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Abstract: Relative positioning accuracy between two devices is dependent on the precise range mea-
surements. Ultra-wideband (UWB) technology is one of the popular and widely used technologies
to achieve centimeter-level accuracy in range measurement. Nevertheless, harsh indoor environ-
ments, multipath issues, reflections, and bias due to antenna delay degrade the range measurement
performance in line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. This article proposes
an efficient and robust method to mitigate range measurement error in LOS and NLOS conditions
by combining the latest artificial intelligence technology. A GP-enhanced non-linear function is
proposed to mitigate the range bias in LOS scenarios. Moreover, NLOS identification based on the
sliding window and Bayesian Conv-BLSTM method is utilized to mitigate range error due to the
non-line-of-sight conditions. A novel spatial–temporal attention module is proposed to improve the
performance of the proposed model. The epistemic and aleatoric uncertainty estimation method
is also introduced to determine the robustness of the proposed model for environment variance.
Furthermore, moving average and min-max removing methods are utilized to minimize the standard
deviation in the range measurements in both scenarios. Extensive experimentation with different
settings and configurations has proven the effectiveness of our methodology and demonstrated the
feasibility of our robust UWB range error mitigation for LOS and NLOS scenarios.

Keywords: error mitigation; Bayesian inference; deep learning; sensors; UWB

MSC: 37M10

1. Introduction

Accurate positioning is one of the main courses of research in various engineering
fields, and it has received a lot of attention in recent years owing to its inherent academic
importance [1,2]. Applications across a wide range of industries, including telecommuni-
cations, intelligent machines, and medical/rescue operations, might greatly benefit from
this technology, as could autonomous driving [3–5]. Despite this, precise location in line-
of-sight (LOS) and non-line-of-sight (NLOS) scenarios for indoor environments remains a
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research challenge. Multipath effects, reflections, refractions, and other propagation events
can cause errors in the location estimate process [6,7].

Localization has been accomplished via various technologies, such as sensor nodes,
acoustics, simultaneous localization and mapping, inertial measurement units, and ultra-
wideband (UWB) communications. UWB is a potential technology for accurate positioning
because of a variety of desired qualities, namely low energy consumption, centimeter-level
range accuracy, susceptibility to multipath effects, and a certain obstacle penetrating capac-
ity [8]. UWB has been intensively studied in recent years by academics and industry for
indoor and relative positioning [9,10]. On the other hand, the precision of UWB localization
degrades when the signal propagates through the obstruction and is subject to antenna
calibration issues, and NLOS situations result in a positive bias in range measurements.
Most of the UWB-based localization technology uses Time Difference of Arrival (TDoA),
Time of Arrival (TOA), and two-way ranging (TWR) methods. The TWR methods are the
most common and robust methods because no anchor synchronization is needed to get
precise ranging measurements.

TWR is very significant when clock synchronization is not obtainable or not used in a
positioning method. The distance between two devices is calculated by measuring the Time
of Flight (ToF) between them. Instead of utilizing direct timestamps, the TWR technique
calculates the distance between two devices using a sequence of time intervals. This is due
to the fact that the duration of a particular time is the same across all devices, independent
of their individual clock references. However, a clock will drift from its original state even
if it is properly calibrated due to the inherent faults of clock oscillators in the actual physical
world [11]. These clock drifts result in inaccurate measurements of the time periods given,
particularly whenever the application needs centimeter-level precision. This is because a
1 ns ToF inaccuracy may result in a range measurement error of 30 cm [12]. As a result,
various TWR approaches exist in the literature to reduce the inaccuracy in range caused by
clock drifts. One of the best and most used methods is the asymmetric TWR method, which
reduces errors due to clock and frequency drift. However, the asymmetric TWR method
also has an error due to antenna delay and NLOS conditions.

The term “NLOS” generally refers to a scenario in which the direct route between a
transceiver and a receiver is impeded. Consequently, the signals travel via a penetrated,
reflected, or diffracted route before reaching the receiver, increasing the travel time and
decreasing signal intensity. As a result, the distance calculated using either time or signal
strength is affected. NLOS is a prevalent issue with wireless positioning technologies, in-
cluding WiFi, ZigBee, Bluetooth, and UWB. Compared to other approaches, UWB presents
a more serious difficulty due to its operating range and the needed precise indoor or relative
positioning [13]. As a result, NLOS detection and mitigation has become a major topic in
the area of UWB-based positioning systems [14]. Most of the proposed NLOS mitigation
methods in the research involve likelihood ratio tests, channel impulse response (CIR)-
based techniques, and machine learning algorithms. Moreover, the recent literature has
proposed support vector machines, Gaussian processes, deep learning, and representation
learning models to mitigate NLOS effects. However, to mitigate range error in LOS and
NLOS conditions, different parameters such as antenna delay and NLOS environment char-
acteristics play a vital role in mitigating range error. These approaches generally mitigate
the LOS- or NLOS-induced range measurement errors before positioning or mitigate the
influence of range errors using specific positioning techniques. Although it is commonly
understood that perfect range error mitigation is impossible, these solutions ignore the
impact of residual range errors and antenna delay calibration on positioning. Further-
more, current NLOS detection and mitigation approaches classify the propagation state
as either LOS or NLOS without further information about the NLOS’s characteristics. We
present a novel range error mitigation method for both LOS and NLOS conditions before
the positioning to address these issues. The following are the primary contributions of
this paper:
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1. A GP-enhanced non-linear function and exponential moving average and min-max
removing algorithms are proposed to mitigate range bias in the LOS environment.

2. A Conv-BLSTM deep learning model-based NLOS identification method is proposed
to identify the NLOS propagation through different materials for indoor environments,
such as wood, the human body, concrete walls, and metals.

3. A novel spatial–temporal attention module is proposed to effectively process the
data’s features.

4. The Monte Carlo (MC) dropout-based uncertainty estimation model is introduced
to estimate the proposed model’s uncertainty to demonstrate the proposed model’s
robustness.

The rest of the paper is structured as follows: Section 2 presents the related works
associated with this research, Section 3 describes the data preparation method for the
proposed algorithms, Section 4 presents the proposed algorithms to mitigate range bias in
LOS and NLOS scenarios, Section 5 describes the experimental setting and a discussion on
the results, and the conclusion is drawn in Section 6.

2. Related Works

This section divides the existing range error mitigation into two categories based
on the LOS and NLOS environments. LOS error mitigation includes antenna calibration,
power calibration, and bias compensation due to radio signal strength. The second category
involves identifying the NLOS situation and range error mitigation to enable precise
range measurement.

2.1. LOS Range Error Mitigation

LOS range error sources include clock drift, power calibration, antenna delay, and
bias caused by the signal power. Several approaches are found in the literature to correct
clock drift in the UWB-range measurement devices. Fofana et al. developed a dynamic
correction methodology that uses artificial delay between messages to calculate clock drift
coefficients, which is utilized to limit clock drift in the two-way ranging method. The
authors obtained an accuracy of twenty millimeters, enabling range traffic to be included
in regular traffic [15]. Adrien et al. developed an open-source framework called Decaduino
to enable range measurement using UWB chips. The authors used delay transmission
and introduced artificial delay between messages through UWB devices. The authors
achieved 15 cm accuracy in range measurements, which is very precise compared to
other wireless range measurement technologies [16]. Martel et al. introduced a digital
low pass filter to correct clock skew evaluation during TWR range measurements. The
proposed method achieves very good results, with an 18 cm mean error and 1.77 cm
standard deviation in range measurements [17]. Dotlic et al. proposed three calculating
approaches for significantly minimizing systematic localization mistakes caused by clock
offsets in comparable localization systems with a low frame exchange rate. The error
reduction mechanism is based on the receiver’s carrier frequency offset estimation, which
is a necessary component of frame reception in many UWB-based systems [18]. Decawave
instructed calibrating the antenna and power spectrum of the Decawave’s DW1000 chips,
but their calibrating method must be implemented manually, which is a big constraint for
real-time and commercial applications [12]. Qiang et al. proposed Kalman filter-based
range bias estimation and mitigation for both LOS and NLOS environments [19]. Their
approach achieves good results by reducing the error to a millimeter level; however, the
Kalman filter is computationally expensive for small microcontroller devices and is not
suitable for energy-constrained devices. Therefore, a new antenna calibration method and
bias mitigation method should be implemented to enable real-time application.

2.2. NLOS Range Error Mitigation

NLOS range error mitigation for UWB-based solutions includes effective NLOS identi-
fication and NLOS range bias mitigation. Traditional NLOS identification methods can be
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divided into range, location, and channel-based methods [20,21]. Range-based approaches
employ the probability density function (PDF) or variation of range estimations to differen-
tiate LOS from NLOS [21] conditions. Channel-based approaches distinguish NLOS from
LOS by utilizing CIR, which is accomplished via the use of two widely used functions,
the PDF and the cumulative distribution function (CDF) [22]. However, determining a
suitable distribution function and determining the proper threshold can be difficult [23]. It
is also uncertain how to establish the threshold. Location-based approaches detect NLOS
conditions during the location estimate process and might utilize the obtained location
information to identify NLOS conditions. The location-based approach is expected to be
useful in the scenario wherein redundant range estimates are accessible since it compares
the location estimates provided with various sets of range estimations [24], but it is use-
less when there are no redundant range estimates or when numerous range estimates
correspond to NLOS conditions. In order to solve the above-mentioned issues, researchers
used different machine learning approaches for NLOS identification. Henk et al. proposed
support vector machines to detect non-line-of-sight conditions and mitigate range error in
the non-line-of-sight environment [25]. Nguyen et al. introduced relevance vector machine
algorithms to mitigate range error in non-line-of-sight environments [26]. Sang et al. used
different available machine learning techniques to identify the NLOS and multipath con-
ditions in an indoor environment and compare the performance of the different machine
learning algorithms [27]. However, one thing should be noted: wireless signal propagation
is different in different materials, and most researchers did not consider these facts.

3. Data Preparation

The range measurements were done in five distinct locations to cover a broad range of
LOS and NLOS scenarios: a wide-space area where the obstacles were metal, a human body
obstacle between an anchor and a tag [28], an indoor office area where the obstacles were
wood, and concrete walls as obstacles. Furthermore, additional measurements were taken
across several rooms to investigate the through-the-wall impact. Figure 1 shows the box
chart range error of different common obstacles found in the indoor environment. We can
see that the propagation through the wall and partial metal obstacles induced large range
error compared to the propagation through the wood and human obstacles. Due to the
nature of the obstacles and radio signals, range error information from different propagation
channels can be beneficial to mitigate the range error for different environments. Therefore,
range measurements were taken under various conditions, which can be used to mitigate
range error across different environments and allow a representation learning approach to
acquire a domain-independent model.
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We utilized an embedded Decawave DW1000 (Qorvo Inc., Greensboro, NC, USA)
UWB chip with a NodMCU-BU01 module. As ground truth, a measurement ruler was
used to measure the precise distance between the anchor and the tag. To produce both LOS
and NLOS data, the tag was placed in different environments loaded with obstacles.

Figure 1 shows the boxplot range error for different propagation scenarios in our ac-
quired data. It can be seen that the range error is very high during partial metal propagation.
The mean range error also varies for different propagation materials.

4. Materials and Methods

In this section, we propose the range error mitigation of UWB devices for both LOS
and NLOS environments. We propose a Gaussian process model and an unscented Kalman
filter along with min-max removing, and a moving average filter is used to reduce the
standard deviation of the acquired LOS range measurement. The NLOS identification
for different obstacles and NLOS range error mitigation model was developed using the
deep learning method. Since the UWB devices are low-power and energy-constrained
devices connected to the microcontroller module, the range error mitigation method must
be implemented in the microcontroller or edge devices to provide real-time range error
mitigation before calculating the positioning. This study mainly focuses on implementing
the proposed method in low-level microcontroller devices to minimize inference time and
latency. The overall structure of the proposed range error mitigation of the UWB module
can be seen in Figure 2.
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Figure 2. The overall system architecture of the proposed UWB range measurement error mitigation
for both LOS and NLOS environments.

4.1. LOS Range Mitigation
4.1.1. System Model

We consider an asynchronous Double-Sided (DS)-TWR UWB system comprising two
nodes: a transmitter (Tx) and a receiver (Rx). The range measurement process involves
the exchange of UWB signals, with the Time of Flight (ToF) of the signals being critical for
range estimation. The ToF, denoted as TToF, is the time taken by the UWB signal to travel
from the Tx to the Rx. In an ideal scenario without any errors, the true range R between the
nodes is related to TToF by

R = c × TToF, (1)
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where c is the speed of light.
The actual measured ToF, denoted as T′

ToF, is affected by various errors, such as
environmental noise (Nenv). This includes multipath effects, interference from other signals,
and atmospheric conditions. Chip imperfections (Nchip) include errors due to hardware
imperfections in the UWB transceivers. Antenna delay (δant) includes the inherent delay in
the Tx and Rx antennas. The observed ToF can thus be modeled as

T′
ToF = TToF +

Nenv + Nchip + δant

c
(2)

4.1.2. Problem Formulation

The objective is to accurately estimate the true range R from the observed T′
ToF while

mitigating the errors. The estimation problem can be formulated as follows:

1. Range estimation with error mitigation: we have to find an estimator R̂ such that

R̂ = argminRE
[(

R −
(
c × T′

ToF
))2
]

(3)

where E[·] denotes the expectation operator, signifying the minimization of the mean
squared error between the true range and the estimated range.

2. Error correction modeling: we can model the combined errors as a stochastic process,
which can be learned and predicted:

Ntotal = Nenv + Nchip + δant (4)

Using a Gaussian process model, we can correct initial range as follows:

RGP = c ·
(

T′
ToF −

GP
(
m
(
T′

ToF
)
, k
(
T′

ToF, T′′
ToF
))

c

)
(5)

where GP(m, k) directly models the Ntotal as a function of observed T′
ToF , using a

mean function m and a covariance function k that learns from historical data of T′
ToF

and the total error.

The initial correction from the GP model can be fine-tuned using a statistical filter by
incorporating dynamic system behavior and residual error correction as follows:

R̂ = c ·
(
UKF

(
X(i)

k|k−1

)
− N̂resediual

c

)
(6)

where R̂ denotes the final corrected range estimate. The UKF considered the state repre-
sented by sigma points X(i)

k|k−1, which have been adjusted from the RGP. The residual error

N̂residual includes those components of Ntotal not mitigated by the initial GP correction.

4.1.3. Proposed Method

The GPA-UKF method is designed to enhance the accuracy of ultra-wideband (UWB)
range measurements, which are often subject to errors due to antenna delays and environ-
mental factors. The method synergizes the state estimation capabilities of the UKF with the
error correction proficiency of GP models. This integration mitigates the non-linear and
uncertain nature of UWB systems, yielding a more accurate and reliable range estimation.

A GP model is first utilized to predict and correct the total error ( Ntotal ) affecting the
ToF measurements. This total error encompasses various sources, including environmental
noise (Nenv ), chip imperfections (Nchip ), and antenna delay (δant ).

A Gaussian process can be defined using mean function m(x) and covariance function
k(x, x′), where x and x′ represent points in the input space, such as T′

ToF as follows:
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m(x) = E[ f (x)]
k(x, x′) = E[( f (x)− m(x))( f (x′)− m(x′))]

(7)

The GP model, denoted as GP(m, k), captures the distribution over the possible func-
tions f (x) that fit the observed data. In our scenario, the function f predicts the total error
Ntotal as a function of the observed T′

ToF. The GP model learns the function f that maps
T′

ToF to Ntotal . This learning process involves maximizing the likelihood of the observed
data under the GP model as follows:

L
(
θ | T′

ToF , Ntotal
)
= log p

(
Ntotal | T′

ToF , θ
)

(8)

where θ represents the GP hyperparameters, and T′
ToF and Ntotal are vectors of observed

ToF measurements and their corresponding error.
The trained GP model can predict the error N̂total for a new ToF measurement, T′

ToF .
The initial range correction is then performed by adjusting the observed ToF for the pre-
dicted error as follows:

RGP = c ·
(

T′
ToF −

GP
(
m
(
T′

ToF
)
, k
(
T′

ToF, T′′
ToF
))

c

)
(9)

where RGP is the initial corrected range measurement.
The UKF, known for its efficacy in non-linear systems, is employed to fine-tune the

initial correct range measurements from the GP model, considering the system’s dynamics
and measurement noise. We can first define a state transition function as below:

xk+1 = f (xk, wk) (10)

where xk denotes the state at time k, f is the non-linear state transition function, and wk
represents the process noise.

We utilize sigma points to approximate the distribution of the system’s state. Sigma
points are selected to represent the possible states of the system. They are determined
around the current state estimate and spread according to the state covariance. Mathemati-
cally, for a state vector x of dimension n, the sigma points X(i) are computed as follows.

X(0) = x
X(i) = x + (

√
(n + λ)P)i for i = 1, . . . , n

X(i) = x − (
√
(n + λ)P)i−n for i = n + 1, . . . , 2n

(11)

where x is the mean state estimate, P is the state covariance matrix, λ is a scaling parameter,
and

√
(n + λ)P)i represents the ith column of the matrix square root of (n + λ) P. These

sigma points are then propagated through the non-linear state transition function f and
measurement function h:

X(i)
k|k−1 = f (X(i)

k−1|k−1, wk−1)

Z(i)
k = h(X(i)

k|k1, vk)
(12)

where X(i)
k|k−1 are the propagated sigma points through the state transition, and Z(i)

k are the
sigma points transformed by the measurement function.

xk|k =
2n

∑
i=0

W(m)
i X(i)

k|k−1 (13)

Pk|k =
2n

∑
i=0

W(c)
i

(
X(i)

k|k−1 − xk|k

)(
X(i)

k|k−1 − xk|k

)T
(14)

where W(m)
i and W(c)

i are weights for the mean and covariance, respectively.
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The Kalman gain, Kk, is then computed to update the state estimate with the measure-
ment Zk :

Kk = Pz
k|k−1(Pϵ

k|k−1)
−1

xk|k = xk|k−1 + Kk
(
Zk − Zk

)
Pk|k = Pk|k−1 − KkPz

k|k−1KT
k

(15)

where Pz
k|k−1 is the covariance of the predicted measurement, and Pϵ

k|k−1 is the measurement
noise covariance.

The initial state of the UKF x0 is adjusted based on the corrected range from the GP
model output RGP as follows:

xadj
0 = x0 + KGP · (RGP − H · x0) (16)

where KGP is an adjustment factor on the initial state estimation, H is the measurement
matrix relating the state to the measured range, and xadj

0 denotes the adjusted initial state.
The final measurement update of the system is then calculated as follows:

R̂k|k = c ·
(
UKF

(
X(i)

k|k−1

)
−

N̂residual ,k

c

)
(17)

where R̂k|k is the dynamically refined range estimate at time step k, incorporating the
continuous adjustments for residual errors (N̂residual ,k) identified through the UKF process
after the initial GP corrections.

4.2. NLOS Range Mitigation
4.2.1. System Model

The range measurement in an NLOS environment at time tk is affected by the nature
of the obstruction. The model is expressed as

dNLOS = d + ∆dnlos( obstacle , tk) + ε (18)

where dNLOS is the observed distance, d is the actual line-of-sight distance, ∆dnlos represents
the range error influenced by the type of obstacle, and ε signifies the combined standard
deviation and mean error. The nature of the obstacle influences the NLOS range bias,
∆dnlos. For example, concrete walls and metal cause significant reflections and absorption
of UWB signals, leading to large-range errors. Wood and partial obstructions result in less
severe but still notable attenuation and multipath effects. The presence of people affects
the signal due to absorption and reflection, introducing variability in range measurements.
The range error due to NLOS conditions is thus a function of the obstacle type and the
measurement duration:

∆dnlos = fobstacle (d, type , tk) (19)

4.2.2. Problem Formulation

The goal is to develop an estimation process that adapts to the variability introduced by
different obstructions, accurately estimating the true range in diverse NLOS conditions. An
estimator d̂NLOS is required that minimizes the error across various types of obstructions:

d̂NLOS = argmindE
[
(d − (d + ∆dnlos ( obstacle , tk) + ε))2

]
(20)

The error model needs to characterize the distinct impacts of different materials on
signal propagation. This involves analyzing the impact of different materials uniquely
affecting UWB range measurements:

∆dnlos ( obstacle , tk) = gmaterial (d, type , tk, ε) (21)
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where gmaterial models the NLOS error based on the type of obstruction, time, and inherent
measurement errors.

4.2.3. Proposed Method

1. Sliding window function: the sliding window function is a batch estimation tech-
nique requiring constant time and memory since it marginalizes older states [14,15]. Con-
sider the case wherein a device travels until time tk1, at which point it can be understood to
be in an NLOS state by doing a thorough batch estimate of its state history. It then travels
until time tk2, at which point it adds the new state to its state history. The previous state
m is then marginalized out of the optimization problem being addressed at tk2, thereby
eliminating them from the challenge. The new states are the remaining states from the
preceding window’s estimation. The sliding window function is normally used to process
time-series data in machine learning and deep learning models. As the UWB device goes
from an LOS to NLOS state at different timeslots, we need to use the sliding window
function to utilize time-series data to estimate the state of the UWB device at time tk1.

new window of length K = k2 − m + 1︷ ︸︸ ︷ (22)

x0 x1 . . . xm−1 xm . . . xk1︸ ︷︷ ︸
old window of length K = k1+1

xk1+1 . . . xk2 (23)

where every state can be represented as an LOS or NLOS state. The Decawave DW1000
UWB chip user manual stated that if the difference between RX_POWER and FP_POWER,
i.e., RX_POWER − FP_POWER, is less than 6 dB, the channel is likely to be LOS, based
on the thumb rule. Therefore, every state is compared with the defined RX_POWER −
FP_POWER = 6 dB value to first differentiate the LOS state from the NLOS state, then
machine learning algorithms are used on the NLOS state data to identify the characteristics
of the NLOS propagation.

2. Bayesian Conv-LSTM: this study utilizes the cascade of convolution and Bayesian
LSTM to classify the NLOS scenarios with high accuracy. Figure 3 shows the overall
structure of the proposed method with the attention module. The input data first pass
through the convolution layer and then pass through the Bayesian LSTM (BLSTM) layer,
followed by the layer output with the softmax activation function to classify the input. A
novel spatial–temporal attention module is proposed to extract important input features,
improving the model’s performance. The spatial attention is placed at the convolution
layer’s end, and the temporal attention module is placed at the end of the Bayesian LSTM
layer to extract important features. A detailed description of the BLSTM layer and the
proposed attention module is presented in this section.
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Bayesian inference in deep learning allows mathematically grounded uncertainty
estimation, which can improve the model performance. Grahmani et al. proposed dropout
with variational inference to estimate uncertainty in the deep learning model [29]. The
uncertainties in the deep learning model can be divided into epistemic and aleatoric uncer-
tainty. The epistemic uncertainty accounts for the lack of a dataset, which can be reduced
by providing more observable data to the models during training. The aleatoric uncertainty
accounts for the randomness of the data during the acquisition, which cannot be reduced.
Moreover, the aleatoric uncertainty can be divided into two parts, such as homoscedas-
tic and heteroscedastic. The homoscedastic uncertainty provides a constant uncertainty
estimation regardless of different data points. On the other hand, the heteroscedastic
uncertainty varies according to the input data, which is very useful in understanding
the noise variance during data acquisition. Therefore, this study considers the epistemic
and heteroscedastic aleatoric uncertainty estimation to determine the proposed model’s
uncertainties in predicting the NLOS class.

A Bayesian neural network replaces the deterministic weights’ parameters with a
distribution using the Bayesian rule. For example, the posterior over deep learning weights
for a given dataset (X, Y) can be defined as p(W|X, Y) in a Bayesian neural network. We can
also derive the model likelihood, which contains Gaussian observation noise as follows:

p(y| f w(x)) = N
(

f w(x), σ2
)

, (24)

where f w represents the random output from a Bayesian neural network, and σ repre-
sents the Gaussian observation noise. However, it is known that the exact posterior of
the Bayesian neural network is intractable, but it can be approximated using different
approximation methods such as Bayes by backpropagation and the MC dropout method.
This study uses the MC dropout method, which performs dropout to generate random
predictions to trace the simple distribution over the weights. The objective function to trace
simple distribution can be defined as follows:

L(θ, p) = − 1
N

N

∑
i=1

logp
(

yi| f Ŵi (xi)
)
+

1 − p
2N

||θ||2), (25)

where θ is the simple distribution, N is the data points, p is the dropout and logp
(

yi

∣∣∣ f Ŵi (xi)
)

is the Log-likelihood, which can be more simplified as follows:

−logp
(

yi| f Ŵi (xi)
)

∝
4

2σ2 ||yi − f Ŵi (xi)||2 +
1
2

logσ2. (26)

The predictive variance can also be approximated using the following equation:

Var(y) ≈ σ2 +
1
T

T

∑
t=1

f Ŵi (x)T f Ŵt(xt)− E(y)TE(y). (27)

As mentioned earlier, σ represents the noise in deep learning. It can be tuned to
estimate the uncertainty of the model and data during prediction. As this study considers
the estimation of the data-dependent heteroscedastic uncertainty, the objective can be
modeled as data-dependent using the following equation:

LRNN(θ) =
1
N

N

∑
i=1

1

2σ(xi)
2 ||yi − f (xi)||2 +

1
2

logσ(xi)
2. (28)

The above equation can be integrated with Bayesian neural network objective functions
as follows:

LBRNN(θ) =
1
N

N

∑
i=1

1
2σ̂2

i
||yi − ŷi||2 +

1
2

logσ̂2
i , (29)
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where ŷ and σ̂ represent the predictive mean and noise variance. The predictive uncertainty
of a model can be then estimated using the following equation:

Var(y) ≈ 1
T

T

∑
t=1

ŷ2
t −

(
1
T

T

∑
t=1

ŷt

)2

+
1
T

T

∑
t=1

σ̂2
t . (30)

3. The proposed attention model: this study utilizes the cascade of convolution and
Bayesian LSTM to classify the NLOS scenarios with high accuracy. Figure 3 shows the
overall structure of the proposed method with the attention module. The input data first
pass through the convolution layer and then pass through the Bayesian LSTM (BLSTM)
layer, followed by the layer output with the softmax activation function to classify the input.
A novel spatial–temporal attention module is proposed to extract important input features,
improving the model’s performance. The spatial attention is placed at the convolution
layer’s end, and the temporal attention module is placed at the end of the Bayesian LSTM
layer to extract important features. A detailed description of the BLSTM layer and the
proposed attention module is presented in this section.

αt = τ(σ (W(BN(Conv3×3
2 (δ

(
BN
(

Conv3×3
1 (X)

))
))))), (31)

Temporal attention is used to extract important features from a window frame because
the distribution of valuable information is not equal among the window frames. The output
from the Bayesian LSTM layer is passed through the Bayesian LSTM layer, fully connected
layer, and ReLU activation function in series. Lastly, softmax normalization is used to
generate the temporal weight.

βt = τ(δ(W(L(X)))), (32)

Then, the output from the Bayesian LSTM network and temporal attention weights
are incorporated to predict the class score for all window frames, which can be illustrated
as follows:

w =
T

∑
t=1

βt ∗ pt (33)

where T represents the length of the window frame.

4.3. Min-Max Removing and Moving Average Filter

To improve the ranging accuracy affected by the standard deviation in UWB range
measurements, we implement a method involving the removal of outliers followed by
smoothing through a moving average filter. Specifically, for an update rate of 100Hz in
UWB range samples, we initially select the first 50 samples to identify and remove the
maximum and minimum values. This process of outlier exclusion enhances the accuracy of
the subsequent data processing step.

Following outlier removal, we employ a moving average filter, a technique commonly
utilized to process various collected datasets or signals. This filter computes an average
from a set number of input samples (M), producing a single output for each iteration. As the
length of the filter increases, the resulting output exhibits greater smoothness, effectively
diminishing any quick fluctuations. In our application, after excluding the 2 extreme
samples, the remaining 48 samples are used within the moving average filter to refine the
range measurements. The formula used in our approach is detailed below:

MA =

...
d 1 +

...
d 2 + · · ·

...
d 48

48
. (34)
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5. Results

In this section, we perform an experimental evaluation of our proposed LOS and
NLOS range error mitigation method. We also calculate and compare the accuracy with the
available methods found in the literature.

5.1. Experimental Setting

Decawave’s UWB chip DWS1000 device was used throughout the data preparation
and experimental part. The DWS1000 was connected with the STM32F103C8-based devel-
opment board to program, debug, and perform range acquisition. NodMCU-BU01 is an
STM32-based development board with better SPI communication speed with a 32.768 kHz
crystal oscillator. The asymmetric double-sides TWR method was used to acquire range as
this method yields better results than the symmetric method.

Experimental data for both LOS and NLOS conditions were taken in the indoor
environment. LOS data were taken in an environment where the LOS range can be obtained
close to the infield environment. NLOS data were taken in a 15 × 15 m room furnished
with a wooden table, metal door, and other office appliances. Range measurements, along
with the power difference of the first path and receive power, were taken at a 5 m distance.
NLOS data were taken for four scenarios: the human body, partial metal obstacles, wood
objects, and concrete walls, to train the machine learning models to identify the NLOS
scenarios. Initially, 50,000 samples were taken for every scenario, then 20,000 samples
were selected based on the power difference criteria. These samples are then divided into
standard 70–30 train and test data divisions to train the machine learning models.

Table 1 provides the experimental parameters used to train the proposed model in
this study. The training was conducted on an Ubuntu 20.04 operating system using Python
3.10 as the programming language and PyTorch 2.0.1 as the model design framework. The
training utilized an Nvidia RTX 3080 GPU to accelerate computations. The learning rate for
the model was set to 0.0001, and an Adam optimizer was used to adjust the weights during
training to ensure efficient convergence.

Table 1. Experimental parameters used in this study to train the model.

Parameters Settings

Operating system Ubuntu 20.04
Programming language Python 3.10

Model design framework PyTorch 2.0.1
GPU Nvidia RTX 3080

Learning rate (α) 0.0001
Optimizer Adam

5.2. Quantitative Results

In order to evaluate the proposed method for LOS range measurement improvement,
a quantitative analysis of UWB range error mitigation across varying environmental con-
ditions, such as a park, a walking street, an indoor ground, and a lab, was performed.
Measurements were taken at three different baseline distances (300 cm, 400 cm, and 500 cm),
with subsequent analysis on both measured and mitigated values to assess the precision
and accuracy of the proposed method. These results are tabulated across three primary
metrics: original (cm), measured (cm), and mitigated (cm), with the Root Mean Squared
Error (RMSE) serving as a statistical measure of the differences between values predicted
by a model or an estimator and the values observed.

Table 2 presents the results from employing our proposed method for mitigating UWB
range errors in an indoor ground environment. The experimental scenario can be seen
in Figure 4. Initially, at a baseline distance of 300 cm, the uncorrected measured distance
between two UWB devices stood at 268.097 cm. Post-application of our mitigation tech-
nique, the distance measured adjusted to 295.177 cm, more closely aligning with the actual
distance and resulting in an RMSE of 4.823 cm. Notably, as the baseline distance expanded
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to 400 cm and then to 500 cm, the effectiveness of our technique in reducing RMSE became
increasingly evident, dropping to 2.444 cm and 0.153 cm, respectively. These results not
only underscore the significant impact of environmental factors and measurement noise
on initial UWB distance measurements but also demonstrate the substantial precision im-
provements introduced by our mitigation method across various distances. Consequently,
this method proves to be highly effective for correcting range measurements, significantly
enhancing the accuracy of UWB devices under diverse conditions and at extended ranges,
offering promising implications for its application in precision-critical UWB applications.

Table 2. Summary of indoor ground environmental impact on our proposed model showing mea-
sured, mitigated, and RMSE errors.

Environment Original (cm) Measured (cm) Mitigated (cm) RMSE (cm)

300 268.097 295.177 4.823
Indoor Ground 400 376.866 402.444 2.444

500 481.257 499.847 0.153
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Table 3 shows the results of applying our proposed method to address UWB range
errors under lab conditions. The detailed scenario is shown in Figure 5. Initially, for a
300 cm baseline distance, the uncorrected distance recorded between two UWB devices was
285.510 cm. Following the error mitigation process, this value was refined to 296.796 cm,
achieving an RMSE of 3.204 cm. As the baseline distance was extended to 400 cm and
500 cm, the precision of our proposed method was further highlighted. RMSE values
were observed to decrease to 3.063 cm and 1.895 cm, respectively, showcasing a consistent
improvement in accuracy across increasing distances. Thus, our methodology emerges as a
robust solution for refining range measurements, significantly improving the accuracy of
UWB devices in lab settings.
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Table 3. Summary of lab environmental impact on our proposed model showing measured, mitigated,
and RMSE errors.

Environment Original (cm) Measured (cm) Mitigated (cm) RMSE

300 285.510 296.796 3.204
Lab 400 389.976 403.063 3.063

500 492.287 501.895 1.895
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The data presented in Table 4 illustrate the application of our proposed method for
UWB range errors in Park A, across three baseline distances. At 300 cm, the original distance
measured was 263.110 cm. After applying the mitigation process, the error was significantly
reduced, achieving an RMSE of 2.999 cm. The experimental scenario is given in Figure 6.
However, as the distance increased to 400 cm and 500 cm, the RMSE values increased
to 6.674 cm and 7.041 cm, respectively. These results suggest that while the mitigation
technique is capable of substantially reducing range errors at shorter distances, its efficacy
is less pronounced at longer ranges, possibly due to environmental factors specific to Park
A. Despite these challenges, the technique demonstrates a significant improvement in UWB
measurement accuracy, especially in outdoor environments where precision is critical.

Table 4. Summary of Park A’s environmental impact on our proposed model showing measured,
mitigated, and RMSE errors.

Environment Original (cm) Measured (cm) Mitigated (cm) RMSE

300 263.110 297.001 2.999
Park A 400 382.083 406.674 6.674

500 498.694 507.041 7.041
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Table 5 showcases the effectiveness of a calibration and mitigation approach tailored
for ultra-wideband (UWB) range measurements in Park B, encompassing three distinct
baseline distances. The detailed scenario is shown in Figure 7. At the initial distance
of 300 cm, the original measurement was recorded at 256.612 cm, with the estimated
value post-calibration reaching 293.415 cm. Following the mitigation process, an RMSE of
6.585 cm was observed, indicating a notable improvement in accuracy, albeit with some
remaining discrepancies. As the distance extended to 400 cm and further to 500 cm, the
mitigation technique demonstrated increased efficacy, with RMSEs decreasing to 4.601 cm
and 1.487 cm, respectively. This pattern suggests a significant enhancement in the precision
of UWB devices with distance, particularly after calibration and mitigation. The decreasing
trend in RMSE with longer distances highlights the potential of the applied methodology
to effectively address range errors, especially in outdoor settings like Park B, where en-
vironmental variables can impact measurement accuracy. Consequently, this approach
evidences considerable promise for refining UWB range measurements, ensuring higher
accuracy and reliability across varied distances in outdoor environments.

Table 5. Summary of Park B’s environmental impact on our proposed model showing measured,
mitigated, and RMSE errors.

Environment Original (cm) Measured (cm) Mitigated (cm) RMSE

300 256.612 293.415 6.585
Park B 400 362.322 395.399 4.601

500 463.113 498.513 1.487

Figure 8 shows the training and validation plot for the accuracy and loss of NLOS
identification, respectively. It can be seen that the proposed model converges well with the
acquired dataset. The accuracy and loss were stable after 60 epochs and achieved a training
accuracy of 99.14% and a validation accuracy of 98.78%.
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We utilized standard multiclass classification evaluation metrics to evaluate the pro-
posed model. In each classification test, we computed the true positive (TP, accurate
detection), true negative (TN, correct rejection), false negative (FN, omission error), and
false positive (FP, commission error). Using the given formula in [30], we obtained the
average classification accuracy (A), average recall (R), average precision (P), and F-1 score
(F). Different machine learning methods were implemented on the dataset to evaluate the
performance of the proposed model using the following metrics:

A =
TP + TN

TP + TN + FP + FN
(35)

R =
TP

TP + FN
(36)

P =
TP

TP + FP
(37)
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F = 2 ∗ R ∗ P
R + P

(38)

Table 6 shows the proposed model’s precision, recall, and F-1 score in classifying
different NLOS environments. The precision for all classes is 99 or above except for the
wood, where the precision is calculated to be 92.1. The model achieves good recall for all
the classes, where two classes acquired 99 and one class acquired 100. However, the F-1
score of the proposed model also achieved 100 for the wall and pedestrian environments
and 96 for the wood and partial metal environments. The average accuracy achieved from
the testing was 98.78.

Table 6. Performance evaluation metrics of the proposed model for each class.

Class Name Precision Recall F-1 Score Accuracy

Wall 100.0 99.2 100.0

98.78
Partial metal 99.0 94.5 96.3

Wood 92.1 100.0 96.0
Pedestrian 100.0 99.0 100.0

Figure 9 shows the accuracy comparison of various machine learning models for
NLOS classification, including LSTM, Conv + LSTM, CNN, CNN + CRFz, random forest,
XGBoost, LightGBM, support vector machine (SVM), Naïve Bayes, decision trees, MLP,
and the proposed model. The proposed model achieved the highest accuracy of 98.78%,
significantly outperforming CNN + CRF (95.87%), LSTM (95.41%), and other models
like LightGBM (94.24%), SVM (94.81%), decision trees (93.18%), XGBoost (92.88%), and
random forest (91.53%). These results highlight the robustness of the proposed approach in
effectively capturing features and adapting to challenging NLOS environments.
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Figure 9. The comparison of different models for NLOS identification in UWB devices.

Table 7 shows the performance of the proposed model with different attention mecha-
nisms, along with their accuracy and processing time. The baseline model, without any
attention, achieved an accuracy of 96.32% and a processing time of 5.0 ms per sample.
Adding Squeeze-and-Excitation (SE) Attention slightly improved the accuracy to 96.34%,
with the processing time increasing to 6.2 ms. Self-Attention, on the other hand, resulted in
a lower accuracy of 95.12% and a higher processing time of 9.5 ms, as it was not well suited
for the data. Multi-head Attention improved the accuracy to 96.83%, with a processing
time of 12.0 ms, by capturing diverse features more effectively.
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Table 7. Performance comparison of our proposed model with different attention combinations.

Model Accuracy Processing Time

Baseline model 96.32 5.0
Baseline model + SE Attention 96.34 6.2

Baseline model + Self-Attention 95.12 9.5
Baseline model + Multi-head Attention 96.83 12.0

Baseline model + spatial–temporal attention 98.78 15.8

The best performance was achieved with our proposed spatial–temporal attention,
which reached an accuracy of 98.78% by extracting both spatial and temporal information.
While its processing time was the highest at 15.8 ms per sample, the significant improvement
in accuracy makes it worth the trade-off.

Figure 10 presents an analysis of our proposed system’s accuracy on human obstacles,
wherein we compared original distances with measured and mitigated values across three
scenarios: 300 cm, 400 cm, and 500 cm. Table 8 presents our findings, showing close
approximations of actual distances and effective error correction, as indicated by RMSE
values of 6.533, 7.856, and 5.899, respectively. These results highlight the system’s precision
and reliability in real-world NLOS scenarios.
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Figure 10. Experiment with non-line-of-sight conditions with human obstacle.

Table 8. Summary of human obstacle’s impact on our proposed model showing measured, mitigated,
and RMSE errors.

Obstacle Original (cm) Measured (cm) Mitigated (cm) RMSE

300 243.183 293.467 6.533
Human 400 339.414 395.144 4.856

500 452.802 494.101 5.899

Figure 11 shows the system’s NLOS mitigation accuracy through a comparison of
original, measured, and mitigated distances for wood obstacles with various ranges such
as 300 cm, 400 cm, and 500 cm. Table 9 illustrates the system’s proficiency in estimating
the distance of obstacles with a high degree of accuracy, as demonstrated by the close
alignment of measured distances with the original. The mitigation process effectively
reduces measurement errors, achieving RMSE values of 8.967, 4.176 for the wood piece,
and 4.084 for the largest obstacle. These results emphasize the system’s effectiveness and
reliability in diverse detection scenarios.
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Figure 11. Experiment with non-line-of-sight conditions with wood obstacle.

Table 9. Summary of wood obstacle’s impact on our proposed model showing measured, mitigated,
and RMSE errors.

Obstacle Original (cm) Measured (cm) Mitigated (cm) RMSE

300 248.913 296.033 3.967
Wood 400 359.549 395.824 4.176

500 450.282 495.916 4.084

Figure 12 shows our proposed system's performance on partial metal obstacles,
wherein we compared original, measured, and mitigated distances across various ranges.
The data reveal the system’s precision in closely approximating the true distances of obsta-
cles, with the measured and mitigated values illustrating the system’s adeptness at error
correction. Notably, the RMSE values of 6.986 for a 300 cm partial metal obstacle, 5.894
for a 400 cm partial metal object, and 4.634 for a 500 cm obstacle highlight the system’s
consistent accuracy and reliability in a range of scenarios, confirming its effectiveness in
real-world applications. The detailed results can be seen in Table 10.
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Table 10. Summary of partial metal obstacle’s impact on our proposed model showing measured,
mitigated, and RMSE errors.

Obstacle Original (cm) Measured (cm) Mitigated (cm) RMSE

300 235.914 293.014 6.986
Partial metal 400 345.278 394.106 5.894

500 439.492 495.366 4.634

Figure 13 demonstrates the system’s proficiency in detecting obstacles, showcasing a
comparison between original, measured, and mitigated distances for a series of obstacles,
with a focus on a wall at 400 cm. This comparison clearly illustrates the system’s ability to
accurately guess distances, with mitigated measurements closely mirroring the original
ones. The RMSE values of 5.935 for the 300 cm wall obstacle, 7.579 for the 400 cm wall
obstacle, and 4.195 for the 500 cm wall obstacle shown in Table 11 underscore the system’s
precise error correction capabilities across various sizes of obstacles. These findings affirm
the system’s robustness and accuracy in obstacle detection within diverse environments.
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Table 11. Summary of wall obstacle’s impact on our proposed model showing measured, mitigated,
and RMSE errors.

Obstacle Original (cm) Measured (cm) Mitigated (cm) RMSE

300 256.324 294.065 5.935
Wall 400 363.507 393.421 6.579

500 462.064 495.805 4.195

5.3. Uncertainty Estimation

This study utilized the MC dropout method to train the model with variational
inference and also calculated the epistemic and aleatoric uncertainty. Different dropout
rates were used and tested to determine the best dropout rates for the proposed model.
It was observed that the higher dropout rates reduced the accuracy but yielded better
model diversity, and the lower dropout rates increased the accuracy but yielded lower
model diversity. We found that our proposed model’s dropout rate of 0.50 was optimal;
therefore, the dropout rate of 0.50 was used throughout the whole training and experimental
procedures. The proposed model’s epistemic uncertainty and aleatoric uncertainty can be
found in Figure 14. Figure 14a represents the epistemic uncertainty over the prediction one
class. The ideal uncertainty would be very close or identical to the prediction of the relevant
class. However, we found that epistemic uncertainty is still present in the prediction
process. As stated earlier, epistemic uncertainty represents the lack of data during training,
which can be minimized by providing more training data. A mean epistemic uncertainty of
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0.00408 was calculated for the proposed model, which was very low. Figure 14b represents
the aleatoric uncertainty, which was calculated using the proposed model. It can be seen
that the aleatoric uncertainty is very low compared to the epistemic uncertainty. Therefore,
it can be said that the inherent noise of the data was smaller, and model performance can be
improved by providing more data. A mean aleatoric uncertainty of 0.00534 was calculated
for the proposed model, which demonstrates that the aleatoric uncertainty is very low for
the acquired dataset and robust to environment variance.
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5.4. Discussion

The proposed NLOS identification is also compared with the different NLOS identifica-
tion solutions that exist in the literature. Two evaluation metrics are utilized to compare the
proposed NLOS identification method with other methods. Yu et al. proposed a fuzzy com-
prehensive evaluation (FCE)-based method to provide NLOS identification and mitigation
solutions [14]. They achieved an accuracy of 96.41% with a recall of 93.90% in identify-
ing NLOS scenarios using UWB devices. Jiang et al. proposed a CNN-based method to
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identify the NLOS environment for UWB devices [31]. They found that a CNN cascaded
with the stacked LSTM method, which achieved a higher accuracy of 82.14%, can provide
better accuracy than the LSTM method. Dong et al. proposed Fresnel zones and simple
prior knowledge-based methods to provide NLOS identification and mitigation methods
for UWB devices [32]. Their proposed method achieved recall and accuracy of 100.00%
and 96.41% in identifying the NLOS environment. Cui et al. utilized capsule networks
(CapsNet) to classify LOS and NLOS scenarios for UWB-based positioning systems [33].
Their method achieved an accuracy of 94.63% with a 94.74 recall rate. Cung et al. utilized
different machine learning methods to identify NLOS conditions in UWB localization, and
they achieved a higher overall accuracy of 91.9% using the random forest algorithm [27].
Liu et al. proposed a CNN-GRU-based indoor NLOS/LOS identification neural network
to identify the NLOS scenario in an indoor environment [34]. Their proposed method can
reach up to 97% accuracy in identifying NLOS and LOS channel propagation in an indoor
environment. Musa et al. utilized decision tree machine learning algorithms to detect and
mitigate NLOS channel propagation for UWB-based indoor tracking [35]. They tested their
model for different NLOS scenarios and achieved an average accuracy of 90.13% with a
91.33% recall rate. Table 12 shows the comparison of the different NLOS identification
methods with the proposed method. Our proposed method achieved an accuracy of 98.78%
with a 98.17% recall rate. Therefore, it can be said that the proposed method can accurately
identify different NLOS scenarios for UWB devices.

Table 12. The comparison of NLOS identification accuracy between different available solutions
found in the literature and our proposed method.

Method Recall Accuracy

FCE [14] 93.90 96.41
CNN-Stack LSTM [31] - 82.14

Fresnel zones–prior knowledge [32] 100 82
CapsNet [33] 94.74 94.63

Random forest [27] - 91.9
CNN-GRU [34] - 97

Decision tree [35] 91.33 90.13
Proposed 98.17 98.78

We have also compared the mitigated range accuracy with the available NLOS mitiga-
tion methods found in the literature to evaluate the performance of our proposed method,
as detailed in Table 13. Simone et al. proposed a representation learning model (REMnet)
to mitigate NLOS range error prior to positioning using UWB devices. Their method pro-
duced a significant improvement in the NLOS range error mitigation, with a mean absolute
error of 5.71 cm [30]. Dong et al. proposed NLOS mitigation using the Fresnel zones–prior
knowledge method, achieving an accuracy of 10.778 cm in the NLOS environment [32].
Another approach, which uses subdivided NLOS data combined with MIPL-B, achieved
a mitigated error of 5.57 cm [36]. A method that involves NLOS/LOS identification fol-
lowed by error correction reported an error reduction to 10.00 cm [37]. Additionally, a
self-supervised deep learning range correction (DLRC) technique showed an improvement,
with a mitigated error of 14.681 cm [38]. Barral et al. utilized various machine learning
algorithms to identify and mitigate the UWB range measurement in an NLOS environment,
achieving the highest reported accuracy of less than 20 cm [39]. Our proposed method
has demonstrated a significant reduction in the NLOS effect in UWB-based range mea-
surements, achieving a mean error of 5.30 cm. Based on these results, it can be concluded
that our proposed method is effective and can be implemented in real-time UWB range
measurement devices to reduce the NLOS effect in range measurements.
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Table 13. The comparison of NLOS mitigated accuracy between different available solutions found in
the literature and our proposed method.

Method NLOS Mitigated Error (cm)

REMnet [30] 5.71
Fresnel zones–prior knowledge [32] 10.778

Subdivided NLOS data + MIPL-B [36] 5.57
NLOS/LOS identification + error correction [37] 10.00

Self-supervised DLRC [38] 14.681
Bayesian filter [40] 0.74 (wood), 7.21 (metal)

Machine learning [39] <20
Proposed 5.30

A potential limitation of the proposed model lies in the increased computational
complexity introduced by the spatial–temporal attention mechanism, which may affect its
feasibility for deployment on very-low-power devices. Additionally, attention mechanisms
may introduce biases by overemphasizing specific features while potentially neglecting
others, especially in datasets with imbalanced distributions or high noise levels. To address
these challenges, optimization techniques such as model pruning and quantization can be
applied to reduce computational demands. Furthermore, we can introduce regularization
techniques, and training on diverse and well-balanced datasets can help mitigate biases
and improve generalization across various scenarios. We can also explore antenna design,
such as a compact triband implantable antenna with superior size, bandwidth, and SAR
values, and a 5G wideband MIMO antenna for body-centric networks with high isolation
and stable on-body performance to enhance wireless communication in biomedical and
body area network applications, which can complement the proposed model’s adaptability
in real-world scenarios [41,42].

6. Conclusions

This paper proposes machine learning-based LOS and NLOS identification and mit-
igation methods to reduce range measurement error in both scenarios. A GP-enhanced
non-linear filter is proposed to mitigate the bias of LOS range measurement. The standard
deviation of the range measurement for both LOS and NLOS scenarios is mitigated using
the min-max removal and the moving average filter. In addition, the NLOS identification
method is proposed using the RSSI signal acquired from the UWB range measurement.
The Conv-BLSTM method is utilized to identify four common obstacles that can be found
in the indoor environment, such as wood, metal, pedestrians, and concrete walls. A
spatial–temporal attention module is proposed to improve the performance of the model.
Moreover, the uncertainty estimation method is introduced into the proposed model to
calculate the epistemic and aleatoric uncertainty. The direct mitigation method is proposed
to mitigate the range bias caused by NLOS channel propagation. An extensive experiment
was performed to evaluate the performance of the proposed system. The proposed sys-
tem achieved an accuracy of 3.75 cm in the LOS environment and 5.30 cm in the NLOS
environment, with 98.78% NLOS channel propagation identification accuracy.

Our proposed model demonstrates strong potential for real-world applications, such
as real-time NLOS classification in autonomous systems and indoor navigation. However,
practical deployment may face challenges, including hardware constraints on low-power
devices and the need for adaptability to diverse environmental conditions. In the future, we
would like to focus on optimizing the model for computational efficiency and validating its
performance across varied real-world scenarios to enhance its practicality and robustness.
Additionally, we plan to explore other deep learning-based methods, such as graph neural
networks and transformer-based architectures to further enhance the feature extraction and
improve the model’s performance in challenging scenarios. The effect of room temperature
and voltage on the UWB range measurements can be explored to acquire more information
on the LOS and NLOS range bias.
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