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Abstract: White radish is a nutritious and delectable vegetable that is enjoyed globally. Conventional 1

techniques for monitoring radish growth are arduous and time-consuming, encouraging the devel- 2

opment of novel methods for quicker measurements and greater sampling density. This research 3

introduces a mathematical model working on high-resolution images to measure radish’s biophysical 4

properties automatically. A color calibration was performed on the dataset using a color checker panel 5

to minimize the impact of varying light conditions on the RGB images. Subsequently, a Mask-RCNN 6

model was trained to effectively segment different components of the radishes. The observations of 7

the segmented results included leaf length, leaf width, root width, root length, leaf length to width, 8

root length to width, and root peel color. The automated real-life measurements of these observations 9

were then conducted and compared with actual results. The validation results, based on a set of 10

white radish samples, demonstrated the models’ effectiveness in utilizing images for quantifying 11

phenotypic traits. The average accuracy of the automated method was confirmed to be 96.2% when 12

compared to the manual method. 13

Keywords: radish; deep learning; mathematical modeling; segmentation; phenotypic traits. 14

1. Introduction 15

Radish or daikon (Raphanus sativus L.) is a widely cultivated vegetable across many 16

regions, particularly in Asia, with Korea considering it as their national vegetable [1]. 17

Radishes belong to the Brassicaceae family and are used worldwide for vegetable con- 18

sumption, animal feed, and oil production. Radish roots, hypocotyl, and green leaves 19

are consumed in various ways, like raw, pickled, dried, simmered, salad, and even in the 20

traditional Korean dish, Kimchi [2]. The morphological and agronomic traits of radishes 21

distinguish them into five main varieties: small European radish, black Spanish radish, 22

East Asian big long radish, Chinese oil radish, and rat tail radish or feed radish [3]. 23

The Korean radish is estimated to have originated from Chinese radish varieties, 24

particularly those found in the southern and northern regions. Over time, Japanese radish 25

varieties were also introduced to Korea, further enriching the radish diversity. Among the 26

preferred radish types in Korea, white radishes with green shoulders, especially those with 27

an egg-shaped appearance, have enjoyed long-standing popularity due to their perceived 28

superior quality, sweetness, and crunchiness. While much of the research conducted 29

in Korea regarding radish and Brassica spp. has focused on cultivation techniques and 30

disease resistance [4], the country has also seen the development of numerous well-known 31

landraces and F1 hybrid cultivars of radish to accommodate different cropping systems 32

and satisfy consumer preferences. It is worth noting that radish seeds hold significant 33

market value in Korea’s vegetable seed industry, with a substantial export volume [5]. 34
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Monitoring the progress of crop growth throughout the growing season is of paramount 35

importance in agriculture. On-site observation allows for comprehensive assessment of 36

overall crop conditions, optimal irrigation scheduling, crop growth modeling, and accurate 37

yield predictions [6]. In the case of field-grown radish, regular monitoring of diverse pheno- 38

typic characteristics such as root height, leaf height, and root peel color provides valuable 39

insights for farmers to fine-tune inputs like fertilizers and herbicides, leading to precise 40

yield estimations [7]. Furthermore, understanding genetic variability and heritability is 41

crucial in evaluating the impact of selection. By studying phenotypic traits, researchers 42

gain insights into genotypic variability, enabling them to discern whether observed vari- 43

ations arise from genetic factors or environmental influences. Consequently, it becomes 44

imperative to separate the heritable and non-heritable components of phenotypic variation 45

when making selection decisions [8]. 46

The agricultural sector is increasingly leveraging big data and AI as promising so- 47

lutions to address critical challenges like climate change [9], food security, sustainable 48

agriculture [10], and aging populations [11]. To boost the effectiveness of agricultural and 49

breeding practices, there is a growing need to gather extensive phenotype and genotype 50

information through digital breeding innovations. To remain up-to-date with the advancing 51

technology in digital breeding, agriculture must evolve along with it. Digital breeding 52

offers the potential to automate manual cross-breeding processes and replace paper-based 53

record-keeping, thereby promoting breeding sustainability [12]. 54

In previous studies, plant monitoring has predominantly relied on either field mea- 55

surements or airborne/satellite data to effectively cover large areas [13]. The use of air- 56

borne/satellite data is particularly important for applications such as disease control and 57

automation, where efficient monitoring of extensive areas is crucial. For example, Dang 58

et al. utilized RGB and near-infrared images collected from unmanned aerial vehicles 59

(UAVs) to train a model for the early detection and treatment of Fusarium wilt in radish 60

[14,15]. The UAV-based detection system, employing CNNs, achieved high accuracy, with 61

a precision rate exceeding 90% and a recall rate surpassing 85%. This highlights the poten- 62

tial of employing UAVs and deep learning (DL) algorithms for automated plant disease 63

detection, resulting in time and labor savings in agriculture. Kim et al. investigated the use 64

of UAV-based RGB imagery to model and assess the growth status of cabbage and white 65

radish. By utilizing a vegetation index derived from the RGB imagery, the study accurately 66

predicted the crops’ growth status across four stages with a high degree of accuracy [6]. 67

Additionally, Barbedo et al. conducted a comprehensive review of UAVs and imaging 68

sensors in plant stress monitoring, emphasizing their advantages such as high-resolution 69

imaging, rapid coverage of large areas, and real-time data capture [16]. The review also 70

discussed challenges associated with UAVs and imaging sensors, including accurate sen- 71

sor calibration, weather conditions, equipment costs, and other factors influencing data 72

accuracy. 73

On the one hand, in-field measurements involve manual data collection on crops 74

or soil directly in the field, including parameters such as plant height, leaf area index, 75

and soil moisture [17]. In-field measurements are often considered more accurate than 76

airborne/satellite measurements due to their ability to be tailored to specific needs and 77

collected with high precision. While technologies like light detection and ranging (LiDAR) 78

or stereovision can measure plant traits without requiring additional tools, the use of a 79

simple smartphone camera offers notable advantages. Smartphones, widely accessible and 80

commonly used, serve as cost-effective and easily adoptable tools for plant monitoring. 81

Leveraging a smartphone’s camera enables researchers to conveniently and swiftly capture 82

images, facilitating the analysis of plant traits and advancing agricultural practices [18]. 83

For example, Coelho et al. examined the resistance of different plant parts of radish to 84

downy mildew, specifically cotyledons, leaves, and roots [19]. Results indicated that 85

cotyledons were the most susceptible, while roots exhibited the highest resistance, with 86

leaves displaying intermediate resistance. In another study, Lee et al. evaluated the genetic 87

diversity of cultivated radishes using agronomic traits and Simple Sequence Repeat (SSR) 88
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molecular markers [20]. They collected 18 agronomic traits, such as root length, diameter, 89

and weight, and utilized SSR markers to analyze the genetic diversity among 21 radish 90

cultivars. The findings revealed significant variations in agronomic traits, indicating a high 91

level of genetic diversity among the cultivars. SSR analysis also detected 64 alleles across 92

all cultivars, further highlighting genetic diversity. Additionally, Kumar et al. assessed 93

40 radish germplasm accessions for various root yield and quality traits, including root 94

weight, length, diameter, total soluble solids (TSS), and total ascorbic acid (TAA) content 95

[21]. Cluster analysis based on these traits classified the germplasm accessions into distinct 96

groups, representing specific genetic lineages. Another study by Kim et al. emphasized the 97

evaluation of phenotypic traits and glucosinolate contents in radish germplasm accessions 98

[7]. They examined 45 accessions, assessing phenotypic traits such as root weight, length, 99

diameter, leaf length, leaf width, and petiole length, alongside glucosinolate contents in 100

the roots. The results revealed significant variations in phenotypic traits and glucosinolate 101

contents, indicating a high level of genetic variability among the accessions. 102

Taking inspiration from previous research, the primary objective of this research was to 103

establish a framework for extracting phenotypic traits of Korean white radish using smart- 104

phone imagery. This framework was specifically designed to quantify several biophysical 105

parameters of the white radish throughout its entire growth cycle. By implementing this 106

approach, it becomes feasible to evaluate the growth status of white radish and incorporate 107

complex traits that were previously unattainable with conventional breeding methods. 108

Consequently, this framework facilitates the expedited and accurate development of new 109

radish varieties. The specific objectives of this research were twofold: (i) to introduce a 110

radish segmentation model trained on the collected images, enabling the differentiation 111

of various parts of the radish, and (ii) to automatically quantify eight distinct phenotypic 112

traits of white radish crops using the predicted masks. 113

The structure of this manuscript is presented as follows: In Section 2, the radish 114

segmentation dataset collected during this study is introduced. Section 3 outlines the 115

comprehensive framework used for extracting automated phenotypic traits. The individual 116

components of the framework are described in detail in Section 4. The experimental 117

outcomes of the proposed system are presented and evaluated in Section 5. Section 6 118

discusses the key findings and implications of this study. The paper concludes with Section 119

7, which provides a summary of the findings and suggests potential directions for future 120

research. 121

2. Radish segmentation dataset 122

The main objective of this section is to gather and establish a comprehensive database 123

of radish phenotype data to enable the prediction of phenotypic traits based on genetic 124

makeup. The dataset used in this study was acquired using a Samsung Galaxy S22 smart- 125

phone, which is equipped with a rear camera featuring a high resolution of 50 megapixels, 126

an aperture of f/1.8, and advanced autofocus capabilities1. This high-resolution camera 127

ensures accurate data collection during the entire duration of the study conducted in a 128

radish field located in Kyonggi-do, Korea, between September 2022 and February 2023. 129

To achieve this objective, rigorous measures were implemented to maintain strict 130

control over the radish fields. Drip irrigation was performed, delivering a nutrient solution 131

consisting of nitrogen, potassium, phosphorus, and other essential compounds. These 132

measures aim to minimize the occurrence of abiotic stresses such as nutrient deficiencies and 133

drought, as well as reduce the risk of diseases and pests. Additionally, daily expert/farmer 134

inspections were conducted to prevent the onset of diseases, pests, or other abiotic stresses. 135

For data collection purposes, twenty-four fixed radish cultivars were planted, and the 136

distance between rows of radishes was maintained at 0.4 meters. 137

Data collection was conducted within a specific one-hour time frame from 11:30 am 138

to 12:30 pm, which corresponds to the period of solar noon. To ensure consistent lighting 139

1 https://www.gsmarena.com/samsung_galaxy_s22_5g-11253.php

https://www.gsmarena.com/samsung_galaxy_s22_5g-11253.php
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conditions and minimize discrepancies between images, instances when clouds partially 140

blocked the sun were actively avoided. Furthermore, for image calibration purposes, a color 141

checkerboard2 was affixed to the board each time an image was captured. This allowed for 142

accurate color representation and calibration across the dataset. Sample images illustrating 143

three stages of radish growth and the number of training and testing images in this study 144

can be seen in Figure 1. 145

Radish growth 

(Stage 1) 

Bulb formation 

(Stage 2)

Maturation

(Stage 3)

0 100 200 300 400 500 600

LEAF

ROOT

405

486

45

54

50

60

Train Validation Testing

Figure 1. Sample images illustrating three different stages of radish growth, accompanied by a
description of the number of training and testing images collected for each respective stage.

As illustrated in Figure 2, to ensure consistency in the image capture process using the 146

smartphone, a tripod was used to maintain a steady distance and angle between the camera 147

and the test bed. The tripod was positioned at the bottom of the test bed, securely holding 148

the smartphone camera in place. By adhering to this setup throughout the image capture, a 149

standing stick was utilized as a reference point for both distance and angle. This method 150

facilitated standardized and reproducible photos, as the camera and test bed remained in 151

consistent alignment. As a result, this approach minimized variability and enhanced the 152

reliability of the analysis conducted on the captured images. 153

2 https://www.xrite.com/categories/calibration-profiling/colorchecker-classic

https://www.xrite.com/categories/calibration-profiling/colorchecker-classic
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(Color checkerboard)

(Breeding identifier)
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(Ruler)
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Figure 2. Illustration of the data collection process using a smartphone.

A total of 1100 high-resolution images were collected for this study. These images 154

were manually annotated to enable the automatic segmentation of two radish components, 155

namely the leaf and root. The dataset comprises two primary features: (i) radish field images 156

captured by smartphones, with a resolution of 4K (3000 × 4000), and (ii) the inclusion of a 157

color checkerboard and two rulers placed next to the radish for precise measurement of 158

phenotypic traits. 159

3. System overview 160

The primary processes of the white radish phenotypic traits extraction framework are 161

outlined in Figure 3. 162
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Figure 3. Detailed description of the proposed phenotypic traits measurement framework for images
collected by smartphones.

Detailed explanations for each process are provided below. 163

• Data collection: A systematic approach to capture high-quality images of the radish 164

samples using a smartphone was introduced. This involved securely positioning 165

the smartphone, optimizing camera settings for optimal image quality, and carefully 166

preparing the samples in a controlled environment. By following this systematic 167

approach, we successfully obtained reliable and accurate images that were suitable for 168

further analysis. 169

• Preprocessing: Since outdoor images can be affected by varying light conditions, caus- 170

ing inconsistency among images captured at different stages of radish development, 171

color calibration was performed to ensure the quality of the collected dataset. 172

• Radish segmentation: Mask-RCNN, a standard DL-based semantic segmentation 173

model, was trained to learn the radish’s abstract features to segment different compo- 174

nents of the radish efficiently. Mask-RCNN extends Faster-RCNN by incorporating an 175

additional branch that predicts the object mask in addition to the existing branches for 176

bounding box and class label prediction. This enables an accurate calculation of the 177

biophysical properties of radish. 178

• Real-life pixel density calculation: This process provides precise measurements of the 179

radish’s phenotypic traits by detecting the ruler placed next to the radish. 180

• Phenotypic traits measurement: By leveraging the output masks generated through 181

radish segmentation and the calculated real-life pixel density, the real-life measure- 182

ments of various radish phenotypic traits, such as width and length, are obtained. The 183

collected results are then imported into a database for future processing and analysis. 184

4. Methodology 185

4.1. Preprocessing 186

Color calibration was conducted on the collected images to mitigate the impact of 187

varying lighting and atmospheric conditions encountered throughout the study. This 188

process involves adjusting the colors on a device, such as a camera or monitor, to ensure 189

accurate and consistent color representation across different devices. One method for 190

achieving color calibration is by utilizing a color checker board, which contains a series of 191

color patches with known color values. By capturing an image of the chart with the device, 192
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a comparison can be made between the device’s color response and the known color values 193

of the patches, enabling adjustments to align the device’s colors accordingly. 194

The color checker equation is a mathematical formula used to calculate the color 195

correction matrix required to adjust the device’s colors and match them with the known 196

values of the color patches on the color checker board. This equation takes into account the 197

device’s spectral sensitivity and the spectral reflectance of the color patches, utilizing linear 198

algebra techniques to solve for the color correction matrix. 199

C = M ∗ R (1)

where C is the corrected color values, M is the 6 × 5 color correction matrix, and R 200

is the measured color values of the color patches on the color checker board. The color 201

correction matrix M can be computed by solving the equation: 202

M = inv(S) ∗ T (2)

where S is the 6 × 5 matrix of the spectral sensitivities of the device, and T is the 6 × 5 203

matrix of the spectral reflectance of the color patches on the color checker board. 204

4.2. Radish segmentation 205

The Mask-RCNN is a DL model widely used for object detection and instance seg- 206

mentation [22]. It is an extension of Faster-RCNN and includes an additional branch that 207

predicts a pixel-level object mask alongside the existing branch for bounding box recogni- 208

tion. Additionally, Mask-RCNN is easy to train and can be applied to other computer vision 209

tasks. The Mask-RCNN network in this study consists of three main stages, illustrated in 210

Figure 4. 211

Backbone

(ResNet101+FPN)

Input

(800×1333)

Region 

proposal 

network (RPN)

ROI align

feature maps proposals

Fully connected 

(FC) layers

FC

conv.

conv.

Object 

class

Mask

Mask classifier

softmax

Output

(800×1333)

Bounding 

box

regressor

FC

Figure 4. Full architecture of the radish segmentation system based on the Mask-RCNN model.

The first component of the network is the backbone, which utilizes a pre-trained 212

ResNet101 model on the ImageNet dataset [23] to capture low-level features from the 213

training images. To represent the target object at multiple scales, a feature pyramid network 214
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(FPN) is incorporated. The FPN’s top-level and extracted features are merged through an 215

up-sampling process, enabling each layer to generate its own set of distinct feature maps. 216

Next, the extracted multi-scale feature maps were passed through a region proposal 217

network (RPN) to generate object proposals. Given that the image size in the collected 218

dataset is 3000 × 4000, three area-scale anchors (64, 128, and 256) are used, along with 219

aspect ratios of 1:1, 1:2, and 2:1, based on the average radish root and leaf sizes in the 220

dataset. The RPN employs cross-entropy loss to learn and validate the created anchors, 221

while SmoothL1 loss is used to adjust the anchors’ coordinates. The RPN output consists of 222

a set of region of interests (ROIs) that potentially contain target objects. Each ROI proposed 223

by the RPN includes a set of bounding box coordinates and a confidence score indicating 224

the likelihood of an object being present at that location. 225

Once the ROIs are proposed, ROI alignment is applied to sample features from the 226

ROIs, aligning them with the ROI’s spatial layout using bilinear interpolation. Finally, the 227

mask head takes each ROI proposed by the RPN and predicts two outputs: a class label 228

and an object mask. The class label is determined by a classification network that generates 229

a probability distribution over a predefined set of classes. The object mask is generated by 230

a segmentation network that predicts a binary mask for the object, indicating which pixels 231

belong to the object and which do not. 232

4.3. Real-life pixel density conversion 233

The objective of this section is to determine the actual width and length of various 234

radish components in real-life units. The accurate calculation of real-life pixel density is 235

achieved by detecting the ruler positioned alongside the radish in the collected dataset. 236

Figure 5 illustrates a series of image processing operations employed to detect the line 237

(ruler) within an input image using the Hough line transform operation and subsequently 238

convert it to pixel density. 239

Image 

blurring

1px = [XX] mm

Edge 

detection

Ruler 

detection

Real-life pixel 

density calculation

Input image

Detected rulerBinary outputBlurred output

Figure 5. Four main steps of the real-pixel density conversion process based on ruler detection. Note:
[XX] indicates any numerical value.

To begin with, the images were converted from the RGB color space to the grayscale 240

color space, simplifying the identification of edge features. Subsequently, a Gaussian blur 241

was applied to the grayscale images to achieve image smoothing and eliminate unwanted 242

details that could potentially interfere with line detection. Following this, the Canny edge 243

algorithm, widely recognized for its effectiveness in edge detection, was implemented 244

to extract edges from the blurred grayscale image. Finally, the Hough line transform 245

method was employed to identify and represent the ruler within the edge-detected image 246

as (x1, y1, x2, y2) coordinates, indicating the starting (x1, y1) and ending (x2, y2) points of 247

the detected lines in the image. 248
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4.4. Radish phenotypic traits measurement 249

The phenotypic traits of radish leaves and roots were assessed at full maturity in 250

the field. A total of two qualitative and four quantitative traits were examined, utilizing 251

modified descriptors sourced from the International Union for the Protection of New 252

Varieties of Plants (UPOV, 2021)3. Detailed descriptions for each phenotypic trait can be 253

found in Figure 6(a) and 6(b). 254

Leaf width 

(LW)

Leaf length 

(LL)

Root width 

(RW)

Root length 

(RL)

Root shoulder 

color (RSC)

Root peel 

color (RPC)

(a) Quantitative traits (b) Qualitative traits

Figure 6. Depiction of the six phenotypic traits of radishes that are considered in this study.

The six quantitative traits included root length (RL), root width (RW), root length- 255

to-width ratio (RLW), leaf length (LL), leaf width (LW), and leaf length-to-width ratio 256

(LLW). The two qualitative traits were radish root peel color (RPC) and root shoulder color 257

(RSC). Segmented masks were utilized to compute each trait. During the testing process, 258

ten independent biological samples were examined for each trait to characterize both the 259

quantitative and qualitative phenotypic traits using the segmented masks. Most of the 260

quantitative traits, such as RW, LL, and LW, could be calculated using the bounding box 261

coordinates. 262

However, RL, which can exhibit various shapes due to genetic variation and envi- 263

ronmental factors, posed a different challenge. While most radish roots typically follow 264

a straight line, they can become elongated or acquire irregular shapes due to factors like 265

rocky soil, which causes the roots to grow around obstacles. As a result, Subsection 4.4.1 266

presents a novel approach to precisely measure the phenotypic traits of the radish root. 267

4.4.1. Root length measurement 268

Figure 7 depicts a radish root with a c-shape, exhibiting an irregularity that prevents 269

the computation of RL using the bounding box method. To address this challenge, this 270

study proposes the utilization of medial skeletonization on the segmented mask, enabling 271

precise computation of the RL. 272

3 https://www.upov.int/portal/index.html.en

https://www.upov.int/portal/index.html.en
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c-shape root Skeleton

Medial 

axis

Mask

Figure 7. Root length measurement process based on the medial axis skeletonization algorithm.

The skeletonization process involves iteratively thinning the object or shape until 273

only a one-pixel-wide skeleton remains, thereby simplifying the representation while 274

preserving the key features and structure [24]. One commonly used method is the medial 275

axis transform, which computes the centerline of the object and generates a skeleton that 276

represents its main axis of symmetry [25]. In Figure 7, the skeleton output of the medial axis 277

skeletonization method is demonstrated for the c-shaped radish root input. The resulting 278

output from the medial axis algorithm is a binary image where pixels on the skeleton are 279

assigned a value of 1, while all other pixels are set to 0. 280

Based on prior research [26,27], once the root skeleton was extracted, the RL can be 281

determined using the following formula. 282

RL =
∫

c
Cdl ∼= ∑ Cdl (3)

where the finite length of RL is represented by dl, and C denotes the geometric 283

calibration factor. Initially, C was introduced as a calibration parameter for the pixel 284

displacements in the mask outputs. However, as the dataset used in this study exhibited 285

no geometric distortion, C was set to 1. Therefore, the summation of the total pixels along 286

the skeleton directly facilitated the calculation of RL. 287

4.4.2. Color measurement 288

The establishment of the color ranges for radish root peel involved referencing the 289

typical colors observed in radishes. According to [7], radish cultivars display a wide range 290

of root shoulder colors, including green, with the green shoulder color being exclusive to 291

certain cultivars. While most cultivars and cultivars exhibit a white root peel color, a subset 292

of cultivars display two additional colors: bronze-green and red. As a result, a total of four 293

RPC categories, namely bronze-green, green, red, and white, were recommended based on 294

the observed color ranges of radish root peel. 295

In this study, color identification was performed by analyzing radish images and 296

selecting the color ranges that most accurately represented the root colors. These ranges 297

were defined in the hue, saturation, and value (HSV) color space. The HSV color space was 298

chosen over RGB for color detection tasks due to its ability to separate color information 299

from brightness or luminance information, providing a more intuitive framework [28]. 300

Further details on the root color recognition process can be found in Figure 8. 301
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(i) Root shoulder
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Figure 8. Root color recognition process based on the HSV color channel.

The assignment of radish RSC and RPC peel colors into one of four categories was 302

accomplished by defining color ranges in the HSV color space. The specific ranges were 303

determined as follows. 304

• Bronze-green: [25, 50, 50] to [45, 255, 255] 305

• Green: [45, 50, 50] to [90, 255, 255] 306

• Pink: [0, 50, 50] to [10, 255, 255] 307

• White: [0, 0, 150] to [180, 50, 255] 308

These ranges were applied to generate binary masks for each color category, enabling 309

the identification of the largest contour within each mask. Subsequently, the mean hue 310

value of the contour was calculated. This mean hue value served as the basis for categorize 311

the radish RSC and RPC into one of the four color categories: bronze-green, green, red, or 312

white. 313

4.4.3. Implementation descriptions 314

The automated framework for phenotypic trait measurement was developed using 315

MMdetection4, an open-source object detection framework that is built on top of PyTorch. 316

To ensure reliable experiments, a pre-trained ResNet-101 model on ImageNet was used as 317

the backbone for the model. The training and testing processes were deployed on an Nvidia 318

Tesla V100 GPU 32GB. In addition, this study used PlantCV5, an open-source software 319

package for plant image analysis that supports a range of tasks, including image processing, 320

feature extraction, and data analysis. 321

The number of classes was set to 3, including radish root, leaf, and background classes. 322

The ROI head used a two-layer multi-layer perceptron (MLP) with 1024 hidden units and a 323

single-scale ROI pooling operation. Meanwhile, the mask head employed a two-layer MLP 324

with 256 hidden units and a bilinear interpolation operation. The model utilized an Adam 325

4 https://mmdetection.readthedocs.io/en/latest/
5 https://plantcv.readthedocs.io/en/stable/

https://mmdetection.readthedocs.io/en/latest/
https://plantcv.readthedocs.io/en/stable/
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optimizer with a learning rate of 0.02, a momentum of 0.9, and a weight decay of 0.0001. 326

During the testing process, a non-maximum suppression (NMS) with a mask threshold of 327

0.5 was applied to the model. 328

4.4.4. Evaluation metrics 329

This study considers mean average precision (mAP) as the primary evaluation metric 330

to assess the performance of the segmentation model. The mAP is calculated by averaging 331

the average precision (AP) values, where AP is derived from plotting the precision-recall 332

curve (PR curve) for each object class. The PR curve illustrates the trade-off between 333

precision and recall, and the area under the curve corresponds to the AP value, ranging 334

from 0 to 1. The mAP serves as a comprehensive metric that offers an overall evaluation of 335

the model’s performance across all object classes. It can be mathematically expressed as: 336

mAP =
1
K

K

∑
i=1

precisioni × recalli (4)

where K is the number of classes. 337

To evaluate the model’s ability to predict various phenotypic traits of the radish, mean 338

absolute error (MAE) and mean absolute percentage error (MAPE) are utilized. MAE 339

measures the average absolute difference between the predicted values and the actual 340

values. It provides a numerical value that represents the magnitude of the errors made by 341

the model. A lower MAE indicates better performance, as it signifies a smaller average 342

discrepancy between the predicted and actual values. 343

On the other hand, MAPE calculates the average percentage difference between the 344

predicted values and the actual values. It expresses the errors as a percentage of the actual 345

values, providing a relative measure of the model’s performance. MAPE is particularly 346

useful when the scale or magnitude of the data varies significantly across different samples. 347

Like MAE, a lower MAPE indicates better performance, with smaller percentage errors 348

between the predicted and actual values. The equations for MAE and MAPE are defined as 349

follows. 350

MAE =
1
n

N

∑
i=1

|yi − ŷi| (5)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (6)

where N represents the number of traits, yi indicates the GT trait value, and ŷi is the 351

predicted trait value. The absolute value |.| is used to ensure that the errors are positive 352

values. 353

5. Experimental results 354

This section presents a series of experiments conducted on the collected dataset to 355

evaluate the effectiveness of different components within the phenotypic trait measurement 356

framework. Subsection 5.1 highlights the impact of color correction on images captured by 357

smartphones and demonstrates its effectiveness. Subsection 5.2 assesses the performance 358

of the Mask-RCNN segmentation model on the preprocessed radish dataset. Lastly, Sub- 359

section 5.3 compares the performance of the phenotypic trait measurement with actual 360

measurements, providing a comprehensive evaluation of the framework’s effectiveness. 361

5.1. Preprocessing 362

Color correction is an essential image processing method that plays a crucial role in 363

enhancing the naturalness, accuracy, and visual appeal of colors in an image, particularly 364

when extracting color phenotypic traits from radish roots. Its primary goal is to ensure that 365

the captured colors align with their real-life counterparts. In an ideal scenario, the RGB 366
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values of color patches in both the target image (captured under controlled conditions) 367

and the source image (captured outdoors) should exhibit a linear relationship. However, 368

images taken outdoors can be influenced by ever-changing lighting conditions, causing 369

deviations from this linear trend. 370

To illustrate this, Figure 9 presents a comparison of color check matrices between the 371

source image and the target image. The matrices plot the average values for the red, green, 372

and blue channels of each color patch in both images. As indicated by the red arrows, 373

certain problematic patches in the source image deviate from the linear trend line across 374

all color channels (R, G, and B). This observation underscores the importance of the color 375

correction process in achieving accurate and reliable results. 376

blue green red

target

so
u
rc
e

Figure 9. Comparison of the R, G, B color channels between the source image and the target image.

Figure 10 demonstrates a sample output of the color correction process applied to the 377

source image. The process involved several steps. Firstly, the target mask and the source 378

mask, which indicate the location of the color checker in the target and source images, 379

respectively, were extracted. Next, the color space from both the target and source images 380

was extracted using the detected color checker. Finally, the color space of the source image 381

was converted to match the preferred color space of the target image. 382
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Target image

Source image Corrected image

Target mask

Color 

correction

Figure 10. Example of the color correction process, which takes the source image and target image as
input and outputs the color-corrected image.

The corrected image showcases noticeable improvements, displaying accurate and 383

consistent colors in comparison to the original source image. The color correction process 384

successfully aligns the colors with the target image, resulting in enhanced color fidelity and 385

overall visual appeal. 386

5.2. Mask-RCNN performance evaluations 387

In this section, the Mask-RCNN model with the ResNet101 backbone was trained 388

and evaluated using the proposed dataset after the implementation of the color correction 389

process. The effectiveness of the training process and the convergence of the Mask-RCNN 390

model can be observed in Figure 11, which presents the training loss mask and validation 391

mAP results. 392

Training loss mask Validation mAP

Figure 11. Training loss and validation mAP curves of the Mask-RCNN model using the
ResNet101+FPN backbone network.
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During training, the training loss mask steadily decreases and reaches a significant 393

reduction to approximately 0.1 after 500 iterations. It continues to converge steadily, 394

maintaining a loss of less than 0.1 by the end of the training process (iteration 3500). This 395

reduction in training loss indicates the model’s ability to learn and adapt to the dataset. 396

The validation mAP, which serves as an indicator of the model’s performance, shows 397

promising results. It quickly increases to over 0.75 after only five epochs and continues to 398

improve, reaching a peak value of 0.87 at epoch 25. This demonstrates the model’s ability 399

to accurately segment radish images and its capacity for generalization across the dataset. 400

Overall, the Mask-RCNN model exhibits strong generalization capabilities, consistently 401

producing robust segmentation results for radish phenotypic traits. 402

To rigorously evaluate the segmentation performance of the Mask-RCNN model, three 403

latest segmentation algorithms, namely BlendMask [29], BoxInst [30], and CondInst [31], 404

were trained and compared with the Mask-RCNN model. Quantitative evaluation metrics 405

including mask AP and inference speed were computed. The results are summarized in 406

Table 1, with the optimal values for each metric on the collected radish dataset highlighted 407

in bold font. 408

Table 1. Comparison of different segmentation algorithms on the collected radish dataset.

Model Mask AP (%) Inference time (FPS)
CondInst [31] 86 11
BoxInst [30] 81 10
BlendMask [29] 85 13
Mask-RCNN 87 11

Table 1 highlights the segmentation performance of various algorithms, with Mask- 409

RCNN and CondInst achieving the highest mask AP scores of 87% and 86% respectively, 410

demonstrating their superior performance in segmenting radish instances. In terms of 411

inference time, BoxInst demonstrated the fastest speed, achieving 10 FPS, closely followed 412

by Mask-RCNN and CondInst with 11 FPS. BlendMask exhibited a slightly longer inference 413

time of 13 FPS. Overall, Mask-RCNN emerges as the top performer in terms of AP, while 414

BoxInst showcases the best inference speed among the evaluated models. These results 415

provide valuable insights into the strengths and capabilities of each algorithm in the context 416

of radish segmentation. 417

Figure 12 demonstrates the predicted masks generated by the Mask-RCNN model for 418

four different scenarios. In general, Figures 12(a) and (b) demonstrate the model’s accurate 419

localization of both the leaf and root parts, even in challenging cases. In Figure 12(a), where 420

the radish root is thin and exhibits a reverse C-shape, the model successfully captures the 421

distinct features of the root region. Similarly, Figure 12(b) shows the model’s ability to 422

differentiate between the radish root and the leaf region, despite the peel color of the root 423

resembling that of the leaf. These results confirm the robustness of the proposed model in 424

effectively detecting specific defects under diverse and challenging conditions. 425
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(a) (b)

(c) (d)

Figure 12. Radish segmentation outputs of the Mask-RCNN model for challenging cases.

However, there are instances, as depicted in Figures 12(c) and (d), where the model 426

encounters difficulties and incorrectly segments certain regions. For instance, in Figure 427

12(c), the presence of a glove with a color similar to that of the radish root peel confuses 428

the model, leading to its incorrect identification as part of the radish region. In Figure 429

12(d), the small and thin radish leaf region results in the model generating two separate 430

segments, affecting the accuracy of the overall segmentation. These examples highlight 431

both the strengths and limitations of the proposed model, demonstrating its proficiency in 432

challenging scenarios while acknowledging certain cases where further improvements are 433

necessary. 434

5.3. Phenotypic traits measurement 435

Table 2 presents the results of the phenotypic trait measurement conducted on ten 436

radish samples using the proposed framework. The measured traits include RL, RW, LL, 437

LW, RLW, LLW, RPC, and RSC. For each sample, the table displays the ground truth (GT) 438

values, which were obtained through accurate manual measurements using a tape measure. 439

The tape measure ensured precise and consistent measurements across different parts of 440

the radish. Additionally, the table showcases the predicted values (Pre) generated by the 441

proposed framework. To evaluate the accuracy of the predictions, the RLW and LLW values 442

were used as indicators. These ratios provide insights into the proportions and shape of the 443

radish root and leaf, respectively. By comparing the predicted values to the GT values, the 444

accuracy of the framework’s predictions for each sample can be determined. 445

The first section of the table provides the GT values for each phenotypic trait of every 446

sample. For example, sample S1 has GT values of 24.5 mm for RL, 7 mm for RW, and 447

3.5 for RLW. The GT values for the remaining phenotypic traits are similarly listed for all 448

samples. The second section of the table displays the predicted values for each phenotypic 449

trait of each sample. It is evident that the predicted measurements align closely with the 450
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Table 2. Comparison between the GT and the prediction phenotypic traits measurement for ten
radish samples.

Sample
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

GT

RL 24.5 11.1 6 30 14 14 23 18.7 16.2 23
RW 7 7 8 6 7 4.3 8.9 8 8.3 8.8
RLW 3.5 1.6 0.7 5 2 3.2 2.6 2.3 1.9 2.6
LL 39.2 29 50.8 43 34.3 29.3 45 33.4 29.4 45
LW 47 20.5 37.7 46 26 19 34 37.6 25.1 44
LLW 0.8 1.4 1.3 0.9 1.3 1.5 1.3 0.8 1.1 1
RSC BG G G G G BG BG G R G
RPC W W W W BG BG W W R W

Pre

RL 24 10 6 14 14.6 14 23 19 17 23
RW 7 7 8 5 7 4.9 9 8 8 8
RLW 3.4 1.4 0.7 2.8 2 2.8 2.5 2.4 2.1 2.9
LL 40 28 50 43 34 30 45 34 29 46
LW 48 21 37 45 25 21 34 38 26 44
LLW 0.8 1.3 1.3 0.9 1.3 1.4 1.3 0.8 1.1 1
RSC BG G G G G BG BG G R G
RPC W W W W BG BG W W R W

Accuracy (%) 99.7 98.6 100 82 100 93.7 96.1 97.4 99 96.1
MAE 0.57 0.65 0.37 4.5 0.47 0.82 0.02 0.32 0.6 0.45
MAPE (%) 1.55 3.73 0.85 18.01 2.22 6.7 0.28 1.11 3.37 2.82

GT measurements. Notably, the framework accurately predicts the RSC and RPC traits, 451

matching the GT values. 452

To evaluate the accuracy of the predictions, the following formula is applied: the 453

absolute difference between the predicted and GT values is divided by the GT value, and 454

the result is multiplied by 100. For instance, sample S1 achieves an accuracy of 99.7%, 455

indicating a highly accurate prediction closely resembling the GT value. Overall, the 456

accuracy of the predictions ranges from 82% to 100%, demonstrating the effectiveness of 457

the proposed measurement approach in detecting phenotypic traits in radish samples. In 458

addition, the small MAE, and MAPE results demonstrate that the proposed framework 459

achieves high accuracy and precise measurements of the phenotypic traits of radish samples. 460

These results indicate the effectiveness and reliability of the framework in detecting and 461

quantifying important traits for plant breeding programs and genetic studies. 462

6. Discussion 463

Previous studies have primarily relied on manual methods to measure phenotypic 464

traits, which are prone to errors and time-consuming. This study aimed to address these 465

limitations by developing a vision-based phenotypic traits measurement framework for 466

radishes. Our main finding is that the proposed framework can automatically and accu- 467

rately measure the phenotypic traits of radish roots and leaves. 468

To provide a broader context, we compared our results with relevant findings from 469

other papers in the field. For example, Falk et al. reported phenotypic trait measurements 470

in pixels, which can be challenging for end-users to comprehend [32]. In contrast, our 471

study successfully addressed this issue by converting pixel measurements into real-world 472

values through the detection of a ruler placed in the image (Section 4.3). This approach 473

not only simplifies the interpretation of the results but also facilitates the construction of a 474

phenotypic traits database for radishes. 475

In addition to addressing the measurement units, our study introduces several novel 476

methodologies that contribute to the field of phenotyping. Firstly, we emphasized the 477

importance of a pre-processing module (described in Section 4.1) for datasets captured 478

outdoors. This module includes color calibration to correct the color variations, which is 479
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particularly critical as incorrect color representation can significantly impact traits such as 480

RPC and RSC. Although this module requires additional computational power and time, it 481

can be selectively enabled or disabled based on the specific application’s requirements. 482

Furthermore, we proposed a new approach for calculating RL based on the skele- 483

tonization method (Section 4.4.1). This approach addresses the challenge posed by radishes 484

having various root shapes, making it difficult for experts to measure RL accurately using a 485

standard ruler. By computing the root length based on the extracted skeleton of a root, our 486

approach provides a robust solution applicable to fruits and plants with diverse shapes. 487

Regarding the impact of our proposed methodology on breeders, we envision several 488

significant contributions. The automation and accuracy provided by our vision-based 489

framework significantly reduce the reliance on manual measurements, which are not 490

only prone to errors but also time-consuming. By streamlining the phenotypic traits 491

measurement process, breeders can save valuable time and resources, enabling them to 492

analyze larger populations of radishes more efficiently. The availability of accurate and 493

comprehensive phenotypic data further empowers breeders in their selection and breeding 494

processes, leading to improved crop yield, quality, and overall breeding progress. 495

7. Conclusions and future works 496

This study introduces an end-to-end radish phenotypic traits measurement framework 497

tailored for automated breeding selection applications. A comprehensive dataset of 1100 498

high-resolution images, covering three stages of radish growth, was collected and utilized 499

for accurate phenotypic traits analysis. 500

The framework incorporates several crucial steps. Firstly, a color calibration tech- 501

nique was applied to ensure consistent and accurate color representation across all images. 502

Subsequently, four well-known segmentation models, namely CondIns, BoxIns, Blend- 503

Mask, and Mask-RCNN, were trained on the dataset to evaluate their performance in 504

segmenting radish components. The experimental results highlighted the robustness of the 505

MaskRCNN-based model, which achieved an average validation mAP of 87% in accurately 506

segmenting the two different radish components. Additionally, the study showcased the ef- 507

fectiveness of a skeletonization algorithm in addressing the challenge posed by the various 508

shapes of radish roots by extracting their skeletons. Furthermore, the proposed framework 509

successfully measured eight radish phenotypic traits with precision in real-life scenarios. 510

While the focus of this study was specifically on radish phenotypic traits measurement, 511

the framework can be readily extended to other plant species like cucumber and pumpkin, 512

given appropriate adjustments in settings and sufficient segmentation data. It would also 513

be worthwhile to propose a standardized measurement approach for radish phenotypic 514

traits, facilitating consistent analysis of output measurements across studies. However, it is 515

important to note that the current framework does not support real-time phenotypic traits 516

measurement due to its complexity. Hence, future work should prioritize optimizing the 517

framework for robustness and time efficiency to enable real-time measurement capabilities. 518

In addition, methods, such as using a contour-based or boundary refinement technique, 519

could be beneficial for accurately estimating radish root width in cases of irregular shapes. 520

By capturing the root’s actual boundary and considering its curvature, a more precise 521

measurement of root width can be obtained. 522
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Abbreviations 539

The following abbreviations are used in this manuscript: 540

541

RGB Red green blue color channel
RCNN Region-based Convolutional Neural Network
UAVs Unmanned aerial vehicles
SSR Simple sequence repeat
TSS Total soluble solids
FPN Feature pyramid network
RPN Region proposal network
RL Root length
RW Root width
LLW Leaf length to width ratio
RLW Root length to width ratio
LL Leaf length
LW Leaf width
RSC root shoulder color
RPC root peel color
HSV Hue, saturation, and value
PR curve Precision-recall curve
MLP Multi-layer perceptron
NMS non-maximum suppression
ROIs Region of interests
TAA Total ascorbic acid
CNNs Convolutional neural networks
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