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Abstract: Isotropic ultra-thin shells or membranes, as well as cable–membrane structures, cannot
resist loads at the initial state and always require a form-finding process to reach the steady state.
After this stage, they can work in a pure membrane state and quickly experience large deflection
behavior, even with a small amplitude of load. This paper aims to improve the load-carrying ca-
pacity and strength of membrane structures via exploiting the advantages of functionally graded
carbon-nanotube-reinforced composite (FG-CNTRC) material. In this work, the load-carrying ca-
pacity and nonlinear behavior of membrane structures with and without CNTs reinforcement are
first investigated using a unified adaptive approach (UAA). As an advantage of UAA, both form
finding and postbuckling analysis are performed conveniently and simultaneously based on a mod-
ified Riks method. Different from the classical membrane theory, the present theory (first-order
shear deformation theory) simultaneously takes into account the membrane, shear and bending
strains/stiffnesses of structures. Accordingly, the present formulation can be applied adaptively and
naturally to various types of FG-CNTRC structures: plates, shells and membranes. A verification
study is conducted to show the high accuracy of the present approach and formulation. Effects of
CNTs distribution, volume fraction, thickness, curvature, radius-to-thickness and length-to-radius
ratios on the form-finding and postbuckling behavior of FG-CNTRC membranes are particularly
investigated. In particular, equilibrium paths of FG-CNTRC membrane structures are first provided
in this paper.

Keywords: CNTs; ultra-thin shells or membranes; load-carrying capacity; nonlinear behavior

MSC: 74S22

1. Introduction

Ultra-thin shells or membranes are found in many engineering fields, from terres-
trial applications to space applications, as air-bags, roofs of buildings, fabric structures,
exhibition pavilions, parachutes, inflatable reflectors, antennae and solar power collection
panels on spacecraft, space-based radars, etc. [1]. Membrane structures are widely used
due to their high strength-to-weight ratio, light weight and flexibility. Accordingly, they
can be applied flexibly to short-span, long-span and free-form shape buildings, and their
behaviors should be particularly investigated. In mechanical models of isotropic membrane
structures, due to their thicknesses being very small, it is assumed that the membranes have
zero bending stiffness and pure membrane stiffness. Isotropic membrane structures cannot
resist loads at the initial or intermediate states as illustrated in Figure 1. They always
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require a form-finding process to reach the steady state. After this state, the isotropic
membranes can resist loads, work in a pure membrane state and quickly experience large
deflection, even with a small load. Due to the importance of the form-finding process,
many numerical techniques have been developed for form finding, such as: dynamic relax-
ation [2], force density method [3], a nonlinear solver and updated reference strategy [4],
the natural-shape-finding method [5], the direct and indirect approach of the force density
method [6,7], the minimal surface method [8], etc.18 T. D. Dinh et al. / International Journal of Solids and Structures 112 (2017) 16–24 

Fig. 1. Different configurations of a tensioned membrane structure: (a) flat fabric panels, (b) 3D- intermediate configuration, which is formed by assembling the fabric panels, 

and (c) the resulting structure, which is formed by deforming the intermediate membrane ( Bletzinger et al., 2009 ). 
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Fig. 2. Flowchart of the proposed method. 

brane are reliable. Nevertheless, it is worth mentioning that even 

though the FEM analysis is done in the finite deformation frame- 

work, the strains are only in the range of small to moderate. The 

reason is that the fabric plasticity model, which was developed in 

Dinh et al. (2014) , was not designed for large strains. Once the op- 

timum 3-D intermediate membrane is obtained, cutting patterns 

generation is carried out. At this stage, the stress-free assumption 

in the 3-D intermediate membrane is verified. If the strains in the 

resulting fabric panels obtained from the cutting patterns gener- 

ation stage are negligible, the obtained results are deemed to be 

valid. Overview of the proposed method can be found in Fig. 2 . 

3. Nonlinear finite element analysis of tensioned fabric 

membrane structures 

3.1. Material models 

The coated fabric considered in this work is the polyester fiber 

woven fabric with PVC coating, which is manufactured by Sioen 

Industry, Belgium. This kind of coated fabric is ubiquitously used 

now in tension membrane structures. The present authors have 

proposed a material constitutive law, viz. , fabric-plasticity model, 

for this material, details of this model can be found in Dinh et al. 

(2014) . This material model has shown a good performance in cap- 

turing the nonlinear behavior of the coated fabric when we used 

it for a load analysis of a large-scale membrane ( Dinh et al., 2015 ). 

Therefore, in this paper, we also use it to simulate the mechanical 

behavior of the fabric membrane. Moreover, in practice, the linear 

orthotropic elasticity model is widely used. Thus, for the sake of 

comparison this material model is also used for the fabric in our 

simulation. Comparison of the obtained results when we use dif- 

ferent material models for the membrane, i.e. , fabric-plasticity and 

orthotropic elasticity, will bring us insight into the amount of fab- 

ric compensation that designers should apply to their fabric panels 

when the elasticity model is used in their computation. This in- 

formation is of paramount importance for practitioners, but rarely 

reported in the literature. 

3.2. Nonlinear interaction between the boundary cable and the 

membrane 

In tensioned fabric membrane structures, the prestresses are in- 

troduced in the membrane by stretching the boundary cables at 

the edges of the membrane. These cables may fit within the fab- 

ric sleeves and may slide when the membrane structure is loaded 

( Pargana et al., 2010; PAULETTI et al., 2010 ). This interaction is re- 

ferred to as boundary nonlinearity ( Wriggers, 2008 ). In Dinh et al. 

(2016) , the present authors have shown that this kind of nonlin- 

earity had a profound effect on the stress distribution in the mem- 

brane and could not be ignored. That conclusion was also in line 

with the ones presented in Li and Chan (2004) ; Pargana et al. 

(2010) ; PAULETTI et al. (2010) . In the present work, the sliding ca- 

ble is modeled by using the slip-ring elements in ABAQUS ( Hibbit 

et al., 2014 ). This kind of element can be used to model mate- 

Figure 1. Different configurations of a tensile membrane structure [9].

In attempts to improve the load-carrying capacity and strength of isotropic mem-
brane structures, they are often stiffened by cables for reinforcement of strength. However,
cable–membrane composite structures still exhibit some complicated problems, such as:
(1) the folding of the membrane by the cable; (2) the sliding of the cable on the membrane
surface [10]; (3) cable–membrane structures can only maintain their shapes with in-plane
tensile stress [11] and so on. In addition, a form-finding process is still required even when
membranes are stiffened by cables [11]. The above problems can lead to some numerical
difficulties in modeling cable–membrane composite structures. To overcome the existing
difficulties and improve the load-carrying capacity, as well as the strength of membrane
structures, functionally graded carbon-nanotube-reinforced composite membrane struc-
tures are first proposed and investigated in this paper using a unified adaptive approach
(UAA) in the framework of isogeometric analysis (IGA) and the first-order shear deforma-
tion theory (FSDT). As an advantage of UAA, both form finding and analysis are performed
conveniently and simultaneously based on a modified Riks method. The present structure
exploits the advantages of functionally graded carbon-nanotube-reinforced composite
(FG-CNTRC) material, such as: a high stiffness, low density, high strength and aspect
ratio [12–14]. It is interesting that the present approach and formulation can be applied
adaptively and naturally to FG-CNTRC plates/shells and membranes from ultra-thin to
moderate thick structures without concerning the global stiffnesses of structures. In at-
tempts to develop advanced methods, isogeometric analysis [15] was proposed to solve
mechanics problems with exact geometries and high accuracy. IGA has been developed
for various types of structures, such as plates [16–22] and shells [23–29]. In particular,
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NURBS-based nonlinear inverse analyses of thin shells were performed not only for pure
mechanical problems [30] but also for coupled problems [31]. In addition, IGA has been
successfully investigated for isotropic membrane structures, such as: classical shell the-
ory for the analysis of membranes [32], design and analysis [33], vibration analysis [34],
shape optimization of vibrating membranes [35], transient analysis [36], form finding with
dynamic relaxation [2] and form finding and large deflection analysis [37]. In this paper,
the form finding and postbuckling analysis of FG-CNTRC membrane structures are first
carried out with the goal of improving the load-carrying capacity and strength of membrane
structures. As the developments of IGA, IGAs using PHT-splines [38] and RHT-splines [39]
were proposed to drive the adaptive refinement and improve the computational efficiency.
In addition, combinations of artificial intelligence [40,41] and computational mechanics
have been proposed to analyze structures such as: deep collocation methods [42–44], deep
energy methods [45] and the deep learned one-iteration method [46].

The paper is organized as follows: a postbuckling analysis of functionally graded
carbon-nanotube-reinforced composite membranes is shown in the next section. Section 3
presents the form finding and postbuckling analysis of FG-CNTRC membrane structures
using a unified adaptive approach. Results and discussions are adequately provided in
Section 4. The paper is closed with several interesting main conclusions in Section 5.

2. Postbuckling Analysis of Functionally Graded Carbon-Nanotube-Reinforced
Composite Ultra-Thin Shells or Membranes
2.1. Functionally Graded Carbon-Nanotube-Reinforced Composite Membranes

All of the FG-CNTRC membrane structures in this study are investigated with four
types of CNT distributions as described in Figure 2. Four corresponding CNT volume
fractions are determined as follows:

VCNT = V∗CNT (UD)

VCNT(z) = (1 +
2z
h
)V∗CNT (FG-V)

VCNT(z) = 2(1− 2|z|
h

)V∗CNT (FG-O)

VCNT(z) = 2(
2|z|

h
)V∗CNT (FG-X)

(1)

and
V∗CNT =

wCNT

wCNT + (ρCNT/ρm)− (ρCNT/ρm)wCNT
(2)

It is assumed that the CNTs mass fraction wCNT is equal for the four types of FG-
CNTRC membranes. In addition, ρCNT and ρm, respectively, are the densities of CNTs and
the matrix, and h is defined as the thickness of membranes. In this study, we employ the
rule of mixture [47,48] to estimate the effective properties of CNT-reinforced materials as

E11 = η1VCNTECNT
11 + VmEm (3)

η2

E22
=

VCNT

ECNT
22

+
Vm

Em (4)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm (5)

where GCNT
12 is the shear modulus and ECNT

11 , ECNT
22 are Young’s moduli of CNTs. Gm is the

shear modulus and Em is Young’s modulus of the isotropic matrix material. In addition,
Vm and VCNT, respectively, denote the volume fractions of the matrix material and the
CNTs. The sum of these volume fractions is one. The efficient parameters ηi (i = 1, 2, 3) are
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considered to account for the scale-dependent material properties of CNTs. Poisson’s ratio
v12 and the density ρ can be determined as follows:

ρ = VCNTρCNT + Vmρm (6)

v12 = V∗CNTvCNT
12 + Vmvm (7)

where vCNT
12 and vm, respectively, are Poisson’s ratios of the CNTs and the matrix material.

Note that v12 is constant along the membrane thickness.

(a)

(b)

(c)

(d)

Figure 2. CNT distributions for FG-CNTRC membrane structure. (a) UD, (b) FG-V, (c) FG-O, (d) FG-X.

2.2. Postbuckling Analysis of FG-CNTRC Membrane Structures Using FSDT

Different from the classical membrane theory, the present theory (FSDT) simultane-
ously takes into account the membrane, shear and bending strains/stiffnesses of structures.
Hence, the present formulation can be used adaptively and naturally for various types of
FG-CNTRC structures—plates, shells and membranes—without concerning the global stiff-
nesses of structures. Firstly, we investigate a FG-CNTRC cylindrical membrane structure
with the initial geometry given in Figure 3. The displacements of an arbitrary point in the
membrane based on FSDT are defined as [49–51].
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u(x, y, z) = u0(x, y) + zβx(x, y)

v(x, y, z) = v0(x, y) + zβy(x, y) or ū = u0 + zu1

w(x, y, z) = w0(x, y)

(8)

and

ū =


u
v
w

; u0 =


u0
v0
w0

; u1 =


βx
βy
0

 (9)

where u0, v0 are the tangential displacement components and w0 is the radial displacement
component or the deflection of the considering point. βx and βy, respectively, are the
rotations in the y and the x axes. The strains in the orthogonal curvilinear coordinate
system (oxyz) with the von Karman assumption are defined as [51]

ε =
{

εxx εyy γxy

}T
= ε0 + zκb

γ =
{

γxz γyz

}T
= εs

(10)

and

ε0 = εL + εN ; εL =


u0,x +

w0
R

v0,y
u0,y + v0,x

; εN =
1
2


w0,x

2

w0,y
2

2w0,xy

;

κb =


βx,x
βy,y
βx,y + βy,x

; εs =

{
− u0

R + w0,x + βx
w0,y + βy

} (11)

The nonlinear strain component is re-expressed as

εN =
1
2

Aθ; A =

 w0,x 0
0 w0,y

w0,y w0,x

; θ =

{
w0,x
w0,y

}
(12)

The virtual work equation of the FG-CNTRC membrane structure is written as follows:∫
Ω

σ̂Tδε̂dΩ =
∫
Ω

δūTfsdΩ (13)

where the load vector fs = { fx fy fz}T . For the postbuckling analysis of the FG-CNTRC
membrane structure subjected to a radial pressure fz = λ f0, the virtual work equation is
conveniently re-written as ∫

Ω

σ̂Tδε̂dΩ = λ
∫
Ω

δw0 f0dΩ (14)

where λ and σ̂, respectively, denote the load factor and the stress resultant vector. The
vector σ̂ is defined as

σ̂ =
{

σp σb σs

}T
(15)

This vector has three components:
In plane

σp = {Nx Ny Nxy}T = {
h/2∫
−h/2

(σx σy τxy)dz}T (16)
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bending

σb = {Mx My Mxy}T = {
h/2∫
−h/2

(σx σy τxy)zdz}T (17)

shear

σs = {Qx Qy}T = {
h/2∫
−h/2

(τxz τyz)dz}T (18)

Hooke’s law is used to describe the relationship between the generalized strain vector
ε̂ and the stress resultant vector σ̂ as

σ̂ = D̂ε̂; D̂ =

 A B 0
B Db 0
0 0 Ds

; ε̂ =


εL
κb
εs

+


εN
0
0

 (19)

with

(Aij, Bij, Db
ij) =

h/2∫
−h/2

(1, z, z2)Qijdz; i, j = 1, 2, 6

Ds
ij = κ

h/2∫
−h/2

Qijdz; i, j = 4, 5

(20)

In this study, we employ the shear correction factor κ = 5/6 [49] and

Q11 =
E11

1− υ12υ21
; Q12 =

υ12E22

1− υ12υ21
; Q22 =

E22

1− υ12υ21

Q66 = G12; Q55 = G13; Q44 = G23

(21)

Figure 3. Initial geometry of a FG-CNTRC cylindrical membrane.

3. Form Finding and Postbuckling Analysis of FG-CNTRC Membrane Structures
Using a Unified Adaptive Approach
3.1. A Brief Introduction to the Unified Adaptive Approach (UAA) for Form Finding and Analysis
of Membrane Structures

For the analysis of an isotropic membrane, a form-finding process is first carried out to
reach the steady state or to achieve the new geometry of the membrane. Next, the analysis
step is conducted based on this new geometry. In this step, the isotropic membrane works in
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a pure membrane state and can experience large deflection quickly, even with a very small
load. For the analysis of membrane structures using the conventional numerical approach,
form finding and analysis are separately carried out, including a form-finding process
and numerical techniques for the geometrically nonlinear analysis of membranes. In this
study, the form finding and analysis of FG-CNTRC membrane structures are conducted at
the same time using the unified adaptive approach (UAA), which exploits the advantage
of the modified Riks nonlinear solver [37]. Note that, when employing the nonlinear
solver for form finding, the shape-generating load is often a surface load, such as: snow,
self-weight [4], etc. In this study, the surface load is employed for the two processes: form
finding and analysis. For isotropic membrane structures, a new type of equilibrium path
at the central point was proposed based on UAA. This path includes two parts: one is
achieved via form finding and the rest is from the analysis [37].

3.2. A Brief Introduction to Non-Uniform Rational B-Splines Basis Functions

In this subsection, we present a summarization of non-uniform rational B-spline
(NURBS) basis functions. The details, as well as source codes, of isogeometric analysis
using NURBS basis functions can be found in [52]. We first investigate a knot vector
Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
, ξi ∈ R with i = 1, . . . , n + p + 1. This vector is open if the last

and first knots are repeated p + 1 times. Note that a B-spline basis function has the Cp−1

continuity at each knot while it has the C∞ continuity inside a knot span. The B-spline basis
functions in the one-dimensional parametric space Ni,p(ξ) are determined as follows [53]:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ)

as p = 0, Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

} (22)

We next investigate two knot vectors in the two-dimensional parametric space
Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
and H =

{
η1, η2, . . . , ηm+q+1

}
. The B-spline basis functions

in this space can be determined via a tensor product as

Nb
A
(
ξ, η
)
= Ni,p(ξ)Mj,q

(
η
)

(23)

The NURBS basis functions can be employed to exactly describe geometries and are
determined by assigning the weight w for each control point as follows [15]:

NA
(
ξ, η
)
=

Nb
AwA

m×n
∑

I=1
Nb

I
(
ξ, η
)
wI

(24)

Note that the NURBS and the B-spline basis functions are completely the same if all of
the weights of the control points are identical.

3.3. Form Finding and Postbuckling Analysis of FG-CNTRC Membrane Structures Using UAA
and NURBS

Applying the unified adaptive approach (UAA) [37], both form finding and post-
buckling analysis are carried out at the same time via a modified Riks nonlinear solver as
mentioned earlier. In the present formulation, NURBS basis functions are employed to
interpolate geometries and displacements of membranes as follows:

xh(x, y
)
=

m×n

∑
A=1

NA
(
ξ, η
)
PA and uh(ξ, η

)
=

m×n

∑
A=1

NA
(
ξ, η
)
qA (25)
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NA
(
ξ, η
)

denotes the NURBS basis function and PA stands for the control point coor-

dinate. The vector qA =
{

u0A v0A w0A βxA βyA

}T
involves degrees of freedom

of the typical control point A. In addition, the vector xh(x, y
)

contains the physical point
coordinates and uh denotes the interpolated displacement vector.

Combining Equations (11) and (25), the strain vectors can be interpolated via the
control point displacements as

εL =
n

∑
A=1

BL
AqA; κb =

n

∑
A=1

Bb
AqA; εs =

n

∑
A=1

Bs
AqA (26)

and

BL
A =

 NA,x 0 1
R NA 0 0

0 NA,y 0 0 0
NA,y NA,x 0 0 0

; Bb
A =

 0 0 0 NA,x 0
0 0 0 0 NA,y
0 0 0 NA,y NA,x


Bs

A =

[
− 1

R NA 0 NA,x NA 0
0 0 NA,y 0 NA

] (27)

Substituting Equation (25) into Equation (12), the interpolated nonlinear strain vector
is achieved as follows:

θ =
n

∑
A=1

Bg
AqA; Bg

A =

[
0 0 NA,x 0 0
0 0 NA,y 0 0

]
; εN =

1
2

n

∑
A=1

BN
A qA

where BN
A = ABg

A =

 w0,x 0
0 w0,y

w0,y w0,x

[ 0 0 NA,x 0 0
0 0 NA,y 0 0

] (28)

We substitute the interpolated strains from Equations (26) and (28) into Equation (19)
and achieve the variation of the generalized strain vector ε̂ as

δε̂ =
n

∑
A=1

BAδqA; BA =


BL

A
Bb

A
Bs

A

+


BN

A
0
0

 (29)

Next, the terms in Equations (25) and (29) are substituted into Equation (14). We then
eliminate the virtual displacement component. The nonlinear equation can be written
conveniently as follows:

Ψ(q, λ) =
∫
Ω

BT
Aσ̂AdΩ− λ

∫
Ω

f0NAdΩ = 0; NA = {0 0 NA 0 0}T
(30)

In this study, the nonlinear equation in (30) is iteratively solved by employing the
modified Riks method [54]. When a change in the load from λm f0 to (λm + ∆λm) f0 is
created, a new equilibrium configuration close to the old one is reached and expressed as

Ψ(qm + ∆qm, λm + ∆λm) = 0 (31)

Only taking into account the first term after applying the Taylor series expansion to
Equation (31), we achieve a system of the linear incremental equilibrium equations as



Mathematics 2022, 10, 1481 9 of 25

Ψ(qm + ∆qm, λm + ∆λm) = Ψ(qm, λm) +
∂Ψ

∂q

∣∣∣∣
qm

∆qm +
∂Ψ

∂λ

∣∣∣∣
λm

∆λm = 0

∂Ψ

∂q

∣∣∣∣
qm

∆qm = −Ψ(qm, λm)−
∂Ψ

∂λ

∣∣∣∣
λm

∆λm

∂Ψ

∂q

∣∣∣∣
qm

∆qm = −
∫
Ω

BT
Aσ̂AdΩ + λm

∫
Ω

f0NAdΩ + ∆λm

∫
Ω

f0NAdΩ

KT(qm)∆qm = (λm + ∆λm)
∫
Ω

f0NAdΩ−
∫
Ω

BT
Aσ̂AdΩ

(32)

where KT stands for the tangent stiffness matrix determined at qm as

KT(qm) =
∂Ψ

∂q

∣∣∣∣
qm

KT(qm) =
∫
Ω

∂BT
A

∂q
σ̂AdΩ +

∫
Ω

BT
A

∂σ̂A
∂q

dΩ
(33)

We next carry out an iterative process for all load increments [54]. Conveniently,
Equations (32) and (33) can be re-expressed in a generalized form with the mth load
increment and the ith iteration as

KT(qm)∆iqm = iFext,m − iFint,m (34)

with

KT =
∫
Ω




BL
A

Bb
A

Bs
A

+


BN

A
0
0




T A B 0
B Db 0
0 0 Ds





BL
A

Bb
A

Bs
A

+


BN

A
0
0


dΩ+

+
∫
Ω

(
Bg

A

)T
[

Nx Nxy
Nxy Ny

]
Bg

AdΩ

(35)

and the load vector

iFext,m = (iλm + ∆iλm)
∫
Ω

f0

{
0 0 NA 0 0

}T
dΩ =(iλm + ∆iλm)F0 (36)

where F0 denotes the referenced load vector, while the internal load vector is determined as

iFint,m =
∫
Ω

(iBm)
T
(iσ̂m)dΩ (37)

We substitute all of the terms in Equations (19), (26), (28) and (29) into Equation (37)
and obtain the following equation:

iFint,m = iKm
iqm (38)

with

iKm =
∫
Ω




BL
A

Bb
A

Bs
A

+


BN

A
0
0




T A B 0
B Db 0
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The iterative computation is carried out for all load increments. To check the conver-
gence of solutions, the criterion based on the residual load vector is applied as∥∥∥iλmF0 − iFint,m

∥∥∥∥∥(iλm + ∆iλm)F0
∥∥ < 10−8 (40)

The incremental solutions are determined from Equation (34). We then update the
load factor and the displacement vector of each iteration as [54]

i+1λm = iλm + ∆iλm
i+1qm = iqm + ∆iqm

∆iqm = ∆iqR,m + ∆iλmqF,m

(41)

where ∆iqR,m and qF,m, respectively, are the displacement vectors induced by the residual
and referenced load vectors as

∆iqR,m = [KT(qm)]
−1(iλmF0 − iFint,m)

qF,m = [KT(qm)]
−1F0

(42)

4. Results and Discussion
4.1. Verification Study

This section aims to confirm the accuracy of the present formulation and approach for
the form finding and postbuckling analysis of FG-CNTRC membrane structures. It should
be noted that a high accuracy of the present approach for the form finding and analysis of
isotropic membrane structures was confirmed in [37]. In addition, this is the first study on
the analysis of FG-CNTRC membrane structures, and there is no reference solution in the
literature to compare to. Accordingly, the proposed formulation and approach are verified
via some benchmarks of isotropic FG-CNTRC cylindrical shell structures and a composite
circular cylinder shell. In this work, the central deflection is positive, corresponding to the
central point, which is deflected downward. Inversely, the central deflection is negative,
corresponding to the central point, which is deflected upward. The load is downward
pressure as illustrated in Figure 3. In this study, the surface load with a small load step
∆q = 10−5 N/m2 is employed as the shape-generating load. This load is used for the two
processes: form finding and analysis. For the convenience and efficiency, all of the problems
in this study are analyzed employing the mesh of 14 × 14 cubic elements and 4× 4 Gauss
points per each element. The armchair (10, 10) SWCNTs [55] and Poly methyl methacrylate
(PMMA) [56] are, respectively, employed as the reinforcements and the matrix material for
FG-CNTRC membranes. In addition, all of the membranes are circumferentially reinforced
with CNTs. Material properties at room temperature are employed as

• The CNTs reinforcement material
ECNT

11 = 5.6466 TPa, ECNT
22 = 7.0800 TPa, GCNT

12 = 1.9445 TPa, vCNT
12 = 0.175,

ρCNT = 1400 kg/m3;
• The PMMA matrix material

Em = 2.5 GPa, vm = 0.34, ρm = 1150 kg/m3.

For the CNTs reinforcement material, the efficiency parameters corresponding to the
volume fractions are given as [55]

• V∗CNT = 0.11: η1 = 0.149 and η2 = 0.934;
• V∗CNT = 0.14: η1 = 0.150 and η2 = 0.941;
• V∗CNT = 0.17: η1 = 0.149 and η2 = 1.381.
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We can assume that G12 = G13 = G23 and η3 = η2. For an FG-CNTRC membrane with
the initial geometry as described in Figure 3, the clamped boundary is directly imposed as

u0 = v0 = w0 = βx = βy = 0 (43)

In this study, two non-dimensional parameters are defined and investigated as follows:

• Normalized central deflection: ŵ = w/h;
• Curvature: κ = L/R.

In this section, geometrically nonlinear analyses of isotropic and FG-CNTRC cylindri-
cal shell structures are carried out to verify the present formulation and approach. Firstly,
we investigate a fully clamped isotropic cylindrical panel subjected to a pressure. The
geometry of the panel is determined as: the thickness h = 3.175 mm, L = B = 508 mm
and the radius R = 2540 mm. The characteristics of the material are Poisson’s ratio v = 0.3
and Young’s modulus E = 3.103 kN/mm2. The obtained result is presented in Figure 4
in a comparison with the result of Crisfield [57] using the finite element method. A very
good agreement is found. Next, a fully clamped FG-CNTRC cylindrical panel subjected to
a pressure, as shown in Figure 3, is investigated. The geometry of the panel is described
as follows: α = 0.1 rad, h/R = 0.004 and L/R = 0.1. The obtained results are shown in
Figure 5 in a comparison with the results of the mesh-free kp-Ritz method (MKR) [58]. A
very good agreement is obtained for all types of CNTs distributions. It can be seen that the
present approach and formulation have a high accuracy for nonlinear analyses of isotropic
and FG-CNTRC cylindrical shell structures. Finally, we can conclude that the present
approach and formulation have a high accuracy for the form finding and postbuckling
analysis of FG-CNTRC membrane structures.
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Figure 4. Normalized central deflection ŵ of the fully clamped isotropic cylindrical panel with
h = 3.175 mm, κ = 0.2.
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Figure 5. Normalized central deflections ŵ of the fully clamped FG-CNTRC cylindrical panels with
V∗CNT = 0.11, h/R = 0.004.

4.2. Parametric Study
4.2.1. FG-CNTRC Cylindrical Membranes

In this section, we consider a fully clamped cylindrical membrane structure under a
pressure. The geometric characteristics of the cylindrical membrane (C-M) are the thickness
h = 0.5 mm, L = B = 508 mm and the radius R = 2540 mm. First, we investigate the
behavior of the cylindrical membrane with the isotropic material as Poisson’s ratio v = 0.3
and Young’s modulus E = 3.103 kN/mm2. The obtained result is presented in Figure 6. It
is interesting that, although the loading is downward, the central point is deflected upward
at the beginning. This phenomenon occurs due to the form-finding process as explained
in [37], published by the authors of this paper. It is observed that the structure works in a
pure membrane state and quickly experiences large deflection behavior, even with a small
pressure, as seen in Figure 6. It should be noted that the results in Figures 4 and 6 are
obtained from two models with the same material, geometric data, loading and boundary
condition. The only difference is the thickness (h = 3.175 mm and h = 0.5 mm). It is clear
that behaviors of the isotropic membrane and thin-shell structures are completely different.
Next, we investigate the behavior of the above cylindrical membrane structure (C-M) with
the FG-CNTRC material. The obtained results are depicted in Figure 7. It is interesting
that, when using the FG-CNTRC material, the membrane structure works as a bending
structure. It is clear that behaviors of the isotropic and FG-CNTRC membrane structures are
completely different as seen in Figures 6 and 7. The FG-CNTRC membrane structure can
resist the load at the beginning without finding a new geometry, which usually occurs in
any isotropic membrane structures (the so-called form-finding procedure). Using the same
geometric data, loading and boundary condition, the FG-CNTRC membrane structure has
a significantly higher nonlinear strength compared with the isotropic membrane structure
as seen in Figures 6 and 7. It can be concluded that using the FG-CNTRC material for mem-
brane structures is very efficient. It is observed that FG-X is the best distribution and the
one that gives the greatest postbuckling strength. Figure 8 shows the effect of CNTs volume
fraction on the nonlinear response of the FG-CNTRC cylindrical membrane structure. The
larger the amount of CNTs in the membrane, the higher the postbuckling strength. Without
CNTs reinforcement (V∗CNT = 0), the membrane cannot resist the load at the initial state
and requires a form-finding process to reach the steady state. Conversely, with CNTs rein-
forcement, the membranes can resist the load at the beginning. It is concluded that CNTs
reinforcement can create a load-carrying capacity for cylindrical membrane structures,



Mathematics 2022, 10, 1481 13 of 25

even at the initial state. Figures 7, 9 and 10 show the effect of CNTs distribution on the
nonlinear response of the FG-CNTRC membrane with various curvatures κ = 0.2, 0.04, 0.
It is observed that the smaller the curvature of the membrane structure, the lower the
postbuckling strength. It is clear that using the FG-CNTRC material for the cylindrical
membrane structure is very effective, whereas, for the square membrane structure, it is
not effective. As seen in Figures 7 and 10, although various types of CNT distributions
are investigated, the nonlinear strength of the square membrane structure (κ = 0) does
not change, whereas that of the cylindrical membrane structure is significantly improved.
As mentioned earlier, FG-X is the best distribution and the one that gives the greatest
postbuckling strength. Accordingly, using the FG-CNTRC material for cylindrical mem-
brane structures is very effective and recommended, whereas using it for square membrane
structures is not recommended. It is interesting to note that, when the curvature of the
membrane is very small—κ = 0.04 (an almost flat membrane)—the membrane still works
as a bending structure. However, when the curvature κ = 0, the square membrane works as
a pure tensile structure. This phenomenon occurs due to the fact that CNTs reinforcement
in the circumferential direction can significantly improve the nonlinear bending strength of
the membrane structure, even when the curvature is small. In addition, Figure 11 shows a
strong effect of the curvature on the nonlinear response and behavior of the FG-CNTRC
membrane, although the change in curvature is very small, as described in Figure 12. As
seen in Figure 11, the membrane works as a bending structure even when the curvature of
the membrane is very small but not equal to zero. However, when the curvature κ = 0, the
square membrane suddenly works as a pure tensile structure. It is noted that the classical
membrane theory cannot model FG-CNTRC membranes correctly due to the present of
bending stiffness created by CNTs reinforcement. Different from the classical membrane
theory, the present theory (first-order shear deformation theory) simultaneously takes into
account the membrane, shear and bending strains/stiffnesses of structures. Accordingly,
the present formulation can be applied adaptively and naturally to various types of behav-
iors and structures, such as: FG-CNTRC plates/shells and membranes. The high efficiency
of the present formulation is confirmed. The effect of the thickness on the nonlinear re-
sponse of the FG-CNTRC cylindrical membrane is very significant as seen in Figure 13. It
can be concluded that, for an FG-CNTRC cylindrical membrane structure, an ultra-small
change in thickness or curvature can lead to a significant change in its nonlinear response,
strength and behavior.
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Figure 6. Central deflection of the fully clamped isotropic cylindrical membrane with h = 0.5 mm,
κ = 0.2.
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Figure 7. Effect of CNTs distribution on nonlinear response of the fully clamped FG-CNTRC cylindri-
cal membrane with V∗CNT = 0.11, h = 0.5 mm, κ = 0.2.
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Figure 8. Effect of volume fraction on nonlinear response of the fully clamped FG-CNTRC
cylindrical membrane with h = 0.5 mm, κ = 0.2, UD distribution.
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Figure 9. Effect of CNTs distribution on nonlinear response of the fully clamped FG-CNTRC cylindri-
cal membrane with V∗CNT = 0.11, h = 0.5 mm, κ = 0.04.
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Figure 10. Effect of CNTs distribution on nonlinear response of the fully clamped FG-CNTRC square
membrane with V∗CNT = 0.11, h = 0.5 mm, κ = 0.



Mathematics 2022, 10, 1481 16 of 25

Central deflection (mm)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

U
ni

fo
rm

 p
re

ss
ur

e 
(P

a)

0

20

40

60

80

100

120

140

160

180

200

5 = 0.2
5 = 0.04
5 = 0.02
5 = 0

bending behavior

tensile behavior

Figure 11. Effect of curvature on nonlinear response of the fully clamped FG-CNTRC cylindrical
membrane with h = 0.5 mm, V∗CNT = 0.11, UD distribution.
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Figure 12. Meshes of 14 × 14 elements of FG-CNTRC membranes with various curvatures. (a) κ = 0,
(b) κ = 0.2.
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Figure 13. Effect of thickness on nonlinear response of the fully clamped FG-CNTRC cylindrical
membrane with κ = 0.2, V∗CNT = 0.11, UD distribution.

4.2.2. FG-CNTRC Circular Cylinder Membranes

We next analyze a glass–epoxy circular cylinder shell with an internal pressure as
illustrated in Figure 14. The cylinder is fully clamped at two ends. The properties of the
geometry are given as follows: the thickness h = 1 in., the radius R = 20 in. and the
length L = 20 in. The material data are provided as follows: E1 = 7500 ksi, E2 = 2000 ksi,
v12 = 0.25, G12 = 1250 ksi and G13 = G23 = 625 ksi. We exploit the symmetry of the
cylinder shell: one eighth (ABCD) of the cylinder is analyzed without a loss of accuracy
of the solution. The achieved result is presented in Figure 15 in a comparison with the
result of Kreja [59] employing FEM. The present solution has a good agreement with the
referenced one. It can be concluded that the present formulation and approach have a high
reliability in predicting the geometrically nonlinear behavior of orthotropic cylinder shells.

Figure 14. A fully clamped composite circular cylinder subjected to an internal pressure, ABCD is
one eighth of the cylinder.
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Figure 15. Central radial deflection of a fully clamped composite cylinder with L/R = 1, R/h = 20.

Next, an adequate investigation into nonlinear behaviors of FG-CNTRC circular cylin-
der shells and membranes is first performed in this study. Fully clamped FG-CNTRC
cylinder shells and membranes with a fixed thickness h = 1 in. under external pressure
are considered. Figure 16 shows the significant effects of CNTs distribution on nonlinear
responses of the FG-CNTRC cylinder shell and membrane. For the cylinder shells, instabili-
ties including “snap-through” or “snap-back” occur depending on the CNTs distribution.
It is interesting to note that the cylinder membranes are stable during loading and quickly
experience large deflection behavior, even with a very small amplitude of pressure. For
both FG-CNTRC cylinder shells and membranes, FG-O is the worst distribution and the
one that gives the lowest nonlinear strength, and FG-X is the best distribution and the one
that gives the greatest nonlinear strength. Figure 17 shows the effect of the CNTs volume
fraction on the nonlinear response of the FG-CNTRC cylinder membrane. It is clear that,
the greater the amount of CNTs in the membrane, the greater the nonlinear strength. The
effects of the radius-to-thickness ratio on nonlinear responses of the FG-CNTRC cylinder
shell and membrane are described in Figure 18. For the cylinder shells (R/h = 60∼100),
instabilities can occur, whereas the cylinder membranes (R/h = 1000∼2200) are stable and
quickly experience large deflection behavior. The effect of the radius-to-thickness ratio on
the nonlinear response of the cylinder shell is very significant, whereas there is no effect of
this ratio on the response of the cylinder membrane. Finally, Figure 19 shows the effects
of the length-to-radius ratio on nonlinear responses of the FG-CNTRC cylinder shell and
membrane. The effect of the length-to-radius ratio on the instability and nonlinear response
of the FG-CNTRC cylinder shell is significant. However, this ratio almost does not affect
the instability and nonlinear response of the FG-CNTRC cylinder membrane.
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Figure 16. Normalized central radial deflections ŵ of clamped FG-CNTRC cylinder shells/membranes
under external pressure with L/R = 4 and V∗CNT = 0.11. (a) Cylinder shells, R/h = 80, (b) cylinder
membranes, R/h = 2200.
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Figure 17. Normalized central radial deflections ŵ of clamped FG-CNTRC cylinder membranes
under external pressure with L/R = 4, R/h = 2200, UD distribution, various V∗CNT .
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Figure 18. Normalized central radial deflections ŵ of clamped FG-CNTRC cylinder shells/membranes
under external pressure with L/R = 4, V∗CNT = 0.11, UD distribution, various R/h.
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Figure 19. Normalized central radial deflections ŵ of clamped FG-CNTRC cylinder shells/membranes
under external pressure with V∗CNT = 0.11, UD distribution, various L/R. (a) Cylinder shells,
R/h = 100, (b) cylinder membranes, R/h = 2200.

5. Conclusions

The load-carrying capacity and nonlinear behavior of ultra-thin shells or membranes
with and without CNTs reinforcement have been investigated for the first time using a
unified adaptive approach (UAA). As an advantage of UAA, both form finding and a
postbuckling analysis are performed conveniently and simultaneously based on a modified
Riks method. Different from the classical membrane theory, the present theory (FSDT)
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simultaneously takes into account the membrane, shear and bending strains/stiffnesses of
structures. Accordingly, the present formulation can be applied adaptively and naturally
to various types of FG-CNTRC structures—plates, shells and membranes—without any
restriction or modification. The high accuracy of the present approach and formulation
was verified via the benchmark problems. In particular, equilibrium paths of FG-CNTRC
membrane structures have been provided for the first time in this paper, which could be
useful for future references. From the parametric study, interesting major conclusions can
be drawn:

• Isotropic membrane structures always require a form-finding process to reach the
steady state and then work in a pure membrane state under the load. However, FG-
CNTRC cylindrical membrane structures work as bending structures and can resist
loading at the beginning without needing the form-finding process. Accordingly,
using the FG-CNTRC material can create a load-carrying capacity for cylindrical
membrane structures, even at the initial state.

• For a FG-CNTRC cylindrical membrane structure, an ultra-small change in thickness
can lead to a significant change in its nonlinear response and strength.

• Using the FG-CNTRC material for cylindrical membrane structures is very effective
and recommended, whereas, for flat membrane structures, it is not recommended.

• A FG-CNTRC cylindrical membrane works as a bending structure, even when the
curvature of the membrane is very small but not equal to zero. However, when the
curvature κ = 0, the square membrane suddenly works as a pure tensile structure.

• Under external pressure, for FG-CNTRC circular cylinder shells, types of instabilities
with various critical buckling loads can occur, whereas FG-CNTRC circular cylinder
membranes are stable and quickly experience large deflection behavior, even with a
very small amplitude of pressure.

• Radius-to-thickness and length-to-radius ratios significantly affect the instability and
nonlinear response of FG-CNTRC circular cylinder shells, but almost do not affect
those of FG-CNTRC circular cylinder membranes. Meanwhile, the CNTs distribu-
tion and volume fraction significantly affect nonlinear responses of both FG-CNTRC
circular cylinder shells/membranes.

• FG-X is the best distribution and the one that gives the greatest nonlinear strength of a
FG-CNTRC membrane structure. The greater the amount of CNTs in the membrane, the
greater the nonlinear strength.

The present work has some novelties, obtains new results using IGA and significantly
improves the load-carrying capabilities of ultra-thin structures via using CNTs reinforce-
ment. However, this work has some limitations that we need to overcome in future works,
which are as follows: (1) the present formulation is applicable to plates or shells with one
curvature. It should be developed and improved to model free-form shells; (2) in this work,
the rule of mixture is used to calculate the effective properties of CNT-reinforced materials.
The rule of mixture does not consider the interface behavior between the reinforcement
and the matrix material. In future, we should use some material models that can consider
this interface behavior.
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