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Abstract1

In the digital age, Quick Response (QR) codes have become essential in sectors such as digital payments and ticketing,
propelled by advancements in Internet of Things (IoT) and deep learning. Despite their growing use, there are significant1

challenges in the accurate extraction and verification of QR codes, particularly in dynamic environments. Traditional methods2

struggle with issues like variable lighting, complex backgrounds, and counterfeits, which degrade the performance of QR code
extraction and verification processes. This paper introduces a comprehensive approach that refines QR code extraction using3

enhanced adaptive thresholding techniques and incorporates a deep learning framework specifically tailored for robust QR
code verification. Our methodology integrates dynamic window size adjustment, statistical weighting, and post-thresholding
refinement to ensure precise QR code extraction under varying conditions. The verification process employs the ShuffleNetV2
network to ensure high performance with significantly low processing times suitable for real-time applications. Additionally,4

our deep learning model is trained on a comprehensive dataset comprising 28,523 images across 24 distinct QR code pattern
classes, including variations in lighting, noise, and backgrounds to simulate real-world conditions. Experimental results
demonstrate that our proposed methodology outperforms competing techniques in both processing speed and recognition
accuracy, achieving a processing time of 0.08 seconds and a validation accuracy of 99.99% in constrained scenarios. Our
approach shows an exceptional ability to distinguish real QR codes from counterfeits and highlights the significance and
efficacy of our method in addressing contemporary challenges.
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1 Introduction 18

Quick Response (QR) codes, two-dimensional barcodes, 19

have become an indispensable component of the contem- 20

porary digital ecosystem. Their ability to store substantial 21

data and offer rapid scanning makes them pivotal in sectors 22

ranging from payments to ticketing and marketing. As Indus- 23

trial Internet of Things (IoT) and deep learning technologies 24

advance [1–3], QR codes serve as cost-effective reading 25

labels, especially in high-demand settings such as COVID- 26

19 testing centers and logistics hubs. However, despite their 27

widespread utility, they are not without challenges. Motion 28

blur, uneven lighting, and issues in dynamic environments, 529

particularly where mobile robots operate, underscore the 30

complexities of QR code recognition in our technologically 31

advanced age (Figs. 1). 32
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_####_ Page 2 of 22 N. Alam et al.

Fig. 1 Sample of an authentic QR code illustrating its intricate pattern design components. Each segment represents the structural elements integral
to its uniqueness and readability

Historically, the journey of QR code recognition has been33

marked by continuous evolution. Initial recognition meth-34

ods leaned heavily on image-processing techniques, which,35

while groundbreaking in their time, faced significant chal-36

lenges. Uneven illumination, highlight spots, and complex37

backgrounds often degraded QR code readability. Tech-38

niques like Otsu’s thresholding were effective for images39

with simple backgrounds but faltered under varying condi-40

tions [4]. Blanger and Hirata enhanced QR code recognition41

in natural scenes using a modified Single Shot Detector42

that incorporates subpart annotations [5]. While effective43

for individual QR code identification, their approach was44

less suited for batch processing in dense environments.45

Jiang et al. addressed this limitation with their app, which46

specifically improves handling densely arranged QR codes47

through an adaptive code detection mechanism and a novel48

image refocus technique but struggled with code detection49

in extremely small or closely spaced scenarios [6]. He and50

Yang improved upon previous methods by implementing51

an adaptive binarization method that dynamically adjusts to52

lighting conditions, enhancing QR code image processing53

under uneven illumination [7]. However, their method’s com-54

plexity increases computational demands due to the necessity55

for adaptive window sizing and threshold calculations. Zhang56

et al. further advanced this field by developing a region-57

based network capable of finely localizing and classifying58

multi-class barcodes in complex environments [8]. Their59

approach, which integrates multi-scale spatial pyramid pool-60

ing and quadrilateral bounding box regression, effectively 61

handles small-scale barcodes and distortions but introduces 62

complexity in terms of computational overhead. Dong et al. 63

improved previous works by introducing a generative adver- 64

sarial network combined with an attention mechanism to 65

recognize motion-blurred QR codes, significantly improv- 66

ing processing time and recognition accuracy [9]. As the 67

field progressed, there was a shift towards more advanced 68

strategies, such as morphological processing, which, despite 69

being computationally intensive, aimed to tackle more intri- 70

cate backgrounds. However, many of these methods had a 71

narrow focus, often limited to specific QR code scenarios, 72

which proved inadequate in diverse environments. 73

Apart from these, QR code verification is also an impor- 74

tant field after recognizing QR code patterns. Recent studies 75

mainly use AI-based approaches such as convolutional neu- 76

ral networks [10–12] for QR code verification. Yan et al. 77

introduced an IoT-based anti-counterfeiting system that inte- 78

grates visual features with QR codes to enhance security 79

by utilizing natural and printed micro-features for robust 80

verification [13]. Ismail et al. developed a QR code vali- 81

dation method to improve QR code security by integrating 82

advanced URL analysis to block malicious and phishing 83

URLs effectively [14]. Their method adds robust phishing 84

detection rules and leverages multiple validation layers to 85

safeguard against sophisticated cyber threats, albeit at the 86

expense of increased complexity in validation processes. Cu 87

Vinh Loc et al. introduced a QR code verification method 88
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using digital watermarking and a Siamese neural network to89

ensure authenticity, achieving high accuracy but at the cost90

of increased computational complexity [15]. Loc et al. fur-91

ther developed a tamper-proof QR code system using a deep92

learning-based data hiding method that embeds a secret secu-93

rity feature within the QR code, verified through a deep neural94

network and Siamese network analysis [16]. This approach95

enhances security against QR code tampering and offers high96

accuracy but requires significant computational resources97

for its dual-network architecture. Hantono et al. presented98

a novel system for counterfeit detection using multi-featured99

secure 2D grayscale codes [17]. This approach significantly100

enhances counterfeit detection by incorporating spatial and101

frequency domain analyses and grayscale watermarking to102

assess image quality degradation. Despite its high precision103

and specificity, the complexity of its multi-feature analysis104

could present scalability and computational challenges in105

real-world applications. Moreover, these methods only con-106

sider very limited patterns for the verification process.107

In this paper, we address long-standing challenges in the108

domains of QR code extraction and verification with a com-109

prehensive and innovative approach. Building on the foun-110

dation of traditional methods, our methodology enhances111

adaptive thresholding techniques, introducing refinement112

algorithms that effectively counter common image distur-113

bances such as noise and uneven illumination. Our approach114

goes beyond extraction; we have integrated state-of-the-art115

edge detection and contour extraction algorithms tailored116

for discerning intricate QR code patterns, even in clut-117

tered environments. Furthermore, we employ a deep learning118

framework meticulously trained on large datasets. This119

ensures not only structural validation of QR codes but also a120

deeper examination of their authenticity, setting our approach121

apart in ensuring data integrity and security.122

2 Related works123

2.1 QR code extraction124

QR codes, initially designed for tracking automotive parts,125

have expanded to various applications, from mobile pay-126

ments to augmented reality. This diversification has increased127

the demand for advanced extraction techniques [18]. Tradi-128

tional extraction methods relied heavily on image processing129

strategies such as thresholding, morphological operations,130

and edge-based contour detection. However, these methods131

often faltered in diverse imaging scenarios, especially with132

challenges such as variable lighting, complex backgrounds,133

and varying orientations.134

Several methodologies have been introduced to address135

these limitations. Ohbuchi et al. utilized the intrinsic Dig-136

ital Signal Processor (DSP) of the QR code for location137

discernment [19]. Although effective in certain scenarios, 138

this method struggles with QR codes that have damaged or 139

obscured DSPs. Hu et al. differentiated texture differences 140

between QR codes and backgrounds [20]. The performance 141

of their proposed method is degraded by complex or noisy 142

backgrounds. Dubská et al. [21] and Gabriel [22] used the 143

Hough transform and parallel line detection, respectively. 144

These methods, while innovative, were susceptible to errors 145

in images with multiple parallel or perpendicular lines not 146

related to QR codes. The methods in [23] and those of Tingt- 147

ing Huang [24] relied on dilation, erosion, and morphological 148

operators. However, they often had limited detection rates, 149

especially in cluttered environments. Tzu-Han Chou et al. 150

[25] used convolutional neural networks, showcasing the 151

potential of deep learning. However, these methods required 152

substantial computational resources and extensive training 153

data. The method by Hou et al. [26] was optimized for simple 154

image data but could struggle with more complex or degraded 155

QR codes. Ostkamp et al. [27], M. Ahn et al. [28], Y. Kato 156

et al. [29], Liu Y. [30], CH Chu [31], and Qichao Chen [32] 157

focused on improving image quality. While these methods 158

improved readability, they did not always guarantee accu- 159

rate extraction. The method by Luiz Belussi and Nina S. T. 160

Hirata [33] achieved a commendable detection rate but could 161

not be universally effective in all scenarios. 162

These gaps in existing methodologies highlight the need 163

for a comprehensive and adaptive extraction strategy, which 164

led to our proposed method. Our approach aims to integrate 165

the strengths of previous techniques while addressing their 166

limitations, offering a balanced solution for QR code extrac- 167

tion. 168

2.2 QR code verification 169

The widespread adoption of QR codes in areas such as digital 170

payments and personal data sharing underscored a pressing 171

challenge: the need for robust verification of the authenticity 172

of QR codes. Initial verification strategies, which focused 173

primarily on basic structural checks of QR codes, quickly 174

became obsolete as forgery techniques evolved, leaving a 175

significant gap in the security landscape. 176

Xie and Tan [34] developed an anti-counterfeiting sys- 177

tem that emphasized QR code copy detection. While their 178

approach enhanced the estimation of QR pattern locations 179

in images, it primarily addressed product counterfeits and 180

was not effective for more sophisticated forgeries. The 181

method in [35] utilized the decentralized nature of blockchain 182

combined with smart contracts. Although promising, the 183

complexity and scalability of blockchain solutions can some- 184

times be a limitation, especially in real-time verification 185

scenarios. Tran and Hong [36] leveraged RFID techniques, 186

focusing on tag authentication. However, the dependency of 187

RFID on specialized hardware can be a constraint. Sim- 188
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_####_ Page 4 of 22 N. Alam et al.

ilarly, the holography method [37], although innovative,189

requires specialized equipment and might not be feasible for190

all applications. Yiu’s approach [38], rooted in Near-Field191

Communications (NFC), provided product origin tracking.192

Although NFC offers a layer of security, its range limita-193

tion and hardware dependency can be restrictive in various194

scenarios. Krishna and Dugar [39] encrypted the informa-195

tion within QR codes, offering server-side verification. Their196

method, however, authenticated a QR code only once, which197

might not be suitable for all use cases. Similarly, Wan198

et al. [40] combined visual secret sharing with QR codes.199

Although innovative, reliance on secret visual data might200

pose challenges in environments with variable lighting or201

image quality.202

In summary, while each of these methods brought unique203

strengths to the table, they also had inherent limitations.204

These gaps in existing verification methodologies emphasize205

the need for a more comprehensive, adaptable, and univer-206

sally applicable solution, paving the way for our proposed207

method.208

3 Dataset preparation and augmentation209

3.1 Dataset preparation210

Every identified pattern is given its own processing strategy211

to guarantee reliable recognition. All three finding patterns212

are applied using the same round pattern with similar R213

values at each corner, although the specific R value may214

change depending on the effectiveness of the product and215

the solution. To distinguish between genuine and counter-216

feit products among the 16 patterns considered, this round217

processing pattern information is stored in a database for218

comparison with artificial intelligence discriminating pat-219

terns. Specifically, to efficiently speed up the authentication 220

process, the first two of these patterns are removed from the 6221

dataset (Fig 2). 222

The data were stored in PNG format with a resolution of 223

744 × 744 pixels and were collected from Nexpot Solution 224

(https://taglab9.co.kr/). To maintain a constant recognition 225

rate across all three patterns, an identical symbol is added to 226

the finding patterns. The allotted area for this symbol addi- 227

tion may be decreased depending on performance factors. 228

The symbol itself has a semicircular form that occasionally 229

resembles an oval or a trapezoid, depending on the shooting 230

conditions. The increased data storage of symbol patterns 231

in the database facilitates the comparison of discriminating 232

artificial intelligence patterns, streamlining the process of 233

identifying genuine products from counterfeits. 234

To reduce false recognition rates, selected symbol patterns 235

are used for the parameters. Recognizing that it is chal- 236

lenging to generate every possible fake pattern, strategies 237

are investigated to improve counterfeit pattern identification. 238

The interaction between design and recognition is taken into 239

consideration when determining the ideal symbol size value. 240

Eight different symbol patterns are used in total, with an 241

emphasis on evaluating their performance in terms of recog- 242

nition rates to ensure that the dataset is useful for QR code 243

authentication (Fig. 3). 244

Finally, there were a total of 24 different classifications 245

in the dataset. Twenty-three of these classes, each having 246

a unique combination of two patterns and positive values, 247

represented genuine patterns. Additionally, there was a class 248

specifically for counterfeit patterns that served as a guide 249

to distinguish fake patterns from genuine ones, as shown in 7250

Table 1. 251

Data augmentation was done following the instructions in 252

Section 3.2. Using data augmentation techniques, our dataset 253

expanded to include a total of 28,523 pattern images. To 254

Fig. 2 Illustration of the 16 distinct QR code patterns leveraged for advanced verification, highlighting the unique characteristics of each pattern
for robust authentication
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Fig. 3 QR code images of different patterns which were used to divide images into 24 distinct classes based on inherent pattern variations,
establishing the foundation for classification and analysis

ensure reliable model training and evaluation, we divided255

this dataset into two subsets: 80% for training and 20% for256

validation.257

3.2 Data augmentation258

Data augmentation refers to methods used to increase the259

size and introduce diversity into a dataset by making vari-260

ous changes. For classification and verification tasks, data261

augmentation plays an essential role in training deep learn-262

ing models and helps prevent overfitting. In the context of263

our classification model, “data augmentation” includes a264

variety of modifications, such as cropping, clipping, flip-265

Table 1 Distribution of images across 24 classes, detailing the count
of images associated with each specific QR code pattern, from FAKE
to RI15

Classes Number of images Classes Number of images

FAKE 1030 RI04 1143

PI1 1224 RI05 1092

PI2 1242 RI06 1167

PI3 1182 RI07 1227

PI4 1221 RI08 1209

PI5 1209 RI09 1200

PI6 1185 RI10 1224

PI7 1239 RI11 1140

PI8 1227 RI12 1182

RI01 1173 RI13 1239

RI02 1188 RI14 1212

RI03 1140 RI15 1218

ping, perspective adjustments, rescaling, color adjustments, 266

brightness variations, adding occlusions, adding darkness, 267

and rotation. To increase the diversity of the dataset for 268

our study, we specifically implemented color adjustments, 269

brightness variations, occlusions, and darkness adjustments. 270

The data augmentation methods used on our QR pat- 271

tern datasets are shown in Fig. 4. These methods not only 272

expand the dataset but also strengthen its resistance to overfit- 273

ting. We have selected four essential enhancement strategies 274

from among these approaches: color modifications, bright- 275

ness variations, occlusions, and darkness adjustments. As 276

part of the augmentation procedure, flipping and perspec- 277

tive changes are also performed at random. The resultant 278

augmented images are then utilized to train our QR pattern 279

classification model, enabling it to effectively classify vari- 280

ous types of patterns. 281

4 Materials andmethods 282

In this section, we introduce the details of our proposed 283

framework for QR code authentication. The overall structure 284

mainly consists of two parts: pattern extraction and QR code 285

authentication using pattern verification techniques. In the 286

pattern extraction part, we employ enhanced adaptive thresh- 287

olding methods. These techniques collectively improve the 288

QR code extraction process from images with varying con- 289

ditions, such as complex backgrounds, noise, and variable 290

lighting. In the authentication part, we utilize various data 291

augmentation, feature extraction, and pattern verification 292

techniques to authenticate the QR code. 293
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Fig. 4 Visualization of various image augmentation techniques applied to enhance the quality of QR code pattern images in this study

4.1 QR code extraction294

Quick Response (QR) codes have surpassed their origi-295

nal application of tracking vehicle components to become296

widespread in our digital lives. Given their widespread adop-297

tion, the need for precise, swift, and adaptable QR code298

extraction has escalated exponentially. QR code extraction299

poses several challenges that conventional image processing300

techniques struggle to overcome. Some of these challenges301

include variability in scale and orientation, complex back-8 302

grounds, and inconsistent lighting (Fig. 5).303

Recently, thresholding, an image processing technique,304

has been used to address some of these challenges. However,305

the traditional thresholding approach encounters difficulties306

in scenarios with variable lighting conditions, creating the307

need for a more fine-tuned method. Adaptive thresholding308

addresses this by dividing the image into smaller sections309

and dynamically computing the threshold for each section310

based on localized characteristics, such as the mean intensity311

of neighboring pixels. While adaptive thresholding improves312

upon the rudimentary nature of global thresholding, its per-313

formance is also affected by some limitations, especially 314

when used for QR code extraction: 315

1. Fixed Window Size: Traditional adaptive thresholding 316

uses a fixed window size to analyze the local neigh- 317

borhood, which is ineffective in capturing QR codes of 318

different sizes. 319

2. Mean-Only Computation: Using only the mean inten- 320

sity value for thresholding can be too simplistic when QR 321

codes are embedded in images with complex patterns or 322

noise. 323

3. Lack of Post-Processing: After the thresholding pro- 324

cess, the output often contains artifacts or noise that can 325

hinder subsequent steps like edge detection and contour 326

extraction. 327

These limitations require modifications to traditional 328

adaptive thresholding algorithms. Our study aims to address 329

these shortcomings by offering a fine-tuned version of adap- 330

tive thresholding that is specially optimized for the intricate 331

demands of QR code extraction. 332

Fig. 5 Overall structure of the integrated QR code extraction and validation system, detailing the sequential processes from initial capture to final
verification
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4.1.1 Modification of traditional adaptive thresholding333

a. Adaptive Window Size334

Traditional adaptive thresholding often uses a fixed win-335

dow size for computing local statistics. This works well336

for images with consistent textural patterns and illu-337

mination levels. However, in the context of QR code338

extraction, this “one-size-fits-all” approach can prove339

inadequate. QR codes often appear at varying scales and340

might be embedded in backgrounds with diverse textural341

patterns or noise levels. Using a fixed window size can342

lead to suboptimal or erroneous thresholding in these sce-343

narios.344

To address the issues inherent in using a fixed win-345

dow size, we propose a mathematically robust approach346

that allows for a dynamically adaptable window size,347

grounded in the statistics of the local neighborhood348

around each pixel. The mathematical formulation of the349

method can be defined as follows:350

Let I be an image of dimensions M × N , and let pi, j351

denote a pixel at the coordinates ((i,j)). The local variance9 352

σ 2
i, j around this pixel is calculated as follows:353

σ 2
i, j = 1

M N

M−1∑

m=0

N−1∑

n=0

(Im,n − μi, j )
2, (1)354

where μi, j represents the local mean of the pixel inten-355

sities within the window, and M, N are the dimensions356

of the window surrounding pi, j .357

The adaptive window size Wi, j is then calculated as:358

Wi, j = k · σi, j , (2)359

where k is a proportionality constant that adjusts the360

impact of the local variance on the window size. This361

allows the window size to dynamically expand for areas362

with high variance, which could be indicative of edges,363

textures, or noise.364

b. Statistical Weighting365

Traditional adaptive thresholding often employs the366

mean value of a local neighborhood to set the pixel inten-367

sity threshold. While efficient, this approach lacks the368

granularity to handle complex scenarios, such as when369

QR codes are superimposed on textured or patterned370

backgrounds. Our study introduces statistical weighting371

into the thresholding equation to solve these issues. By372

considering higher-order statistical moments like skew-373

ness and kurtosis, our approach aims to capture more374

nuanced variations in pixel intensities. The relevant math-375

ematical formulation of the proposed method can be376

defined as follows:377

Let X be a random variable representing the pixel intensi- 378

ties within the adaptive window. Let μ and σ be the mean 379

and standard deviation of X , respectively. Skewness (S) 380

and kurtosis (K ) of X are then defined as: 381

S = E

[(
(X − μ)

σ

)3
]

. (3) 382

383

K = E

[(
(X − μ)

σ

)4
]

− 3. (4) 384

The adaptive threshold Ti, j for the pixel at coordinates 385

(i, j) is computed using the following weighted formula: 386

Ti, j = μi, j + α · S + β · K , (5) 387

Where α and β are weight parameters that control the 388

influence of skewness and kurtosis, respectively, on the 389

threshold value. These weights allow the method to 390

adaptively adjust the thresholding, effectively capturing 391

nuanced variations. 392

c. Post-thresholding Refinement 393

The thresholding process, while effective in isolating 394

potential regions of interest, may produce pixel artifacts 395

that can disrupt the distinct patterns of QR codes. These 396

artifacts pose challenges in subsequent stages of QR code 397

identification and decoding. To resolve this challenge, 398

we introduce a post-thresholding refinement step that 399

employs a Gaussian smoothing filter. The relevant math- 400

ematical formulation of the proposed post-thresholding 401

refinement can be defined as follows: 402

The Gaussian smoothing filter is utilized to refine the 403

pixels, which is mathematically defined as: 404

Gi, j = 1

2πσ 2 e− i2+ j2

2σ2 (6) 405

where σ is the standard deviation that controls the spread 406

of the Gaussian filter. 407

After applying the thresholding method, we obtain a 408

thresholded image IT . The refined image I ′ is then 409

acquired by convolving IT with the Gaussian filter G: 410

411

I ′ = IT ∗ G. (7) 412

The proposed methods help smooth out minor pixel 413

artifacts while preserving the essential boundaries that 414

define the QR codes. The proposed post-thresholding 415

refinement ensures that pixel artifacts are effectively 416

eliminated, thereby improving the structural integrity of 417

QR patterns. 418
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4.1.2 Fine tuned edge detection419

Edge detection serves as a foundational step in the image420

processing pipeline for QR code extraction. One of the most421

significant challenges in this context is the accurate identi-422

fication of edges amidst varying conditions such as noise,423

uneven illumination, and complex backgrounds. To address424

these challenges, the Canny edge detection algorithm is intro-425

duced due to its robustness against noise and its ability to426

detect true edges with high accuracy. The detailed descrip-427

tion of each step of the Canny edge detection is given below:428

a. Noise Reduction429

To reduce the influence of noise which can cause false430

edge detection, a Gaussian filter G is applied to the image:431

G(x, y) = 1

2πσ 2 e− x2+y2

2σ2 , (8)432

where σ is the standard deviation.433

b. Gradient Computation434

The smoothed image is further processed using Sobel435

filters to compute the gradient magnitude G and direction436

θ for each pixel:437

G =
√

G2
x + G2

y, θ = arctan

(
G y

Gx

)
, (9)438

where Gx and G y are the gradient magnitudes in the x439

and y directions, obtained using Sobel filters.440

c. Non-maximum Suppression441

Non-maximum suppression is utilized after gradient442

computation to ensure that the identified edges are thin443

by setting any pixel that is not a local maximum in its444

gradient direction to zero.445

d. Double Thresholding446

Canny edge detection employs two threshold values, Tlow447

and Thigh, to filter out gradients. Gradients are rejected448

when the pixel’s gradient magnitude is less than Tlow.449

Gradients are accepted when the magnitude of a pixel is450

higher than the Thigh threshold.451

e. Edge Tracking by Hysteresis452

Pixels with gradient magnitudes between Tlow and Thigh453

are conditionally accepted as edges if they are connected454

to pixels with gradient magnitudes greater than Thigh.455

4.1.3 Contour extraction456

After the use of edge detection, the subsequent and equally457

pivotal phase is contour extraction. This involves tracing the458

continuous boundaries detected by the edges, allowing us to459

segregate potential QR codes from other image components460

and backgrounds. This study introduces an enhanced con-461

tour extraction method that leverages hierarchical detection,462

filtering mechanisms, and orientation correction. The subse- 463

quent module introduced in the contour detection phase is 464

described below in detail: 465

(a.) Hierarchical Contour Detection 466

Hierarchical contour detection extends beyond simple 467

contour identification. It categorizes contours hierarchi- 468

cally based on their parent-child relationships, enhanc- 469

ing the capability to uniquely identify the characteristic 470

nested square patterns of QR codes. 471

The contours can be represented as mathematical func- 472

tions as follows: 473

C : [0, 1] → R
2, C(t) = (x(t), y(t)). (10) 474

In the hierarchical scenario, if a contour C1 is entirely 475

enclosed by another contour C2, then C1 is considered a 476

child of C2. This hierarchical nesting is pivotal for iden- 477

tifying the unique three-square pattern at the corners of 478

QR codes. 479

(b.) Contour Filtering 480

This study introduces two primary filtering techniques: 481

Aspect Ratio Filtering and Pattern Consistency for con- 482

tour filtering. 483

1. Aspect Ratio Filtering: 484

The Aspect Ratio (AR) for a detected contour is com- 485

puted as: 486

AR = Height

Width
. (11) 487

Contours with an aspect ratio significantly different 488

from 1 (indicative of a square shape) are removed. 489

2. Pattern Consistency: 490

QR codes possess three large squares at their cor- 491

ners, allowing for pattern consistency checks within 492

contours to eliminate false positives. 493

(c.) Orientation Detection 494

Orientation is key to the accurate decoding of QR codes. 495

As images can capture QR codes in various orientations, 496

a robust methodology to detect and correct these ori- 497

entations is crucial. The moment-based technique was 498

introduced to detect orientation. 499

Central moments μpq are used to compute the orienta- 500

tion of a contour and are defined as: 501

μpq =
∑

x

∑

y

(x − xc)
p(y − yc)

q f (x, y), (12) 502

Where (xc, yc) is the centroid of the shape, and f (x, y) 503

is the image intensity at the coordinates (x, y). 504
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A comprehensive study on enhanced QR extraction... Page 9 of 22 _####_

Using central moments, the orientation θ can be com-505

puted as:506

θ = 1

2
arctan

(
2μ11

μ20 − μ02

)
(13)507

This angle θ provides the angular deviation from the508

standard orientation. The QR code is then rotated by this509

angle to ensure it is optimally oriented for decoding.510

4.2 Deep learning based QR code verification system511

The classification of QR codes faces resource-intensive pro-512

cessing, background interference, and the critical need for513

high accuracy. To address these challenges, a solution has514

been developed that involves the use of the lightweight Shuf-515

fleNet v2 network, enhanced through transfer learning and516

optimized activation functions. This novel approach offers an517

end-to-end QR verification/classification model that strikes518

a balance between efficiency and accuracy, as depicted in519

Fig. 6.520

It starts by forming a foundational feature extraction net-521

work using the ShuffleNet v2 framework, which serves as the522

backbone. To enhance the model’s initial state for training,523

the weights of this backbone network are initialized through524

transfer learning. This strategic step fine-tunes the model’s525

starting point, bolstering the prominence of valuable features526

and downplaying less pertinent ones.527

Furthermore, the choice of the Rectified Linear Unit528

(ReLU) activation function is deliberate. By incorporating529

ReLU, the model excels in extracting spatial context fea-530

tures from the data. This capability empowers the model to531

discern intricate patterns and relationships within the input532

images. An additional advantage of ReLU is its ability to pre-533

vent neurons from being deactivated when input data contain

negative values, thus ensuring a more consistent and effective 534

training process. 535

The construction of the model revolves around harnessing 536

the strengths of ShuffleNet v2, augmenting its performance 537

through transfer learning, and optimizing the feature extrac- 538

tion process using the ReLU activation function. 539

ShuffleNet v2 540

The evolution of convolutional neural network (CNN) archi- 541

tectures has ushered in remarkable breakthroughs, redefining 542

the landscape of efficiency and accuracy. This chapter 543

presents ShuffleNet v2 [41], an evolutionary advance beyond 544

its precursor, ShuffleNet v1, introduced by MEGVII. Guided 545

by four design principles and propelled by the innovative 546

channel shuffle mechanism, ShuffleNet v2 represents a sig- 547

nificant change in CNN design. It outshines its predecessors 548

in accuracy while upholding computational efficiency. 549

Rooted in the ethos of efficiency and performance, 550

ShuffleNet v2 introduces the concept of channel shuffle, 551

ingeniously overcoming the limitations posed by grouped 552

convolution. Grouped convolution, pioneered by Krizhevsky 553

et al. [42] and Zhang et al. [43], economizes computa- 554

tional resources by focusing convolution kernels on specific 555

channel groups. However, this efficiency compromises inter- 556

group information exchange, hindering feature expressive- 557

ness. Inter-channel shuffle, proposed by ShuffleNet [44], is a 558

simple yet transformative stratagem that disrupts the output 559

features of previously grouped convolutions in the channel 560

dimension. 561

Four distinctive characteristics served as the foundation 562

for ShuffleNet v2’s design and development, resulting in the 563

cell structure seen in Fig. 7. This framework depends on 564

DW convolution, which stands for depthwise convolution, 565

and channel separation, a method that divides input fea- 566

tures into discrete parts [45]. These components are expertly 567

put together to form the fundamental building block of 568

Fig. 6 End-to-end QR classification using the optimized ShuffleNet v2 network, highlighting a balance between efficiency and accuracy
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_####_ Page 10 of 22 N. Alam et al.

Fig. 7 ShuffleNet v2 cell structure, showcases its design based on channel separation and depthwise convolution

ShuffleNet v2, each meticulously aligned with four guid-569

ing principles that underpin its design stance. These guiding570

principles include the following:571

1. Memory efficiency One fundamental principle in the572

search for efficiency is the tactical control of memory573

access costs. To establish equilibrium, the input and out-574

put channel counts inside the convolutional layers are575

purposefully aligned. The input feature dimensions for576

a 1 × 1 convolution span ci channels and h × w spa-577

tial dimensions, while co denotes the number of output578

channels. The result of this orchestration, which aims to579

reduce memory access costs, is a crucial formula where580

F , which stands for FLOPs (Floating-Point Operations),581

is related to the overall scenario, and where h, w, xi ,582

xo, and co are, respectively, the height, width, number of583

input channels, and the number of output channels.584

2. Optimizing efficiency via controlled group convolu-585

tions Strategic efficiency is further increased by con-586

sciously using fewer group convolutions, as excessive587

use can result in an increase in memory access costs.588

The term “g,” which refers to the number of groups in a 589

group convolution, is crucial in this situation. These can 590

be defined as follows: 591

F = h · w · xi · xo

g
(14) 592

593

MAC = h ·w ·(xi +xo)+ xi · xo

g
= h ·w ·xi + Fg

xi + F/hw

(15) 594

3. Reducing network branches Reducing the number of 595

network branches increases efficiency. A network can lag 596

if it has too many branches. For instance, several multi- 597

branch structures are utilized as the fundamental building 598

elements of the Inception architecture. However, we must 599

be cautious, as having too many of these branches can 600

dramatically reduce the computer’s capacity for parallel 601

processing. 602

4. Streamlining Tensor Operations for Increased Effi- 603

ciency Reducing the number of tensor operations is one 604

technique to improve efficiency. However, even straight- 605
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A comprehensive study on enhanced QR extraction... Page 11 of 22 _####_

forward functions like ReLU and adding features can606

place a significant burden on the Multiply-Accumulate607

(MAC) resources. Therefore, it’s crucial to optimize even608

these small processes for greater effectiveness.609

5 Experimental result and discussion610

5.1 Experimental parameters611

The majority of the Python 3.7 code used to create the QR612

verification framework described in this proposal was run613

on an Ubuntu 20.04 machine. This machine was powered614

by two Nvidia Tesla V100 GPUs, each with 12 gigabytes of615

RAM. The model relied on the ShuffleNetV2 architecture,616

implemented using PyTorch 2.0.0-a highly recognized open-617

source deep learning framework known for its adaptability618

and robustness in fundamental image classification and QR619

verification tasks.620

We used a training pipeline for a neural network, utilizing621

the Cross-Entropy Loss function, which measures the dis-622

similarity between predicted class probabilities and actual623

labels for multi-class classification tasks. To optimize our624

model, we employed Stochastic Gradient Descent (SGD)625

with momentum and weight decay. The learning rate (lr)626

was set to 0.01, controlling the step size during weight627

updates, while the momentum factor enhanced training sta-628

bility. Additionally, a learning rate scheduler employing a629

cosine annealing strategy helped fine-tune the lr throughout630

training. Hyperparameters included the number of classes631

(24), the number of training epochs (50), batch size (8), and632

device choice (GPU).633

5.2 Evaluationmetrics634

In our model evaluation, we utilized recognized metrics for635

evaluating multiclass classification. We carefully identified636

the occurrences of true positives (TP), true negatives (TN),637

false negatives (FN), and false positives (FP) for each classi-638

fication test. The average classification accuracy (A), average639

recall (R), average precision (P), and the F-1 score (F-1) were640

then calculated using these fundamental data.641

The formula for the Average Classification Accuracy (A),642

frequently considered a fundamental indicator of model per-643

formance, is the sum of the combined results of the TP, TN,644

FP, and FN. It reflects the overall accuracy of our classifi-645

cation predictions and provides insightful information about646

the model’s performance.647

A = T P + T N

T P + T N + F P + F N
(16)648

Average Recall (R), an essential metric in multiclass 649

classification, assesses how well our algorithm recognizes 650

positive cases. It measures the relationship between true pos- 651

itives (TP) and the total of true positives and false negatives 652

(FN), reflecting the model’s ability to incorporate relevant 653

information. 654

R = T P

T P + F N
(17) 655

An important performance statistic, called Average Pre- 656

cision (P), evaluates how well the model predicts positive 657

events. The accuracy of our model’s predictions is calculated 658

as the ratio of true positives (TP) to the sum of true positives 659

and false positives (FP). 660

P = T P

T P + F P
(18) 661

The F1 Score (F1), a comprehensive evaluation of clas- 662

sification performance, harmoniously combines recall and 663

precision. It is calculated as the harmonic mean of recall 664

(R) and precision (P), providing a balanced measure of both 665

metrics. The F1 Score is a crucial parameter in classification 666

assessments, offering an accurate evaluation of our model’s 667

ability to achieve both high precision and recall simultane- 668

ously. 669

F = 2 · (R · P)

R + P
(19) 670

5.3 Quantitative analysis 671

We conducted experiments using thirteen different CNN 672

architectures to facilitate a comprehensive comparison. 673

Throughout the experiments, the training and validation 674

datasets were randomly distributed in a ratio of 80:20. The 675

results from these experiments are summarized in Table 2. 676

ShuffleNetV2 [41] emerged as the leader after 50 training 677

iterations, achieving the highest average validation accu- 678

racy of 99.99%, closely followed by ResNet101 [46] at 679

99.95% and DenseNet121 [47] at 99.93%. The accuracy of 680

the remaining CNN architectures ranged from 91.89% to 681

99.0%. Furthermore, state-of-the-art models such as Con- 682

vNeXt [48] and ConvNeXt-v2 [49] achieved accuracies 683

of 98.12% and 98.85%, respectively. Similarly, Mobile- 684

ViT [50] and Mobile-ViT-v2 [51] attained accuracies of 685

99.28% and 99.45%, respectively. In comparison, our model 686

demonstrated superior performance across all metrics. 687

Additionally, we tested the model’s performance using 688

accuracy, recall, F1-score, and AUC as evaluation measures, 689

which gave us a more thorough understanding of its capabil- 690

ities. Interestingly, ShuffleNetV2 exceeded the other models 691

in terms of accuracy 99.76%, recall 99.76%, and F1-score 692
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_####_ Page 12 of 22 N. Alam et al.

Table 2 Comparative analysis of the evaluation metrics of various deep learning models for the QR code verification task

Model Accuracy Recall Precision F-1 Score

ResNet-101 [46] 99.95 99.30 99.31 95.24

ResNet-50 [46] 99.95 99.45 99.45 99.44

DenseNet-121 [47] 99.93 99.04 99.05 99.03

MobileNet-v3 [52] 91.89 91.92 91.91 91.87

MobileNet-v2 [53] 98.27 98.12 97.95 97.91

RegNetx-800 mf [54] 99.89 98.62 98.62 98.61

RegNety-800 mf [54] 99.91 98.87 98.88 98.86

ConvNeXt [48] 98.12 81.86 84.94 82.16

ConvNeXt-v2 [49] 98.85 87.64 89.73 87.21

Mobile-VIT [50] 99.28 98.12 99.13 99.07

Mobile-VIT-v2 [51] 99.45 98.84 99.25 99.18

VIT [55] 98.32 85.40 82.56 74.80

ShuffleNet-v2 [41] 99.99 99.76 99.76 99.75

The models include ResNet-101, ResNet-50, DenseNet-121, MobileNet-v3, MobileNet-v2, RegNetx-800mf, RegNety-800mf, ConvNext, Mobile-
ViT, ViT, and ShuffleNet-v2. ShuffleNetV2 achieved the highest performance across most metrics, including a validation accuracy of 99.99%, recall
of 99.76%, and F1-score of 99.75%. ResNet101 was the second-best performer with an accuracy of 99.95%. ShuffleNetV2 significantly enhances
model performance compared to traditional and recent state-of-the-art approaches

Fig. 8 Training loss and validation accuracy curves for 50 epochs
using the ShuffleNetV2 model. The figure highlights the stabilization of
validation accuracy and training loss, demonstrating the model’s con-

vergence. The highest accuracy of 99.94% was achieved at the 45th
epoch, indicating optimal model performance

123

Journal: 10489 MS: 6509 TYPESET DISK LE CP Disp.:2025/3/28 Pages: 22 Layout: Large



un
co

rr
ec

te
d

pr
oo

f

A comprehensive study on enhanced QR extraction... Page 13 of 22 _####_

99.75%. In terms of these evaluation metrics, ResNet101693

took second place on the list.694

These results lead us to the conclusion that, with the695

MobileNet [52] architecture, increasing the amount of data696

through data augmentation has very little impact on improv-697

ing the accuracy of QR pattern classification. On the other698

hand, methods such as separable depth convolutions and699

efficient channel-wise operations support better training and700

performance of the deep neural network, as shown in Table 2.701

A convolutional neural network (CNN) model, built on702

the ShuffleNetV2 architecture, has been trained to classify a703

diverse collection of QR pattern images from various time704

periods.705

Figure 8 presents the training and validation performance706

of the ShuffleNetV2 model over 50 epochs. The training707

loss decreased steadily, stabilizing around the 46th epoch,708

while the validation accuracy plateaued by the 40th epoch709

and achieved its highest value of 99.94% at the 45th epoch.710

These trends indicate effective training and convergence of711

the model, confirming its suitability for low-latency QR code712

varification tasks.713

We have chosen ShuffleNetV2 as the final classifica- 714

tion algorithm for our QR verification system because of 715

its excellent classification performance and computational 716

effectiveness. The confusion matrix plot for the Shuf- 717

fleNetV2 architecture employed in the system can be seen in 718

Fig. 9. In this plot, the columns correspond to the true label 719

classes (Target Class) and the rows to the predicted label 720

classes (Output Class). The off-diagonal cells in Fig. 9 show 721

the number of validation samples for QR code patterns that 722

were incorrectly classified, while the diagonal cells show the 723

number of correctly classified validation samples for similar 724

patterns. 725

In Table 3, we present a comprehensive comparison of 726

the processing time between our proposed framework and 727

other widely accepted classification methods for QR code 728

images. Specifically, we calculate the total processing time 729

for each QR code image. Our results show that our proposed 730

algorithm achieves an impressive processing time of only 731

0.08 seconds, slightly outperforming its counterparts. 732

We also evaluate the parameter estimates for these 733

methods. Table 3 reveals that our proposed framework 734

Fig. 9 Confusion matrix showcasing the classification performance of
the ShuffleNetV2 model on the test dataset for the QR verification sys-
tem. The columns represent the true label classes (Target Class), and
the rows represent the predicted label classes (Output Class). Diagonal
cells indicate the number of correctly classified validation samples for

each QR code pattern, while off-diagonal cells display the number of
incorrectly classified samples. This visualization highlights the excep-
tional classification performance and computational effectiveness of the
ShuffleNetV2 architecture in our system.
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Table 3 Comparative analysis of different algorithms based on execu-
tion time (in seconds) and parameter size (in MB)

Algorithm Time (s) Params size (MB)

RegNet800mf [54] 0.18 21.03

ResNet50 [46] 0.53 89.86

ResNet101 [46] 0.95 162.31

EfficientNet_b0 [56] 0.17 15.40

Convnext [48] 0.91 188.73

Mobile-VIT [50] 0.11 3.66

VIT [55] 1.45 329.62

ShuffleNetV2 [41] 0.08 4.88

ShuffleNetV2 demonstrates the fastest processing time of 0.08 seconds
and the smallest parameter size of 4.88 MB, making it ideal for real-time
mobile QR verification apps. Other methods, including RegNet800mf,
ResNet50, ResNet101, EfficientNet-b0, Convnext, and VIT, have larger
parameter sizes and slower processing times

is remarkably efficient, with a modest parameter size of735

4.88 MB. In contrast, RegNet800mf [54] uses 21.03 MB,736

ResNet50 [46] uses 89.86 MB, ResNet101 [46] uses 162.31737

MB, EfficientNet-B0 [56] uses 15.40 MB, ConvNext [48]738

uses 188.73 MB, and Mobile-ViT [50] and ViT [55] use 3.66739

MB and 329.62 MB, respectively, for parameter extraction.740

The combination of reduced processing time and compact741

parameter size positions our proposed framework as an ideal742

choice to deploy QR verification systems for real-time mobile743

applications.744

5.3.1 Hyperparameter optimization745

In order to achieve the best possible accuracy for a clas-746

sification model, hyperparameters are crucial. The learning747

rate and the selection of the optimization technique are the748

most critical of these hyperparameters. As shown in previ-749

ous studies [57, 58], an insufficiently adapted learning rate750

could cause erratic loss variations and a delayed convergence751

pace. To choose the best hyperparameters for the model we752

propose, SGD stands out among the many optimization tech-753

niques. The impact of various hyperparameters on model754

performance is clearly shown in Fig. 10. We used the SGD755

optimizer to train the model proposed in our studies. To756

explore the effects of different learning rates, we selected757

three values: 0.01, 0.005, and 0.001 for the optimization set-758

ting. Our goal was to compare the validation accuracy and759

training loss of these settings to choose the most suitable760

learning rate for future analysis.761

With the SGD optimizer, especially with a learning rate762

of 0.01 and momentum of 0.9, the model achieved its high-763

est accuracy. Based on these findings, we determined that764

the best hyperparameter configuration for the model we765

proposed was a learning rate of 0.01 and the SGD opti-766

mizer. This fine hyperparameter tuning process sets the stage767

for maximum model performance, robustness in subsequent 768

evaluations and highlight the superiority of a learning rate of 769

0.01, which achieves the best balance between accuracy and 770

convergence speed, demonstrating the importance of fine- 771

tuning hyperparameters to ensure optimal performance. 772

5.3.2 Ablation study 773

To evaluate the performance of ShuffleNetV2 under differ- 774

ent configurations, we conducted an ablation study on the QR 775

pattern dataset, varying input sizes, network depth, activation 776

functions, and optimization techniques. The results, summa- 777

rized in Table 4, demonstrate that ShuffleNetV2 achieves 778

consistent and high performance across these parameters. 779

Notably, the input size of 224 × 224 emerges as the opti- 780

mal configuration, yielding an accuracy of 99.99%. Similarly, 781

the standard ShuffleNetV2 network depth achieves the best 782

results, while deeper and shallower variants show slight per- 783

formance variations. Regarding activation functions, ReLU 784

and Leaky ReLU both produce high accuracy, with ReLU 785

slightly outperforming. Finally, optimization techniques 786

reveal that SGD with Momentum delivers superior perfor- 787

mance compared to Adam. These findings highlight the 788

robustness and adaptability of ShuffleNetV2 across differ- 789

ent parameter settings. 790

5.4 Qualitative analysis 791

In Fig. 11, we show how well our model performs when tested 792

against QR code images related to sample authentication. The 793

findings demonstrate its remarkable capacity to classify QR 794

codes efficiently, enhancing its reliability for authentication 795

tasks. The robustness and accuracy of the model in classify- 796

ing QR codes are evidenced by its consistent achievement of 797

an average prediction score of over 99%, making it the best 798

choice for authentication purposes. 799

To ensure that our model can handle real-world scenarios 800

effectively, we need to evaluate its performance under various 801

types of noise, which is a significant concern. Therefore, we 802

evaluate our model’s ability to perform in noisy conditions 803

before applying it for real-time QR code verification. 804

Our evaluation focuses on four common types of noise that 805

frequently appear in QR code images: Gaussian Noise, Blur, 806

Lighting Variations, and Random Printed Noise. These types 807

of noise represent the challenges we may encounter due to the 808

environment and equipment. Our objective is to prove that 809

even in the presence of these possible sources of interference, 810

our model can reliably and accurately distinguish real QR 811

codes from false ones. 812

The prediction accuracy of the proposed model applied to 813

images with Gaussian noise is shown in Fig. 12. The original 814

picture, added Gaussian noise, and input into the classifier 815

for prediction are shown in Fig. 12(a). We added 20 816
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Fig. 10 The comparison of validation accuracy and training loss for
the ShuffleNetV2-based CNN model under different learning rates. The
learning rates tested were 0.01, 0.005, and 0.001, using the stochastic

gradient descent (SGD) optimizer. The results demonstrate the signifi-
cance of hyperparameter tuning, as inadequate learning rates can lead
to inconsistent loss variations and slower convergence
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Table 4 Ablation study on
model parameters, including
modifications in input size,
network depth, activation
functions, and optimization
techniques

Parameter Configuration Accuracy Precision Recall F1 Score
(%) (%) (%) (%)

224×224 99.99 99.76 99.76 99.75

Input size 227×227 99.60 99.50 99.49 99.48

256×256 99.53 99.30 99.32 99.31

Standard

ShuffleNetV2 99.99 99.76 99.76 99.75

Network (baseline)

Depth Deeper 99.85 99.70 99.71 99.69

Variant

Shallower 99.40 99.20 99.15 99.10

Variant

Activation ReLU 99.99 99.76 99.76 99.75

Function Leaky ReLU 99.80 99.60 99.58 99.59

Optimization SGD with Momentum 99.99 99.76 99.76 99.75

Technique Adam 99.75 99.50 99.49 99.50

The results emphasize the performance of ShuffleNetV2 and its variants, evaluated using accuracy, precision,
recall, and F1 score metrics

Fig. 11 Visualization of predicted QR code pattern classes using the
ShuffleNetV2 model. It demonstrates the model’s outstanding perfor-
mance in classifying QR code images related to sample authentication,

consistently achieving an average prediction score of over 99%. The
high reliability and precision of the ShuffleNetV2 model make it an
ideal choice for QR code authentication tasks
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Fig. 12 Performance evaluation of the proposed model on images with
Gaussian noise. The original image, along with images with 20% and
40% added Gaussian noise, are shown in this figure. The proposed

model consistently achieves high prediction accuracy with prediction
scores exceeding 95% even at 40% noise intensity, demonstrating the
model’s robustness and accuracy in noisy conditions

The proposed model consistently predicts the class with817

high prediction accuracy. In Fig. 12(c), it is evident that the818

average prediction score for Gaussian noise images exceeded819

95%, indicating the model’s robustness and accuracy in clas-820

sifying patterns even in the presence of noise. In Fig. 13,821

we present the prediction accuracy of the proposed model822

applied to images with random blur. Notably, our proposed823

classification model achieved an impressive accuracy rate of824

more than 97825

The high prediction score for blurred images can be826

attributed to the fact that the distribution of QR pattern sym-827

bols remained largely unchanged even when the image was828

blurred. Consequently, our proposed model consistently clas-829

sified the correct class for constrained noisy QR code images.830

This demonstration underscores the versatility of the model831

and its potential applicability in various constrained environ-832

ments for QR code classification and authentication.833

Additionally, we tested the proposed model against a834

number of lighting variations that are frequently present in835

real-life scenarios involving QR code pictures. The expected836

results of the proposed model on images subjected to lighting837

variations are shown in Fig. 14.838

For the same image, lighting variations were intention- 839

ally added, and the proposed model predicted every pattern 840

successfully. The accuracy ranged from 90.4% for the high- 841

est accuracy to 84.7% for the lowest accuracy, as shown in 842

Fig. 14(c). 843

Lastly, we evaluated our proposed QR code authentication 844

model against Printed Noise, a common real-world scenario 845

involving QR code images. In Fig. 15, you can see the model’s 846

predictions on images with Printed Noise intentionally intro- 847

duced. 848

In Fig. 15(c), the proposed model correctly predicted every 849

image, with an accuracy rate ranging from 89.3% to 98.4%. 850

6 Discussion 851

6.1 Comparison with existingmethodology 852

We evaluate the performance of our proposed method against 853

several existing methodologies in the field of QR code 854

validation. We compare our approach with the Siamese 855

network [59], Combined (Grab Cut + Image Splicing + 856

SIFT + Optical Character Recognition) [60], AlexNet, and 857
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Fig. 13 Evaluation of the model’s prediction accuracy on blurred
images using kernel sizes ranging from 9×9 to 15×15. The proposed
classification model consistently achieved accuracy rates greater than
97% for QR code classification, demonstrating its robustness. The high

prediction scores indicate that the distribution of QR pattern symbols
remains largely unaffected by blurring. This highlights the model’s ver-
satility and potential applicability in various constrained environments
for QR code classification and authentication

ResNet18 [61] based on their dataset sizes and achieved accu-858

racies, as shown in Table 5.859

Our method achieves an excellent accuracy of 99.99%860

with a dataset size of 28,523, surpassing existing method-861

ologies. While the Siamese network demonstrates promising862

results at 98% accuracy, our approach significantly outper-863

forms it. Despite the Combined method’s integration of var-864

ious techniques, it achieves an average accuracy of 85.25%,865

highlighting the effectiveness of our proposed method. Fur-866

thermore, compared to traditional deep learning architectures867

like AlexNet and ResNet18, our method demonstrates supe-868

rior accuracy, emphasizing its practical applicability. These869

results affirm the effectiveness and robustness of our pro-870

posed methodology.871

6.2 Advantages, limitations and future directions872

The existing study on QR code extraction and verification873

in dynamic environments has been limited in providing an874

efficient framework that includes both precise QR extraction875

techniques and robust verification methods. This research876

aims to address this gap by proposing a novel technique with877

a deep learning-based verification approach that differenti- 878

ates itself from previous methods. A significant contribution 879

of this study is its outstanding performance in both pro- 880

cessing speed and verification accuracy, achieving a notable 881

processing time of 0.08 seconds. The methodologies and 882

experimental results demonstrated qualitative and quantita- 883

tive agreement, establishing the reliability of the findings. 884

Previous frameworks mostly relied on traditional methods 885

such as thresholding, dilation, and contour detection for QR 886

code extraction [60]. However, these methods often fail to 887

deliver satisfactory accuracy and processing speed. One of 888

the leading challenges remains the impact of document image 889

quality on QR code extraction effectiveness. Variations in 890

lighting conditions, viewing angles, and image resolutions 891

can substantially affect the accuracy of QR code detection 892

and pattern extraction. Furthermore, traditional filtering and 893

bounding box techniques may not consistently identify the 894

QR code region, leading to false positives and false negatives 895

that compromise the reliability of pattern extraction and ver- 896

ification processes. 897

To overcome these challenges, our study introduces a 898

comprehensive approach that utilizes enhanced adaptive 899
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Fig. 14 Assessment of the model’s performance on images with inten-
tional lighting variations, illustrating accuracy rates ranging from 84.7%
to 90.4%. The proposed model was tested against various lighting con-
ditions commonly encountered in real-life scenarios involving QR code

images. Despite these variations, the model consistently predicted the
correct patterns, demonstrating its robustness and reliability under dif-
ferent lighting conditions

thresholding for QR code extraction and integrates a deep900

learning framework designed for robust QR code verification.901

We trained various state-of-the-art classification models,902

including ShuffleNetV2, ResNet, MobileNet, RegNetx, and903

DenseNet, on the proposed QR pattern dataset. Among904

these models, the ShuffleNetV2 model showed the highest905

accuracy of 99.99%, demonstrating its precise classification906

capabilities for QR pattern images.907

Table 5 comparison of several QR Code Validation Methodologies,
highlighting the dataset sizes and accuracy levels attained by Siamese
network, Grab Cut + Image Splicing + SIFT + Optical Character Recog-
nition), AlexNet, ResNet18, and our proposed approach

Method Dataset Accuracy
Size

Siamese network [59] 5000 98%

Combined (GrabCut+Image

Splicing+SIFT+Optical Character

Recognition) [60] 85.25%

AlexNet [61] 2640 95.04%

ResNet18 [61] 2640 99.96%

Ours 28523 99.99%

Our proposed framework showcases its robustness in 908

handling the intricacies of real-world scenarios, delivering 909

impressive prediction accuracy rates ranging from 90.04% to 910

99.00% for complex and varied environments. By combin- 911

ing advanced extraction techniques with deep learning-based 912

verification, our approach improves on previous methods in 913

both accuracy and processing speed. These results highlight 914

the reliability and practical applicability of our framework 915

for various tasks requiring efficient and accurate QR code 916

processing in dynamic environments. 917

However, limitations include a restricted scope of ver- 918

ification focusing on 24 types of QR code patterns and a 919

specialization in printed document images. Future research 920

should address these weaknesses by expanding the dataset 921

to encompass a broader range of QR code patterns and 922

exploring techniques for extracting QR codes from digi- 923

tal sources, thus enhancing the framework’s versatility and 924

utility in real-world scenarios. To ensure the associated com- 925

plexity and resource requirements, the potential integration 926

of emerging technologies such as mobile device capabilities 927

and blockchain for real-time processing and enhanced secu- 928

rity can be explored for future development and application 929

of the proposed approach. 930
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Fig. 15 Model predictions on QR code images with introduced Printed
Noise, displaying accuracy rates between 89.3% and 98.4%. This
evaluation highlights the proposed QR code authentication model’s
robustness in handling common real-world scenarios involving printed

noise. Despite the introduced noise, the model consistently predicted
the correct patterns, demonstrating its effectiveness and reliability for
QR code classification

7 Conclusion931

In this paper, we presented QR code recognition and verifi-932

cation in challenging imaging conditions, particularly under933

the influence of different noise. This study introduced a novel934

two-stage strategy, merging enhanced adaptive thresholding935

with a cutting-edge deep learning framework, to enable the936

QR code verification process. Our findings clearly demon-937

strate the superiority of the proposed methodology over938

existing approaches, achieving a processing speed of 0.08939

seconds and a high accuracy rate of 99.99% in constrained940

scenarios. Furthermore, the capability of the deep learn-941

ing model, underpinned by extensive training datasets, to942

accurately distinguish genuine QR codes from counterfeit943

versions not only attests to the effectiveness of our method-944

ology but also highlights its potential to reshape the future of945

QR code authentication in the digital domain.946

The robustness of our methodology in varied hardware947

environments and its energy efficiency have not yet been948

explored, providing avenues for further investigation. Addi-949

tionally, as forgery techniques advance, continuous refine-950

ment and adaptability of our verification system become951

imperative. Furthermore, we plan to conduct additional 952

experiments to evaluate system performance across various 953

hardware configurations, ensuring that our approach remains 954

robust and efficient on both high-end and low-end devices. 955

This assessment will help confirm the feasibility of our solu- 956

tion for a wide range of real-world applications. 10957
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