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A B S T R A C T   

While there have been a considerable number of studies on computer vision (CV)-based crack detection on 
concrete/asphalt public facilities, such as sewers and tunnels, masonry-related structures have received less 
attention. This research seeks to implement an automated crack segmentation and a real-life crack length 
measurement of masonry walls using CV techniques and deep learning. The main contributions include (1) a 
large dataset of manually labelled images about various types of Korea masonry walls; (2) a careful performance 
evaluation of various deep learning-based crack segmentation models, including U-Net, DeepLabV3+, and FPN; 
and (3) a novel algorithm to extract real-life crack length measurement by detecting the brick units. The 
experimental results showed that deep learning-based masonry crack segmentation performed significantly 
better than previous approaches and could provide a real-life crack measurement. Therefore, it has a huge po
tential for motivating masonry-based structure investigation.   

1. Introduction 

Masonry is a matured and well-established construction technique 
commonly used in historic and modern architectures. There has also 
been growing interest in implementing masonry for future infrastructure 
[1]. A masonry building includes various masonry materials, such as 
bricks, ashlars, blocks, and stones, usually stuck together using mortar. 
Masonry architecture is well-known for its long service life due to its 
capability to be incrementally fixed [2]. Moreover, the modular nature 
of masonry (individual units and sacrificial mortar) is the main reason it 
is cheaper to maintain than concrete slabs. 

During its lifetime, structural damage to masonry can occur for a 
variety of reasons. Cracks can potentially appear due to environmental 
factors, such as inconsistent material adjacency, earthquakes, thermal 
stress, hygroscopic stress, and mechanical stress [3,4]. To date, the 
maintenance of the masonry architecture and structural damage (i.e., 
cracks, spalls, etc.) has been mainly conducted via the following tech
niques: ground-level inspection [5,6], tactile inspections (cherry 
pickers, scaffolding, or ropes) [7], and UAV-based visual inspection [8]. 

Most techniques except those that are UAV-based are performed 
manually, which is labor-intensive, time-consuming, and error-prone. 
Even the modern method of using drones to capture images can be 
laborious and subjective because after the images/videos are captured, 
an inspector is required to investigate them to manually validate the 
structure’s condition. 

Earlier studies have proved that conventional image processing and 
CV techniques can be applied to reconstruct digital documentaries of 
masonry architectures, which can be used to detect the shape and po
sition of a masonry unit or perform crack segmentation [9]. Moreover, 
the feature extraction process can produce the numerical model of ma
sonry for more detailed analysis. It usually contains three main processes 
[10], which include 1) image preprocessing to reduce noise introduced 
during the data collection, 2) manual feature detection to extract 
essential features from the collected dataset, and 3) segmentation 
techniques to partition the images into distinctive regions. However, 
conventional approaches showed poor performance when facing unseen 
data, cost more time due to the manual feature extraction process, and 
were sensitive to digital noise generated by uneven lighting, texture, and 
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color [11]. 
During recent decades, deep learning has shown remarkable per

formance in standard CV topics, which include classification [6,12], 
object detection [13], and segmentation [5,10]. Moreover, deep 
learning models are semantically robust because they can learn abstract 
and coarse features automatically from the raw data [14]. Fully con
volutional networks (FCN) [15] are considered a well-known deep 
learning-based image segmentation model because they can accept im
ages at any resolution as the input by transforming fully-connected 
layers of a CNN structure into convolutional layers. 

Various FCN structures can be potentially applied to perform ma
sonry crack segmentation. First, U-Net [16], which follows the FCN ar
chitecture, was initially introduced for segmenting biomedical images. 
U-Net shows that acquiring the spatial features through the transposed 
convolution concept is feasible. U-Net is a standard segmentation model 
and has been implemented in various CV applications, especially for 
relatively small datasets. The second SOTA FCN structure proposed for 
general semantic segmentation is DeepLabV3+ [17], which has simpler 
structures and can offer cheaper computing power while delivering 
better performance. Even though FCN architecture demands a huge and 
carefully annotated dataset in order to provide good performance, it has 
the potential to obtain representative features by providing a training 
dataset that covers a large collection of various cases. In addition, for 
training the model on small datasets, the transfer learning technique, 
which relies on a pre-trained CNN model on other benchmark datasets as 
a starting point, can be applied to enable the model to learn a new task 
easier and faster [18]. Therefore, transfer learning is encouraged and 
can be applied to any FCN architecture. 

Deep learning models have already been implemented to perform 
some structural engineering tasks due to their high prospect of assisting 
structural inspection and monitoring applications. In the case of ma
sonry crack investigation, deep learning offers the solutions to classify, 
detect, and locate segmented cracks. For instance, Hallee et al. trained a 
customized CNN model on a masonry dataset collected in the laboratory, 
containing 5 distinctive classes (Cracked, uncracked, vague, partial, and 
no-bricks) [19]. The authors showed that the CNN model achieved 
higher performance than ML models trained on handcrafted features 
with the highest accuracy of 81 %. However, the model performance 
declined sharply when it was tested on real-world images. The same 
year, Dais et al. [6] investigated various deep learning models for patch 
classification and semantic segmentation tasks for masonry cracks. The 
experimental results showed that fine-tuned MobileNet, which was 
pretrained on the ImageNet dataset, obtained the highest crack classi
fication accuracy of 95 %. For the crack segmentation task, U-Net model 
with the encoder path replaced by pretrained MobileNet delivered the 
highest F1 score of 79 %. The authors also explained the importance of 
transfer learning based on a pretrained backbone, which improved the 
F1 score to about 4 %. Valero et al. [12] extracted a 3D point cloud- 
based statistical representation of data to train a logistic regression al
gorithm to perform the classification and detection of chromatic alter
ations and defects on ashlar masonry walls. 

Even though many studies have been proposed to perform crack 
segmentation for public facilities, such as sewers [20] and tunnels 
[9,10], less attention has been given to masonry crack segmentation 
research. Moreover, existing implementations of CNN models for ma
sonry crack investigation mostly use images from designated sites for 
training and testing, leading to high performance in a strictly controlled 
environment [2,12,19]. Furthermore, some particular studies [5,12] 
trained the models by assuming a typical masonry unit size to develop a 
sliding window that excludes joints, which is a challenge for use in real- 
life applications. Finally, few studies have been working on recognizing 
practical data of the segmented masonry cracks (length, thickness). This 
information is a critical factor affecting the masonry investigation and 
maintenance processes. 

As a result, this study couples crack segmentation and brick detection 
techniques and then automatically provides real-life length 

measurements of the detected cracks. Crack segmentation was per
formed using SOTA FCN architectures, whereas brick detection was 
done using the Mask-RCNN model. The presented work is essential for 
automatic documentation, assessment, and maintenance of existing 
masonry structures from digital images. 

2. Dataset 

2.1. Data collection 

Initially, a dataset was collected containing regular masonry struc
ture images in Korea without the rubble patterns. Most of the images 
were downloaded from the internet (Naver, Google search), while a 
small part of the dataset was collected in different regions of Korea using 
different devices under different resolutions (drones and smartphones). 
A generalization of the dataset is also considered by selecting images 
with cracks, doors, and windows. Those images contain various masonry 
units, color, illumination, and capture-angle. In total, 200 images with 
the size ranging from 780 × 355 to 2880 × 1920 were collected at the 
end of the data collection process. 

2.2. Crack segmentation dataset 

Fig. 1 provides a detailed explanation for making the masonry crack 
segmentation dataset from the original raw images. First, the labelling 
process was carried out using the original dataset (Fig. 1(a)). Three 
experts from a masonry investigation company2 were given a one-month 
labelling task. On average, five images were labelled per person per day. 
The labelling process began with an automated Python-based annota
tion application, which implements standard processing techniques, 
such as morphological operations and edge detection, to automatically 
recognize and highlight the cracks in red. Next, the experts reviewed the 
outputs of the application and corrected them if necessary. This step 
generated 500 crack-annotated images based on the original 500 raw 
images. Secondly, a color-based thresholding technique was imple
mented to transform the crack-highlighted images into a binarized 
image with the crack’s regions in white and the other areas in black, as 
displayed in Fig. 1(b). The thresholding process also reduces the color 
channel impact during the training process. Finally, a patch extraction 
process was applied to the original images and their corresponding bi
nary images because the sizes of those images varied. The sliding 

Fig. 1. Step-by-step process of the masonry crack data generation. Note: Three 
primary processes are (a) labelling (confirmed by experts), (b) thresholding, 
and (c) patch extraction. 

2 https://deepinspection.ai. 
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window technique with a size of 224 × 224 and a stride of 0.1 was 
utilized to convolve over the raw images and their corresponding binary 
images simultaneously to acquire a list of crack and mask patches (Fig. 1 
(c)). The patches without cracks were automatically removed. 

After performing all three steps, a total of 2670 crack patches and 
2670 mask patches were obtained. The segmentation data was then split 
into training and testing datasets using the following holdout strategy. 
80 % of the original dataset was randomly selected as the training data, 
which was then divided into the training data for training the model and 
validation data for fine-tuning the hyperparameters. The remaining 20 
% of the original dataset was selected as the testing data to evaluate the 
framework’s performance. A detailed description for training, valida
tion, and testing datasets is provided in Table 1. 

2.3. Brick detection dataset 

The direction a masonry brick unit is put has a huge impact on how it 
appeals to aesthetics, supports the structure, and withstands wear and 
tear. For the collected masonry dataset, the brick was primarily laid in 
two orientations, as depicted in Fig. 2. The most common forms are 
stretcher, which lays the bricks horizontally in a wall with the long edge 
parallel to the surface. Another approach is header, which lays the bricks 
horizontally in a wall with the shorter end exposed to the surface. 

Different from the crack segmentation dataset, the annotation tool 
used for brick detection is a well-known open-source Python application 
named labelImg3 based on Qt5. The dataset was then split into training, 
validation, and testing sets using the same holdout strategy. The number 
of images is displayed in Table 1, the brick detection dataset column. 

3. Methodology 

Fig. 3 depicts the overall procedure of the masonry crack segmen
tation and measurement framework, which contains three primary 
processes. 

Data preparation, described in Section 2, is the starting point of the 
framework. The masonry crack segmentation and the brick detection 
datasets are created at the end of the data preparation step. Two parallel 
processes are then carried out for two separate tasks, crack segmenta
tion, and brick detection. For the crack segmentation task, various deep 
learning models, including FCN, U-Net, and DeepLabV3+, were imple
mented, and their performance was tested carefully to discover the best 
model for the collected masonry crack segmentation dataset. Several 
post-processing techniques were applied to remove noise from the 
segmented outputs. A skeletonization process was then carried out to 
extract the crack skeleton. On the other hand, for the brick detection 
task, a Mask-RCNN model was trained to detect the brick units from the 
input image, which is required to compute the brick’s width in order to 
obtain the measurement in real-life in millimeters (mm). Finally, the 
extracted crack skeleton and real-life measurements are used to calcu
late the crack length and thickness. 

The masonry crack segmentation model and post-processing are 
explained in Section 3.1. The brick detection and real-life measurement 
extraction are then discussed in Section 3.2. Finally, Section 3.3 de
scribes the real-life crack length extraction process. 

3.1. Crack segmentation and post-processing 

3.1.1. Crack segmentation 
In this study, the segmentation models used for training the masonry 

crack segmentation are U-Net, FCN, and DeepLabV3 +. Transfer 
learning was implemented to train the models using the created dataset. 
In addition, various backbones, including ResNet-50, VGG-19, Incep
tionV4, MobileNetV3, and Xception, were examined to find the model’s 
most suitable backbone. 

The loss function’s main objective is to reduce the error during 
training and optimize the weights to minimize the loss during the sub
sequent evaluation. Two different loss functions, including Binary- 
Cross-Entropy (BCE) and Focal-Loss (FL), were considered in this 
study in order to determine the most appropriate loss function for each 
model. All experiments were based on the Adam optimizer with a 
learning rate of 1E-4 and decay set to 1E-6. 

3.1.2. Post-processing 
The segmented outputs can contain broken cracks separated from a 

full crack or various types of noise. As a result, a post-processing process, 
which tries to connect broken cracks and reduce noise using morpho
logical operations, was implemented to improve the predicted outputs. 

Firstly, the closing operation was applied to connect broken cracks. It 
is described as follows: 

A⋅B = (A ⊕ B) ⊖ B (1)  

where ⊕ is the dilation process, which adds the pixels, while ⊖ depicts 
the erosion process that narrows the pixels of the boundary of the object. 
The dilation computes a local maximum, while erosion computes a local 
minimum over an area of a kernel B. 

After connecting the broken cracks using the closing operation, the 
remaining noise was further reduced by performing the opening process, 
as illustrated in Equation (2). It is contrary to the closing process, where 
the dilation process was implemented after the erosion process. 

A◦B = (A ⊖ B) ⊕ B (2) 

This research applied a 3 by 3 point kernel to remove noise from the 
output masks and obtain only crack pixels. 

3.1.3. Skeletonization 
Skeletonization is usually applied to find the single-pixel skeleton of 

an object that has a detected masonry crack. Skeletonization accurately 
extracts the crack’s topology, which can be used to provide a detailed 
analysis of the crack. Previously, different methods have been intro
duced to generate the object’s skeleton accurately, such as digital pat
terns thinning [21], 3D medial surface thinning [22], morphological 
thinning [23], and medial axis [24]. 

Fig. 4 shows the crack topology output of the four skeletonization 
methods for two cases, including Case 1 (simple crack) and Case 2 
(complicated crack). Overall, the output crack topologies were captured 
correctly for all approaches except the morphological thinning (4th 
column), which produced a broken output for Case 1 and wrongly 
generated various additional crack branches for Case 2. 

Each skeletonization method has strengths and weaknesses, so the 
researcher must assess them carefully and choose the most suitable 
method. For example, 3D medial surface thinning [22] and digital pat
terns thinning [21] require a high computational cost for Case 2 because 
the iterative processes grow exponentially for complicated cracks, so 
they are suitable for applications that demand precise extraction with 
longer processing times. The medial axis [24] is used in this study 

Table 1 
Number of images for the proposed masonry crack segmentation and brick 
detection dataset.   

Crack segmentation Brick detection 

Crack 
patches 

Mask 
patches 

Original 
images 

Annotated 
images 

Training 1708 1708 256 256 
Validation 428 428 64 64 
Testing 534 534 80 80 
Total 2670 2670 400 400  

3 https://github.com/tzutalin/labelImg. 
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Fig. 2. Description of the possible orientations of the masonry brick.  

Fig. 3. Detailed explanation of the masonry crack segmentation and measurement framework. Note: Three primary tasks are (1) data preparation, (2A) crack 
segmentation and post-processing, (2B) brick detection and measurement, and (3) crack measurement. 

Fig. 4. Visualization of the four different skeletonization approaches for two different cases of cracks.  
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because it produces accurate crack topology for cracks with fewer 
branches (same as masonry cracks) and requires less computing power 
than other algorithms. 

3.2. Brick detection and real measurement extraction 

It is feasible to provide the actual measurement of a crack in mm due 
to the masonry brick units’ fixed dimensionality and ratio nature. This 
section focuses on detecting the bricks and evaluating the detected brick 
in order to provide the actual measurement per 1 pixel to facilitate the 
measurements of the segmented cracks in real-world data. 

3.2.1. Brick detection 
The mask region-based convolutional neural network (Mask RCNN) 

is a state-of-the-art image segmentation deep learning model [25]. It is 
an extension of Faster RCNN, where an additional branch is added for 
predicting the object mask of each candidate object alongside the exiting 
two branches for the bounding box and class label. The Mask RCNN 
network implemented in this study has three main stages, as displayed in 
Fig. 5. 

First, for the backbone part, pre-trained ResNet50/101 models on the 
ImageNet dataset [26] were used to extract low-level features from 
training brick images. The backbone also includes a feature pyramid 
network (FPN) to enable the representation of the brick target on mul
tiple scales. FPN is also effective for detecting small targets like brick 
units. An up-sampling process was implemented to combine the FPN’s 
top-level features and the extracted features, each layer producing its 
specific feature maps. 

Second, the output feature maps produced by the backbone were fed 
into a region proposal network (RPN). A brick target is usually a small 
object with varying sizes due to the capturing position. Consequently, 
three area-scale anchors were proposed (16 × 16, 32 × 32, and 64 × 64) 
based on the possible number of brick pixels an image may contain. The 
rectangular box’s length to width ratio in an input image was about two, 
so three anchors (1:1, 2:1, and 1:2) were selected. RPN uses a cross- 
entropy loss to learn and verify the created anchors and SmoothL1 
loss to adjust the anchors’ coordinates. The output of the RPN is a 
collection of ROIs that possibly contain brick units. 

The next step is ROI alignment, which aims to map the extracted 
ROIs to obtain the target features using bilinear interpolation to satisfy 
the input demands of the FC. 

Finally, the outputs of the ROI alignment were fed into three 
different output paths, including the regression layer for bounding box 
prediction, the FC layer for class prediction, and the FCN for generating 
the target mask. 

3.2.2. Real-life measurement extraction 
After the bricks were detected using the Mask-RCNN model, various 

processes were performed with the primary goal of providing the real 
measurement in mm. Fig. 6 represents the detailed description of the 
brick measurement process proposed in this study. 

The length (L) and height (H) of all detected bricks were first 
computed based on the bounding box information and added to a ma
trix. Although there are two main ways the bricks were laid, including 
stretcher and header, as described in Section 2.3, there remain other 
cases of the detected brick, such as brick obscured by object and broken 
brick, etc., which resemble the header-based laid brick. Consequently, it 
is unavoidable that the computed L and H varied among the detected 
bricks. 

A K-mean clustering algorithm is implemented in order to cluster the 
computed length and height data for each detected brick with a pre
sumed k value of 2 (stretcher and header). K-means clustering belongs to 
a matrix factorization issue, so the data need to be transformed into a 
L × H matrix. 

The L/H ratio for each centroid of each cluster was calculated to filter 
out the cluster that has the highest L/H ratio, which indicates the 
stretcher-type bricks. 

Each L/H ratio of the brick in the stretcher-type cluster was then 
compared with the available standard L/H ratios, which are 190/90, 
205/90, and 230/90, according to the Korea Building Code Draft (KBC- 
205 0602.2) [27]. Bricks that match the standard L/H ratios (with an 
error of less than 0.1) were added to a list. There are two possible cases: 

The list is not empty: the average H of all the bricks in the list was 
computed and used to get the real mm per 1px based on the matched 
standard L/H ratio. 

The list is empty: a perspective transformation method is carried out 
on the image based on extracting the position (x, y) of the four positions 
of a brick (top left, top right, bottom left, and bottom right). Step i was 
then performed again. 

3.3. Crack measurement 

Previous studies have proved that the length of a crack can be 
computed based on the extracted crack skeletons [28,29]. However, the 
output results were in pixels, which could not be applied to real-life 
applications. By automatically extracting the actual measurement of 
mm per pixel in the previous section, it is feasible to provide the actual 
measurement in real-life for all segmented cracks. Those measurements 
provide experts with more analytical tools to determine the masonry 
architecture’s condition. 

The equation for computing the length (L) of a crack is described as 
follows: 

L =

∫

c
δdl ≅

∑
δdl (3)  

where δ depicts the geometric distortion calibration and dl is the finite 
length of L. Initially, δ is used as a calibration value for possible pixel 
displacements in the predicted mask images. The geometric distortion 
was solved by performing the perspective transformation in Section 
3.2.1. As a result, δ was set to 1, which allows L to be calculated by 
directly counting the generated skeleton pixels. 

4. Experimental results 

In this work, all the experiments were implemented on an Ubuntu 
18.04 machine equipped with an RTX R5000 24 GB GPU and 252 GB of 
DDR4 RAM. 

The main metrics computed to evaluate the model’s performance 
and robustness are explained in Section 4.1. Section 4.2, including 
various experiments to verify the proposed masonry crack segmentation 
results. Then, the model used in this study was compared with the other Fig. 5. Mask-RCNN architecture for the masonry brick unit detection task.  
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state-of-the-art crack segmentation models to demonstrate its superior
ity. In Section 4.3, in order to facilitate the real-life crack length mea
surement process, the performance of the Mask-RCNN-based brick 
detection model is described. After that, the performance of the post- 
processing process and skeletonization are shown in Section 4.4 and 
Section 4.5. Finally, Section 4.6 provides a detailed experiment for real- 
life masonry crack measurement based on the segmentation and brick 
measurement results. 

4.1. Evaluation metrics 

Masonry crack segmentation belongs to the binary classification 
issue because each pixel in the input image is classified into either crack 
(white) or background (black). As a result, intersection over union (IoU) 
is calculated using the four components, including true positive (TP), 
true positive (TN), false positive (FP) and false negative (FN), from a 
binary confusion matrix. IoU computes the overlap between the ground 
truth mask and the prediction mask. It is formulated as follows: 

IoU =
TP

TP + FN + FP
(4)  

4.2. Masonry crack segmentation model 

Multiple versions of segmentation models were implemented to 
determine the optimal combination of backbone, parameters, and loss 
function that form the best segmentation model. All models were tested 
using an Adam optimizer, with a learning rate of 1E-4 over 30 epochs. 

Table 2 shows that some versions of the three models delivered high 
validation IoU, accuracy, precision, recall, and F1. For each model, the 

optimal parameters were as follows:  

• U-Net (#4): pretrained ResNet-50 backbone on ImageNet dataset, 
“sigmoid” activation function, focal loss, and decoder channels of 
256, 128, 64, 32, and 16. 

• FPN (#3): pretrained VGG19 backbone on ImageNet dataset, “sig
moid” activation function, BCE loss, decoder pyramid channels of 
512, decoder segmentation channels of 128, and dropout of 0.2.  

• DeeplabV3+ (#1): pretrained ResNet-50 backbone on ImageNet 
dataset, “Sigmoid” activation, BCE loss, and decoder channels of 256.  

• DeepLabV3+ (#1), which used the ResNet-50 backbone and BCE 
loss, achieved the highest accuracy and IoU of 98 % and 0.97, 
respectively (Table 2), on the training dataset. As a result, it was 
selected as the default model for performing masonry crack 
segmentation. 

Fig. 7 demonstrates the training/validation losses and accuracies of 
the DeepLabV3+ (#1) model. The accuracy of the training and valida
tion processes increases significantly to above 95 %, while the training 
and validation losses decrease remarkably to under 0.15 after epoch 3. 
The validation accuracy and loss increase slowly after epoch 3 and 
stabilize before reaching the highest validation accuracy of 97 % and 
validation loss of 0.12 at epoch 40. 

After selecting DeepLabV3+’s as the primary model used for crack 
segmentation, its robustness was further investigated by evaluating it 
along with two existing state-of-the-art segmentation models: Deep
Crack [31] and CrackNet [32]. The two models were implemented with 
hyperparameters that strictly follow those defined in the reference 
papers. 

As shown in Table 3, accuracy and IoU scores were computed and 

Fig. 6. Detailed description of the real-life measurement extraction process.  

Table 2 
Detailed description for various parameters implemented for each provided model.  

Model Backbone Loss function Index Loss Accuracy Precision Recall F1 IoU 

U-Net [16] – BCE #1 0.31 95 92 98 95 0.91 
Focal loss #2 0.15 94 92 99 94 0.91 

ResNet-50 BCE #3 0.23 94 95 98 97 0.94 
Focal loss #4 0.15 96 96 98 97 0.95 

VGG19 BCE #5 0.24 95 94 96 96 0.92 
Focal loss #6 0.15 95 96 99 97 0.95 

InceptionV4 BCE #7 0.29 92 93 95 95 0.92 
Focal loss #8 0.17 88 96 91 93 0.87 

FPN [30] ResNet-50 BCE #1 0.18 93 91 93 92 0.85 
Focal loss #2 0.23 67 95 69 79 0.67 

VGG19 BCE #3 0.15 94 98 95 97 0.94 
Focal loss #4 0.12 90 98 92 95 0.9 

InceptionV4 BCE #5 0.22 92 95 96 95 0.92 
Focal loss #6 0.27 88 98 89 93 0.88 

DeeplabV3+ [17] ResNet-50 BCE #1 0.02 98 97 99 98 0.97 
Focal loss #2 0.07 94 96 98 97 0.94 

MobileNetV3 BCE #3 0.09 97 97 99 98 0.97 
Focal loss #4 0.02 95 97 97 97 0.95 

Xception BCE #5 0.24 93 98 94 96 0.93 
Focal loss #6 0.03 95 95 99 97 0.95 

Note. Bold numbers indicate the highest result for each model. The yellow color shows the best overall performance of each model. 
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compared between the three crack segmentation models. Generally, 
they demonstrated high accuracy and IoU values of over 85 % and 0.85, 
respectively. The proposed masonry crack segmentation based on the 
DeepLabV3 + model achieved the highest IoU of 0.97. The DeepCrack 
model came in second place with an IoU of 0.92. Finally, the CrackNet 
model displayed the lowest IoU of 0.86 and an accuracy of 87 %. As a 
result, the DeepLabV3 + outperformed the previous crack segmentation 
model on the proposed masonry crack segmentation dataset. 

Fig. 8 demonstrates the model predicted outputs for three different 
scenarios of the input image. For each scenario, the first column is the 
original image, the second column indicates the ground truth mask, 
where the actual cracks are highlighted, and the final column shows the 
predicted masks that were the output of the DeepLabV3 + model. 
Generally, the DeepLabV3 + model localized the cracks correctly and 
robustly for different conditions. For example, the model precisely 
predicted the crack mask for the input image for simple cracks on the 
masonry surface as in the first scenario. It also correctly localized the 

cracks even when the input was slightly skewed, as in the second sce
nario. It is even more challenging in the last case. Even though some 
parts of the window resemble the cracks, the model still robustly 
localized the cracks. Moreover, the proposed model greatly lowered the 
number of disjoint cracks from the output mask by joining them using 
the post-processing process. 

4.3. Brick detection 

Fig. 9 shows the bounding box loss and mask loss graph for the brick 
detection process using the Mask-RCNN framework. Both the bounding 
box loss and the mask loss declined considerably and stopped at 0.16 
and 0.1, respectively, at the end of epoch 20. 

Fig. 10(b) displays the brick unit detection result using the trained 
Mask-RCNN model for two input images. It can be seen that the detec
tion rate was high because the model could detect the two types of brick 
(stretcher and header) as well as bricks obscured by objects (the first 
input image). As shown in Fig. 10(a), a bounding box and a brick mask 
were predicted for each detected brick. 

The detected bricks were then fed into the brick unit measurement 
algorithm explained in Section 3.2.1 in order to recognize the actual mm 
per pixel result. 

4.4. Post-processing process 

Post-processing is a crucial process that can reduce noise and missing 
cracks and connect nearby cracks to create a uniform crack. Fig. 11 
shows a sample of the effectiveness of the post-processing method. In the 
case of no post-processing process, there is a crack in the upper right part 
of the image, but the model segmented it too narrowly, leading to the 
missing crack in the skeletonization result. However, as displayed in the 
bottom left image, the mentioned crack region was enhanced when 
morphological operations were implemented. As a result, the extracted 
crack skeleton was correct, which contained all the crack regions. In 
addition, potential noise from the predicted image can also be effec
tively removed after applying the post-processing method. 

4.5. Skeletonization 

After localizing the masonry cracks, it is essential to automatically 
compute the crack length in order to provide additional statistical in
formation to the inspectors to make a more precise decision. The auto
mated crack length measurement algorithm proposed by this study was 
based on the crack skeletons explained in Section 3.2. The skeletoniza
tion process converts the segmented cracks into a single-pixel crack 
skeleton. The median-axis skeletonization method was applied to extract 
the skeleton of each segmented crack. 

Fig. 12 displays the skeletonization output for two input masonry 
crack images. The first column contains the input RGB images, the 
second column is the segmented outputs, and the last column displays 
the generated skeletons for the segmented images. The proposed model 
accurately segmented masonry cracks, even with challenging input. 
Moreover, the medial axis approach precisely produced the 

Fig. 7. DLV3 + model performance on the crack segmentation validation datasets.  

Table 3 
Proposed model’s performance compared to two other deep learning models.  

Model Accuracy IoU 

CrackNet [32] 87  0.86 
DeepCrack [31] 94  0.92 
DeepLabV3+ (Our) 98  0.97  

Fig. 8. Comparison between the predicted masks using the proposed Deep
LabV3 + model and the ground truth masks on various scenarios of the 
input images. 
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Fig. 9. Mask-RCNN’s performance on the brick detection validation set.  

Fig. 10. Detected bricks on different types of masonry brick units using the Mask-RCNN model. a) enlarged version of a detected brick; b) brick detection results.  

Fig. 11. The importance of the post-processing process, which reduces noises and missing crack problems.  
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corresponding skeletons for the segmented images, which is crucial for 
the crack length measurement technique to work correctly. 

4.6. Real-life crack measurement 

After extracting the crack skeleton from the segmented crack out
puts, the crack length can be computed by the equation in Section 3.3. 
The computed crack’s length is in pixels, which is challenging for the 
inspectors to decide its severity. As a result, brick detection and real 
measurement were performed to extract the real measurement in mm 
per pixel. 

Fig. 13 describes the crack length measurement process in two 
different cases, simple crack (Fig. 13(a)) and complex crack (Fig. 13(b)). 
For each case, the original image, crack length measured by the ruler, 
predicted mask, and skeletonization result is displayed. 

Based on the skeletonization output and the actual mm/pixel 
computed in Section 4.5, Table 4 shows a comparison between the 
actual inspection length and the model predicted length for the two 
particular cases. 

In the first case (a) containing a single crack, the actual length of the 
crack is 260 mm. After the crack mask was predicted and the skeleton 
was extracted, the total number of computed crack length pixels was 
1787, with the computed mm/pixel at 0.16. Therefore, the predicted 
crack length by the proposed framework is 285.9 mm, which leads to a 
measurement accuracy of 90.1 %. 

For a more complex case (b) involving two separate cracks, the real 
combined crack length is 540 mm. The lengths of the first crack (#1) and 
the second crack (#2) predicted by the proposed framework were 485.4 
mm and 112.5 mm, respectively. The total predicted crack length was 
597.9 mm, so the accuracy for the second case is 90.3 %. 

Fig. 12. Generated skeletons for two masonry crack samples.  

Fig. 13. Real crack length measurement for two different scenarios, (a) simple and (b) complex cracks.  

L. Minh Dang et al.                                                                                                                                                                                                                             



Construction and Building Materials 359 (2022) 129438

10

5. Discussion 

Even though a limited number of studies have been introduced to 
identify masonry cracks, they were mostly classification [6,19] or 
detection [5,12]. In addition, the real-life crack measurement, a critical 
step for masonry inspection, was ignored. This research proposes a novel 
deep learning-based crack segmentation and measurement system that 
is distinguishable from previous approaches. The most crucial contri
bution is that the proposed framework can automatically identify ma
sonry cracks’ exact precise location/shape and provide real-life length 
measurements for the segmented cracks. The results of the methodolo
gies and experiments are in good agreement qualitatively and quanti
tatively, indicating the results’ reliability. 

Various state-of-the-art segmentation models, such as DeepLabV3+, 
U-Net, and FPN, were trained on the proposed masonry segmentation 
dataset using different combinations of backbone structures and loss 
functions. The DeepLabV3 + model (ResNet backbone and BCE loss) 
showed the highest IoU score of 0.97, showing that the model precisely 
segmented cracks from input masonry images. Moreover, the Deep
LabV3 + outperformed previous state-of-the-art crack segmentation 
models, including CrackNet and DeepCrack, which demonstrate the 
superiority of the proposed model. 

Previous masonry crack identification frameworks provided the in
spectors with basic crack information, such as crack class and location. 
However, they failed to provide context information, such as crack 
length, for determining the crack severity. This study efficiently solved 
this problem by first implementing a median-axis skeletonization algo
rithm in order to convert the segmented cracks into single-pixel crack 
skeletons to enable the computation of the crack length in pixels. 
However, it is still difficult for humans to comprehend the length in 
pixels, and the real-life measurement of a crack (in mm) can be 
computed based on the masonry brick units’ fixed dimensionality and 
ratio nature. Therefore, we introduced a novel approach to compute the 
real-life length of the segmented cracks by detecting a brick unit using 
the Mask-RCNN model and performing real-life crack length extraction 
based on the algorithm explained in Section 3.2.1. Section 4.6 shows the 
effectiveness of the proposed approach for simple and complicated 
scenarios, which obtained real-life length high prediction accuracy of 
90.1 % for simple and 90.3 % for complex crack scenarios. 

6. Conclusion 

This study presents an effective masonry crack detection and mea
surement framework based on deep learning. Through various experi
ments, the framework showed that structural cracks and brick unit 
detection could be performed with high performance. The framework 
significantly reduces the time and effort previously required for the in
spectors to perform the inspection and documentation of the masonry 
structures while minimizing human errors at the same time. 

The crack segmentation model based on DeepLabV3 + achieved an 
IoU score of 0.97 and an F1 score of 98 %. The quality of the output mask 
was then improved through various image-processing methods. After 
that, the medial-axis skeletonization method was then performed to 
obtain the crack skeleton that could be used for the crack measurement 
process. Notably, the proposed framework has a capacity not addressed 
in previous work; it provides real-life crack measurements through 

detecting and measuring the brick unit. The Mask-RCNN-based brick 
detection model showed a validation bounding box loss and mask loss at 
0.16 and 0.1. The experimental results demonstrated that the model 
robustly detected stretcher bricks, header bricks, and bricks obscured by 
other objects. The detected bricks were then fed into a brick measure
ment algorithm in order to provide the real-life crack measurement in 
mm. 

However, certain limitations remain in the proposed framework. 
Firstly, the dataset used in this framework mostly contains normal im
ages and slightly skewed images (less than 20 degrees), and the real-life 
measurement extraction based on the brick unit part became less ac
curate when fed a highly skewed input image, leading to the wrong 
crack length measurement. Secondly, as the deep learning model auto
matically learns abstract features from the training dataset, the model 
will not detect crack features that do not appear in the dataset 
(complicated cracks, tiny cracks, etc.). As a result, based on the appli
cation use case, engineers must provide a sufficient number of images 
that contain the desired crack features. 
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