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Abstract
The quantification of crop phenotyping traits is essential to understand growth patterns and increase production. Traditional
methods of monitoring such properties, particularly in white radishes, are notably labor-intensive and inefficient, necessitating
the development of more effective techniques. Moreover, there is a lack of radish dataset to enable monitoring of radish plant
growth that combines radish roots and leaves. Addressing these challenges, the current study proposes a radish dataset
combining both radish roots and leaves. In addition, we propose an automated approach through the implementation of deep
learning and mathematical model that leverages high-resolution imagery for the measurement of white radish phenotype
traits. The study utilized a modified Mask Region-based Convolutional Neural Networks (R-CNN) algorithm to accurately
segment radish components, facilitating the measurement of leaf and root dimensions. The traditional backbone was improved
by introducing a local–global attention mechanism in the feature extraction block. The feature pyramid network (FPN) is
also improved by integrating a self-attention mechanism in the top layer. Moreover, we utilize Geometrical Morphological
Analysis and the medial axis transformmethod to measure the height and width of the white radish phenotype traits. Extensive
experiments revealed that our proposed modified Mask R-CNN model acquired a mean average precision of 96.3% for
segmentation and a mean absolute error (MAE) of 0.51mm for phenotype traits measurement. Our proposed framework
demonstrates a significant advancement in the measurement process in agricultural studies, offering a reliable alternative to
traditional, time-consuming methods.
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1 Introduction

Advancements in Artificial Intelligence (AI) and Computer
Vision provide opportunities to improve and maximize live-
stock and agricultural management, leading to increased
production [1]. To increase productivity, monitoring plant
biophysical traits and taking timely preventive measures
to avoid problems are essential for increasing productivity.
Monitoring plant growth is the process of identifying the
biophysical properties of the plant and measuring the growth
of the biophysical properties. Using computer vision meth-
ods, researchers can apply advanced image analysis methods
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to capture and handle complex growth patterns that support
accurate identification of plant’s biophysical properties.

Computer vision has emerged as essential methods for
the agricultural industry in recent times, providing precise
responses to a variety of plant analysis related tasks [2]. These
methods are widely applied in plant disease detection, plant
growth stage classification, segmentation, plant phenotyp-
ing, plant growth monitoring, crop estimations, and so on.
Additionally, the attention based convolutional neural net-
works (ACNN) model is used for accurate crop estimation,
resolving issues related to insufficient field samples [3]. Seg-
mentation techniques, such as Mask R-CNN, allow for the
detailed outline of radish structures, facilitating tasks such as
radish and leaf segmentation and phenotyping [4].

Radishes (Raphanus sativus L.) are widely cultivated root
vegetables in Asia, especially in Korea, where they are
considered a national vegetable. Radishes, especially the
green-shoulderedwhite variety favored for their taste and tex-
ture, are a significant ingredient inKorean cuisine, often eaten
raw, pickled, or as a fundamental part of kimchi. Although
existing research in Korea has focused on cultivation sys-
tems and disease resistance [5], thorough growth monitoring
is essential to increase radish production, yield, marketabil-
ity, and cultivation decisions. Traditionally, plant monitoring
has been done using manual field measurements and UAV-
based technologies [6], latter, despite certain difficulties with
sensor calibration and weather, providing benefits in disease
detection andprediction of crop growth using high-resolution
imaging [7]. Smartphones have developed as sensible alter-
natives to capture agricultural data, supporting technologies
such as light detection and ranging (LiDAR). Recent stud-
ies have utilized these methods to investigate crop disease
challenge, genetic diversity, and various agronomic traits,
underscoring the importance of in-depth phenotypic analy-
sis for agricultural insight and genetic research. However,
when it comes to crops such as radishes, current methods
often face challenges in terms of precision and accuracy for
detecting and segmenting various parts of radishes due to
their complex backgrounds and abstract shapes, which later
can cause incorrect measurements. Additionally, traditional
measurement methods often face difficulties when measur-
ing irregular shapes of radishes.

To overcome the shortcomings of current methods and
improve the efficiency of radish analysis, as well as address
this gap in underground crops, we first propose a challeng-
ing dataset of radish roots and leaves. We then propose a
framework combining the deep learning-based segmentation
method and the mathematical model for radish root and leaf
with measurement of biophysical properties. Specifically,
we introduce a modified Mask Region-based Convolutional
Neural Network (R-CNN) model with a local–global atten-
tion mechanism. The architecture of the Feature Pyramid
Network (FPN) has been further refined by incorporating a

self-attentionmechanism at the top level of its structure. This
addition is designed to improve the ability of themodel to pro-
cess and refine feature representations through context-aware
focused calculations.Moreover, themask headmodule of the
Mask R-CNN was replaced with the PointRend algorithm to
improve the performance of themodel. Themedian axis anal-
ysis and geometrical morphological analysis algorithms are
introduced to accurately measure the biophysical properties
of the plant extracted from the segmentation model.

The rest of the paper is structured as follows: In Sect. 2,
we conduct a comprehensive review of important literature in
several crops. Section3 describes the methodology assigned
for this study, along with a detailed description of the dataset
used. The experimental results are presented and analyzed in
Sect. 4. In Sect. 5, we compare our proposed system with the
current state-of-the-art method. Finally, we conclude with
a discussion of our findings, and the prospects for future
research are in Sect. 6.

2 Related work

Computer vision and deep learning models are used to pre-
dict plant growth by analyzing images. For our objective,
segmentation models are particularly used, as they can accu-
rately describe the different components of the radish, such
as leaves and roots, by predicting object masks. The real-life
pixel density in the image is used to accurately measure the
traits of the radish by referencing a ruler placed beside it for
scale, as shown in Fig. 2b. The segmentation output and pixel
density are then used to calculate traits like width and length.
Using this data, regression forecasts future growth charac-
teristics such as root width, root length, and other growth
parameters.

2.1 Segmentation

In the process of intelligent plant management, Plant iden-
tification and growth prediction have drawn an enormous
amount of attention. Plant growth information could be
directly obtained by optical sensors [8]. Computer vision
is frequently applied to detection of plants, predict growth,
yield estimation, and other information [9]. Traditional
machine vision algorithms are mainly based on color and
threshold for plant identification, classification, and segmen-
tation. Traditional machine vision algorithms primarily rely
on color and threshold for crop identification, classifica-
tion, and segmentation. A threshold-based image processing
method to examine the effect of the density of the blossoms
on the yield of apples. Mizushima and Lu [10] segmented
the apples in the image using a combination of the maximum
variance between classes method (Otsu) [11] and the sup-
port vector machine (SVM) [12]. However, these algorithms
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were efficient at identifying and segmenting the target, but
they were ineffective in environments with complex back-
grounds and variable lighting.

As big data processing technologies and GPU computing
power continue to advance, an increasing number of deep
learning algorithms are being used in agriculture, particu-
larly in plant segmentation [13]. The method used by Dias et
al. [14] is classified as semantic segmentation, which is lim-
ited to segmenting the area surrounding an apple flower rather
than the individual apple flowers. To achieve plant segmenta-
tion in a changing light environment, Yu, Zhang, Yang, and
Zhang [15] proposed Mask R-CNN [16] approach, which
extended Faster R-CNN by combining the bounding box
recognition branch with an object mask prediction branch.
Using 100 images as a test dataset, the approach offered
cutting-edge crop segmentation results from the research.
Huang, Huang, Gong, Huang and Wang [17] improved the
scoring criteria between the mask of the instance and ground
truth and developed the Mask Scoring R-CNN model based
on the network architecture of Mask R-CNN. The Mask
Scoring R-CNN model boosted the Mask R-CNN’s seg-
mentation accuracy and reached a state-of-the-art level in
target instance segmentation. However, because these algo-
rithms use a set grid size 28×28 for mask prediction, they
often tend to produce overly smoothed outputs for large
objects. Although bottom-up approaches can provide more
comprehensive results, in benchmark tests, they usually per-
form worse than region-based methods [18]. To address
this, TensorMask [19], a sliding window method, predicts
high-resolution masks for big objects. But compared to
region-based methods, its accuracy trails significantly.

2.2 Phenotyping

The accurate monitoring and measurement of the physical
and phenotyping characteristics of a plant is called pheno-
typing. Phenotyping is fundamentally vital in various aspects
of crop development, including identifying ideal traits, val-
idating genetic predictions, and improving the selection
procedure. By analyzing and understanding the phenotypic
characteristics of crops, researchers canmake informed deci-
sions about breeding programs, genetic modifications, and
agronomic practices to improve crop productivity, resilience,
and quality. In-field measurements involve manually col-
lecting data directly from field crops or soil [20]. This
includes measures such as soil moisture, leaf area index,
and plant height. However, collecting data manually and
measuring biophysical properties is time consuming, costly,
and requires expertise in agriculture. Previous studies in
high-throughput phenotyping research have focused mainly
on the use of high-tech sensors such as LiDAR [21] and
multi-view stereo cameras [22]. These sensors overcome
the challenges of in-field measurements to capture detailed

three-dimensional data of plants. Although these methods
are effective in precisely measuring plant size, they are often
expensive and require advanced phenotyping platforms. Liu
et al. [23] mention that earlier research examined the manual
measuring of phenotypic features and genetic diversity in a
variety of plants and crops. But scalability and efficiency
issues are often present in this research, especially when
dealing with complex characteristics that require repeated,
labor-intensive measurements or observations.

3 Materials andmethods

3.1 Overall architecture of proposed framework

The overall structure of the proposed system is shown in
Fig. 1, which can effectively segment and measure various
phenotypic traits of a radish image. Radish data were used
as the raw data set to train and test the proposed system. The
train data set is then prepossessed and fed into the Modi-
fied Mask R-CNN model to learn the characteristics of the
radishes of radish for efficient segmentation of their various
components. Subsequently, the testing images were used to
evaluate the model’s ability to segment radish components.
Additionally, exact measurements of the phenotypic traits
of radishes are gained by determining the real-life pixel den-
sity, a process that includes detecting a ruler placed beside the
radish. Then, real-life measurements for several radish phe-
notype features, such as width and length, can be acquired
by utilizing the output masks produced by the radish seg-
mentation model and the computed real-life pixel density.
The system output is done by embedding segmentation and
accurate measurement prediction at the same time.

3.2 Data collection and preprocessing

In the development of our radish dataset, the primary objec-
tive was to support the automatic monitoring of radish
growth. The data collection captured place in a radish field
situated in Kyonggi-do, Korea, over the period of Septem-
ber 2022 to February 2023. To make sure there is consistent
lighting, we captured images within a one-hour frame tar-
geted around solar noon, from 11:30 AM to 12:30 PM.

For the purpose of image calibration, we integrated an X-
rite 4×6 color checkerboard with 24 colors in every image.
The existence of this checkerboard in each image capture
period provided a standard reference for accurate color cal-
ibration, which is essential for the accurate analysis of the
images. The device used to collect the data setwas a Samsung
Galaxy S22 smartphone, understanding the advantage of its
50 megapixel rear camera feature that includes an f/1.8 aper-
ture and improved autofocus capabilities, producing images

123



  178 Page 4 of 17 Signal, Image and Video Processing           (2025) 19:178 

Fig. 1 Overview of the Training
and Testing Process Using the
Modified Mask R-CNN. The
training data and testing data are
first prepared and input into the
training process. The Modified
Mask R-CNN is then utilized for
instant segmentation of the input
test image, leading to the system
output. The real-life pixel
density calculation is done to
acquire detailed measurements
of phenotypic traits including
root length, root width, leaf
width, and leaf length

Training Data Testing Data

Training Process

Modified Mask 

R-CNN

Input Test Image

Phenotypic traits 

measurement

Instant 

Segmentation 

using Modified 

Mask R-CNN

System Output

Real-life pixel density 

calculation

Raw Images

at 3000×4000pixels.A total of 1100high-resolution images
were carefully compiled.

Each image received manual annotations with the assist
of the LabelMe tool [24], with representations of the color
checkerboard, radish fields, and carefully placed rulers to
provide a precise assessment of the phenotypic characteris-
tics. The resulting samples of our radish dataset, including
the train images and numerical tests obtained from it, are
shown in Fig. 2.

3.3 Radish and leaf segmentation

The Mask-RCNN, a deep learning model known for its
capabilities in object detection and instance segmentation,
represents a significant advancement in the field of computer
vision [16]. Adjusting from the Faster-RCNN architecture, it
introduces an extra branch granted to generating pixel-level
object masks in combining with the existing bounding box
recognitionbranch. Furthermore,Mask-RCNNstands out for
its ease of training and adaptability across various computer
vision applications. In this study, we utilize amodifiedMask-
RCNN network with six main components, as illustrated in
Fig. 3.

3.3.1 Backbone

The ResNet-50 model in the Residual Networks family has
significantly influenced deep learning by enabling the train-
ing of much deeper networks than previously possible due
to its innovative use of residual connections. These con-
nections help alleviate the problem of vanishing gradients,
allowing information to flow through the networkmore effec-
tively. Despite its successes, ResNet-50 has some limitations,
particularly in terms of its convolutional blocks’ ability to
process complex patterns and understand long-range depen-
dencies within the data. This is mainly because traditional
convolutional layers focus on extracting local features, poten-
tially overlooking the global context that is crucial for certain
tasks.

To address these limitations, we introduce the Local
Global Attention Module (LGAM) to enable ResNet-50’s
architecture to encompass a broader understanding of the
input data. LGAM achieves this by integrating attention
mechanisms that enable the network to weigh the impor-
tance of different features at both local and global scales.
Our proposed LGAM not only enhances the model’s ability
to capture intricate patterns but also improves its performance
in tasks requiring a nuanced comprehension of the entire
scene. Therefore, LGAM effectively overcomes the inherent
shortcomings of ResNet-50’s convolutional blocks, paving

123



Signal, Image and Video Processing           (2025) 19:178 Page 5 of 17   178 

Fig. 2 Illustrating the data
collection process, accompanied
by details regarding the quantity
of training and testing images
used in the study. a sample
images from our proposed
dataset; b data preprocessing
procedure to preserve
uniformity over whole dataset.
Images alignment relative to the
camera was done using the same
methodology used in our
previous study [4]
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Fig. 3 Radish root and leaf segmentation using the modified Mask R-CNN method, highlighting a balance between efficiency and accuracy

the way for more sophisticated and capable deep learning
models.

Figure 4 shows the architecture of the convolution block of
the ResNet-50 model with our proposed LGAM. Figure4(a)
shows themodified convolutional block ofResNet-50model.
The convolutional block starts with the two fully convo-
lutional layers with 1*1 and 3*3 kernel size, respectively.
LGAM is then introduced to extract complex global and local
feature information from input data followed by a 1*1 con-
volutional layer and batch normalization.

Figure 4(b) shows the proposed LGAM which includes
two parallel local and global branches. The local branch
beginswith anAveragePooling layer that condenses the input
feature map. Then we added two Deformable Convolutional
layers [25], which adaptively adjust the spatial sampling
locations and weights within the convolutional operation,
allowing for dynamic receptive field that can capture com-
plex spatial relationships. The deformable convolution can
be represented as follows,

Y (p0) =
∑

pn∈R

w(pn) · x(p0 + pn + �pn) (1)

where Y is the output, X is the input, W is the weight, R
defines the size of the convolutional kernel, p0 is the position
of the central pixel, pn are the positions of the neighboring
pixels, and �pn are the learnable offsets. The output of the
local attention branch can be defined as follows,

Z1 = DConv(DConv(AvgPool(X))) (2)

The global branch employs a Multi-Layer Perceptron
(MLP) which captures channel wise dependencies by pro-
cessing each channel descriptor independently. The MLP,
composed of fully connected layers, learns high-level fea-
ture representations and inter-channel relationships, which
is particularly useful for identifying and emphasizing global,
semantic information present across the channels. The MLP

can be expressed as

Y = (W2 · δ(W1 · A)) (3)

where Y is the output, A is the pooled featuremap,W1 and
W2 are the weights of the MLP layers, δ is a non-linear acti-
vation function like ReLU. The output of the global branch
can be defined as follows,

Z2 = MLP(AvgPool(X)) (4)

The outputs of both branches are combined through an
element-wise multiplication followed by a sigmoid func-
tion, which integrates the learned local and global attentions,
thereby allowing the model to focus on both local and global
features effectively. The output of the LGAM can be defined
as follows,

Z2 = MLP(AvgPool(X)) (5)

3.3.2 FPN

The Feature Pyramid Network (FPN) [26] is an architecture
that incorporates a multi-scale approach by leveraging fea-
tures fromdifferent levels of a backbonenetwork, specifically
from stages {C2, . . . ,C5}. These stages provide a diverse set
of feature maps that vary in scale and complexity, which the
FPN harnesses to construct its own series of feature maps
{P2, . . ., P5}. This process is achieved through a top-down
pathway that goes from {P5, . . ., P2}, effectively allowing
the integration of higher-level, semantically rich feature rep-
resentations into the lower levels of the pyramid.

A self-attention module is introduced between the C5
and P5 stages. This module is instrumental in capturing
global contextual information from the C5 feature maps,
which are then infused into the P5 maps. This global infor-
mation is subsequently disseminated downward along the
top-down pathway of the FPN, enriching each subsequent
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Fig. 4 The structure of the
modified backbone from Mask
R-CNN, where LGAM is
integrated into ResNet-50
convolutional block to improve
feature information
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level with more contextually aware features. While addi-
tional self-attention modules could be inserted between the
lower stages of {C2, . . ., C4} and {P2, . . ., P4}, empiri-
cal evidence from our experiments suggests that placing the
self-attention mechanism between C5 and P5 yields the most
significant enhancement in performance. This strategic posi-
tioning allows the P5 level to serve as an effective distributor
of global contextual information, optimizing the feature pyra-
mid for subsequent processing tasks (Fig. 5).

3.3.3 RPN

Region proposal of the objects is generated by RPN using the
features that were extracted from the previous model. Three
area-scale anchors (64, 128, and 256) and aspect ratios of 1:1,
1:2, and 2:1 were chosen based on the average dimensions of
radish leaves and roots found in the dataset. This choice was
selected with the 3000 × 4000-pixel picture size in mind
from the collected dataset. The RPN proposes regions of
interest with bounding boxes and scores using an end-to-
end method. By assessing each region proposal’s confidence
scores, the RPN can determine if a proposal corresponds
to any significant features in the keyframes. Subsequently,

Self-attention

C2

C3

C4

C5

P2

P3

P4

P5

Fig. 5 Feature pyramid networks (FPN) with the self-attention module

anchor box regression is used to find the bounding boxes of
the radishes within a frame.
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3.3.4 ROI alignment

The original ROI Align method uses a single feature map to
extract object-related features based on the object proposal.
The size of the proposal determines the selection of a feature
map from various scales. The larger proposals are sent to
larger feature maps, while the smaller proposals are paired
with smaller feature maps (5).

3.3.5 Fully connected layer

Once similar dimension features are obtained through the
ROI Align layer, the fully connected network uses these fea-
tures to predict the label of classes and object mask. The
PointRend algorithm is used to generate an object mask,
which predicts a binary mask representing the pixels that
belong to the object and those that don’t.

3.3.6 PointRend

PointRend is designed to improve the accuracy of region-
based segmentation models by improving the quality of
segmentationmasks, especially in capturing fine-level details
[27].Using a smallMLP (Multi-LayerPerceptron), pointRend
is used to enhance coarse instance segmentation masks by
selecting a set of points within each detected object and inde-
pendently predicting themaskvalue for eachpoint. ThisMLP
makes use of features from the coarse predictionmask aswell
as a fine-grained featuremap of the CNN backbone. The sub-
division mask rendering algorithm iteratively refines unclear
regions of the predicted mask in a coarse-to-fine manner,
drawing inspiration from adaptive subdivision in computer
graphics. pointRend computes point-wise feature represen-
tations, selects the most uncertain points, up samples the
previous prediction, and predicts the labels of those points
at each iteration. Until the segmentation reaches the required
resolution, this process is repeated. This method efficiently
extracts fine-grained information from instance segmentation
masks.

3.4 Pixel density conversion

This section explains the physical dimensions of different
components of a radish using real-world units. To accurately
measure the pixel density in actual dimensions, moreover to
determinate, a ruler is identified in the dataset alongside the
radish. Figure6 shows the image processing methods used
to apply the Hough line transform [28] operation to locate
the ruler line in the input image and then convert it to pixel
density. To make edge feature recognition easier, the images
are first converted from RGB to grayscale. The grayscale
pictures are then subjected to a Gaussian blur to smooth
the image and remove unnecessary features that can inter-

Input 

Image

Blurring

Edge

detection

Ruler

detection

Pixel density 

calculation
1px = [XX] mm 

Fig. 6 The key stages of the conversion process determine real-life
pixel density, focusing on ruler detection

fere with line recognition. After that, edges are successfully
extracted from the fuzzy grayscale image using the Canny
edge method [?]. Finally, the ruler inside the edge-detected
imagine is positioned and represented using the Hough line
transform method.

3.5 Radish phenotypic traits: length and width
analysis

This study extensively investigated a comprehensive set of
traits, comprising qualitative and quantitative attributes. The
quantitative traits measured included root length (RL), root
width (RW), leaf length (LL), and leaf width (LW), as shown
in Fig. 7. The examination of these traits involved the utiliza-
tion of customized descriptors, which were derived from the
reliable source of the InternationalUnion for theProtection of
NewVarieties of Plants (UPOV, 2021)(https://www.upov.int/
portal/index.html.en/). The detailed description for width
and length measurement is given below,

3.5.1 Width measurement

we utilize the Geometrical Morphological Analysis (GMA)
method which utilizes geometric transformations with mor-
phological operations to estimate width of the object. GMA
mitigates the limitations of traditional pixel-based methods,
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Leaf length

(LL)

RL
Root length

(LW)

Leaf width

(RW)

Root width

Quantitative traits

Fig. 7 Illustration of the four phenotypic traits of radishes under inves-
tigation in this study

particularly in handling objects with arbitrary orientations
and complex shapes. GMA first computes the object’s prin-
cipal orientation using image moment theory [29]. The
orientation angle, θ , is derived as follows:

θ = 1

2
arctan

(
2μ11

μ20 − μ02

)
(6)

where μpq denotes the central moments, capturing the
object’s intensity distribution. This orientation is fundamen-
tal to the alignment process, wherein a rotation matrix,R(θ),
is applied to reorient the object along the image axes as fol-
lows,

(
x ′
y′

)
=

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

) (
x
y

)
(7)

After the image alignment, we employ a sequence of mor-
phological operations - specifically dilation (⊕) and erosion
(�), which can be formulated as follows,

A ⊕ B, A � B (8)

where A represents the binary image, and B is the struc-
turing element. These operations are instrumental in refining
the object’s representation by smoothing edges and bridging
discontinuities.

Finally, the largest width is measured along the axis
orthogonal to the object’s major axis by analyzing the dis-
tribution of pixels in the aligned and processed image. The
widthW is the count of pixels in the row (or column, depend-
ing on orientation) with the maximum sum of pixel values,
indicating the broadest part of the object:

W = max
i

⎛

⎝
∑

j

I (i, j)

⎞

⎠ (9)

where I (i, j) signifies the intensity of the pixel at position
(i, j).

3.5.2 Root length measurement

we utilize the medial axis transform based root length mea-
surement method. It is a commonly employedmethod within
the skeletonization process, aiming to compute the center-
line of an object and generate a skeleton of one pixel wide,
making the representation simpler without sacrificing struc-
tural integrity and important characteristics. Figure8 displays
the efficacy of the medial axis skeletonization process by
clearly displaying the abstract-shaped radish root. Using this
technique, a binary image was generated with the skeleton’s
pixels assigned a value of 1 and all other pixels assigned a
value of 0. Based on earlier studies [4], the measurement
of root length (RL) is made easier once the root skeleton
is extracted. When root (RL) is skeletonized by single-pixel
wide representations, the length of root can be calculated by:

RL =
∫

c
pdl ≈

∑
pdl (10)

The root finite length RL is represented by the variable dl,
while the geometric calibration factor is denoted by p. Ini-
tially, p was representing as a pixel displacement calibration
parameter in the outputs mask. However, since the dataset
utilized in this study did not exhibit any geometric distor-
tion, the value of p was set to 1. The number of pixels along
the skeleton and the root length can be correctly determined
without the need for complex calibration factors.

4 Experiment and result analysis

4.1 Experimental platforms and parameters

For this study, Ubuntu was selected to operate as an exper-
imental platform. An Intel(R) Core (TM) i7-6700 CPU
running at 3.40 GHz and an Nvidia Tesla V100 GPUwith 32
GB of RAM made up the hardware configuration. PyTorch
1.9 was chosen as the preferred deep learning framework,
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Fig. 8 The process for
measuring root length using the
medial axis skeletonization
algorithm

Segmented Mask Radish Root SkeletonMedial axis

while Python 3.7 was used as the programming language in
this study.

We trained our modified Mask R-CNN model with the
stochastic gradient descent (SGD) [30] optimizer on the
radish dataset. The optimizer was configured using a 0.9
momentum, 0.0001 weight decay, 0.02 learning rate, and
0.0001 momentum. Furthermore, we use the PyTorch-based
open source object detection framework MMdetection [31]
to develop our method. We utilized a pre-trained ResNet-
50 model using ImageNet as the model’s base in order to
facilitate reliable testing.

4.2 Comparison of the different segmentation
models

The main goal of this section is to showcase the performance
of the proposed model over the previous model. To evaluate
the performance of the segmentation model, we Utilize the
mean average precision (mAP). The mAP is calculated by
averaging the average precision (AP) values across all object
classes. AP is derived from the precision-recall (PR) curve,
which plots the trade-off between precision and recall for
each class. Based on values ranging from 0 to 1, the area
under the PR curve denotes the AP. Therefore, mAP offers a
comprehensive metric for evaluating the performance of the
model across all object classes. The equations for mAP are
defined as follows.

mAP = 1

K

K∑

i=1

(
precisioni × recalli

)
(11)

where k represents the total number of classes.
Initially, we compared the proposed segmentation model

with other state-of-the-art segmentation models to evaluate
their performance on our radish dataset. We made use of
seven popular segmentation models, to get mAP and infer-

ence time. Table 1 represents a performance comparison of
the differentmodelmAP and inference time (s) for segmenta-
tion using our radish dataset.Weobserved thatQuerylnst [32]
performed poorly on our dataset, reaching a maximum mAP
of 66.9%. However, our proposed (modified Mask R-CNN)
model and SOLOv2 [33] demonstrated superior performance
among the models evaluated in our data set, where the pro-
posed model achieved the highest mAP of 96.3%.

In terms of processing speed, QueryInst [32] had the
longest inference time on our dataset, taking 25.47 s per
image. By comparison, our proposed (modified Mask R-
CNN) model demonstrated the fastest inference time among
the evaluated models, achieving an inference time of 0.53 s
per image. This confirms that our modifications not only
improve the segmentation accuracy, achieving a segm mAP
of 96.3%, but also maintain efficient inference times, com-
parable to other state-of-the-art methods.

The evaluation of the performance of the proposed
method, including the mAP segmentation and the training
loss mask, is visually represented in Fig. 9 through those
plots. Regarding the model’s performance, the validation
mAP provides as a key indicator. It demonstrates promis-
ing results by rapidly increasing to more than 0.91 in just six
epochs and gradually refining to a maximum value of 0.96
at epoch of 33. This highlights our model’s proficiency in
precisely segmenting radish images. During the training pro-
cess, the mask loss gradually reduces and achieves a notable
decrease to nearly 0.08 after 3 epoch. It continues to con-
verge progressively, obtaining a loss at the conclusion of the
training procedure of less than 0.03, which ends at epoch of
50.

4.3 Ablation study

This section is dedicated to the Ablation study of the mod-
ified Mask R-CNN with PointRend, exploring introduced
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Table 1 Performance
comparison of mAP scores and
inference time of different
models for segmentation using
our radish dataset

Method Backbone Segm_mAP Inference time (s)

ConvNeXt [34] ResNet50 89.5 0.61

ConvNeXt-V2 [35] ResNet50 89.6 1.28

QueryInst [32] ResNet50 66.9 25.47

Mask R-CNN + mask head [16] ResNet50 89.4 0.57

Mask R-CNN + PointRend [27] ResNet50 92.1 0.51

SOLO [36] ResNet50 87.4 1.05

SOLOv2 [33] ResNet50 93.7 0.99

Cascade Mask R-CNN [37] ResNet50 88.6 0.59

Ours ResNet50 96.3 0.53

Fig. 9 The validation mAP and training mask loss of modified Mask R-CNN over different number of epochs

mechanisms. We selected four ablation study configurations
to evaluate the performance of the model. First, we per-
formed hyperparameter optimization for the vanilla Mask
R-CNN with PointRend, with training and evaluation con-
ducted on the training and validation sets respectively to
select the best hyperparameters. Second, we introduced the
Self-Attention Mechanism in the FPN and repeated the
hyperparameter optimization process. Third, we introduced
the Local–Global Attention Mechanism in isolation, with
similar hyperparameter optimization. Finally, we combined
both the Self-Attention Mechanism and the Local–Global
Attention Mechanism, again performing hyperparameter
optimization. Throughout these experiments, we kept the
PointRendmodule fixed.A detailed description of each study
is discussed in this section.

4.3.1 Ablation study of vanilla Mask R-CNN hyperparameter
optimization

Table 2 presents the accuracy results of different learning
rates (0.02, 0.002, 0.0002) across various values of gamma

(γ ) (0.1, 0.3, 0.06, 0.09). For γ = 0.1, the highest accu-
racy (92.7%) is achieved with a learning rate of 0.02, while
lower learning rates yield slightly reduced accuracies. At
γ = 0.3, the accuracy remains relatively stable across learn-
ing rates, with minor fluctuations. When γ = 0.06, all
learning rates show a decrease in accuracy, with the high-
est being 91.7% at a learning rate of 0.02. For γ = 0.09, the
highest accuracy (92.6%) occurs at a learning rate of 0.002,
indicating an optimal combination at this parameter setting.
Overall, the learning rate of 0.02 with γ = 0.1 provides the
best performance in this analysis. After determining the best
hyperparameters (learning rate of 0.02 and γ = 0.1), we con-
ducted a final test on the test-set using this best combination.
The results of this final evaluation confirmed the robustness
and effectiveness of our hyperparameter selection, with an
optimal accuracy of 92.1%.

4.3.2 Ablation study of self-attention mechanism in FPN

Table 3 illustrates the performance outcomes for different
learning rates (0.02, 0.002, 0.0002) with various values of
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Table 2 Accuracy results of different learning rates and γ values for vanilla Mask R-CNN with PointRend hyperparameter optimization

γ Larning rate (0.02) Larning rate (0.002) Larning rate (0.0002) Optimal hyperparameter

0.1 92.7 92.4 92.0 92.1

0.3 92.5 92.2 92.3

0.06 91.7 91.5 91.1

0.09 92.3 92.6 92.2

γ (0.1, 0.3, 0.06, 0.09). When γ is set to 0.1, the highest
accuracy (94.9%) is achieved with a learning rate of 0.02,
with slightly lower accuracies observed at reduced learning
rates. For γ = 0.3, the accuracies decline across all learn-
ing rates, with the maximum accuracy (93.7%) at the highest
learning rate. At γ = 0.06, the learning rate of 0.002 yields
the highest accuracy (93.3%), showing a slight improvement
over the other rates. Finally, for γ = 0.09, the highest accu-
racy (93.4%) is achieved at a learning rate of 0.02, while
other rates showmoderately lower values. Overall, the learn-
ing rate of 0.02 combined with γ = 0.1 results in the best
performance in this set of experiments. Subsequently, we
proceeded with a final test on the test-set using this optimal
combination. The results of this final evaluation validated the
robustness and effectiveness of our chosen hyperparameters,
achieving an optimal accuracy of 94.3%.

4.3.3 Ablation study of local–global attention mechanism
in the feature extractor

Table 4 shows accuracy results for various learning rates
(0.02, 0.002, 0.0002) across different γ values (0.1, 0.3,
0.06, 0.09). For γ = 0.1, the highest accuracy (94.6%) is
obtainedwith a learning rate of 0.02,with accuracies decreas-
ing slightly as the learning rate decreases. At γ = 0.3, the
performance remains relatively stable, with the highest accu-
racy (93.7%) also occurring at the learning rate of 0.02. For
γ = 0.06, the learning rate of 0.002 achieves the highest
accuracy (93.5%), outperforming the other rates. Lastly, for
γ = 0.09, the learning rate of 0.02 again shows the highest
accuracy (93.3%), thoughwith less variation among the rates.
In summary, the learning rate of 0.02 paired with γ = 0.1
yields the best accuracy in this analysis. Then, we proceeded
with a final test on the test-set using this best hyperparameters
combination. The results of this final evaluation validated the
robustness and effectiveness of our chosen hyperparameters,
achieving an optimal accuracy of 93.8%.

4.3.4 Ablation study of combined self-attention and
local–global attention mechanisms in FPN

Table 5 details the accuracy results for various learning rates
(0.02, 0.002, 0.0002) across different γ values (0.1, 0.3, 0.06,

0.09). With γ set to 0.1, the highest accuracy (96.3%) is
achieved with a learning rate of 0.02, with a slight decrease
in accuracy as the learning rate lowers. For γ = 0.3,while the
accuracy remains relatively high, the highest value (95.7%) is
observed with a learning rate of 0.0002. When γ = 0.06, the
learning rate of 0.002 results in the highest accuracy (94.8%),
showing an improvement over the other rates. For γ = 0.09,
the learning rate of 0.02 again provides the highest accu-
racy (94.9%), although the differences among the rates are
minimal. Finally, we performed a final test on the test-set
using this ideal combination of hyperparameters (learning
rate of 0.02 and γ = 0.1). The results of this final evaluation
confirmed the robustness and effectiveness of our hyperpa-
rameter selection, achieving an optimal accuracy of 96.3%.

4.4 Cross-validation

We conducted a series of cross-validation experiments to
evaluate the performance of proposed model enhanced with
Self-Attention and Local–Global Attention Mechanisms
within the FPN. The goal was to determine the model’s accu-
racy and robustness across multiple folds. We performed a
5-fold cross-validation, where the dataset was randomly split
into five sized subsets. Each fold was used once as a test set
while the remaining four folds composed of the training set.
The primary metric for evaluation was the mAP.

As shown in Table 6, the mAP values across the five folds
ranged from 95.0% to 95.5, with an average mAP of 95.2%.
These results demonstrate the consistent performance of the
modified Mask R-CNN model with the incorporated atten-
tion mechanisms across different subsets of the data.

4.5 Robust radish segmentation analysis

Figure 10 illustrates the effective segmentation capabilities
of our proposed model when applied to segment radish roots
and leaves. Significantly, the precision andaccuracyobserved
in complex scenarios are highlighted in Fig. 10(a) and
Fig. 10(b). The model accurately segments the unique char-
acteristics of a slender, reverse C-shaped root in Fig. 10(a),
and clearly separates the segments of the root and the leaf,
even in the case where Fig. 10(a) contains an item, such a
glove, whose color is like that of radish peel. This confirms
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Table 3 Performance outcomes of different learning rates with various γ values for the incorporation of self-attention mechanism in FPN

γ Larning rate (0.02) Larning rate (0.002) Larning rate (0.0002) Optimal hyperparameter

0.1 94.9 94.3 94.5 94.3

0.3 93.7 92.9 92.7

0.06 93.1 93.3 92.1

0.09 93.4 92.7 93.2

Table 4 Performance outcomes
of different learning rates with
various γ values for the
incorporation of local–global
attention mechanism in the
feature extractor

γ Larning rate (0.02) Larning rate (0.002) Larning rate (0.0002) Optimal hyperparameter

0.1 94.6 94.0 93.6 93.8

0.3 93.7 93.3 93.5

0.06 93.2 93.5 92.3

0.09 93.3 93.1 92.6

Table 5 Accuracy results for
different learning rates with
various γ values for the
combined self-attention and
local–global attention
mechanisms in FPN

γ Larning rate (0.02) Larning rate (0.002) Larning rate (0.0002) Optimal hyperparameter

0.1 96.8 95.9 95.3 96.3

0.3 95.3 95.2 95.7

0.06 94.5 94.8 94.4

0.09 94.9 94.7 94.2

the model’s robustness and its capability to handle various
challenging conditions.

Similarly, in Fig. 10(c), the model continues to highlight
by completely segmenting the small and detailed parts of
the radish, indicating its refined discrimination between var-
ious parts. Despite the similar coloration, the root and leaves
are clearly separated in Fig. 10(d), further demonstrates the
strong segmentation performance under testing situation.
These instances show the efficiency of the proposed model
in handling constraint scenarios which can be found in the
real world.

However, as shown in Fig. 11 (a), (b), the model encoun-
ters struggle and incorrectly segments certain areas. In
Fig. 11(a), where the soil obscuring the radish root causes
the model to miss part of the root region. Another scenario
in Fig. 11(b), a dark spot between the radish and leaf con-
fuses the model, leading it to incorrectly classify that region
as background. These examples point out the model’s limita-
tions, showcasing its capabilities in difficult scenarios while
also indicating areas requiring improvement.

4.6 Measurement result

Figure 12 shows how our system can be used to efficiently
measure various features of the radish phenotyping. The orig-
inal radish image is shown in Fig. 12(a), and themeasurement
of various traits, comprising root length (RL), root width

(RW), leaf length (LL), and leaf width (LW), are shown in
Fig. 12(b).

Table 7 shows the measurements of phenotypic traits for
seven radish samples using our proposed algorithm.The table
providesGroundTruth (GT) values,measuredmanuallywith
a tape measure for precision, and compares them with values
predicted (PT) by our algorithm. The accuracy of the predic-
tions of our algorithm can be determined by comparing these
predicted values (PT) with the GT.

For example, the GT for sample 1 is 34.4 mm for root
length and 6.21 mm for root width, and similar GT measure-
ments for other traits are prepared for all samples. Following
the GT value, the table records the predicted (PT) measure-
ments. The close correspondence between the ground truth
(GT) and the predicted values (PT) denotes a high prediction
accuracy, with Mean Absolute Error (MAE) values indicat-
ing a near match to the GT. The formula in the following is
utilized to determine the MAE:

MAE = 1

N

N∑

i=1

|yi − ŷi | (12)

where yi represents the GT value for the trait, ŷi is the pre-
dicted trait value and N is the number of traits. The use
of absolute value |. | guarantees that the magnitude errors
are positive. Furthermore, the low MAE indicates that our
algorithmmeasures phenotypic traits with high precision and
accuracy.
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Table 6 Illustrates the mAP results for each fold as well as the average mAP across all folds

Fold_1 (mAP) Fold_2 (mAP) Fold_3 (mAP) Fold_4 (mAP) Fold_5 (mAP) Average (mAP)

95.4 95.0 95.0 95.5 95.1 95.2

Original Image

Original Image

Original Image

Original Image

Segmented Image

Segmented Image Segmented Image

Segmented Image

(a)

(c)

(b)

(d)
Fig. 10 The prediction results of modified Mask -RCNN on our testing dataset. It can be seen that our proposed model can accurately segment
radish roots and leaves in a and b. The model can segment small details, separating components effectively even in similar coloration situations in
c and d

5 Discussion

5.1 Comparison with existingmethodology

Tocompare the performance of our proposed system,we con-
ducted a comparative analysis of the proposed segmentation
model along with other state-of-the-art segmentation mod-
els. Table 8 presents the comparisons of the data set between
the proposed model and recent radish and leaf segmentation
approaches considering accuracy. The total of class types and
sample sizes that were investigated in this study was lower
than the earlier studies except Zhang et. ai. [38]. This study
achieved the highest mAP of 96.3% for the segmentation of
the roots and leaves of the radish.

5.2 Advantages, limitations and future directions

The existing study on radish segmentation and trait measure-
ment has been limited in providing an efficient framework
that includes both precise segmentation techniques along
with faster inference time and robust measurement methods.
This study introduces a robust and efficient method for the
segmentation and measurement of radish phenotypic traits
using modified Mask R-CNN model. The results demon-
strate a significant advancement over traditional methods,
achieving a high mAP of 96.3% for segmentation and a low
MAE of 0.51mm for trait measurement. These improve-
ments are attributed to the combination of an improved
local–global attention mechanism and an enhanced feature
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Original Image Segmented Image Segmented ImageOriginal Image

(a) (b)

Fig. 11 Demonstrating the model’s segmentation challenges. a Soil obstruction causes the model to miss parts of the radish root region. b A dark
spot between the radish and leaf leads to incorrect background classification

Table 7 Comparison of phenotypic trait measurements between ground truth (GT) and model predictions (PT) for seven radish samples

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

Ground truth (GT)

RL 34.40 27.09 7 15.20 34.5 25.70 11

RW 6.21 6.17 4.75 6.70 6.1 5.3 7.91

LL 36.56 45.6 15.6 28.9 41.89 43.9 40.49

LW 41.15 34.9 8.1 28.1 42.5 29.5 34

Predicted (PT)

RL 34.14 27.55 7.05 15.20 34.42 25.71 11

RW 6.33 5.92 4.98 6.68 6.24 5.49 7.99

LL 35.96 44.55 15.94 27.31 43.23 44.13 40.31

LW 40.31 34.15 8.61 27.08 43.84 28.30 33.17

MAE 0.45 0.62 0.28 0.65 0.72 0.40 0.27

Table 8 Dataset comparisons between the proposed model and recent state-of-the-art radish segmentation approaches

Papers Segmentation method Dataset size Class type Accuracy

Dang et al. [4] Mask R-CNN 1100 Radish root, leaf, and background (3 classes) 87%

Singh et al. [39] UNet 6404 – 86.43%

Dang et al. [7] Inception-V3 4811 Radish, soil, and plastic mulch (3 classes) 95.7%

Zhang et al. [38] Solo 450 Radish, leaf, and background (3 classes) 87.6%

This study Modified Mask-RCNN 1100 Radish root and leaf (2 classes) 96.3%
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Fig. 12 The measurement calculation of the sample image using our
proposed measurement technique

pyramid network (FPN), which allow precise extraction of
radish components even under challenging scenarios, such
as various obstruction and similar coloration between radish
and background elements.

One notable strength of the proposed method is its abil-
ity to maintain high accuracy across various scenarios,
as shown in Fig. 10. Even in challenging scenarios, the
model effectively handles complex shapes and similar col-
orations, ensuring accurate segmentation.However, the study
also points limitations, such as the model’s struggle with
soil obstruction and dark spots that can lead to incorrect
background classification. These limitations denote areas
for potential improvement, such as improving the model’s
robustness in handling varied and complex backgrounds.
Future work could focus on further refining the model to
address its current limitations and exploring its application
to other types of crops and phenotypic traits.

The comparative analysis in Table 8 confirms that the pro-
posedmodel outperforms existing state-of-the-art approaches,
achieving the highest mAP among similar studies. This
demonstrates the model’s efficacy in radish segmentation
and its potential application in broader agricultural settings.
By providing a detailed comparison with other segmentation
approaches, the study validates the performance of the pro-
posed method and sets a new benchmark for future research
in this domain.

6 Conclusion

This research presents a comprehensive framework for the
measurement of radish phenotypic traits, designed to auto-
mate the growth monitoring of white radish production. We
introduced a dataset of 1100 high-resolution images span-
ning three distinct growth stages of radish, the study ensures
precise analysis of phenotypic traits. A critical initial step in

this framework was segmentation of the phenotypic traits,
which is done by proposed Mask R-CNN to further per-
form measurement for growth monitoring. To evaluate the
effectiveness of segmentation model, different models were
trained and assessed. The evaluation highlighted the superi-
ority of the proposed modified Mask-RCNN model, which
demonstrated an mAP of 96.3% in the efficient segmentation
of the radish components. Furthermore, the implementa-
tion of GMA and medial axis analysis allowed the precise
measurement of radish phenotypic traits under real-world
conditions, acquiring an MAE of 0.51mm.

Although the frameworkwas developedwith themeasure-
ment of radish traits in mind, it possesses the flexibility to
be adapted for other crops, such as cucumbers and pump-
kins, with appropriate adjustments and sufficient data for
segmentation. There are some limitations in implement-
ing our proposed frameworks on real-time phenotypic trait
measurement, primarily due to its complex nature. Future
enhancements should focus on refining the framework to
enhance robustness and efficiency, thereby facilitating real-
time measurement applications. Furthermore, alternative
methods for more accurate estimation of radish root width,
especially for irregularly shaped roots, is needed to further
improve the measurement accuracy.
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