOSE traffic analysis, achieving moderate
accuracy but lacking mitigation support and latency evaluation.
Mohamed et al. [22] concentrated on attacker simulations
rather than real intrusion detection.

More recent efforts improved detection but remain limited
in enforcement. Nhung-Nguyen et al. [14] demonstrated deep
neural network-based detection on GOOSE traffic, but with-
out mitigation or latency results. Park et al. [18] combined
anomaly detection with attack—fault classification across SV
and GOOSE traffic and proposed partial restoration, though
latency metrics were not reported. Zaboli & Hong [30] intro-
duced a Generative Al-based anomaly detection system that
achieved high accuracy on synthetic GOOSE datasets, but
without blockchain integration or measured response times.

In contrast, the proposed Informer—PPO framework achieves
high accuracy on both public Kitsune and ERENO datasets,
integrates real-time adaptive mitigation, and uniquely provides
blockchain-based smart contract validation. The framework
maintains an average response latency of 35 ms, positioning
our work as the only end-to-end defense framework addressing
both technical performance and practical deployability for
IEC 61850 substations.

H. Security and Privacy Analysis

The security of the provided framework relies on two
collaborating layers: (1) the robustness of the learned RL
policies to detect and respond to dynamic attacks and (2)
the guarantee of integrity provided by the blockchain-based
enforcement mechanism. The security and privacy of the
proposed framework are examined across four dimensions:
integrity of mitigation execution, resilience to adversarial
evasion, robustness against zero-day and synthetic adversarial
attacks, and protection of sensitive data during inference and
enforcement.

1) Integrity and Tamper Resistance: All mitigation actions
are represented as digitally signed transactions and
executed through smart contracts on a permissioned
blockchain network. This architecture ensures that when
a policy action is initiated, it cannot be modified or
replayed without validation agreement. Distributed en-
dorsement and immutable block commitment prevent
rollback attacks and unauthorized overrides of security
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TABLE VIII: Security Properties and Their Implementation in the Proposed Framework

Security Property How It’s Achieved

Integrity
Non-repudiation
Resilience to evasion
Zero-day robustness
Tamper resistance
Privacy protection

Blockchain immutability via peer endorsement

Signed action logs via smart contracts

RL-based dynamic decision policies

Synthetic adversarial testing and cross-domain generalization (Informer-PPO)
Verified mitigation through chain consensus

Anonymized payloads, permissioned chain access

responses, satisfying the minimum requirements for nones 1fs Experimental Deployment Considerations

repudiation and auditability.

2) Policy Spoofing and Evasion Resilience: As policy ac-
tions are learned along state—action trajectories over
time and not from static rule-matching, the RL agent is
inherently more robust to evasion attacks by attackers.
In contrast to conventional threshold-based systems that
may be probed by attackers, Informer-PPO’s stochastic
exploration and long-term reward modeling complicate
reverse-engineering of the decision boundary. Further,
the blockchain backend guarantees that even if an agent
is tricked into taking a wrong step, that step gets
recorded, traced, and audited for forensic examination.

3) Privacy Concerns: The system is based upon abstracted
attributes that are derived from protocol events, such
as GOOSE/SV metadata and action logs and does
not require access to user-level or personal identifiers.
Transaction payloads sent to the blockchain are small
and anonymized at the device layer such that privacy-
sensitive information is never revealed or stored in an
unsecured state.

4) Robustness to Zero-Day and Synthetic Adversarial At-
tacks: The proposed framework demonstrates strong
resilience against zero-day threats and synthetic adver-
sarial attacks. Through targeted adversarial testing using
novel attack scenarios such as spoofed MMS control
messages, unauthorized IED registration, and firmware
injection, the system consistently achieved high detec-
tion and mitigation effectiveness, even without prior
exposure to these threat patterns. Moreover, the adap-
tive learning mechanisms of the Informer-PPO agent
enabled successful generalization across heterogeneous
environments, significantly reducing FPR and maintain-
ing reliable anomaly detection performance in unfa-
miliar operational domains. These capabilities confirm
the framework’s ability to defend against emerging and
previously unseen cyber threats in critical infrastructure
environments.

A summary of the key security properties assured by the
proposed framework and their corresponding implementation
mechanisms is provided in Table VIII. All logged events
are securely accessible only to permissioned nodes within
the consortium network, ensuring that sensitive information
remains protected from unauthorized access.

Despite validating the proposed framework through simula-
tion experiments with laboratory-controlled testing, the actual
implementation of the AloT-Blockchain security system in
IEC 61850 substations will require specific hardware and
networking environments. Industrial-strength edge-computing
nodes colocated alongside substations are proposed to imple-
ment the Informer-PPO model inference engine as well as a
blockchain client. Typical hardware specifications would be at
least 16 CPU cores and 64 GB RAM, with the possibility of
GPU acceleration for real-time anomaly detection and action
generation. At least 1 Gbps LAN Ethernet throughput with
internal latency below 5 ms is necessary to support seam-
less telemetry ingestion and security enforcement. Blockchain
transactions for non-time-critical security operations, such
as firmware verification and device quarantine, are asyn-
chronously propagated to avoid interference with time-critical
protection processes. In large-scale smart grid deployments,
secure WAN links and backup blockchain nodes are advised to
ensure resilience, high availability, and fault tolerance between
substations.

J. Real-World Deployment Considerations

To enable non-disruptive deployment in live IEC 61850
substations, the evolved framework can first be deployed in
passive monitoring mode. Using this mode, AloT sensors
and an Informer-PPO-based anomaly detection system would
run concurrently with existing operational SCADA systems
without interfering with the operational controls. Identified
anomalies would be logged for offline analysis to determine
the model’s reliability. Upon validation, the framework can
proceed to an advisory state in which the mitigation steps
are reviewed first by human operators prior to enforcement.
Finally, upon demonstrated consistency in performance and
operational trust, autonomous blockchain-enforced mitigation
can be deployed progressively for non-time-critical security
operations. This phased integration strategy ensures opera-
tional safety, prevents deployment risks, and facilitates the
implementation of the system in substation environments
without major architectural modifications.

VI. CONCLUSION

This paper presented an AloT-Blockchain security frame-
work that integrates Informer-augmented PPO for adaptive
cyber defense and blockchain-based authentication within
IEC 61850 substations. The proposed framework achieved
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a detection accuracy of 98.4% and an average responger
latency of 35ms, representing accuracy gains of 3.4-9.2%
and response time reductions of 33-63% compared with
Transformer-PPO, LSTM-PPO, and CNN-PPO baselines.
Blockchain-based enforcement added only 42-50 ms for non-
time-critical actions such as firmware rollback and device
quarantine, ensuring tamper-proof policy execution without
compromising operational feasibility. These findings demon-
strate that real-time, auditable, and scalable cybersecurity is at-
tainable within substation constraints. Nonetheless, blockchain
latency constrains its application in primary protection, scala-
bility under high-frequency updates remains a challenge, and
resilience against adaptive adversarial attacks warrants further
investigation. The modular design of the framework allows its
extension to broader IloT ecosystems, including microgrids,
distributed energy resources, and smart cities.
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