
Measurement 190 (2022) 110727

Available online 12 January 2022
0263-2241/© 2022 Elsevier Ltd. All rights reserved.

A robust instance segmentation framework for underground sewer 
defect detection 

Yanfen Li a, Hanxiang Wang a, L.Minh Dang b, Md Jalil Piran a, Hyeonjoon Moon a,* 

a Department of Computer Science and Engineering, Sejong University, Seoul, Republic of Korea 
b Department of Information Technology, FPT University at Ho Chi Minh city, Vietnam   

A R T I C L E  I N F O   

Keywords: 
Deep learning 
Defect inspection 
Underground sewer 
Instance segmentation 

A B S T R A C T   

The inspection of underground sewer defects plays a considerable role in estimating the structural integrity and 
avoiding various unforeseen functional failures. However, the conventional sewer defect inspection approaches 
suffer from the blurry and vaporous environment inside the sewer pipes, which significantly lowers the per-
formance. Besides, it is challenging to achieve efficient and accurate condition assessment by the common 
manual inspection. Therefore, this manuscript introduces an automatic instance segmentation-based defect 
analysis framework. The main contributions include 1) a novel defect segmentation model called Pipe-SOLO is 
firstly presented to segment six common types of defects at the instance level by proposing an efficient backbone 
structure (Res2Net-Mish-BN-101) and designing an enhanced BiFPN (EBiFPN), 2) a GAN-based dehazing model is 
applied to effectively solve the image blurring problem, and 3) a publicly available sewer defect segmentation 
dataset. The experimental results show the proposed Pipe-SOLO achieved an improvement of 7.3% compared 
with the state-of-the-art method in terms of the mean Average Precision (mAP). Therefore, the proposed defect 
segmentation method is promising to be integrated with real-life applications that require defect localization and 
estimation.   

1. Introduction 

The underground sewage pipelines are a significant part of the urban 
infrastructure that is distributed throughout the city. More attention has 
been paid recently in order to treat the sewage and rainwater due to the 
city’s development and the significant growth of its population in a short 
time. However, the sewer pipes were inevitably found in various stages 
of damage and leakage due to corrosion and poor management [1], 
which seriously affected the sewer treatment performance and affected 
the environment [2]. Therefore, it is necessary to take early intervention 
measures like defect inspection, evaluation, and rehabilitation for the 
deteriorating pipes. Previously, sewer inspectors identified defects and 
assessed the risk level based on the onsite manual observation. Beyond a 
doubt, this kind of subjective approach is improper and impractical for 
massive sewer pipes. In order to address this issue, an automatic method 
that can effectively inspect distinct defects in closed-circuit television 
(CCTV) videos or images is needed to manage underground sewer 
system. 

In recent years, various technologies have been introduced to inspect 
and estimate the defects effectively. The common defect inspection 

techniques mainly include defect classification, detection, and seg-
mentation [3], each technique has its notable characteristics. For 
example, deep learning (DL)-based methods have been increasingly used 
because they can obtain significantly better results when the data is 
sufficient [1,4,5]. Nevertheless, the image classification that only con-
siders each defect’s label provide less information than the object 
detection methods, because the main purpose of the object detection is 
to indicate the defect type and the precise location of the detected defect 
through the bounding box [6]. Currently, the image segmentation 
technique that can obtain the most comprehensive information has 
shown its superiority. The principal image segmentation methods are 
divided into morphological segmentation [7,8], semantic segmentation 
[9], and instance segmentation [10]. The semantic and instance seg-
mentation methods based on fully-supervised learning usually achieve 
better performances than the morphological segmentation methods 
based on unsupervised learning [3]. Compared with semantic segmen-
tation, the instance segmentation is specific to each instance instead of 
each class. This provides great convenience for the sewer inspectors to 
distinguish and analyze different defect samples in the same class. As a 
result, this study proposes a practical defect inspection framework that 
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reports the objective boundary, area, and the corresponding class for the 
individual sample to evaluate the defect thoroughly. 

Image blurring is an inevitable problem in vision-based inspection 
tasks that directly affect the performances of the machine learning (ML) 
models, so many researchers have shifted the attention to tackle it in 
recent studies [11,12]. For instance, a dark channel prior (DCP)-based 
dehazing process was introduced to preprocess the low visibility CCTV 
images [13]. In addition, an end-to-end dehazing system was proposed 
in [14], and it shows excellent performance on the benchmark dataset. 
Even though their dehazing processing modules can remove the un-
derlying haze, the brightness of the processed image is changed. Moti-
vated by those studies, an image preprocessing technology that can 
perform well on dehazing and maintaining the brightness is integrated 
into the defect segmentation system to improve the proposed frame-
work’s performance. 

The main contributions of this study are as follows.  

1. An instance-based sewer defect segmentation model (Pipe-SOLO) is 
firstly proposed by introducing an efficient backbone structure 
(Res2Net-Mish-BN-101) and designing an enhanced BiFPN 
(EBiFPN). 

2. A dehazing algorithm is integrated into the proposed defect inspec-
tion framework in order to handle the image blurring problem and 
then increase the detection rate. 

3. A manually validated and annotated dataset for the instance seg-
mentation task is provided. 

The rest of the paper is organized as follows. Section 2 summarizes 
and analyzes the related literature. The sewer defect analysis system is 
explained in Section 3. Section 4 explains the data collection process and 
evaluation metrics used in this study. After that, several experiments are 
discussed in Section 5 to evaluate the performance of the proposed 
approach. Section 6 concludes the research by showing current limita-
tions and future research directions. 

2. Related work 

2.1. Image preprocessing 

Image blurring is a common problem during the data acquisition 
process, so different dehazing technologies were proposed to solve it. 
For example, a conventional and effective dehazing algorithm called 
DCP was proposed to deblur a single image. However, the DCP algo-
rithm showed poor performance on the images with low contrast [12]. 
Even though the Bayesian-based dehazing method suggested by Ju et al. 
was robust to all hazy images, some coefficients related to the atmo-
spheric conditions needed to be predetermined [15]. In another work, 
an end-to-end dehazing system called DehazeNet was introduced to 
estimate the medium transmission map and perform dehazing [14]. 
Nevertheless, an error usually occurred in the intermediate process of 
the DehazeNet that affected the final dehazing performance. With a 
different approach than the mentioned methods, a dehazing network 
called the gated context aggregation network (GCANet) was offered 
recently to perform the dehazing processing. The main advantage of the 
approach was that it could perform dehazing well and retained the 
original brightness without any prior knowledge [11]. As a result, the 
GCANet dehazing model is integrated into the defect inspection frame-
work proposed in this paper in order to efficiently remove noise and 
enhance the overall image quality. 

2.2. Defect inspection 

Recently, various methods have been proposed to analyze defects in 
different structural monitoring systems, such as pavements [16], tunnel 
surface [10], and steels [17,18]. The following subsections discuss the 
strengths and weaknesses of three kinds of common methods (defect 

classification, detection, and segmentation) and reveal the primary 
purpose of the study. 

2.2.1. Defect classification 
Image classification is an essential topic of the computer vision (CV) 

field, which has drawn a lot of attention from the research community. 
There is a growing number of studies that have been introduced recently 
in order to identify the defects in the public infrastructure. For example, 
an ML-based diagnosis system was suggested in [19] to recognize seven 
types of sewer defects. The experimental results showed that the support 
vector machine (SVM) classifier obtained an accuracy of 84.1%. The 
authors also revealed that the accuracy was highly related to the number 
of training images. Considering the conventional ML methods that 
require an additional feature engineering process, an ensemble of deep 
convolutional neural networks (CNNs) was presented to classify three 
classes of defects [4]. Even though the proposed model obtained an 
overall accuracy of 86.2%, the method failed to recognize some sub- 
class defects that were commonly encountered. In another work, a 
deep learning-based sewer pipe condition evaluation system was pre-
sented to recognize six predefined defects on CCTV videos [1]. The 
technique achieved a promising classification result at 96.33%, but it 
ignored the multi-class defects in an image. A hierarchical classification 
method was recently introduced to detect and classify the defects from 
an extremely imbalanced CCTV dataset [5]. Although the overall ac-
curacy of the binary classification in the high-level task was improved by 
4.8% by using hierarchical softmax, the model performed poorly on 
individual defects in the low-level task. 

2.2.2. Defect detection 
Apart from the defect labels provided by the classification algo-

rithms, the locations of different defects in sewer images are also 
important information. In recent years, there exist two object detection 
algorithms that are applied to detect distinct sewer pipe defects: one- 
stage detectors and two-stage detectors. For instance, the proposed 
framework in [20] was concerned with the issue of real-time automatic 
defect detection by streamlining the data and customizing a YOLOv3 
model. Their customized one-stage method achieved a mean Average 
Precision (mAP) of 85.37%, and the detection speed reached about 33 
frames per second (FPS). However, less training data collected in their 
study cannot provide the adequate features for each class of defect. As 
for a two-stage detector, Cheng, J. C. and Wang, M. developed a defect 
detection system based on the faster R-CNN model. Experiments 
demonstrate that the detection accuracy keeps increasing by extending 
the dataset, adding some convolutional layers, and modifying appro-
priate hyper-parameters. But this approach is limited to the detection of 
the defects with similar color or geometry [6]. 

2.2.3. Defect segmentation 
Since the defect segmentation technique can provide the detailed 

information, such as the defect’s class, location, and boundary, it is 
considered a crucial tool to assess any sewer pipe’s condition. Most of 
the previous methods mainly focused on the morphological segmenta-
tion approach. For example, three distinct morphological methods were 
implemented to segment two typical defects (cracks and open joints) 
[7]. The experimental results showed that the morphological segmen-
tation using the edge detection (MSED) method worked well on the 
crack class, whereas the opening top-hat operation (OTHO) method 
achieved high performance on the open joint class. Su et al. introduced a 
similar sewer segmentation system using the MSED method [8] and 
verified that the results generated by the MSED method were better than 
the OTHO method. All the conventional morphological segmentation 
methods that require many complicated processing steps are time- 
consuming and error-prone. Therefore, a modified version of the U- 
Net structure called PipeUNet was presented to perform the semantic 
segmentation [9]. The experimental results confirmed that the PipeUNet 
model achieved the Mean Intersection over Union (MIoU) of 76.37% 
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and a high processing speed at 32 FPS. Nevertheless, the semantic seg-
mentation method was unable to cover a comprehensive analysis for 
each defect sample. As a result, Xu et al. applied an instance segmen-
tation approach to obtain the detailed information for only three types of 
defects on tunnel surfaces [10]. 

Given the drawbacks of previous studies, this manuscript proposed 
the first instance segmentation-based sewer defect inspection model that 
requires the pixel-wise semantic labeling and instance labeling simul-
taneously. Unlike the common segmentation, the segmentation model 
presented in this study can distinguish different classes and instances in 
the same image. The experimental results showed that the proposed 
model outperformed previous methods with the highest mAP of 59.3% 
on the collected six types of defects. 

3. Proposed defect segmentation framework 

The main processes of the proposed sewer pipe inspection system are 
described in Fig. 1. Firstly, all frames are extracted from the CCTV 

videos, and the frames with defects are manually validated and stored in 
the defect database. The polygonal annotations of defects were then 
manually labeled, which are required to train the proposed model. A 
preprocessing module is applied to remove the underlying haze before 
testing the foggy images (Section 3.1). After that, 80% of the collected 
defect dataset is fed into the instance segmentation-based model, 
whereas the remaining 20% of the dataset is used as the testing dataset 
to evaluate the model’s performance. The proposed defect segmentation 
model produces the segmented images and the corresponding reports 
(Section 3.2). 

3.1. Image preprocessing 

The evaporation of water due to the various temperatures inside the 
sewer pipelines is an inevitable problem during the data acquisition 
process, which leads to blurry and noise in the collected CCTV videos 
that can directly affect the defect analysis’s performance. As a result, an 
effective dehazing model called GCANet [11] was adopted to remove fog 

Fig. 1. Illustration for the overall process of the proposed sewer pipe inspection system.  

Fig. 2. Four main modules of the GCANet algorithm, which include encoder module, smoothed dilated resblock module, gated fusion sub-network, and 
decoder module. 
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and improve the image quality in this study. The GCANet model directly 
figures out the relationship between the hazy image and the haze-free 
image without applying any prior knowledge. Fig. 2 shows that the 
GCANet model has four main modules, which include encoder module, 
smoothed dilated resblock module, gated fusion sub-network, and 
decoder module. The encoder module consists of three convolution 
blocks that are used to encode the blurred image as a feature map. 
Moreover, the smoothed dilated resblock and gated fusion sub-network 
are applied to replace the conventional down sampling block in order to 
aggregate more information and fuse the features with different levels. 
Finally, the fused feature map from the gated fusion sub-network is 
decoded back to the original image space and is added to the blurred 
image as a residual image. 

The main innovations of the GCANet model are mainly reflected in 
two aspects. Firstly, the smoothed dilated convolutions are added be-
tween the encoder module and the decoder module. Common dehazing 
algorithms use down sampling operations, such as pooling layer and the 
convolution layer with large stride, to increase receptive fields. How-
ever, these down sampling operations reduce the spatial resolutions of 
the feature maps, resulting in gridding artifacts in the output images. 
Therefore, the smoothed dilated convolutions are applied to expand the 
receptive field without reducing the spatial resolution. Secondly, a new 
feature fusion approach is presented. GCANet adopts gated fusion sub- 
network f to calculate the weight coefficients (W1, W2, W3) of the 

feature maps (F1,F2,F3) with three different scales, as shown in Equation 
(1). The weight coefficients are weighted to the corresponding features 
before the future fusion process, which enhances the utilization of 
effective features. Equation (2) represents the feature fusion process. 

(W1,W2,W3) = f (F1,F2,F3), (1)  

F = W1*F1 +W2*F2 +W3*F3, (2) 

Seven resblocks with dilation rates of 2, 2, 2, 4, 4, 4, and 1 are 
connected between the encoder module and the decoder module in 
order to improve the model’s feature extraction ability. The number of 
the channels per convolution layer is set to 64. The instance normali-
zation and ReLU function are used to further process the output features 
of convolution layers. 

3.2. Defect segmentation 

In order to provide a comprehensive representation, we attempted to 
explain the model’s improvements from the aspects of the model ar-
chitecture (Section 3.2.1) and the parameter optimization (Section 
3.2.2). On the one hand, the detailed structures of the original SOLOV2 
model and the proposed Pipe-SOLO model are described in Section 
3.2.1. On the other hand, the principle of the loss function proposed in 
this work is introduced in Section 3.2.2 by exploring an important 

Fig. 3. Overall structures of (a) the original SOLOv2 model and (b) the proposed Pipe-SOLO model.  
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parameter. 

3.2.1. Pipe-SOLO architecture 
In this paper, an efficient instance segmentation network, which is 

called Pipe-SOLO, is proposed to segment defects using information, 
such as the location and size of the object. The proposed Pipe-SOLO 
model improved the overall structure and optimized the parameters of 
the segmenting objects by locations v2 model (SOLOv2) [21]. Fig. 3(a) 
describes the overall structure of the original SOLOv2, which includes 
the backbone that is responsible for extracting features, the neck that 
generates and fuses features, and the head that calculates the loss of the 
classification and the segmentation branches. Fig. 3(b) shows detailed 
descriptions of the proposed Pipe-SOLO, which improve the structure of 
the SOLOv2 model in Fig. 3(a). Firstly, a Res2Net-Mish-BN-101 module 
was proposed as the backbone of the Pipe-SOLO model (Section Back-
bone). An enhanced BiFPN (EBiFPN) was designed as the neck instead of 
the FPN network (Section Neck). Finally, the effectiveness of the 
mentioned Res2Net-Mish-BN-101 and EBiFPN structures will be dis-
cussed in Section 5.2. 

Backbone: Three models (ResNet-50, ResNet-101 [22], and 
ResNeXt-101 [23]) were adopted as the backbone of the original 
SOLOv2 model, and the experiment results showed that the ResNeXt- 
101 outperformed other backbones. The grouped convolutions idea of 

ResNeXt combines the residual structure of ResNet and the split- 
transform-merge scheme of the inception net [24], as illustrated in 
Fig. 4 (a). In another paper, a novel residual network called Res2Net 
[25] showed excellent performance in various experiments. The main 
innovation of the Res2Net is that it added a small residual block in a 
residual unit, which enables the network to extract more fine-grained 
features and increase the receptive field of each layer. Res2Net uses 
the strategy of splitting first and then merges the output, as shown in 
Fig. 4 (b), in order to enable the convolution layers to obtain extra 
features efficiently. The input feature maps went through a 1x1 convo-
lution layer, and the output was then evenly divided into six predefined 
blocks according to the number of channels and was passed through a 
following 3x3 convolution layer. Before the feature maps were fed into 
the convolution layer, the feature map of the current layer was fused 
with the output of the previous layer. Finally, the final six outputs were 
fused and fed into a 1x1 convolution layer. 

This study proposes the Res2Net-Mish-BN-101 network by opti-
mizing the structure of the Res2Net. Firstly, all the ReLU activation 
functions in the Res2Net are replaced by Mish because the Mish acti-
vation function does not have the gradient saturation phenomenon and 
enables better generalization ability due to the smooth activation 
function [26]. Secondly, the order of the activation layer and the 
normalization layer is changed to normalize the input of each layer, 

Fig. 4. Residual block of (a) ResNeXt and (b) Res2Net.  

Fig. 5. The detailed structure of three different feature fusion networks, which include (a) FPN, (b) PAFPN, and (c) BiFPN.  
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which is more conducive to gradient descent [27]. Thirdly, the 7x7 
convolutional layer in the Res2Net is replaced by three 3x3 convolu-
tional layers, which can deepen the depth of the network and reduce a 
huge number of parameters but still retain the same scale of the recep-
tive field. Finally, a Max-pooling layer is added before the 1x1 con-
volutional layer of the original projection shortcut structure of the 
Res2Net to reduce the parameters to be processed by the model. 

Neck: The feature pyramid structure is widely used in the neck of the 
instance segmentation task to reuse and fuse multi-scale features. This 
study analyzes and compares standard feature pyramid structures, such 
as the feature pyramid network (FPN) [28], path aggregation feature 
pyramid network (PAFPN) [29], and bi-directional feature pyramid 
network (BiFPN) [30], as presented in Fig. 5. The FPN contains the top- 
down path that applies the up sampling operation to restore high- 
resolution features and preserve the high-level semantic information. 
On the other hand, a bottom-up path that uses the traditional convolu-
tion network to detect high-level semantic information is added in both 
the PAFPN and BiFPN to enhance the information flow in the entire neck 
network. Moreover, the shortcut structure is introduced to the BiFPN to 
improve the feature fusion process. To further improve the feature 
representation ability of neck, the output channel of BiFPN is increased 
from 256 to 384. In addition, the performance of batch normalization 
depends on the setting of batch size. A small batch size decreases the 
convergence speed and accuracy of the model, while a big batch size can 
increase the burden of machine memory [31]. To address this question, 
the batch normalization is replaced by the group normalization that 
assigns the same kind of features such as shape, color, and texture to a 
group for normalization operation. 

Head: Some novel methods were proposed in the SOLOv2 to reduce 
the computational complexity of the head structure [21]. For example, 
the segmentation branch was divided into the mask kernel branch and 
the mask feature branch. The idea of a dynamic convolution kernel is 
used in the mask kernel branch to reduce the number of redundant 
prediction channels. In addition, a novel matrix non-maximum sup-
pression (NMS) algorithm was applied to select the optimal mask and 
reduce the inference time of the model. The original head structure of 
the SOLOv2 is adopted in the proposed framework due to the mentioned 
advantages mentioned. 

3.2.2. Parameter optimization 
In this section, various methods that include a custom loss function 

and hyperparameter optimization are carried out to improve the 
model’s performance and robustness. Based on the original loss function 
of SOLOv2, the optimal setting for the weight coefficient is explored. As 
defined in Equation (3), the custom loss function combines the focal loss 
of the classification task and the dice loss of the segmentation task ac-
cording to a specific weight coefficient. 

Loss =
1
N
∑

i
Lcla(pi, p*

i )+ λ
1
N
∑

i
p*

i Lseg(qi, q*
i ), (3) 

where Lcla and Lseg are the loss values for object classification and 
segmentation, respectively. N represents the number of the predicted 
samples in the mini-batch, i is the index of the predicted sample, and λ is 
the weight coefficient. pi is the specific probability value of the ith pre-
dictions, and p*

i means the negative prediction or positive prediction. qi 

and q*
i are the predicted mask and the ground truth mask, respectively. 

The hyperparameters of the proposed model are optimized by imple-
menting and evaluating different optimizers, which include SGD and 
Adam [32,33], and learning rates that range from 0.01 to 0.0001. 

4. Dataset and evaluation metric 

4.1. Dataset 

The sewer inspection CCTV videos of different locations of Seoul, 
South Korea, which were used in this study, were provided by The Seoul 
Digital Foundation. The videos were recorded by the inspection robots 
equipped with high-resolution RGB cameras with the video length 
ranges from 1 to 20 min. Some fundamental information, such as pipe 
ID, inspection distance, and inspection time, was printed on each frame 
of the videos. The sewer pipes investigated in this work are concrete 
pipes, and sample images are displayed in Fig. 6. This study divides the 
defects into six categories, which include open joint (OJ), faulty joint 
(FJ), protruding lateral (PL), crack (C), broken pipe (BP), and surface 
damage (SD). Some of the mentioned defect categories are at the sub- 
class level, which can be used to evaluate the model’s effectiveness 
because they are challenging for defect detection and segmentation. The 
specific description for each class of defect is explained as follow: 

Fig. 6. Sample images for the six types of defects, which include (a) crack, (b) faulty joint, (c) open joint, (d) protruding lateral, (e) broken pipe, (f) surface damage.  

Y. Li et al.                                                                                                                                                                                                                                        



Measurement 190 (2022) 110727

7

▪ Open joint: An open joint indicates the displacement in pipe 
joints.  

▪ Faulty joint: A faulty joint represents the deterioration that 
happens around pipe joints.  

▪ Protruding lateral: Protruding lateral refers to a connecting 
pipe section that protrudes from the internal diameter of the 
original pipe.  

▪ Crack: A crack or fracture in the sewer pipeline is caused by the 
poor original installation or soil bedding.  

▪ Broken pipe: A broken pipe refers to severe structural damage 
occurring in the pipe.  

▪ Surface damage: Surface damage indicates the slight damage 
caused by erosion or tribological stresses on the surface. 

All defect images are extracted from the original videos, with the 
resolution of the extracted images ranges from 640x480 to 1280x720. 
They are then manually labeled by an annotation tool called LabelMe 
[34] to make the ground truth files containing the detection and seg-
mentation information (bounding box and polygon labelling) in the 
JSON format. The dataset introduced in this study will be publicly 
available with the acceptance of the academic research, which is sig-
nificant for the future studies to make this research area more replicable 
and transparent. Table 1 describes the detailed information of the 
collected defect dataset that contains 3888 images. 80% of the data 
(3105 images) is used as the training set, and the remaining 20% of the 
data is considered the testing set. In addition, data augmentation tech-
nology is used to improve the model’s generalization ability, such as 

Mixup, rotation, adding noise, and color jitter. After data augmentation, 
the number of training images (9,173) is almost three times more than 
the previous training amount (3,105). 

4.2. Evaluation metric 

This section describes the evaluation protocols adopted to examine 
the performance of the image dehazing and defect segmentation. 

The peak signal-to-noise ratio (PSNR) and Structural SIMilarity 
(SSIM), which are standard evaluation methods used in previous works, 
are used to evaluate the image dehazing performance. PSNR is calcu-
lated based on the deviation between corresponding pixels and does not 
consider the visual characteristics of the human eye, whereas SSIM is a 
measure of image similarity from brightness, contrast, and structure, 
which can better reflect the subjective feeling of human eyes. 

The formulas of PSNR and SSIM are described as follows. 

PSNR(A,B) = 10log10

(
2552

(m∙n)− 1∑m,n
x,y=1[A(x, y) − B(x, y) ]2

)

, (4)  

SSIM(A,B) =
(2μAμB + c1)(2σAB + c2)

(μ2
A + μ2

B + c1)(σ2
A + σ2

B + c2)
, (5)  

where A and B represent the original haze image and haze free image 
with the size of m*n, respectively. In (3), μ, σ2, and σAB represent the 
mean, variance, and covariance, respectively. c1 and c2 are two con-
stants that are added to avoid the denominator zero. 

The mean average precision (mAP), which is the standard evaluation 
protocol for the COCO dataset [35], was used to calculate the defect 
segmentation accuracy. The mean value of AP for n classes can be 
calculated by computing the average precision (AP) for each class using 
the precision-recall curves under a specific threshold of intersection- 
over-union (IOU): 

mAP =

∑n
i=1APi

n
, (6)  

Precision =
TruePositive(TP)

FalsePositive(FP) + TruePositive(TP)
, (7)  

Table 1 
Description of the six classes of the collected sewer defect dataset, which include 
Crack (C), Faulty Joint (FJ), Open Joint (OJ), Protruding Lateral (PL), Broken 
Pipe (BP), and Surface Damage (SD).  

Index Defects Training set Testing set Total 

1 OJ 417 102 519 
2 FJ 498 126 624 
3 PL 735 183 918 
4 C 486 123 609 
5 BP 459 120 579 
6 SD 510 129 639  

Total 3,105 783 3,888  

Fig. 7. Evaluation of the preprocessing module that uses the GCANet model by showing the PSNR and SSIM values.  
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Recall =
TruePositive(TP)

FalseNegtive(FN) + TruePositive(TP)
. (8)  

5. Experimental results 

Various experiments were conducted to verify the proposed frame-
work’s robustness. All the experiments were performed on a pre- 
installed Linux machine with a Ubantu16.04 OS with four Titan X 12 
GB GPUs and 64 GB of DDR4 RAM. The effectiveness of the dehazing 
process was confirmed in the first experiment (Section 5.1). After that, 
two separate experiments were designed to validate whether the pro-
posed model (Section 5.2) and the parameter optimization process 
(Section 5.3) improved the overall defect segmentation’s performance. 
The model’s robustness was further analyzed by typical successful cases 
and rare failure cases (Section 5.4). Finally, the suggested defect seg-
mentation model was compared to recent state-of-the-art studies to 
highlight its superiority and robustness (Section 5.5). 

5.1. Image preprocessing 

A collection of hazy images was manually selected and fed into the 
preprocessing algorithm to verify the GCANet’s effectiveness in 
improving the image quality. The visual comparison between the 
ground truth image, hazy image, and the corresponding haze-free image 
is described in Fig. 7. The SSIM values between the Ground Truth (GT) 
images and the output images are 0.92 and 0.94, which indicates that 
the output images are consistent with human subjective feelings. 
Compared to the hazy images, the PSNR values of the two output images 
are improved significantly by 6.49 and 7.67, proving the dehazing al-
gorithm’s effectiveness. Besides, the method effectively removed the 
haze in the image while maintaining the original brightness of the 

image. 
Accordingly, the segmentation effects of hazy images and output 

images after dehazing are visualized and compared to demonstrate the 
significance of the dehazing technique in the proposed defect segmen-
tation framework. As shown in Fig. 8, both output images after dehazing 
obtained more complete segmentation results than the results of hazy 
input images. In addition, there are several mistakenly segmented re-
gions that are marked by red circles in the hazy images due to the fog 
noises. As a result, defogging is necessary to improve the qualities of 
sewer images before defect segmentation. 

Fig. 8. Visualized segmentation results of hazy images and output images after dehazing.  

Table 2 
The experimental results of the 12 combinations of the Pipe-SOLO model using different networks. “√” indicates the selected networks for each combination.   

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Backbone ResNet-101 √ √ √ √             
ResNeXt-101     √ √ √ √         
Res2Net-101         √ √ √ √     
Res2Net-Mish-BN-101             √ √ √ √ 

Neck FPN √    √    √    √    
PAFPN  √    √    √    √   
BiFPN   √    √    √    √  
EBiFPN    √    √    √    √ 

Performance mAP 50.9 50.8 51.7 52.4 52.0 52.3 52.6 53.3 52.8 52.5 53.9 54.7 53.5 53.8 54.5 55.1 
Loss 0.37 0.38 0.33 0.32 0.31 0.34 0.29 0.29 0.32 0.30 0.26 0.26 0.28 0.28 0.26 0.24  

Fig. 9. mAP curves of the original SOLOv2 model and the proposed Pipe- 
SOLO model. 
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5.2. Pipe-SOLO’s structure analysis 

This experiment analyzes the impact of various networks, including 
ResNet-101 [22], ResNeXt-101 [23], Res2Net-101 [25], Res2Net-Mish- 
BN-101 (proposed backbone), FPN [28], PAFPN [29], BiFPN [30], and 
EBiFPN (proposed neck), on the Pipe-SOLO’s structure. We imple-
mented 16 different combinations of different networks that are used in 
the backbone and neck structures of the proposed Pipe-SOLO model. 
Table 2 shows the segmentation performance of the 16 combinations on 
the proposed dataset using the same parameter settings. Res2Net-Mish- 
BN-101 outperformed other models that were used in the backbones 
because it inherited the Res2Net’s ability to represent the multi-scale 
features at a fine-grained level, and the utilization of the Mish activa-
tion function helped it gain a better generalization ability. On the other 
hand, the proposed EBiFPN structure achieved the highest performance 
when it was implemented in the neck structure of the proposed Pipe- 
SOLO model. The 16th combination, which used the Res2Net-Mish- 
BN-101 in the Pipe-SOLO’s backbone and the EBiFPN in the Pipe- 
SOLO’s neck, achieved the best mAP value of 55.1% and minimum loss 
of 0.24. 

Moreover, the mAP curves of the original SOLOv2 model and the 
proposed Pipe-SOLO model are plotted to highlight the improvement of 
the designed backbone and neck structures. As shown in Fig. 9, almost 
all the values of the purple curve are higher than the values on the blue 
curve. The best mAP of Pipe-SOLO is 55.1, which is 4.2 higher than the 
original SOLOv2. The SOLOv2 achieved stable performance after the 
38th epoch, whereas our model stabilized at the 30th epoch. It suggests 
our Pipe-SOLO has a faster convergence speed during the training 
process. 

5.3. Parameter analysis 

The hyperparameters are crucial variables of a network, and there 
exists a set of optimal hyperparameters that helps a model to achieve the 

highest performance. For example, the learning rate determines how the 
network is trained. The loss fluctuates continuously when the learning 
rate is set too high, whereas the speed of convergence is slow when the 
learning rate is too low [32,33]. In order to find the optimal learning 
rate, the initial learning rate is set to 0.01, 0.005, and 0.001 in this 
experiment, and then it is changed gradually when the number of epochs 
increases [36]. In addition, this section also evaluates the mAP values of 
the defect segmentation model using different optimizers, including 
Adagrad, Adam, and SGD [32,33], to find the most appropriate 
optimizer. 

Fig. 10 shows the model’s performance using different learning rates 
and optimizers, which suggests the impact of the learning rate and 

Fig. 10. Model’s performance using different sets of hyperparameters.  

Fig. 11. Performance of the model when different values of the weight coefficient λ are applied to calculate the loss function.  

Fig. 12. Training performance of the proposed Pipe-SOLO model with and 
without the parameter optimization process. 
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optimizer on the model. The highest mAP value of 56% was obtained 
when the optimizer was SGD, and the learning rate was 0.01 with a 
momentum of 0.9, which was 7% higher than the combination of the 
Adagrad optimizer and the learning rate of 0.001. Therefore, the SGD 
optimizer and the learning rate of 0.01 were selected as the optimal 

hyperparameters because they helped the model converged quickly 
during the training process. 

In addition, the weight coefficient λ, which was used to compute the 
loss function (3), also had a considerable impact on the final perfor-
mance. Fig. 11 displays the fluctuation of the model’s mAP and loss 

Fig. 13. Successful defect segmentation cases using the proposed dataset. From top to bottom (different defect classes): Crack (C), Open Joint (OJ), Faulty Joint (FJ), 
Protruding Lateral (PL), FJ & PL, Broken Pipe (BP), Surface Damage (SD). From left to right: Input image, Ground Truth, Output, and Confusion matrix. Note: ‘BG’ 
represents the background. 
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values when the weight coefficient parameter λ is changed. The model 
achieved the highest mAP value of 59.3% and the lowest loss of 0.11 
when the λ was equal to 1. 

The loss curves of the proposed model with and without the 
parameter optimization process are displayed in Fig. 12, which proves 
the effectiveness of the parameter optimization. The number of epochs 
was set to 50, and the iteration was configured to 8,000 to enable the 
model to learn discriminative features from the collected dataset. The 
loss of the model with the parameter optimization process decreases 
significantly to below 0.37 after 4,000 iterations, and then it decreases 
gradually and becomes stable at approximately 0.25. The loss of the 
proposed model is remarkably reduced by 0.13 compared to the original 
Pipe-SOLO. 

5.4. Quantitative evaluation 

This section quantitatively analyzes the segmentation result and the 
corresponding confusion matrix of the proposed instance segmentation 
model for each type of defect, as illustrated in Fig. 13 and Fig. 14. From 
the aspect of the segmentation result, Fig. 13 presents defects that were 
successfully segmented and classified, which confirmed that the Pipe- 
SOLO correctly predicted, localized, and segmented most of the de-
fects. Fig. 13 (row 7 column 3) shows that the network correctly per-
formed the instance segmentation, which treated two objects of the 
surface damage class as two separate objects. In particular, the faultless 
segmentation result of the challenging input image with lots of man- 
made noises at row 3, column 1 shows the robustness of the proposed 

model. In addition, our method performed well on the noisy image that 
exists extensive tree roots around the defective area from a real-life 
scenario at row 4, which demonstrates the proposed framework is 
practical and feasible in underground sewer defect inspection applica-
tions. Moreover, some other noises like haze (row 2 column 1) and blur 
(row 6 column 1) commonly appear in CCTV videos due to the evapo-
ration of water and the motion of the crawler. The desirable results 
verify that our model is robust against different noises from real sce-
narios. From the aspect of confusion matrix, the values of TP and TN are 
always much bigger than the values of FP and FN. That results in a high 
precision and recall. 

Nevertheless, the model failed to segment some images or gave a 
wrong label to the detected defect during the testing process, as dis-
played in Fig. 14. For the first case in Fig. 14 (row 1 column 3), the left 
section of the segmented Faulty Joint area in the red circle was 
mistakenly localized. That is caused by the overexposed image and the 
water stain around the defective region. Fig. 14 (row 2 column 3) il-
lustrates that the whole crack in the image (row 2 column 3) was not 
detected completely due to the low-contrast background. Finally, the 
model predicted the Broken Pipe class as the Surface Damage class in 
Fig. 14 (row 3 column 3). The reason for this case may be low image 
resolution or subtle difference between Surface Damage class and 
Broken Pipe class in the training set. 

5.5. Comparison with other work 

The main purpose of this section is to demonstrate the superiority of 

Fig. 14. Unsuccessful segmentation cases using the proposed dataset. From top to bottom (different defect class): Faulty Joint (FJ), Crack (C), Broken Pipe (BP). From 
left to right: Input image, Ground Truth, Output, and Confusion matrix. Note: ‘BG’ represents the background. 

Table 3 
Comparisons between the proposed model and the recent state-of-the-art defect segmentation approaches.  

Image 
preprocessing 

Segmentation approach Defect type Sample 
size 

Speed Accuracy Reference 

× MSED, OTHO, and CBHO 
(morphological Segmentation) 

Crack and open joint (2 classes) 100 1 ~ 
10FPS 

N/A [7] 

× DilaSeg-CRF (semantic segmentation) Crack, deposit, and root (3 classes) 1,885 9FPS MIoU of 
84.85% 

[38] 

× PipeUNet (semantic segmentation) Crack, infiltration, joint offset, and intruding lateral (4 
classes) 

3,654 32FPS MIoU of 
76.37% 

[9] 

√ Pipe-SOLO (instance segmentation) Crack, Joint faulty, joint open, lateral protruding, pipe 
broken, and surface damage (6 classes) 

3,888 15FPS mAP of 
59.3% 

This study  
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the proposed model compared to the previous approaches. Firstly, 
recent state-of-the-art defect segmentation approaches are summarized 
and analyzed thoroughly. Different instance segmentation networks are 
then implemented to validate the performance of the proposed network. 
Table 3 presents the performance in terms of accuracy and speed for 
different models. The number of defect types that were examined in this 
work was higher than the previous studies. Moreover, the preprocessing 
process was added in the proposed defect segmentation framework, 
which was ignored in previous methods. Table 4 shows the performance 
of different instance segmentation models based on the collected defect 
dataset. In order to conduct a fair comparison, all the experimental 
models are assessed with the same testing images that are preprocessed 
by a dehazing algorithm. Pipe-SOLO accurately predicted each class 
with the highest mAP of 59.3%, which was 11% higher than the MS R- 
CNN model [37]. The minimum loss value obtained by the proposed 
model was 0.22 lower than the SOLOv2 model [21]. The experimental 
results prove that the proposed model based on instance segmentation 
has the highest performance on the proposed dataset. 

6. Conclusion 

This study introduced a manually collected and annotated defect 
segmentation dataset for six main types of defects, including Crack, 
Faulty Joint, Open Joint, Protruding Lateral, Broken Pipe, and Surface 
Damage. After that, a dehazing model was applied to preprocess the 
hazy images before the defect segmentation process in order to improve 
the model’s segmentation accuracy. Finally, a novel defect segmentation 
model called Pipe-SOLO was presented in this study. Pipe-SOLO opti-
mized the original SOLOv2 network’s structure using a new module 
(Res2Net-Mish-BN-101) in the backbone. Moreover, the EBiFPN module 
was adopted as the neck of the Pipe-SOLO structure because it helped 
the model obtain better performance. The experimental results show the 
proposed model obtained promising results on the collected dataset, 
which outperformed existing defect segmentation methods. As a result, 
the proposed dataset and defect detection framework are significant for 
the research on underground sewer pipelines assessment and 
maintenance. 

In the future, the algorithm that can evaluate the defect risk or 
damage degree should be studied based on the proposed defect seg-
mentation framework by measuring the areas and mean widths of de-
fects. In addition, the current segmentation method only works with still 
images, so an automatic defect segmentation method for videos or a 
series of images can be further developed to deal with the defect 
analysis. 
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