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a b s t r a c t 

Human activity recognition (HAR) technology that analyzes data acquired from various types of sens- 

ing devices, including vision sensors and embedded sensors, has motivated the development of various 

context-aware applications in emerging domains, e.g., the Internet of Things (IoT) and healthcare. Even 

though a considerable number of HAR surveys and review articles have been conducted previously, the 

major/overall HAR subject has been ignored, and these studies only focus on particular HAR topics. There- 

fore, a comprehensive review paper that covers major subjects in HAR is imperative. This survey analyzes 

the latest state-of-the-art research in HAR in recent years, introduces a classification of HAR methodolo- 

gies, and shows advantages and weaknesses for methods in each category. Specifically, HAR methods are 

classified into two main groups, which are sensor-based HAR and vision-based HAR, based on the gener- 

ated data type. After that, each group is divided into subgroups that perform different procedures, includ- 

ing the data collection, pre-processing methods, feature engineering, and the training process. Moreover, 

an extensive review regarding the utilization of deep learning in HAR is also conducted. Finally, this paper 

discusses various challenges in the current HAR topic and offers suggestions for future research. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

During the past decade, sensor technology has achieved excep-

ional developments in multiple perspectives, including computa-

ional power, size, accuracy, and manufacturing costs [1] . These ad-

ancements enable a wide range of sensors to be integrated into

martphones and other portable devices to make them smarter

nd more useful. In addition, the evolution of video surveillance

r closed-circuit television (CCTV) technology [2,3] has led to bet-

er video quality, more straightforward setup, lower cost, and se-

ure communication. Therefore, an increasing number of applica-

ions utilizing CCTV systems for security and monitoring goals have

een proposed recently [4,5] . Although each type of sensor aims

t specific services and applications, sensors generally collect raw

ata from their target ubiquitously [6] , and general knowledge is

cquired by analyzing the collected data. 

Human activity recognition or HAR, allows machines to ana-

yze and comprehend several human activities from input data

ources, such as sensors, and multimedia contents [3] . The ini-
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ial work on HAR dates back to the beginning of the 1990s when

oerster et al. showed an accuracy of over 95% for HAR under

 trickly controlled data collection [7] . Since then, the fast de-

elopment of smartphones, wearable devices, and CCTV systems

as motivated researchers to improve HAR systems under practical

ituations. HAR is applied in surveillance systems [8,9] , behavior

nalysis [10] , gesture recognition [11–13] , patient monitoring sys-

ems [14,15] , ambient assisted living (AAL) [16,17] , and a variety of

ealthcare systems [18,19] that involve direct interaction or indi-

ect interaction between human and smart devices. For instance,

atients with obesity, diabetes, or cardiovascular diseases have to

trictly follow a healthy, well-balanced diet and a regular exercise

chedule [20] . Hence, tracking daily activities is necessary to give

eal-time feedback to patients about their progress and provide up-

o-date reports to clinicians. Similarly, patients who have declined

n mental ability or mental disorders must be monitored contin-

ously to identify unusual actions in time and thus prevent un-

anted consequences [21] . Real-time feedback on soldiers’ actions,

ositions, and vital status in tactical situations is fundamental to

evelop their skills and ensure safety. Moreover, the feedback is

lso a valuable parameter to assist the commander in giving orders

n training as well as combat situations [22] . However, it is consid-

red a challenging research problem because there is no standard

https://doi.org/10.1016/j.patcog.2020.107561
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. Human activity recognition framework comprises of four main parts, (a) data collection for vision-based HAR (visual sensing technology) and sensor-based HAR 

(various types of sensors); (b) data pre-processing, which performs essential pre-processing steps for the collected data; (c) training phase, which utilizes machine learning 

(ML) or deep learning approaches to learn patterns from the collected data, and (d) activities recognition. 
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t  
procedure to associate the collected data to a specific action, and

it is also technically challenging because of the massive volume of

data collected. 

As classified previously in several studies, HAR can be divided

into two primary approaches: vision-based HAR and sensor-based

HAR based on the type of data being processed [23,24] , as shown

in Fig. 1 . The former analyzes images or videos obtained from opti-

cal sensors [9,25] , whereas the latter concentrates on investigating

raw data extracted from wearable sensors and environmental sen-

sors [11,18] . Optical sensors can be differentiated from other types

of sensors based on the data type. While wearable sensors gen-

erate one-dimensional signal data, optical sensors create 2D im-

ages, 3D images, or videos. Wearable devices are representative ex-

amples of the sensor-based HAR because they are worn by users

to automatically detect and track many activities, such as sitting,

jogging, running, and sleeping [26] . However, a sensor does not

work when a subject is either beyond its range [27] or performs

unidentified actions [28] . On the other hand, CCTV systems have

been applied in vision-based HAR systems for a long time [9] . The

gestures and activities recognition systems based on analyzing the

videos have been intensively studied [15,29] . Furthermore, security,

surveillance [30,31] , and interactive applications [32,33] are partic-

ularly benefited from this topic. During the last few years, a vast

majority of research has focused on vision-based HAR, because the

vision-based data are affordable and easy to collect compared to

the sensor-based data. Thus, this study only covers a small and

representative portion of the vision-based HAR studies. 

For a long time, machine learning (ML) algorithms, such as

random forest (RF) [34] , Bayesian networks [35] , Markov models

[36,37] , and support vector machine (SVM) [38,39] have been ap-

plied to solve the HAR problem. Under strictly controlled envi-

ronments and limited input data, traditional ML algorithms have

achieved remarkable performance. However, they require multi-

ple pre-processing steps and proper hand-crafted features, which

is inefficient and time-consuming [40] . In addition, the use of

shallow features leads to poor performance on incremental learn-

ing or unsupervised learning [40,41] . In recent years, deep learn-

ing has received great interest from the community because deep

learning-based research has achieved exceptional performance in
 t  
arious research topics, including object detection and recogni-

ion [42] , image classification [43] , and natural language process-

ng (NLP) [44,45] . Compared to traditional ML algorithms, deep

earning considerably reduces the effort of choosing the right fea-

ures by automatically extracting abstract features through several

idden layers, and the deep learning structure has been proved

o work well with unsupervised learning [46,47] and reinforce-

ent learning [42] . Therefore, there is a growing number of deep

earning-based HAR frameworks, which have been introduced re-

ently. For example, Oyedotun et al. trained a stacked autoencoder-

ased convolutional neural network (CNN) on a public ASL static

and gesture dataset containing 24 hand gestures [12] . After the

raining process, the model achieved a recognition rate of 91.33%,

hich has proved the potential of deep learning in HAR. In an-

ther research, Pigou et al. examined deep learning for HAR in

ideo and introduced a novel deep neural network architecture

hat incorporated bidirectional recurrence and temporal convolu-

ions [13] . After that, the experimental results showed that the

roposed model achieved state-of-the-art results on the publicly

vailable HAR database. Even though many reviews on deep learn-

ng [4 8,4 9] and HAR [24,50] have been conducted, only a limited

umber of them cover both topics, and the fact that HAR is still in

ts development leads to the introduction of many new concepts. 

.1. Real-world applications 

The last decade has witnessed significant growth in the number

f HAR publications, and each study was dedicated to recognizing

pecific activity types or behaviors. Table 1 discusses trending HAR

omains, including smart homes, healthcare, security and surveil-

ance, autonomous driving, and human-robot interaction. For each

rea, two representative studies are selected, and the main re-

earch contents are discussed in detail. 

.2. Relevant surveys 

Table 2 investigates different aspects of HAR and provides de-

ailed contributions from eleven well-known research papers. Be-

ween 2012 and 2015, two comprehensive surveys on sensor-based
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Table 1 

Common research topics that frequently involve HAR. Two related work is described for each topic. 

ID Domain Ref Research content 

1 Security and 

surveillance 

[30] • Automatically identifies suspicious or violent activities from the surveillance video. 
• An alarm is raised to alert the operator when potential suspicious activities happen. 

[31] • Identifies anomalies in CCTV videos based on deep learning. 
• Collects and manually validates a huge dataset that contains real-world anomalies in CCTV videos. 

2 Healthcare [51] • Uses multimodal wearable sensors to perform complex indoor HAR. 
• Plants various object sensors in the environment to analyze those activities more effectively. 

[17] • Uses automated feature engineering to improve activity recognition in the AAL application. 
• Activities can be recognized using only smartphones or smartwatch with high accuracy. 

3 Autonomous 

driving 

[52] • Recognizes the driver’s activity automatically by tracking eye and head status. 
• Proposes a set of novel eye-based and head-based features for the driver’s activity classification. 

[53] • Highlights research issues related to seamless interaction between human agents and automated vehicles. 
• Discusses scientific tools and frameworks required for the future development of smart vehicles. 

4 Human-robot 

interaction 

[32] • Describes a novel robotic system for multi-sensor signal processing. 
• Shows promising results in multimodal HAR. 

[54] • Proposes a model and a new algorithm that can automatically process videos recorded by a robot, while 

it is interacting with people. 
• Analyzes and recognizes a set of human emotions during the human-robot interaction. 

5 Smart home [55] • Proposes a smart agent architecture and recognition mechanism in the smart home environment. 
• Solves common issues in the smart home system, such as privacy, reusability, applicability and scalability. 

[56] • Proposes a dynamic segmentation method for the data collected by sensors, which allows near real-time 

activities classification. 
• Introduces two new datasets that can reduce the undesired effects from sensor misconfiguration. 

6 Entertainment [57] • Applies interaction force model to low-level features to detect group activity. 
• Achieves good performance regardless of the surrounding conditions. 

[33] • Proposes three full-body 3D gesture recognition algorithms. 
• Introduces a simple gesture collection game prototype to evaluate the proposed algorithms. 

Table 2 

Summary of previous HAR reviews, which includes main contributions, publication year, and HAR group (S = Sensor-based HAR, V = Vision-based HAR). 

ID Ref Year V/S Contribution 

1 Wang et al. [64] 2019 S • Reviews deep learning-based HAR models and real-world applications for different kinds of sensors. 
• Concentrates on applying ML and particularly deep learning for the HAR topic. 
• Shows public HAR datasets frequently used by researchers. 
• Discusses some limitations of deep learning-based HAR and proposes practical approaches to overcome these 

limitations. 

2 Abdallah et al. [23] 2018 V • Surveys two areas of HAR and data stream mining. 
• Reviews the adaptation capabilities of HAR in the streaming environment. 
• Categorizes the topic based on feature types. 
• Shows the advantages and drawbacks of algorithms in each group. 

3 Raman et al. [63] 2018 S • Summarizes common data mining techniques and ML algorithms for HAR. 
• Summarizes crucial issues and difficulties that exist in previous research. 
• Discusses recently proposed technologies and new approaches for HAR. 

4 Wang et al. [62] 2018 V • Describes recent research in RGB-D based action detection and classification. 
• Classifies HAR into four groups based on the sensor types, including visual-based, depth-based, 

skeleton-based, and the combination of visual and depth camera. 
• Investigates the strengths and weaknesses of previous systems. 
• Highlights the importance of spatial temporal-structural data in the video sequence. 

5 Morales et al. [61] 2017 S • Provides an overview of relevant signals, data capture method, and pre-processing process in sensor-based 

HAR. 
• Examines standard benchmarks to evaluate HAR. 
• Repetitive activities, postures, falls, and inactivity was also studied. 

6 Cornacchia et al. [28] 2017 S • A comprehensive review of HAR and classification using wearable sensors. 
• Reviews many types of sensors, such as accelerometer, gyroscope, pressure sensors, depth-based, and hybrid 

modality systems. 
• Categorizes previous works based on the ML algorithms, and whether the sensors data processing is 

performed on-board or remotely. 

7 Herath et al. [24] 2017 V • Conduct a comprehensive review of general processes for recognizing HAR. 
• Shows pioneering methods in handcrafted representations and focuses on deep learning-based approaches. 

8 Onofri et al. [60] 2016 V • Focuses on HAR methods in video streams. 
• Categorizes previous research by the way HAR is handled. 
• Analyzes the main contributions and shows future research. 

9 Wang et al. [58] 2015 S • Divides radio based-HAR into four categories: ZigBee, WiFi, radio-frequency identification (RFID), and others. 
• Compares with state-of-the-art research to show the strengths and limitations. 
• Provides future research directions for the HAR research topic. 

10 Tsitsoulis et al. [59] 2013 V • Reviews existing research and current approaches on vision-based HAR. 
• Proposes a first-level self-evaluation method that includes a set of important features. 
• Provides discussion for future research. 

11 Lara et al. [27] 2012 S • Reviews state-of-the-art HAR systems using wearable sensors. 
• Proposes a two-level taxonomy according to different learning approaches. • Discusses current issues, 

challenges, and possible solutions. 
• Evaluates twenty-eight HAR systems regarding classification accuracy, computational complexity, and 

adaptability. 
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Fig. 2. Five degrees of human activities, including gestures, actions, human-object 

interactions, human-human interactions, and complex group activities. 
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are group activities examples. 
HAR [27,58] and one review on vision-based HAR [59] were con-

ducted. Radio communication techniques for sensor-based HAR

were discussed in [58] , whereas a survey on state-of-the-art wear-

able sensors-based HAR applications and the evaluation of twenty-

eight HAR systems on different perspectives were introduced [27] .

For the vision-based review [59] , the authors evaluate existing re-

search and recent vision-based HAR methods. In 2016, a survey on

the trending video streaming techniques for HAR was conducted

[60] . One year later, two reviews on sensor-based HAR [28,61] and

a study on vision-based HAR [24] were published. The role of dif-

ferent sensor types, which includes an accelerometer, gyroscope,

torque, and hybrid sensors, were analyzed in [28] , whereas rel-

evant signals, data capture methods, and a pre-processing pro-

cess were investigated in [61] . In addition, pioneering methods

in handcrafted representations and deep learning approaches for

vision-based HAR was analyzed [24] . In 2018, recent research in

RGB-depth-based (RGB-D) HAR was discussed [62] . Another analy-

sis classified vision-based HAR based on different f eatures in both

data streams and activity recognition [23] . In the same year, a sur-

vey on standard ML algorithms and data mining techniques applied

in HAR was introduced [63] . Most recently, recent deep learning-

based HAR models and applications for different kinds of sensors

were analyzed [64] . 

1.3. Contributions 

As explained in the previous section, each study analyzes a par-

ticular aspect of HAR. Moreover, the introduction of various deep

learning-based HAR frameworks has recently added many new hy-

potheses, procedures, and applications. As a result, a comprehen-

sive survey on recent HAR research is crucial for stakeholders,

physicians, and researchers, who are preparing to integrate HAR

into existing systems or conducting new HAR research. This sur-

vey summarizes previous research, covers many aspects of HAR,

such as dataset collection, feature engineering methods, and activ-

ity recognition models, and draws an overall evaluation of HAR re-

search. 

• A comprehensive review of sensor-based and vision-based HAR.
• Summarize and discuss publicly available datasets that have

been used in vision-based HAR and sensor-based HAR. 
• Categorize and analyze standard HAR data processing and fea-

ture engineering. 
• Investigate HAR research that implemented ML algorithms and

deep learning. 
• Discuss existing challenges and show future directions for HAR

research. 

1.4. Review techniques 

During the preparation of this paper, a critical obstacle was to

search and filter the latest HAR literature. Firstly, research papers

were downloaded using relevant keywords, such as action recog-

nition, activity recognition, action feature representation, interaction

recognition, activity detection, gesture recognition , and action detec-

tion . Secondly, relevant papers from the reference section of ini-

tially selected literature were added. After that, research that is re-

lated to the HAR datasets was also included. Finally, the overall lay-

out for the manuscript was determined to cover all the selected lit-

erature. In addition, standard and representative methods are dis-

cussed in detail to help readers gain insights into those methods. 

The remainder of this survey is divided into eight sections.

In Section 2 , background information of human activities, sensor-

based HAR, vision-based HAR, and ML are provided. The data col-

lection process for sensor-based HAR and vision-based HAR is ex-

plained thoroughly in Section 3 . After that, the pre-processing and
eature engineering processes are shown in Section 4 . In Section 5 ,

L and deep learning algorithms that are applied to HAR frame-

orks are discussed. In addition, challenges and future research

rends for the HAR topic are provided in Section 6 . Finally, the

onclusion, which includes the strengths and weaknesses of this

urvey, is given in Section 7 . 

. Background 

.1. Level of human activities 

As described in Fig. 2 , human activity can be divided into five

eparate types/levels of activities varying from simple actions like

and gestures to advanced group activities based on the difficulty

evel and the activity length [65] . The final objective of HAR is to

rain machines to identify and recognize activities accurately. 

The description of each type of activity is shown below, where

he human-object interactions and human-human interactions are

ombined and described as interaction. 

• A gesture is a simple hand movement or other parts of the

human body to convey an idea or meaning. Facial expressions,

hand-waving, and head shake are examples of gestures. A ges-

ture is usually performed within a short period and is the sim-

plest activity among the four groups. 
• An action is a simple activity that is carried out by humans

and involves several gestures. Examples of action are knocking,

swimming, and running. 
• An interaction is an activity conducted by two agents. Hu-

man is one of the agents, while the other can be an object or

also human. Based on the agents’ nature, the interaction can

be classified into human-object and human-human interaction.

Wrestling, hugging, and shaking hands are the human-human

interaction examples, whereas an example of the human-object

interaction is the interaction between a person and a mobile

phone or a laptop. 
• A group activity is the most complicated kind of activity that

requires over two people and may include interaction with one

or many objects. It involves a series of gestures, actions, and

interactions. A group study, a football match, and a presentation
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.2. Sensor-based HAR and vision-based HAR 

Assume that a person is doing a predefined set of n activities A ,

hich can be denoted as 

 = A 0 , . . . , A n −1 (1) 

Multiple sensors are utilized to measure a list of attributes S of

 time series within a time interval I = [ t α, t ω ] to recognize these

ctivities: 

 = S 0 , . . . , S k −1 (2) 

The goal of HAR is to discover a temporal partition <

 0 , . . . , I r−1 > of I , using the list of attributes S , and a collection of

lasses describing the activities that were conducted within each

ime partition I j . The assumption indicates that the time partition

 j is continuous, non-overlapping, and 

r−1 ⋃ 

j=0 

I j = I. 

Vision-based HAR relies on visual sensing technologies, such as

CTV and camera, to record human activities [2] . Although this ap-

roach does not require wearable or smartphone sensors, it relies

eavily on image quality. The image resolution, lighting environ-

ents, illumination changes, among others, are elements that de-

ide image quality. Since the collected data is a sequence of images

r digitalized audio data, computer vision (CV) and audio signal

rocessing technology are usually applied to perform data analysis

nd recognize the activities. Some primary steps include feature

ngineering, modelling, segmentation of activities, activity classifi-

ation, and activity tracking. The latter demands various sensors to

erform HAR [1] . The sensor is attached to a human body or the

urroundings to collect user’s activities continuously. The extracted

aw data are mostly time series data and additional environment

arameters, which are analyzed using statistical analysis, data fu-

ion, and probabilistic approaches. 

.3. Machine leaning and deep learning-based HAR 

For a long time, signal processing technology [66] has been

sed to analyze raw data collected from sensors. In contrast, CV

echnology [9] was implemented to preprocess and extract hand-

rafted features from images or videos. These techniques could be

fficiently applied in feature engineering to create sensor-specific,

ignal-specific, or domain-specific features. Next, the chosen fea-

ures were trained using ML algorithms to provide the classifica-

ion decision. However, the main weakness of the feature engineer-

ng technique is that the dataset is analyzed manually to select the

uitable features set, and then feature engineering is implemented

o extract the features and reduce features space [67] . This lengthy

rocess is compulsory whenever new datasets or new sensors are

sed, which is complicated and unscalable. 

For the past decades, deep learning has become a dominated

esearch topic that has reached human-level performance in vari-

us research topics, including HAR. It performs well on big datasets

nd automatically extract abstract features from sensor signals or

 sequence of images. Deep learning has outperformed traditional

L algorithms, which were trained on hand-crafted and domain-

pecific features [12,68] . As a result, it promotes the new solutions

or existing HAR problems, the introduction of larger datasets, and

eal-time HAR systems. For example, the deep learning-based HAR

ramework using smartphone sensors proposed by Hassan et al.

69] outperformed all typical multiclass ML algorithms, including

VM and artificial neural network (ANN). In another study, a CNN

odel was used to extract local features and simple statistical

eatures [70] . The results showed that the proposed framework

eached state-of-the-art real-time performance with low compu-

ational cost. Finally, human fatigue expression recognition based
n deep bimodal learning was introduced in [71] . The mentioned

odel overcame all previous algorithms with the recognition rate

f over 96%. 

Table 3 shows the main differences between machine learning

nd deep learning HAR research on three fundamental processes,

ncluding data pre-processing, feature engineering, and learning al-

orithm. 

. Data collection and benchmark datasets 

Data collection, which refers to the acquisition of sensor signals

r videos, is a crucial part and foundation of any HAR system. As a

esult, this section gives a thorough overview of important charac-

eristics of sensor-based data collection and vision-based data col-

ection. Moreover, a detailed description of benchmark datasets for

oth sensor-based HAR and vision-based HAR is also provided. 

.1. Sensor-based HAR 

The sensor-based HAR approach has been applied to various

eal-world applications, especially smart home and healthcare. In

ddition, the rapid development of wireless sensor network (WSN)

as led to a large amount of data being gathered from different

ensors, such as wearable sensors, object sensors, and environmen-

al sensors. Table 4 describes the advantages and disadvantages of

hree main categories of sensors, common sensor brands, and what

hey measure. 

.1.1. Wearable sensors 

The evolution of the Internet of Things (IoT) and mobile com-

uting in recent years [72] has created a perfect environment for

he development of wearable sensors. Wearable sensors are the

ost prevalent sensor-based HAR. Three standard wearable sensors

nclude accelerometer, magnetometer, and gyroscope, which can be

onveniently worn by users [46,70] or integrated into portable de-

ices, such as smartphones, smartwatches, smart bands, glasses, or

elmets [73] . Human activities can then be detected by measur-

ng the signal differences before and after an activity. For exam-

le, Hegde et al. introduced a wrist-worn sensor, which has an ac-

elerometer and gyroscope. This device performance is examined

y identifying a predefined set of activities of daily living (ADL).

he obtained result was over 94%, which proved that the proposed

evice can classify ADL with high accuracy [74] . 

.1.2. Object sensors 

Object sensors refer to sensors attached to a particular object

o identify activities related to that object [75,76] . While wearable

ensors measure human activities directly, object sensors detect

pecific objects movement to infer human activity. For example,

n accelerometer can be attached to a smart drinking cup to effi-

iently analyze the user’s drinking habit and notify the user if the

aily water intake is insufficient [77] . In another scenario, RFID is

sually implemented in the IoT environment [26,78] and health-

are monitoring [79,80] to track and identify human or objects.

bject sensors are utilized less often than wearable sensors due

o high costs and setup challenges. 

.1.3. Environmental sensors 

Different from wearable sensors and object sensors, environ-

ental sensors are usually planted in the surroundings to sense

ccurate data on fundamental environmental parameters such as

umidity, temperature, CO2, and particulate matter (PM2.5). En-

ironmental sensors are used to monitor changes in the environ-

ental parameters when physical activities occur [81] . Since en-

ironmental sensors are highly sensitive to the change in the sur-

oundings, the adoption of suitable environmental sensors needs to
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Table 3 

Comparison of machine learning-based HAR and deep learning-based HAR characteristics. 

Process Machine learning Deep learning 

Data pre-processing Demands thorough data 

pre-processing and normalization 

methods to improve the performance. 

Data pre-processing and normalization 

methods are not required. 

Feature engineering • Relies on manually extracted 

features. 
• Depends on applications. 
• Fails to deal with complicated 

activities. 
• Requires feature selection, and 

dimensionality reduction approaches. 
• Fails to handle the inter-class 

variability and inter-class similarity. 

• Learns abstract features from raw 

input data automatically. 
• Discovers spatial, temporal 

dependencies and scale invariant 

features from the input data 

automatically. 

Learning process • Works well on small training data. 
• Requires limited computation time 

and memory usage. 

• Requires large dataset to prevent 

overfitting. 
• High computational complexity. 
• Requires specialized hardware to 

accelerate the training process. 

Table 4 

Measurement, common brands, advantages, and disadvantages of three primary sensor categories, which include wearable sensors (WS), object sensors (ObS), and 

environmental sensors (ES). 

Category Sensor Measurement Common brands Advantages Disadvantages 

WS Accelerometer Acceleration force 

(force and gravity) 

ActivPAL [20,74] , 

ActiGraph [73,82] 

Cheap, durable, high 

sensitivity, high impedance 

and high-frequency response. 

Hysteresis error, sensitive to 

temperature, and efficiency 

decreased over time. 

Gyroscope Angular velocity InterSense [22,83] , 

Sparkfun [71] 

Fast, lightweight, 

measures/maintains rotational 

motion and higher resolution 

compared to other force or tilt 

sensors. 

Expensive, dependence on the 

rotation of the earth, 

subjected to relative azimuth 

drift, and does not measure 

linear motion in any direction. 

Magnetometer sensor Geomagnetic field InterSense [84] Cheap, easy to set up, 

consumes low power, and 

offers wide magnetic field 

range. 

Sensitive, low precision and 

cannot be used with magneto 

torquers. 

Global positioning 

system (GPS) 

Geo-location, velocity, 

and timing 

information 

Garmin [67,85] , Polar 

[86] and Raveon [87] 

Free and directly measures 

global 3D positioning. 

Drains battery and does not 

work indoors. 

ObS RFID Radio-frequency UHF [76,88] Easy to install, secure, and can 

store up to 2 KB of data. 

Costly, sensitive to external 

electromagnetic interference, 

and limited coverage range. 

WiFi Wireless signal Wireless router [75,89] Easy to install, secure, and 

wireless signal range is better 

than RFID. 

Requires more resources. 

ES Pressure Pressure Barometric [90,91] High signal-to-noise ratio, 

real-time interface and less 

user intervention. 

Localized sensing, more 

intrusive, and requires the 

mold. 

Barometer Atmospheric pressure Bosch [92,93] Measures altitude coordinates 

and also supports the rapid 

acquisition of atmospheric 

pressure. 

Low accuracy and easily to be 

influenced by unfavorable 

environment conditions. 

Temperature 

(Thermocouple) 

Temperature Infrared array sensor 

[86,94] 

High-temperature range, direct 

contact, cheap, and provides 

fast response. 

Corrosion and hard to 

calibrate. 

Sound Air pressure Mouser [95] , Sparkfun 

[94] 

Affordable and less user 

intervention. 

Requires more memory and 

has limited coverage range. 

Radar Detection of any object 

within radar’s 

detection cones 

Radar sensor [58,96] Can penetrate 

mediums/insulators, provides 

accurate distance, velocity and 

amplitude information. 

Expensive, low spatial 

resolution, and has limited 

range. 
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be carefully planned based on the activities. Roy et al. applied en-

vironmental sensors in multi-inhabitant smart environments. Ex-

perimental results show high activity classification accuracy as the

environmental sensors produced remarkably richer data. 

3.1.4. Hybrid sensors 

Recently, researchers have increasingly utilized hybrid sensors,

a combination of different types of sensors for HAR applications

to improve activity recognition rate and model robustness [18,69] .

Fig. 3 shows a hybrid sensors framework that can recognize 21

complicated indoor activities [97] . It includes three kinds of sens-
ng contexts, including body sensing (wearable sensors), environ-

ental sensing (environmental sensors), and location-sensing (ob-

ect sensors). Experimental results showed that the framework

eached state-of-the-art indoor activity recognition accuracy of

5%. 

Table 5 summarizes ten publicly available datasets, which are

sually used for training the sensor-based HAR models. Most of

he datasets were collected using wearable sensors, such as ac-

elerometer, gyroscope, and magnetometer. Table 5 also reports

he number of participants in the data collection phase, the num-

er of activities, the number of attributes, and the total sam-
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Table 5 

Detailed description of publicly available datasets for sensor-based HAR, which contains dataset name, number of subjects (#Sub), number 

of activities (#Act), number of attributes (#Attr), number of data instances (#Ins), sampling rate, year, devices (smartwatch (SW), wearable 

sensors (WS), and smartphone (SP)), and sensors (accelerometer (A), gyroscope (G), magnetometer (M), and object sensor (O)). 

ID Name #Sub #Act #Attr #Ins Sampling rate Year Ref Devices Sensors 

S1 UniMiB SHAR 30 17 NA 11,771 1–32 KHz 2017 [98] SP A 

S2 Real world 15 8 7 NA 50 Hz 2016 [99] SP & SW A 

S3 UCI Heterogeneity AR 9 5 16 43,930,257 100–200 Hz 2015 [100] SP & SW A, G 

S4 HASC 5 6 4 NA 10–100 Hz 2015 [101] SP A, G, M, GPS 

S5 UCI M-HEALTH 10 12 23 120 50 Hz 2014 [102] WS A, G, M 

S6 UCI AR-HOP 14 7 9 75,128 NA 2013 [103] RFID O 

S7 UCI HAR 30 6 561 10,299 50 Hz 2013 [104] SP A, G 

S8 UCI OPPORTUNITY 4 6 242 2551 NA 2012 [105] WS Hybrid 

S9 WISDM 29 6 46 5424 20 Hz 2012 [106] WS A 

Fig. 3. A hybrid sensor-based indoor HAR framework (WS = Wearable sensors, 

ObS = Object sensors, ES = Environmental sensors). Object sensors are used to collect 

location information, whereas multiple wearable sensors and environmental sen- 

sors are applied to monitor the activities and sense the surroundings. After that, 

the data are fed into a model for classifying human activities. 
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les. In addition, device, sensor types, and sampling rate are also

escribed. 

Among the mentioned datasets, WISDM and UCI datasets (HAR-

AL, HAR-US, and UCI HAR-US) are the standard ones, which are

requently used to evaluate sensor-based HAR models. Recently,

hey have also been utilized to measure the effectiveness of deep

earning-based models. The classification accuracy for the WISDM

ataset has exceeded 93%, while the classification accuracy was

ver 97% for UCI datasets [70] . 

.2. Vision-based HAR 

In the last few decades, vision-based HAR has become a trend-

ng topic because it is applied in various real-world applications.

or example, it is essential to implement HAR for CCTV systems in

ublic places to ensure surveillance and security. Vision-based HAR

esearch can be divided based on data type, which includes RGB

ata [12,107,108] and RGB-D data [9,25] . Generally, vision-based

AR frameworks based on RGB data have achieved lower accuracy

ompared to the RGB-D data [12,109] , because multi-modal data

rovide extra information and depth channels. However, configu-
ation complexity (complicated settings for each use-case of HAR),

omputation complexity (big datasets), and high costs are why RGB

ata are still being used extensively in the current HAR frame-

orks. 

.2.1. RGB data 

An RGB image contains red, green, and blue bands in the visi-

le spectrum, which can be recorded using cameras equipped with

 regular complementary metal-oxide-semiconductor (CMOS) sen- 

or. For example, Zerrouki et al. implemented an efficient AdaBoost

lassifier for HAR using CCTV video [108] . The proposed frame-

ork was tested using two publicly available datasets, including

he URFDD dataset and the Universidad de Malaga fall detection

ataset. The experimental results proved that the model obtained

igh classification accuracy on RGB datasets. 

RGB data are highly available, affordable, and produce rich tex-

ure data of the subjects. However, the sensor has a limited range,

usceptible to calibration, and relies heavily on the environmen-

al conditions, such as lighting, illumination, and cluttered back-

round. 

.2.2. RGB-D data 

Thanks to the development of depth sensors and range imag-

ng techniques [110] , scientists can perform HAR more accurately.

s shown in Fig. 4 , besides the original RGB data, RGB-D cameras

lso capture depth information, which can help the algorithms to

ecognize human activities more accurately. 

In addition, skeleton data can also be extracted from the depth

ata to provide a compact rendering of the human body’s skeleton,

s shown in Fig. 5 . Skeleton data have a low-dimensional space [8] ,

hich allows HAR models to perform faster. Thus, exploiting the

D human joint from depth cameras is an attractive research di-

ection because it can be applied in numerous applications. 

Cippitelli et al. proposed an effective HAR algorithm based

n skeleton data extracted from an RGB-D camera. The proposed

odel achieved state-of-the-art results in two benchmark datasets,

he KARD and CAD-60 [112] . In another research, Jalal et al. in-

roduced a multi-fused features-based online for HAR based on

GB-D sequences recorded by a Kinect device. The multi-fused

eatures contained two main feature types, including depth sil-

ouettes and human skeletons. Extensive investigations on three

enchmark depth datasets proved that the introduced method ob-

ained state-of-the-art results [9] . RGB-D data have many advan-

ages compared to RGB data, such as robust against lighting con-

itions, illumination changes, color and texture change, working

ell even in the pitch-dark environment, and providing depth data.

owever, RGB-D data have low resolution, introducing noise to the

mages due to low sensitivity, and can be easily affected by some

aterials, such as light-absorbing and transparent materials. 

Table 6 presents 20 publicly available datasets, which are reg-

larly used in vision-based HAR. It includes 13 RGB datasets and
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Fig. 4. Comparison of the two types of data, (a) RGB image and (b) RGB-D that contains the corresponding depth data for the RGB. In an RGB-D image, each pixel indicates 

a distance between the screen space and an object in the RGB image. Bright pixels, which are close to the camera, are having the highest value, and dark pixels, which are 

far from the camera, are having the lowest values. 

Fig. 5. Skeleton model represented by the OpenPose system [111] . (a) 18 key points that can be identified by the OpenPose framework; (b) Two examples of skeleton 

detected by the OpenPose. 

Table 6 

Detailed description of publicly available datasets for vision-based HAR, which in- 

cludes dataset name, number of activities (#Act), number of videos (#Video), and 

year. 

ID Name #Act #Video Year Depth Ref 

V1 HACS 200 1,550,000 2019 [115] 

V2 Moments in Time 339 1,000,000 2019 [116] 

V3 AVA 80 430 2018 [5] 

V4 Kinetics-700 700 650,000 2019 � [113] 

V5 MultiTHUMOS 65 400 2018 [117] 

V6 20BN-something 174 220,847 2017 [118] 

V7 Charades-Ego 157 7860 2016 [119] 

V8 DALY 10 8133 2016 [120] 

V9 ActivityNet 200 200 19,994 2016 [121] 

V10 NTU RGB + D 60 56,880 2016 � [114] 

V11 UTD-MHAD 27 861 2015 � [122] 

V12 Sports-1M 487 1,100,000 2014 [123] 

V13 Berkeley MHAD 11 660 2014 � [124] 

V14 CAD-120 4 120 2013 � [125] 

V15 UCF101 101 13,320 2012 [126] 

V16 SBU Kinect interaction 7 300 2012 � [127] 

V17 HMDB51 51 7000 2011 [109] 

V18 UT-Interaction 10 180 2010 [128] 

V19 Hollywood2 12 3669 2009 [129] 

V20 HDM05 70 1500 2007 � [130] 
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 RGB-D datasets. Most of the previously introduced RGB datasets

HMDB [109] and UCF-101), and RGB-D datasets (Kinetics-700

113] and NTU RGB+D [114] ) contain a small number of activities

from 10 to 60 activities). However, bigger and more challenging

atasets have been proposed recently. For example, the Kinetics-

00 dataset was introduced in 2017 [113] , which has about 700

ctivities with a total of 650,317 videos. In 2019, two new RGB

atasets were proposed, which contained a huge number of videos

HACS with 1,550,0 0 0 videos [115] and Moments in time with

,0 0 0,0 0 0 videos [116] ). 

.3. Discussion 

Data collection is a crucial part of every HAR system because

he input data determine how the subsequent steps are conducted

nd can influence the overall performance of HAR frameworks

131] . In this section, the characteristics of standard sensors used in

ensor-based HAR and vision-based HAR are presented. Wearable

ensors, object sensors, environmental sensors, and hybrid sensors

re common types of sensors, which are being used in sensor-

ased HAR. Among them, wearable sensors have been used the

ost because they have become cheaper, smaller, so they can be

ntegrated into other devices. In contrast, hybrid sensors are in-

reasingly used in complex activity recognition applications be-

ause the combination of multiple sensors improves the model’s

obustness and performance. On the other hand, vision-based HAR

s performed on two data types: RGB and RGB-D data. Although

epth information from RGB-D data has proved to improve the

AR performance, low-resolution data and the introduction of

oise are the reasons that current HAR frameworks are still using

GB data. 

For a long time, a host of carefully collected and validated

enchmark datasets has been used to verify HAR models’ effec-

ivenesss. Self-collected datasets and publicly available datasets are

wo common types of datasets. In the self-collected dataset, a

ataset [70,132] and an optimal algorithm that works well with

hat dataset are proposed. However, self-collected datasets require

xtensive effort during the data collection process because it is

ime-consuming to collect and validate the dataset manually. On

he other hand, benchmark datasets are often used by the re-

earchers to verify the proposed frameworks [98,99] . They are

arger than self-collected datasets, already been validated by ex-

erts, and have been widely applied in many HAR frameworks. As

 result, this section also discusses standard benchmark datasets

9 sensor-based HAR dataset, and 20 vision-based HAR dataset),

hich have been utilized to verify the effectiveness of HAR frame-

orks. 

. Pre-processing and feature engineering 

This section shows the pre-processing and feature engineering

rocesses that need to be conducted before feeding data into train-

ng algorithms. Data pre-processing is considered the most impor-

ant processes affecting the overall performance of HAR frame-

orks. After a dataset is collected, it should be pre-processed to

inimize noise introduced during the data collection process and

he sensors themselves before feeding into an ML algorithm. For

ensor-based HAR, the pre-processing process involves both de-

oising and segmentation, whereas segmentation is the most com-

on pre-processing method implemented for vision-based HAR. 

After the pre-processing process, feature engineering, which in-

olves feature extraction and feature selection, are implemented

17] . While feature extraction converts the input into a set of fea-

ures without losing valuable information, feature selection per-

orms dimensionality reduction on the extracted features to re-

uce the high-dimensional data and prevent the overfitting prob-
em. Fig. 6 shows standard pre-processing and feature engineering

ethods for sensor-based HAR and vision-based HAR. 

.1. Sensor-based HAR 

After the data collection process, data pre-processing, which is

he initial step in the sensor-based HAR pipeline, is implemented.

fter that, the feature engineering is conducted to choose the most

uitable feature set to train ML models. 

.1.1. Pre-processing 

Two primary data pre-processing methods for sensor-based

AR are denoising and segmentation. 

• Denoising: Sensor data usually contain noise due to miscali-

bration, malfunction, placement errors, noisy ambient environ-

ments, and multiple activities. As a result, data pre-processing

techniques have an important role in mitigating the generated

noise. Standard denoising methods are low-pass filter, mean

filter [133] , linear filter [134] , wavelet filter, and Kalman fil-

ter [135] . Ignatov et al. noticed that noise occurred during the

data collection process. Therefore, they implemented the sin-

gular value decomposition technique to reduce noise [136] . In

other research, the pre-processing process for sensor data was

proposed [137] . For each input signal, the authors generated a

new signal based on integrating white noise as random noise

into the target signal. White noise reduces the noise caused by

human’s dynamic actions and maintains components that have

a low frequency. 
• Segmentation: Activity usually lasts for a comparatively long

time compared to the sensors sampling rates. Therefore, a sin-

gle sample extracted from a sensor at a specific time instance

does not give sufficient data to identify an activity. As a re-

sult, collected signals must be segmented using the segmenta-

tion approach instead of relying solely on a sample basis. Data

segmentation splits the data stream into various fragments,

which then can be mapped into a specific activity [138] . It can

be categorized into time-driven windows segmentation, event-

driven windows segmentation, and action-driven windows seg-

mentation. Time-driven windows segmentation separates the 

signal into numerous consecutive windows of fixed-size time

intervals, while the event-driven windows method applies es-

timation methods to separate sensor signals into event-based

windows. Finally, action-driven windows segmentation detects 

the windows where individual activity occurs. Although these

methods work well with real-time applications and do not re-

quire any pre-processing techniques, they are especially sen-

sitive to the window size. As a result, Hammerla et al. intro-

duced a 1-second sliding window with a 50% overlap to create

a HAR dataset that contained approximately 650,0 0 0 samples

using wearable sensors [139] . The preliminary results showed

that the proposed model outperformed previous studies on the

collected dataset. On the other hand, an adaptive sliding win-

dow segmentation approach for physical HAR based on a tri-

axial accelerometer was introduced to solve the weaknesses of

fixed-size sliding window methods [140] . The window size is

adaptable by analyzing information from the sensor signal. 

.1.2. Feature extraction 

Feature extraction is then implemented to extract essential

eatures from the pre-processed data based on distinctive char-

cteristics, such as signal frequency and signal phase. Based on

iven signal properties, feature extraction methods can be di-

ided into frequency-domain and time-domain approaches. Time-

omain methods usually extract median, variance, mean, range,

urtosis, and skewness features [9,141] , whereas spectral entropy,
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Fig. 6. Standard pre-processing and feature engineering methods for sensor-based HAR and vision-based HAR. 
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spectral power, peak power, and peak frequency are features be-

longing to the frequency domain approach [69,70] . The wavelet-

domain features approaches have recently gained more attention

because wavelets can be used for the feature extraction by cal-

culating wavelet energy in the components (mean-absolute-value,

root-mean-square) [142] . 

• Time-domain approach (TD): In this approach, time-domain

features (TDFs) are extracted based on the amplitude variations

of signal over time [143] . TD methods can perform real-time

computation because no transformation is required on embed-

ded systems. In addition, the amplitude and phase of a signal

at any given instance can be analyzed quickly using extracted

TDFs. However, signal frequency information is missing in the

TD approach. 
• Frequency-domain approach (FD): Frequency-domain features

(FDFs) are extracted based on the frequency variations of a sig-

nal over time. While TD approach shows how a signal changes

over time, the FD approach presents how much of a signal re-

mains inside each frequency band over a range of frequencies

[144] . Therefore, various transform operators are necessary to

convert a signal into a variety of frequencies in the frequency

domain approach. The FD methods need enormous computa-

tional power, so it is not suitable for low-power wearable de-

vices. 
• Wavelet transform (WT): Wavelet transform decomposes a sig-

nal into a set of basic functions referred to as wavelets. For ex-

ample, discrete wavelet transform (DWT) [145] , an extension of

WT, converts a discrete-time signal into a discrete wavelet rep-

resentation. Although the higher resolution is obtained when

a signal is decomposed into wavelets rather than frequencies

[142] , WT requires extra computational power and demands a

long time to select proper wavelet energy. 

4.1.3. Feature selection 

Feature selection chooses a subset of features that is important

for classification algorithms to make decisions [146] . In addition, it

reduces high-dimensional spaces and time complexity by remov-

ing irrelevant features. An alternative approach to feature selection
s representation learning, where the models concentrate on ana-

yzing the data to extract a good feature set [107] . 

Wrapper methods [147] , filter methods [14] , and embedded

ethods [148] are three main methods of the feature selection

rocess. Filter methods exploit the inherent characteristics of vari-

bles/features to select a subset of features using the correlation

oefficient to rank the original features. Moreover, the filter-based

eature selection does not use any classifier to evaluate the ex-

racted feature subset. Unlike filter methods, wrapper methods

ave been proved to achieve better performance because many

lassifiers are applied to judge the performance of the selected

ubsets [147] . On the other hand, embedded methods choose the

est feature subset by calculating the optimal weights of a function

hat has achieved high results previously. Embedded methods are

imilar to wrapper approaches and can be used in multiclass and

egression problems. Dawn et al. conducted a comprehensive sur-

ey of feature selection methods for HAR applications [149] . The

uthors categorized and analyzed each type of feature selection

ethod and also gave advantages and disadvantages of each fea-

ure selection method, which can help readers gain an insight into

he feature selection process for HAR. 

.2. Vision-based HAR 

Vision-based HAR is a challenging topic because it involves a

ariety of activities and interactions between subjects [2] . In ad-

ition, complex backgrounds, occlusion, viewpoint variations, and

ighting conditions make the vision-based HAR even more difficult.

herefore, segmentation and feature engineering processes play a

rucial role in improving the performance of HAR applications. 

.2.1. Segmentation 

Segmentation is an essential process that extracts the target

ubjects from a sequence of images or videos. It is classified into

ackground construction and foreground extraction [150] . Back-

round construction-based methods first construct the background

nformation, and then objects of interest are identified by ana-

yzing the difference between the most recent frame and the ex-

racted background [151] . 
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Table 7 

Advantages and limitations of two video segmentation approaches (background construction and foreground extraction). 

Type Model Advantage Disadvantage Ref 

Background 

construction 

Basic • Easy to implement 
• Low computing power 

Weak against complicated and 

multimodal backgrounds 

[153,154] 

Statistical • Works well with multimodal backgrounds 
• Adaptive parameters 

• Poor performance on videos 

with unstable illumination or 

lighting condition 
• Complicated 
• Gaussian function can 

impact overall performance 

[155–157] 

Fuzzy Works well with dynamic backgrounds, 

shadow and complex illumination 

• Unable to detect objects that 

have the same gray level as 

the background 
• Manually threshold value 

[158–160] 

Neural network Handles unstable lighting, dynamic 

backgrounds and bootstrapping issues 

Overfitting problem [151,161,162] 

Others Fast and easy to implement Poor performance on dynamic 

background 

[163–166] 

Foreground extraction Optical flow 

• Deals with occlusion and distortion 
• Works well with video recorded by moving 

camera 

Complex and time-consuming [167,168] 

Temporal information • Performs on video captured by moving 

camera, 
• Easy to implement 
• Low computing power 

Sensitive to noise [152,169] 

Markov Random Fields • Preserves boundaries for segmented objects 
• Works well with complicated backgrounds 

High computing power [150,170] 
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Table 7 presents the main advantages and limitations of dif-

erent video segmentation methods. The background construction-

ased segmentation is highly efficient in tracking fast-moving ob-

ects recorded by fixed cameras, requires low computing power,

nd is simple to deploy. On the other hand, for foreground

xtraction-based segmentation, human activities are recorded by

 pan-tilt-zoom camera or camera mounted on moving objects,

uch as moving robots, cars, and unmanned aerial vehicles (UAVs)

152] . It is challenging to perform segmentation in this sce-

ario compared to the one recorded by fixed cameras as the

ackground and foreground keep changing. Therefore, foreground

xtraction-based segmentation is implemented instead of the

ackground construction-based technique. Temporal-information, 

patial-information, or spatiotemporal information are analyzed to

xtract the object from the video, and then subsequent frames are

sed to obtain feature-based information. 

.2.2. Feature extraction 

Handcrafted feature-based representation is a traditional fea-

ure extraction method that has been used for a long time, and

t has produced remarkable results in many HAR applications

29,137] . This approach assumes that each dataset has a represen-

ative feature set, enabling a learning model to achieve the best

erformance. However, it is time-consuming and inefficient be-

ause the feature set is selected and validated manually by ex-

erts. Three conventional feature-based representation approaches

re global feature extraction, local feature extraction, and depth-

ased feature extraction, which are shown in Table 8 . 

• Global feature representation approaches collect and encode

global descriptors as a set of features directly from videos or a

series of images. In addition, background subtraction is applied

to localize and extract silhouettes region of interests (ROIs) and

shapes of a target subject. Many studies encoded the ROIs us-

ing optical flow, corners, edges, or ridges as global descriptors

[171,172] , while other work [173–175] stacked the silhouettes

ROIs alongside the time axis to create the 3D space-time di-

mensions. Furthermore, DFT [46,176] , which extracts FD data

from the ROI, is also considered a global features representation

method. Global features representation methods were applied
in initial HAR research and have slowly become obsolete be-

cause of the poor performance on videos with occlusions, noise,

and changes in viewpoints. 
• Local feature representation methods use local descriptors to

represent input images and encode them as single features in-

stead of extracting the shapes or silhouettes. They concentrate

on particular local patches, which are exploited by dense sam-

pling or interest point detectors. Histogram of oriented gradi-

ents (HOG) is among the basic methods to extract local descrip-

tors by counting gradient orientation occurrences in localized

parts of an image. Although the scale-invariant feature trans-

form (SIFT) and HOG are both local feature detectors, SIFT con-

verts an input image into a huge collection of local feature vec-

tors and requires more computing power. As a result, SIFT is

unsuitable for real-time applications. An improved approxima-

tion of SIFT, the speed-up robust feature (SURF), was proved to

run faster than SIFT and preserved the detected points’ qual-

ity [178] . The shape-based local feature descriptor was initially

developed to find matching points between object shapes. It

mainly creates a log-polar histogram of edges for each point

around a shape. Edge structures near the reference point are

sampled with greater detail than structures that are far away

because the histogram bins get larger with a growing radius.

Most local feature representation methods demonstrate their

robustness against partial occlusions and noise. 
• Semantic feature representation approaches imitate the human

perception of an activity. Perception is an essential element

that helps humans perceive and recognize any action based

on the visual analysis of body postures obtained from videos.

The human perception is also based on additional information,

such as scenes or contexts, visual features of the activity, and

objects that are usually related to activities [65] . Three main

semantic feature representation methods are pose estimation,

appearance-based approach, and the 3D approach. The pose es-

timation relies on deformable part models, such as body part

detectors that consist of multi-stage processing [182,183] . On

the other hand, appearance-based methods extract visual fea-

tures that link high-level semantic features to low-level appear-

ance features [107,184] . The appearance-based techniques are

divided into two subgroups, local features or global features.
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Table 8 

Advantages and limitations of the three features representation methods (global features, local features and semantic-based features). 

Type Model Advantage Disadvantage Ref 

Global feature 2D silhouette Obtained easily from the 

depth data 

• Depends heavily on the 

background model 
• View-dependent 

[171,172] 

Space-time volumes Does not need background 

subtraction 

Sensitive to noise and 

occlusion 

[173–175] 

Discrete Fourier transform 

• Simple implementation 
• Low computing power 

No spatial/temporal 

localization 

[46,176] 

Local feature SIFT • Invariant to geometric and 

photometric transformation 
• Invariant to 3D projection 

and illumination changes 

• High-dimensional features 
• High computing power 

[4,177] 

SURF Fast and robust • Patented 
• Poor performance on 

high-dimensional data 

[2,178] 

HOG Invariant to geometric and 

photometric transformations 

• Only used for human 

detection 
• Subject size can impact the 

performance 

[29,30,179] 

Shape-based features • Robustness to noise 
• Similar to human 

perceptions 

Depends on silhouette 

segmentation 

[180,181] 

Semantic 

feature 

Pose estimation Robustness to inter-class 

variations 

Hard to extract the pose 

accurately 

[182,183] 

Appearance-based features Includes contextual 

information 

Sensitive to intra-class 

variations 

[107,184] 

Depth map Provides both geometry and 

visual information 

• Occlusion problem 

• Introduces noise in both 

spatial and temporal cases 

[8,180] 
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For the 3D semantic feature representation, the depth map data

are collected together with the RGB data using the RGB-D cam-

era. After that, human activity analysis can be implemented by

operating directly on the depth map data or extract skeleton

data and perform joints position detection [8,180] . 

4.3. Discussion 

This section introduces and analyzes the pre-processing and

feature engineering processes of a typical HAR framework. The

output is an optimal set of features that improves both the model

performance and reduces computational complexity. For sensor-

based HAR, denoising is applied to reduce noise introduced dur-

ing the data collection process. After that, the segmentation pro-

cess is implemented for both vision-based HAR and sensor-based

HAR. Based on the applications, the time-domain feature approach,

frequency-domain feature approach, or wavelet-domain feature ap-

proach is applied to extract distinctive features from the pre-

processed signal. On the other hand, the global representation ap-

proach, local representation approach, or semantic representation

approach is implemented to extract features from vision-based

HAR. 

5. Learning algorithms 

In recent years, the exponential growth of sensors has brought

a more efficient and straightforward data collection processes for

HAR applications, so the amount of data produced is truly mind-

boggling [118] . In order to analyze, recognize patterns, and to ac-

quire general knowledge about a dataset, useful features are ex-

tracted from the dataset to feed into ML algorithms. 

Generally, ML algorithms are grouped into generative models,

discriminative models, and template-based models, as shown in

Table 9 . For a set of input data X and activity classes Y , the gen-

erative approach models the joint probability distribution Pr ( X | Y ),

then derives the posterior distribution Pr ( Y | X ) to select a correct

activity class Y [185] . On the contrary, the discriminative approach

uses a conditional probability distribution Pr ( Y | X ), which indicates
he natural distribution to classify a given input X to an activity

lass Y instantly. Standard generative algorithms are Markov mod-

ls, Bayesian models, mixture models, and deep belief networks

DBN). In contrast, decision tree, evolutionary algorithms, K-nearest

eighbors (KNN), SVM, fuzzy logic, regression, and neural networks

re typical discriminative algorithms. In addition, template-based

pproaches, such as template matching and dynamic time warp-

ng, are also used for vision-based HAR. 

.1. Generative model 

The generative model is the earliest semi-supervised learn-

ng approach, and it has been applied in statistics for a long

ime [185,186] . Generative approaches output the joint probabil-

ty Pr ( X | Y ) based on a set of inputs X and a set of labels Y . Then

ayes rules are used to obtain the posterior distribution Pr ( Y | X )

o predict the most suitable class y for an input x . The genera-

ive model achieves good performance when the training dataset

s small [202] . Thus, it is robust and less prone to the overfitting

roblem. However, it has fewer degrees of freedom compared to

he discriminative model. 

.1.1. Bayesian networks 

Bayesian networks are probabilistic graphical models that use

ayesian inference to compute the probability [186] . Bayesian net-

orks express conditional dependencies through edges in a di-

ected graph. After that, the probabilistic inferences of random

ariables in the graph can be efficiently derived through the con-

itional dependencies. Although Bayesian networks have all advan-

ages of the generative model, attribute independence is its most

ignificant weakness. For example, the Naïve Bayes (NB) model

nly works when all features under consideration are independent

203] . However, the assumption causes many problems when the

eatures are extracted from acceleration signals and physiological

ignals because these signals are highly correlated. 

A generative framework based on the Bayesian network was

roposed to address the structural variabilities of complicated HAR

185] . The authors applied a new process to describe the distinctive
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Table 9 

Description of three main learning approaches, which includes generative methods, discrimina- 

tive methods, and others. 

Group Type Algorithm Ref 

Generative Bayesian Bayesian network [186] 

Naïve bayes [1,9] 

Markov model Hidden Markov Model [9,187] 

Mixture model Gaussian mixture model [188] 

K-means [188] 

Restricted Boltzman 

Machines 

Deep belief network [189] 

Deep Boltzmann machine [69] 

Deep autoencoder Sparse autoencoder [190,191] 

Denoising autoencoder [46,192] 

Discriminative Decision tree C4.5 [193] 

Random forest [194] 

Random fields Conditional random field [195] 

Lazy learning K-nearest neighbors (KNN) [1,196] 

Transform domain Support vector machine (SVM) [1,4,30] 

Fuzzy logic Fuzzy inference [10,142] 

Regression Logistic regression [193] 

Adaptive regression [197] 

Neural network Multilayer perceptron [198] 

Convolutional neural network [68,199] 

Recurrent neural network [200,201] 

Others Template-based Template matching [186] 

Dynamic time warping [1,9] 
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onfigurations of the activity explicitly. In another work, a graph-

ased HAR framework was demonstrated [35] that combined the

ierarchical action semantic dictionary and Bayesian graph model

nference. Moreover, the authors applied a recursion-based ap-

roach to perform vision-based HAR. 

.1.2. Markov model 

A Markov model is a stochastic model that contains states and

vents represented by transitions and is often applied to tempo-

al and sequential data because it can adequately describe the

ependencies of current data with previous data. Hidden Markov

odel (HMM) belong to statistical Markov models, which pre-

umes that the states of the Markov process are unobservable, and

ach state emits a discrete random output [37] . A good fine-tune

MM model has been proven to obtain better compression than a

imple Markov model, allowing more significant sequences to be

etected [204] . Although HMM is a well-known solution to solve

he speech recognition problem [204] , it has recently been adopted

o recognize human activities. For each video, features that repre-

ent all pixels in each mesh are extracted from each frame. Next,

he extracted features (confusion matrix, the initial probability of

idden states, and the transition matrix) represent each activity are

ed into the HMM. However, HMM needs to be trained on a set of

equences and require a bigger seed than simple Markov models.

oreover, there are many possible HMMs for a given set of se-

uences, and it is challenging to select the best one. 

An activity recognition framework for spinal cord injury pa-

ients based on augmenting an RF classifier with an HMM static

tate estimator was introduced [37] . The results showed that the

roposed system obtained 88.9%%, which demonstrated a signifi-

ant improvement compared to when only the RF classifier was

sed. In addition, a human sensing system based on HMM was

roposed to categorize six human actions using data collected from

he smartphone accelerometers and gyroscopes [205] . The model

howed the best recognition error rate of 2.5% on the proposed

ataset. 

.1.3. Mixture model 

A mixture model is a probabilistic model representing the ap-

earance of sub-populations in the overall population without
nowing the sub-population information [206] . A mixture model

orrelates with the mixture distribution that depicts the probabili-

ies of occurrence of observations in the entire population. 

The Gaussian mixture model (GMM) assumes that all data

oints are the results of a combination of a finite Gaussian dis-

ributions number with unknown parameters [207] . For HAR ap-

lications, a separate GMM can be trained for each activity, and

he final classification model is based on the GMM that achieved

he highest probability. Global minimum convergence is not guar-

nteed, and the expectation-maximization (EM) algorithm needs to

e implemented are two main weaknesses of the GMM [206] . A

emporal GMM was introduced by Muaaz et al. to match actions

n an unsupervised temporal segmentation and recognition for hu-

an motion data [188] . The technique obtained an average accu-

acy of 72% on merged activities conducted by several participants.

K-means is a particular case of GMM that attempts to divide

 given dataset into a fixed number ( k ) of clusters [208] . Ini-

ially, a k number of centroids are randomly selected, and data

rom the dataset is assigned to the cluster centroids according to

he distance, such as Euclidean, until it converges. K-means per-

orms poorly when overlapping clusters occur. A K-mean cluster-

ng framework was proposed to differentiate three basic human

orearm movements based on a single wearable wrist-worn de-

ice [209] . Four healthy participants and four survivors of strokes

ere involved in a series of experiments, and the obtained results

howed that the mentioned framework correctly identified three

ypes of actions with an average accuracy of 88%. 

.1.4. Restricted Boltzmann machines 

Restricted Boltzmann machines (RBMs) proposed by Geoff Hin-

on [210] are the original deep learning model applied to unsu-

ervised learning. This model recognizes data patterns by recon-

tructing input data with just two layers (the visible and hidden

ayers). When an input is fed into an RBM model during the for-

ard pass, it is encoded by the visible layer. After that, the visible

ayer is translated into a set of numbers. On the other hand, RBM

akes the translated set of numbers and converts them to the visi-

le layer to restore the inputs. 

Since the introduction of RBMs, many deep learning methods

or HAR have been introduced. For example, Deep belief network
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(DBN) is a generative graphical model and a class of RBM [189] .

DBN contains a stack of restricted Boltzmann machines in charge

of detecting features, each RBM layer has connections with both

the previous and the next layers, but hidden units in each layer

have no relationship with each other. The stacked structure allows

DBN to be applied in both supervised and unsupervised scenar-

ios. A functional classifier can be created in the supervised appli-

cationsby adding a final softmax layer to the existing DBN struc-

ture [189] . In contrast, DBN can be applied to segment unlabeled

data in the unsupervised scenario. The HMM can be considered as

a reduced DBN, which has fixed graph structures and a restrained

number of random variables. 

The deep belief network was applied to obtain different fea-

tures from input data recorded by different sensors and then form

a stochastic temporal HAR based on HMM [37] . Moreover, research

by Triboan et al. [138] utilizes DBN for real-time feature explo-

ration for HAR. However, the proposed framework was trained lo-

cally with initialized parameters, backpropagation, and the classifi-

cation performed by SoftMax Regression due to the computational

complexity of deep learning. 

5.1.5. Autoencoder 

Autoencoder (AE) has recently become a trending deep learning

approach in unsupervised learning [211] . It consists of two sym-

metrical DBN that has multiple layers representing the encoding

half of the net and second set of multiple layers that make up

the decoding half. It is trained to learn useful components that

can be used to reconstruct the inputs and discard any compo-

nents that are not typical features. As a result, AE tends to ac-

quire representation in the hidden layer and rejects noise from the

input. 

Two common extensions of the autoencoder model are sparse

autoencoder [46] , and denoising autoencoder [191] . Denoising au-

toencoder was proposed by intentionally adding noise to the in-

puts, and then the autoencoder is trained to recover the original,

nonperturbed signal. The authors found that they could improve

the robustness of their internal layers (i.e., latent-space represen-

tation) by purposely introducing noise to their signal. Allow the

autoencoder’s hidden layers to learn more robust filters and pre-

vent it from learning a simple function, and reduce the risk of

overfitting in the autoencoder. With a different approach, sparse

autoencoder is introduced to deal with sparse and overcomplete

features from raw input by customizing the model loss function to

deal with sparsity and assign different active units close to zero.

It is highly efficient in extracting low dimensional features from

complicated and high dimensional data, including videos, images,

sensors. 

A new HAR approach based on wearable sensors was intro-

duced by Wang [190] . The authors applied continuous autoencoder

(CAE) as a new stochastic function, which significantly improved

the model classification rate to 99.3%. 

5.2. Discriminative model 

The discriminative model is considered more straightforward

than the generative model, and it has achieved high performance

when the training data is sufficient [202] . The discriminative model

is usually used in supervised ML by learning a decision boundary

using the posterior probability Pr ( Y | X ) directly from the training

data samples. After a model is trained, it can classify unobserved

input data X into a class Y . Linear regression and logistic regression

are standard classifiers of the discriminative model. 

5.2.1. Decision tree 

A decision tree is a tree-like algorithm where non-leaf nodes

denote attributes or features, branches represent a conjunction of
eatures that lead to the decision, and leaves represent the class

abel [212] . A decision tree that uses a discrete set of values is re-

erred to as a classification tree. On the other hand, a regression

ree is a decision tree that is fed continuous variables. 

RF is a supervised ML algorithm that contains many decision

rees. The training process gradually improves system performance

y applying randomization and bootstrap aggregating methods to

enerate several decision trees [34] . RF decides a class for a new

ample based on a majority vote of all decision trees from the for-

st. RF can be implemented quickly for both regression and classi-

cation problems. However, it requires huge computing power and

 large dataset to achieve good performance. 

A novel framework to identify important poses for each action

indow was proposed in [194] . The authors extracted geometrical

nd temporal features from each action window. After that, they

xtended RF classifier by applying a differential evolution meta-

euristic algorithm to split the tree node. The proposed algorithm

as trained in a considerably short time, and it achieved similar

ccuracy as previous state-of-the-art frameworks. 

.2.2. Conditional random fields 

Conditional random fields (CRFs) is a discriminative model that

s usually used for labeling and clustering structured data, such

s lattices, trees, and sequences [213] . It is based on the condi-

ional distribution concept with an associated graphical structure.

he conditional distribution characteristic allows the implicit rep-

esentation of input variables, enables the extraction of rich and

lobal features from the input data, and prevents the label bias

roblem. 

Liu et al. proposed a coupled hidden CRFs model for HAR by

ombining RGB and depth information [195] . It improves the origi-

al hidden-state CRFs model from one-chain structure to multiple-

hain structure (multimodel data). The authors also introduced in-

erence methods and a training model to explore potential associ-

tions between depth information and RGB and the temporal con-

ext of the model for a particular modality. Experimental results on

hree benchmark datasets showed that the proposed model out-

erformed state-of-the-art models by analyzing additional charac-

eristics of both RGB and depth modalities. 

.2.3. Transform domain 

The SVM algorithm is a well-known discriminative model and

as been extensively applied in HAR. It discovers an optimal hyper-

lane that separates the training data into two distinct classes and

ives a maximum margin between the hyperplane and any sam-

le from the training set [38] . Traditionally, SVM is a linear clas-

ifier that is utilized to perform the binary classification problem.

owever, SVM can also perform a non-linear classification problem

y using a kernel trick [214] . Non-linear kernel functions are ap-

lied to transform the data in the original dimensional space into

 higher-dimensional space. The kernel trick allows the SVM clas-

ifier to adapt well to relatively high dimensional data. However,

t is challenging to choose an appropriate kernel function and op-

imal hyper-parameters. Moreover, non-linear SVM requires more

raining time when the number of training samples in the dataset

ncrease. 

Cippitelli et al. used an RGB-D camera to extract the skele-

on data [112] . After that, feature vectors are obtained from the

keleton data to train a multi-class SVM model. The experiments

onducted on five publicly available datasets showed that the

odel performed well and overcame state-of-the-art results for

oth KARD and CAD-60 datasets. 

.2.4. Lazy learning 

K-nearest neighbors (KNN) algorithm is a lazy learning ap-

roach that can directly classify a new test sample based on exist-
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ng samples [215] . Euclidean distance [215] is often used to com-

ute the similarity distance between samples. The label for a new

ample is decided using a majority vote of its k nearest neighbors

ased on the Euclidean distance. For example, if k is equal to 1,

hen the label is set similar to the label of that nearest neighbor.

ne noticeable limitation is that the computational complexity in-

reases when a new class is assigned, and a new sample is added

o the existing dataset. 

An optimized KNN classifier, which automatically searches for

n optimal k parameter to minimize the misclassification errors of

he KNN classifier, was proposed [196] . The authors examined the

roposed model on ten standard activity recognition datasets and

roved that the proposed model obtained lower error rates than

A and artificial bee colony algorithms. 

.2.5. Deep learning 

Deep learning is a subset of ML that imitates the network

f neurons in the human brain, enabling the computer to deal

ith complicated problems and reach human-level performance.

hrough the backpropagation process, it automatically extracts ab-

tract features from input data [216] . Deep learning algorithms

ork well with large datasets, and they can even work with inter-

onnected and unstructured datasets. The more data deep learning

lgorithms are trained on, the better the performance they achieve

216] . 

In the last few years, many kinds of deep learning models

ave been introduced, and each kind was dedicated to a particular

roblem with a set of representative datasets. Multilayer percep-

ron (MLP) [217] , CNN [218] , and recurrent neural network (RNN)

201] have been confirmed to perform well in various applications.

able 10 discusses the main contributions, datasets, experimental

esults, field, and year published of various deep learning-based

AR research. 

A collection of input and output pairs are usually fed to MLP, so

he model can learn to find the dependencies between the input

nd output pairs. MLP only uses the fully connected layers, where

ach perceptron connects with every other perceptron. The learn-

ng process includes the backpropagation that adjusts the weights,

iases, and parameters of the model by finding the minimal error

root mean squared error (RMSE)). Because MLP only contains fully

onnected layers, the total number of parameters can increase ex-

onentially when the number of layers increases. Another problem

f MLP is that it uses flattened vectors as inputs and ignores spa-

ial information [217] . 

CNN is currently the most used deep learning approach to deal

ith many practical problems, such as image classifications [218] ,

bject detections, and NLP topics [189] . It stacks a list of convo-

utional layers, pooling layers, fully connected layers, and a func-

ion to give the final output. The CNN architecture was constructed

o completely utilize the 2D data structure, such as images,

peech, or signal. CNN has inbuilt translation invariance because

here are robust connections and tied weights between hidden

nits. 

RNN [201] is a subset of deep learning based on the principle of

xtracting the output of a layer and feeding this back as the input

f another layer to predict the output of the current layer. In each

ime step, RNN considers both the current input and the previ-

usly received inputs, because it memorizes previous inputs using

he hidden state features. Although RNN is specifically designed to

andle sequential data, it suffers from the vanishing/exploding gra-

ient problem. As a result, RNN fails to deal with long sequences

f tanh is applied as the activation function, whereas the model is

nstable if relu is used. In addition, RNN layers cannot be stacked

nto a very deep model because the saturated activation functions

ake the gradient decay over layers. 
.3. Other models 

.3.1. Template-based approach 

Template matching techniques verify parts of a source image

esemble a given template image [223] . There are two primary in-

uts (a) a source image and (b) a template image. Template match-

ng techniques depend solely on the image, so they are susceptible

o background changes, background clutter, scale changes, and il-

umination. In HAR applications, a template matching technique is

pplied to recognize similar activities in a source image and tem-

late images based on a pixel-by-pixel basis. However, there are

ome obvious limitations, such as affine variant and highly ineffi-

ient computational power due to multiple templates comparison. 

A template matching-based sports activities classification

ramework using data recorded by accelerometer sensors was

roposed in [223] . The proposed method showed robust results

hrough various experiments, even with data generated by a new

ubject. A multi-view HAR model based on temporal template

atching was introduced by Kushwaha and Srivastava [224] , where

ctivity templates were constructed using spatial pose information.

he experimental results on three primary datasets proved that the

emonstrated framework was robust and achieved high recogni-

ion rates. 

Dynamic time warping (DTW) is a robust template matching al-

orithm based on time series data. It has been extensively applied

n speech recognition topics because it can minimize the distor-

ion and shifting effect in time series data [225] . DTW algorithm is

sually applied to warp and align segments in time, and it can be

dapted and applied in HAR because the activities can be consid-

red a series of keyframes. The DTW method is remarkably effec-

ive in analyzing the similarity of time series data using a warping

ath that can detect identical shapes at different time steps. How-

ver, DTW belongs to the template-based approach, so the algo-

ithm complexity increases sharply when the framework processes

ore activity classes with significant intraclass and interclass vari-

nce. 

The DTW algorithm was applied to time-phased data and the

ignal magnitude of an on-body creeping wave to perform HAR

225] . Several experiments showed that a 10-second window for

he DTW algorithm brought a good trade-off between model per-

ormance and computational efficiency. In another research, the

TW technique was applied to process different shapes of foot

ovements, which was captured using wearable sensors [21] . The

btained results showed the effectiveness of the proposed method

n detecting early signs of Alzheimer’s disease. 

. Challenges and future work 

Table 11 presents current challenges of both sensor-based HAR

nd vision-HAR, and discuss possible solutions for each challenge

ased on recent HAR research. 

By discussing the challenges described in Table 11 , many HAR

uture research topics that are interesting to investigate are dis-

ussed. 

.1. Transfer learning 

In recent years, deep learning has taken over HAR research,

imilar to the current trend in the CV community. However, it

s challenging to train a new deep learning-based model from

cratch. As a result, the implementation of the HAR model based

n previous pre-trained models is a good approach because these

odels have already obtained objects’ spatial relationships. It is in-

eresting to explore some trending topics in transfer learning, such

s inflation or domain adaptation [226] . 
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Table 10 

Detailed description of various HAR studies grouped by model types, including study field, the proposed model, publication year, devices (A = accelerometer, G = gyroscope, M = magnetometer, I = Inertial, and K = Kinect camera), 

datasets, experimental results, and main contributions. 

Type Field S/V Model Year Devices Dataset Results Main contribution 

CNN Indoor HAR V 5-CNNs [199] 2018 RGB-D V10, V14 and 

V16 

V10-95.11% and 

V16-96.67% 

• Combines individual CNN classifiers of RGB, 

depth and skeletal data to classify activities. 
• Introduces a new processing method for 

skeleton data. 

Mobile HAR S Customized 

CNN [70] 

2018 A S7 and S10 S7-97.62% and 

S10-93.32% 

• Applies a shallow CNN architecture to extract 

features automatically. 
• Combines statistical features and global 

features of the sensor’s time-series data. 
• Examines the influence of time-series 

duration on real-time HAR. 
• Achieves state-of-the-art performance on 

both WISDM and UCI HAR datasets. 

Intelligent 

vehicles 

V Customized 

CNN [219] 

2019 K Self Detection rate 

of 91% 

• Proposes a customized deep learning model 

to identify driver’s behaviors. 
• Introduces an unsupervised Gaussian mixture 

segmentation model to extract the driver’s body 

region from the background. 

RNN HAR V RNN tree [200] 2017 NA Self and V9 V9-0.832% • Introduces an adaptive framework for 

fine-grained activity recognition. 
• Combines multiple RNN models in a tree 

structure to improve the overall performance. 
• Uses transfer learning to train the proposed 

model so that it is more adaptable when a new 

class is added. 
• Collects a large-scale dataset for sensor-based 

HAR. 

Gesture 

recognition 

S LSTM [220] S A, G 

and M 

S8 S9-80% • Designs an RNN-based HAR to classify six 

different hand activities. 
• Collected data from inertial sensors can be 

fed directly to the proposed model without 

pre-processing. 

HAR S Residual 

Bidir-LSTM 

[221] 

2018 A, G 

and M 

S7 and S8 S7-93.6% and 

S8-90% 

• Increases learning speed by customizing the 

LSTM model and window size parameter. 
• Studies the importance of window size for 

HAR. 

( continued on next page ) 
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Table 10 ( continued ) 

Type Field S/V Model Year Devices Dataset Results Main contribution 

AE HAR S Continuous AE 

[190] 

2016 A, G 

and M 

Swiss-roll 98.4% • Introduces a continuous autoencoder with 

fast stochastic gradient descent to reduce the 

training time. 
• Introduces time and frequency domain 

feature extraction (TFFE) methods to extract 

features from sensors effectively. 

Fall detection S Customized AE 

[192] 

2017 A, G 

and M 

DLR and COV Good tradeoff

between TPR 

and FPR 

• Trains different auto-encoder models using 

data collected by various wearable devices to 

predict fall. 
• Proposes a threshold tightening method to 

identify unseen falls accurately. 

HAR V AE [211] 2018 NA V20 Good results on 

data corrupted 

by noise 

• Proposes a coupled stacked denoising tensor 

autoencoder (DTAE) for HAR. 
• Proposed model handles temporal and spatial 

corruption effectively. 
• For temporal corruption, each DTAE in stacked 

DTAE deals with different corruption ratio. 
• For spatial corruption, each DTAE processes 

the same temporal corruption ratio but 

different spatial noise. 

DBN HAR S DBN [68] 2018 A, G 

and M 

S5 97.5% • Proposes a DBN-based HAR framework. 
• Proposed model achieves higher performance 

compared to the previous methods. 

HAR S DBN [69] 2018 A, G 

and M 

S5 95.85% • Introduces DBN-based HAR model using 

smartphone inertial sensors. 
• Proposed approach outperforms traditional 

recognition approaches, such as SVM and ANN. 

Hybrid 

Indoor HAR S CNN + LSTM 

[222] 

2016 I and 

3-axis 

A 

S8 0.91% • Proposes a deep learning model that 

combines convolutional layers and LSTM 

recurrent layers. 
• The model is trained instantly on the sensor 

data with minimum pre-processing processes. 
• Outperforms previous research on the 

OPPORTUNITY dataset challenge. 

Video 

streaming 

V CNN and AE 

[191] 

2019 A, G 

and M 

Self 97.8% • Designs an efficient and optimized HAR 

model to process video streaming data. 
• Applies a fast dynamic frame skipping 

technique to improve the model speed. 
• Reaches the state-of-the-art results on 

real-time CCTV systems. 

Surveillance V CNN and LSTM 

[168] 

2018 NA V15 94.4% • Applies a CNN-based optical flow model to 

extract temporal features from CCTVs. 
• Trains a pre-trained MobileNet model on the 

extracted saliency features for HAR. 
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Table 11 

Issues and possible solutions for several topics in HAR. 

Name S V Issue Solution Ref 

Unsupervised HAR � � 

• Relies heavily on labeled data 
• Acquires sufficient training data is tedious and 

costly 

• Crowd-sourcing 
• Deep transfer learning 

[131,227] 

Standard benchmarks � � 

• No universally recognized benchmark 
• Cannot evaluate HAR models effectively 

• A uniform protocol (performance metrics 

and dataset) that allows the quantitative 

comparison between different approaches 

[228] 

Activity prediction � � 

• Early prediction is particularly necessary for CCTV 

systems 
• Subtle details in human movements need to be 

captured to predict a future movement 
• Predicts unfinished activity with limited 

observations 

• Chooses accurate and distinctive features 
• Proposes a new method for HAR 

[229] 

Intra-class variation and 

inter-class similarity 

� � 

• The same activity can differ between subjects 
• Different activities may contain similar shapes 

• Needs to figure out unique and distinctive 

features. 
• Develops a deep learning model that adapts 

to these challenges 
• Synthetic data generation 

[230] 

Multi-subject interactions � 

• The activities commonly involve the interaction 

between many people and objects 
• Detects and tracks several subjects at the same 

time, such as group activities recognition is 

challenging 

• Spatio-temporal relations among subjects 
• Develops an appropriate learning model 

that focuses on differentiating higher-level 

activities 

[57] 

Composite activities � � 

• Human activities are usually overlapping and 

concurrent 
• The recognition of composite activities brings 

additional uncertainty 

• Recognizes fine-grained activities using 

hybrid devices 

[231] 

Non-invasive HAR � 

• Humans have to adhere to sensor-specific 

conditions 
• Uncomfortable 

• Non-invasive approach needs to be 

developed 
• Development of sensor technology 

[232,233] 

Real-world videos � 

• Dynamic backgrounds 
• Occlusions, illumination variance, and viewpoint 

changes occur frequently 
• CCTV systems usually record low-quality videos 

and occlusions can appear in the recorded videos. 
• It is even more challenging when the activities are 

at a long distance. 

• Use of multi-sensor systems 
• Combination of RGB video and depth 

sensors 

[9,113] 

Energy and resource 

constrains 

� � 

• Both sensor-based and vision-based HAR require 

real-time sensing, which is energy-consuming 
• They also require significant computing resources 

• Adopts a lower sampling frequency 
• Consider adaptive segmentation methods 

[234,235] 
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6.2. Interpretable video model 

Interpretable image models have been studied extensively in

recent years. However, there is limited research on interpretable

video models. As explained in [4,183] , in a series of frames ex-

tracted from a video, there are only some keyframes crucial for

the identification of activities. In addition, activities are different

in their temporal characteristics. It is possible to identify some ac-

tivities using frames extracted at the beginning of the video. The

interpretability of complicated activities based on the keyframes

is a good research topic to answers questions, such as how these

frames are organized in the temporal domain, how they contribute

to the classification task, and can these frames be selected to train

the model faster without affecting the HAR performance. This type

of understanding can help researchers develop more efficient HAR

frameworks. 

6.3. Multimodal data 

Humans perceive multimodal data such as image, audio, and

text every day, and the multimodal data allow human to under-

stand other types of data. For example, reading enables the recon-

struction of the corresponding part of the human’s visual sense.

Therefore, it is beneficial if the multimodal data are used to inter-

pret complicated activities because multimodal data contain rich

semantic knowledge [176,222] . 

Multimodal data also enables the discovery of long-term tem-

poral relationships between objects from the multimodal data be-

cause it can be challenging to extract from multimodal data di-
ectly [236] . Long-term temporal relationships can show the se-

uential order of activities that occur during a prolonged sequence

omparable to how the human brain works. When a human re-

embers something, one sequence evokes the next sequence from

 prolonged sequence, like a long-term video. In addition, the com-

unications between entities are also important to understand

ong-term relationships. For example, pre-defined object interac-

ions happen in a particular activity under specific scene settings.

s a result, HAR should analyze both activities and the multimodal

ata, such as the interpretation of objects, scenes, and temporal re-

ationships of activities. The analysis of multimodal data also sup-

orts the long-duration activity prediction. 

.4. Physical aspect of activities 

There has been growing interest in researching the physical as-

ects of activities, such as fine-grained activities. For example, the

0BN-something-something dataset [118] is introduced to stimu-

ate human-object interactions research. The aforementioned men-

ioned dataset contains label templates or textual descriptions,

uch as ”Putting something next to something” to define human-

bject interaction or object-object interaction. The dataset enables

he development of systems that comprehend the physical aspects

f activities, including human-object interactions and their spatial

orrelations. Although much information is inferred from the CCTV

ideos, some physical aspects, such as the movement style, force,

nd acceleration, are hard to be inferred. Therefore, it is crucial to

ropose new HAR datasets that include such information. 
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.5. Learning actions without labels 

For an increasing number of huge activity recognition datasets,

uch as something-something [118] and sports-1M [123] , the man-

al labeling method is inefficient and costly. Although automatic

abeling using search engines and video subtitles [109] is achiev-

ble in specific areas, it still needs to be validated manually.

rowdsourcing [131] is a better choice. However, it is challeng-

ng because of the label diversity problem, which can produce in-

orrect activity labels. As a result, researchers need to introduce

 more effective and robust HAR method that automatically pro-

esses unlabeled data [116] . 

. Conclusion 

A comprehensive survey of state-of-the-art methods, along with

heir pros and cons for vision-based HAR and sensor-based HAR

as been provided in this paper. These methods have become par-

icularly influential in recent decades thanks to their potential in-

egration in emerging activity recognition applications. The com-

lete descriptions, analyses, and highlights of their features help

esearchers gain general knowledge in the field of activity recogni-

ion. 

We covered several perspectives of existing work, including

andcrafted feature designs, models, deep architectures, datasets,

nd evaluation protocols. We emphasized up-to-date development

n both sensor-based HAR and vision-based HAR. Different datasets

ere investigated by reflecting the main requirements of activity

ecognition applications: real-time operation with limited onboard

omputational resources and constrained observational conditions

e.g., limited camera resolution). The characteristics, strengths, and

eaknesses of traditional machine learning and deep learning

odels used in HAR were also analyzed. In addition, the review

lso addressed challenges in the HAR topic and possible solutions

or these challenges. 

Aside from activity recognition widespread applications in pat-

ern recognition and image processing, there exist various prob-

ems for future research, such as activity tracking, system design,

nd speed. This survey is expected to encourage further research

n the activity recognition area. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

cknowledgment 

This work was supported by Basic Science Research Program

hrough the National Research Foundation of Korea (NRF) funded

y the Ministry of Education ( 2020R1A6A1A03038540 ) and by In-

titute of Information & communications Technology Planning &

valuation ( IITP ) grant funded by the Korea government ( MSIT )

2019-0-00136, Development of AI-Convergence Technologies for

mart City Industry Productivity Innovation). 

eferences 

[1] Y. Liu , L. Nie , L. Liu , D.S. Rosenblum , From action to activity: sensor-based
activity recognition, Neurocomputing 181 (2016) 108–115 . 

[2] A. Bux , P. Angelov , Z. Habib , Vision based human activity recognition: a

review, in: Advances in Computational Intelligence Systems, Springer, 2017,
pp. 341–371 . 

[3] L.M. Dang , S.I. Hassan , S. Im , H. Moon , Face image manipulation detec-
tion based on a convolutional neural network, Expert Syst. Appl. 129 (2019)

156–168 . 
[4] B. Jagadeesh , C.M. Patil , Video based human activity detection, recognition
and classification of actions using SVM, Trans. Mach. Learn. Artif.Intell. 6 (6)

(2019) 22 . 
[5] C. Gu , C. Sun , D.A. Ross , C. Vondrick , C. Pantofaru , Y. Li , S. Vijayanarasimhan ,

G. Toderici , S. Ricco , R. Sukthankar , et al. , AVA: A video dataset of spa-
tio-temporally localized atomic visual actions, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 6047–
6056 . 

[6] J.A. Muñoz-Cristóbal , M.J. Rodríguez-Triana , V. Gallego-Lema , H.F. Ar-

ribas-Cubero , J.I. Asensio-Pérez , A. Martínez-Monés , Monitoring for
awareness and reflection in ubiquitous learning environments, Int. J.

Hum.–Comput.Interact. 34 (2) (2018) 146–165 . 
[7] F. Foerster , M. Smeja , Joint amplitude and frequency analysis of tremor activ-

ity., Electromyogr. Clin. Neurophysiol. 39 (1) (1999) 11–19 . 
[8] X. Ji , J. Cheng , W. Feng , D. Tao , Skeleton embedded motion body partition for

human action recognition using depth sequences, Signal Process. 143 (2018)

56–68 . 
[9] A. Jalal , Y.-H. Kim , Y.-J. Kim , S. Kamal , D. Kim , Robust human activity recog-

nition from depth video using spatiotemporal multi-fused features, Pattern
Recognit. 61 (2017) 295–308 . 

[10] G. Batchuluun , J.H. Kim , H.G. Hong , J.K. Kang , K.R. Park , Fuzzy system based
human behavior recognition by combining behavior prediction and recogni-

tion, Expert Syst. Appl. 81 (2017) 108–133 . 

[11] C. Xu , L.N. Govindarajan , L. Cheng , Hand action detection from ego-centric
depth sequences with error-correcting hough transform, Pattern Recognit. 72

(2017) 494–503 . 
[12] O.K. Oyedotun , A. Khashman , Deep learning in vision-based static hand ges-

ture recognition, Neural Comput. Appl. 28 (12) (2017) 3941–3951 . 
[13] L. Pigou , A. Van Den Oord , S. Dieleman , M. Van Herreweghe , J. Dambre , Be-

yond temporal pooling: recurrence and temporal convolutions for gesture

recognition in video, Int. J. Comput. Vis. 126 (2–4) (2018) 430–439 . 
[14] N.A. Capela , E.D. Lemaire , N. Baddour , Feature selection for wearable smart-

phone-based human activity recognition with able bodied, elderly, and stroke
patients, PLoS ONE 10 (4) (2015) e0124414 . 

[15] A. Prati , C. Shan , K.I.-K. Wang , Sensors, vision and networks: from video
surveillance to activity recognition and health monitoring, J. Ambient Intell.

Smart Environ. 11 (1) (2019) 5–22 . 

[16] S. Sankar , P. Srinivasan , R. Saravanakumar , Internet of things based ambient
assisted living for elderly people health monitoring, Res. J. Pharm. Technol. 11

(9) (2018) 3900–3904 . 
[17] E. Zdravevski , P. Lameski , V. Trajkovik , A. Kulakov , I. Chorbev , R. Goleva ,

N. Pombo , N. Garcia , Improving activity recognition accuracy in ambient-as-
sisted living systems by automated feature engineering, IEEE Access 5 (2017)

5262–5280 . 

[18] J. Qi , P. Yang , M. Hanneghan , S. Tang , B. Zhou , A hybrid hierarchical frame-
work for gym physical activity recognition and measurement using wearable

sensors, IEEE Internet Things J. 6 (2) (2018) 1384–1393 . 
[19] C. Aviles-Cruz , E. Rodriguez-Martinez , J. Villegas-Cortez , A. Ferreyra-Ramirez ,

Granger-causality: an efficient single user movement recognition using
a smartphone accelerometer sensor, Pattern Recognit. Lett. 125 (2019) 

576–583 . 
[20] G. Plasqui , Smart approaches for assessing free-living energy expenditure fol-

lowing identification of types of physical activity, Obes. Rev. 18 (2017) 50–

55 . 
[21] R. Varatharajan , G. Manogaran , M. Priyan , R. Sundarasekar , Wearable sensor

devices for early detection of alzheimer disease using dynamic time warping
algorithm, Cluster Comput. 21 (1) (2018) 681–690 . 

[22] E.E. Cust , A.J. Sweeting , K. Ball , S. Robertson , Machine and deep learning for
sport-specific movement recognition: a systematic review of model develop-

ment and performance, J. Sports Sci. 37 (5) (2019) 568–600 . 

[23] Z.S. Abdallah , M.M. Gaber , B. Srinivasan , S. Krishnaswamy , Activity recogni-
tion with evolving data streams: areview, ACM Comput. Surv. (CSUR) 51 (4)

(2018) 71 . 
[24] S. Herath , M. Harandi , F. Porikli , Going deeper into action recognition: a sur-

vey, Image Vis. Comput. 60 (2017) 4–21 . 
[25] X. Yang , Y. Tian , Super normal vector for human activity recognition

with depth cameras, IEEE Trans. Pattern Anal. Mach. Intell. 39 (5) (2017)

1028–1039 . 
[26] B. Alsinglawi , Q.V. Nguyen , U. Gunawardana , A. Maeder , S.J. Simoff, Rfid sys-

tems in healthcare settings and activity of daily living in smart homes: a re-
view, E-Health Telecommun. Syst. Netw. 6 (2017) 1–17 . 

[27] O.D. Lara , M.A. Labrador , A survey on human activity recognition using wear-
able sensors, IEEE Commun. Surv. Tutor. 15 (3) (2012) 1192–1209 . 

[28] M. Cornacchia , K. Ozcan , Y. Zheng , S. Velipasalar , A survey on activity de-

tection and classification using wearable sensors, IEEE Sens. J. 17 (2) (2017)
386–403 . 

[29] K.S. Kumar , R. Bhavani , Human activity recognition in egocentric video using
hog, gist and color features, Multimed. Tools Appl. (2018) 1–17 . 

[30] P.K. Roy , H. Om , Suspicious and violent activity detection of humans us-
ing hog features and SVM classifier in surveillance videos, in: Advances in

Soft Computing and Machine Learning in Image Processing, Springer, 2018,

pp. 277–294 . 
[31] A. Thyagarajmurthy , M. Ninad , B. Rakesh , S. Niranjan , B. Manvi , Anomaly de-

tection in surveillance video using pose estimation, in: Emerging Research
in Electronics, Computer Science and Technology, Springer, 2019, pp. 753–

766 . 

https://doi.org/10.13039/501100003725
https://doi.org/10.13039/501100010418
https://doi.org/10.13039/501100014188
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0031


20 L. Minh Dang, K. Min and H. Wang et al. / Pattern Recognition 108 (2020) 107561 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[32] L. Martínez-Villaseñor , H. Ponce , A concise review on sensor signal acqui-
sition and transformation applied to human activity recognition and hu-

man–robot interaction, International Journal of Distributed Sensor Networks
15 (6) (2019) . 1550147719853987 

[33] H. Yang , C. Yuan , B. Li , Y. Du , J. Xing , W. Hu , S.J. Maybank , Asymmetric 3d
convolutional neural networks for action recognition, Pattern Recognit. 85

(2019) 1–12 . 
[34] C. Hu , Y. Chen , L. Hu , X. Peng , A novel random forests based class incre-

mental learning method for activity recognition, Pattern Recognit. 78 (2018)

277–290 . 
[35] Q. Xiao , R. Song , Action recognition based on hierarchical dynamic bayesian

network, Multimed. Tools Appl. 77 (6) (2018) 6955–6968 . 
[36] C.A. Ronao , S.-B. Cho , Recognizing human activities from smartphone sensors

using hierarchical continuous hidden Markov models, International Journal of
Distributed Sensor Networks 13 (1) (2017) . 15501477166 836 87 

[37] P. Sok , T. Xiao , Y. Azeze , A. Jayaraman , M.V. Albert , Activity recognition for in-

complete spinal cord injury subjects using hidden Markov models, IEEE Sens.
J. 18 (15) (2018) 6369–6374 . 

[38] B.M. Abidine , L. Fergani , B. Fergani , M. Oussalah , The joint use of sequence
features combination and modified weighted SVM for improving daily activ-

ity recognition, Pattern Anal. Appl. 21 (1) (2018) 119–138 . 
[39] Z. Chen , Y. Wang , Infrared–ultrasonic sensor fusion for support vector

machine–based fall detection, J. Intell. Mater. Syst. Struct. 29 (9) (2018)

2027–2039 . 
[40] I. Portugal , P. Alencar , D. Cowan , The use of machine learning algorithms

in recommender systems: a systematic review, Expert Syst. Appl. 97 (2018)
205–227 . 

[41] T.N. Nguyen , H. Nguyen-Xuan , J. Lee , A novel data-driven nonlinear solver
for solid mechanics using time series forecasting, Finite Elem. Anal. Des. 171

(2020) 103377 . 

[42] E.P. Ijjina , K.M. Chalavadi , Human action recognition in RGB-D videos using
motion sequence information and deep learning, Pattern Recognit. 72 (2017)

504–516 . 
[43] T.-H. Tan , M. Gochoo , S.-C. Huang , Y.-H. Liu , S.-H. Liu , Y.-F. Huang , Multi-

-resident activity recognition in a smart home using RGB activity image and
DCNN, IEEE Sens. J. 18 (23) (2018) 9718–9727 . 

[44] T. Young , D. Hazarika , S. Poria , E. Cambria , Recent trends in deep learning

based natural language processing, IEEE Comput Intell Mag 13 (3) (2018)
55–75 . 

[45] A. Angeleas , N. Bourbakis , A two formal languages based model for represent-
ing human activities, in: 2016 IEEE 28th International Conference on Tools

with Artificial Intelligence (ICTAI), IEEE, 2016, pp. 779–783 . 
[46] M.S. Seyfio ̆glu , A.M. Özbayo ̆glu , S.Z. Gürbüz , Deep convolutional autoencoder

for radar-based classification of similar aided and unaided human activities,

IEEE Trans. Aerosp. Electron. Syst. 54 (4) (2018) 1709–1723 . 
[47] T.N. Nguyen , S. Lee , H. Nguyen-Xuan , J. Lee , A novel analysis-prediction ap-

proach for geometrically nonlinear problems using group method of data
handling, Comput. Methods Appl. Mech. Eng. 354 (2019) 506–526 . 

[48] Q. Zhang , L.T. Yang , Z. Chen , P. Li , A survey on deep learning for big data,
Inform. Fusion 42 (2018) 146–157 . 

[49] M. Mohammadi , A. Al-Fuqaha , S. Sorour , M. Guizani , Deep learning for IoT
big data and streaming analytics: a survey, IEEE Commun. Surv. Tutor. 20 (4)

(2018) 2923–2960 . 

[50] C. Chen , R. Jafari , N. Kehtarnavaz , A survey of depth and inertial sensor
fusion for human action recognition, Multimed. Tools Appl. 76 (3) (2017)

4 405–4 425 . 
[51] M. Ehatisham-Ul-Haq , A. Javed , M.A. Azam , H.M. Malik , A. Irtaza , I.H. Lee ,

M.T. Mahmood , Robust human activity recognition using multimodal fea-
ture-level fusion, IEEE Access 7 (2019) 60736–60751 . 

[52] T. Billah , S.M. Rahman , M.O. Ahmad , M. Swamy , Recognizing distractions for

assistive driving by tracking body parts, IEEE Trans. Circuits Syst. Video Tech-
nol. 29 (4) (2018) 1048–1062 . 

[53] E. Ohn-Bar , M.M. Trivedi , Looking at humans in the age of self-driving and
highly automated vehicles, IEEE Trans. Intell. Veh. 1 (1) (2016) 90–104 . 

[54] R. Mojarad , F. Attal , A. Chibani , S.R. Fiorini , Y. Amirat , Hybrid approach for
human activity recognition by ubiquitous robots, in: 2018 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), IEEE, 2018,

pp. 5660–5665 . 
[55] J. Rafferty , C.D. Nugent , J. Liu , L. Chen , From activity recognition to intention

recognition for assisted living within smart homes, IEEE Trans. Hum. Mach.
Syst. 47 (3) (2017) 368–379 . 

[56] J. Wan , M.J. O’grady , G.M. O’hare , Dynamic sensor event segmentation for re-
al-time activity recognition in a smart home context, Pers. Ubiquitous Com-

put. 19 (2) (2015) 287–301 . 

[57] C. Wateosot , N. Suvonvorn , Group activity recognition with an interaction
force based on low-level features, IEEJ Trans. Electr. Electron. Eng. 14 (7)

(2019) 1061–1073 . 
[58] S. Wang , G. Zhou , A review on radio based activity recognition, Digit. Com-

mun. Netw. 1 (1) (2015) 20–29 . 
[59] A. Tsitsoulis , N. Bourbakis , A first stage comparative survey on vision-based

human activity recognition, J. AI Tools 24 (6) (2013) . 

[60] L. Onofri , P. Soda , M. Pechenizkiy , G. Iannello , A survey on using domain and
contextual knowledge for human activity recognition in video streams, Expert

Syst. Appl. 63 (2016) 97–111 . 
[61] J. Morales , D. Akopian , Physical activity recognition by smartphones, a survey,

Biocybern. Biomed. Eng. 37 (3) (2017) 388–400 . 
[62] P. Wang , W. Li , P. Ogunbona , J. Wan , S. Escalera , RGB-D-based human motion
recognition with deep learning: a survey, Comput. Vis. Image Underst. 171

(2018) 118–139 . 
[63] S. Ramasamy Ramamurthy , N. Roy , Recent trends in machine learning for hu-

man activity recognition–a survey, Wiley Interdiscip. Rev: Data Min. Knowl.
Discov. 8 (4) (2018) e1254 . 

[64] J. Wang , Y. Chen , S. Hao , X. Peng , L. Hu , Deep learning for sensor-based activ-
ity recognition: a survey, Pattern Recognit. Lett. 119 (2019) 3–11 . 

[65] M. Ziaeefard , R. Bergevin , Semantic human activity recognition: a literature

review, Pattern Recognit. 48 (8) (2015) 2329–2345 . 
[66] J.-L. Reyes-Ortiz , L. Oneto , A. Samà, X. Parra , D. Anguita , Transition-aware

human activity recognition using smartphones, Neurocomputing 171 (2016)
754–767 . 

[67] J. Ye , G. Qi , N. Zhuang , H. Hu , K.A. Hua , Learning compact features for human
activity recognition via probabilistic first-take-all, IEEE Trans. Pattern Anal.

Mach. Intell. 42 (1) (2018) 126–139 . 

[68] M.M. Hassan , S. Huda , M.Z. Uddin , A. Almogren , M. Alrubaian , Human activity
recognition from body sensor data using deep learning, J. Med. Syst. 42 (6)

(2018) 99 . 
[69] M.M. Hassan , M.Z. Uddin , A. Mohamed , A. Almogren , A robust human activ-

ity recognition system using smartphone sensors and deep learning, Future
Gener. Comput. Syst. 81 (2018) 307–313 . 

[70] A. Ignatov , Real-time human activity recognition from accelerometer data

using convolutional neural networks, Appl. Soft Comput. 62 (2018) 915–
922 . 

[71] L. Zhao , Z. Wang , X. Wang , Y. Qi , Q. Liu , G. Zhang , Human fatigue expression
recognition through image-based dynamic multi-information and bimodal

deep learning, J. Electron. Imaging 25 (5) (2016) 053024 . 
[72] L.M. Dang , M. Piran , D. Han , K. Min , H. Moon , et al. , A survey on inter-

net of things and cloud computing for healthcare, Electronics 8 (7) (2019) 

768 . 
[73] R. Yao , G. Lin , Q. Shi , D.C. Ranasinghe , Efficient dense labelling of human ac-

tivity sequences from wearables using fully convolutional networks, Pattern
Recognit. 78 (2018) 252–266 . 

[74] N. Hegde , M. Bries , T. Swibas , E. Melanson , E. Sazonov , Automatic recogni-
tion of activities of daily living utilizing insole-based and wrist-worn wear-

able sensors, IEEE J. Biomed. Health Inform. 22 (4) (2018) 979–988 . 

[75] W. Wang , A.X. Liu , M. Shahzad , K. Ling , S. Lu , Device-free human activity
recognition using commercial WiFi devices, IEEE J. Sel. Areas Commun. 35

(5) (2017) 1118–1131 . 
[76] W. Ruan , Q.Z. Sheng , L. Yao , X. Li , N.J. Falkner , L. Yang , Device-free human

localization and tracking with UHF passive RFID tags: a data-driven approach,
J. Netw. Comput. Appl. 104 (2018) 78–96 . 

[77] L. Roland , L. Lidauer , G. Sattlecker , F. Kickinger , W. Auer , V. Sturm ,

D. Efrosinin , M. Drillich , M. Iwersen , Monitoring drinking behavior in buck-
et-fed dairy calves using an ear-attached tri-axial accelerometer: a pilot

study, Comput. Electron. Agric. 145 (2018) 298–301 . 
[78] X. Fan , F. Wang , F. Wang , W. Gong , J. Liu , When RFID meets deep learning: ex-

ploring cognitive intelligence for activity identification, IEEE Wirel. Commun.
(2019) 2 . 

[79] J. Qi , P. Yang , A. Waraich , Z. Deng , Y. Zhao , Y. Yang , Examining sensor-based
physical activity recognition and monitoring for healthcare using inter-

net of things: a systematic review, J. Biomed. Inform. 87 (2018) (2018) 

138–153 . 
[80] J. Hao , A. Bouzouane , S. Gaboury , Recognizing multi-resident activities in

non-intrusive sensor-based smart homes by formal concept analysis, Neuro-
computing 318 (2018) 75–89 . 

[81] N. Roy , A. Misra , D. Cook , Ambient and smartphone sensor assisted ADL
recognition in multi-inhabitant smart environments, J. Ambient Intell. Hu-

maniz. Comput. 7 (1) (2016) 1–19 . 

[82] Y. Athavale , S. Krishnan , A device-independent efficient actigraphy signal-en-
coding system for applications in monitoring daily human activities and

health, Sensors 18 (9) (2018) 2966 . 
[83] M. Westhoven , C. Plegge , T. Henrich , T. Alexander , Posture based recogni-

tion of the visual focus of attention for adaptive mobile information sys-
tems, in: International Conference on Augmented Cognition, Springer, 2016,

pp. 416–427 . 

[84] C. Xu , J. He , X. Zhang , C. Yao , P.-H. Tseng , Geometrical kinematic modeling
on human motion using method of multi-sensor fusion, Inf. Fusion 41 (2018)

243–254 . 
[85] P. Davidson , H. Virekunnas , D. Sharma , R. Piché, N. Cronin , Continuous analy-

sis of running mechanics by means of an integrated INS/GPS device, Sensors
19 (6) (2019) 1480 . 

[86] X. Luo , Q. Guan , H. Tan , L. Gao , Z. Wang , X. Luo , Simultaneous indoor tracking

and activity recognition using pyroelectric infrared sensors, Sensors 17 (8)
(2017) 1738 . 

[87] A.M. Wempe , R.F. Keefe , S.M. Newman , T.B. Paveglio , Intent to adopt location
sharing for logging safety applications, Safety 5 (1) (2019) 7 . 

[88] A. Jayatilaka , D.C. Ranasinghe , Real-time fluid intake gesture recognition
based on batteryless UHF RFID technology, Pervasive Mob. Comput. 34 (2017)

146–156 . 

[89] Y. Gu , F. Ren , J. Li , PAWS: Passive human activity recognition based on WiFi
ambient signals, IEEE Internet Things J. 3 (5) (2016) 796–805 . 

[90] D. Rodríguez-Martín , A. Samà, C. Pérez-López , A. Català, J. Cabestany , Posture
transition analysis with barometers: contribution to accelerometer-based al-

gorithms, Neural Comput. Appl. (2018) 1–15 . 

http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0056
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0061
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0061
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0061
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0063
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0063
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0063
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0066
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0066
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0066
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0066
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0066
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0066
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0067
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0067
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0067
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0067
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0067
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0067
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0069
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0069
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0069
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0069
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0069
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0070
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0070
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0071
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0071
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0071
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0071
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0071
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0071
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0071
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0072
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0072
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0072
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0072
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0072
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0072
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0072
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0073
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0073
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0073
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0073
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0073
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0074
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0074
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0074
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0074
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0074
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0074
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0075
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0075
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0075
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0075
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0075
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0075
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0076
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0076
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0076
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0076
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0076
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0076
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0076
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0077
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0078
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0078
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0078
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0078
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0078
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0078
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0079
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0079
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0079
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0079
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0079
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0079
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0079
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0080
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0080
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0080
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0080
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0081
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0081
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0081
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0081
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0082
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0082
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0082
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0083
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0083
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0083
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0083
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0083
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0084
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0084
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0084
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0084
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0084
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0084
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0085
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0085
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0085
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0085
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0085
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0085
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0086
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0086
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0086
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0086
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0086
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0086
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0086
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0087
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0087
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0087
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0087
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0087
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0088
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0088
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0088
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0089
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0089
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0089
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0089
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0090
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0090
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0090
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0090
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0090
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0090


L. Minh Dang, K. Min and H. Wang et al. / Pattern Recognition 108 (2020) 107561 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[91] F. Masse , R. Gonzenbach , A. Paraschiv-Ionescu , A.R. Luft , K. Aminian , Wear-
able barometric pressure sensor to improve postural transition recognition of

mobility-impaired stroke patients, IEEE Trans. Neural Syst. Rehabil. Eng. 24
(11) (2016) 1210–1217 . 

[92] M. Gochoo , T.-H. Tan , S.-H. Liu , F.-R. Jean , F.S. Alnajjar , S.-C. Huang , Un-
obtrusive activity recognition of elderly people living alone using anony-

mous binary sensors and DCNN, IEEE J. Biomed. Health Inform. 23 (2) (2018)
693–702 . 

[93] S. Chernbumroong , S. Cang , H. Yu , Genetic algorithm-based classifiers fusion

for multisensor activity recognition of elderly people, IEEE J. Biomed. Health
Inform. 19 (1) (2015) 282–289 . 

[94] C. Galván-Tejada , F. López-Monteagudo , O. Alonso-González , J. Galván-Tejada ,
J. Celaya-Padilla , H. Gamboa-Rosales , R. Magallanes-Quintanar , L. Zanella–

Calzada , A generalized model for indoor location estimation using environ-
mental sound from human activity recognition, ISPRS Int. J. Geoinf. 7 (3)

(2018) 81 . 

[95] J. Kang , J. Kim , K. Kim , M. Sohn , Complex activity recognition using poly-
phonic sound event detection, in: International Conference on Innova-

tive Mobile and Internet Services in Ubiquitous Computing, Springer, 2018,
pp. 675–684 . 

[96] W. Li , B. Tan , Y. Xu , R.J. Piechocki , Log-likelihood clustering-enabled passive
RF sensing for residential activity recognition, IEEE Sens. J. 18 (13) (2018)

5413–5421 . 

[97] P. Bharti , D. De , S. Chellappan , S.K. Das , HuMAn: complex activity recognition
with multi-modal multi-positional body sensing, IEEE Trans. Mob. Comput.

18 (4) (2019) 857–870 . 
[98] D. Micucci , M. Mobilio , P. Napoletano , UniMiB SHAR: A dataset for human

activity recognition using acceleration data from smartphones, Appl. Sci. 7
(10) (2017) 1101 . 

[99] T. Sztyler , H. Stuckenschmidt , On-body localization of wearable devices: an

investigation of position-aware activity recognition, in: 2016 IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom),

IEEE, 2016, pp. 1–9 . 
[100] A. Stisen , H. Blunck , S. Bhattacharya , T.S. Prentow , M.B. Kjærgaard , A. Dey ,

T. Sonne , M.M. Jensen , Smart devices are different: assessing and mitigating-
mobile sensing heterogeneities for activity recognition, in: Proceedings of the

13th ACM Conference on Embedded Networked Sensor Systems, ACM, 2015,

pp. 127–140 . 
[101] T. Hayashi , M. Nishida , N. Kitaoka , K. Takeda , Daily activity recognition

based on DNN using environmental sound and acceleration signals, in: 2015
23rd European Signal Processing Conference (EUSIPCO), IEEE, 2015, pp. 

2306–2310 . 
[102] O. Banos , C. Villalonga , R. Garcia , A. Saez , M. Damas , J.A. Holgado-Terriza ,

S. Lee , H. Pomares , I. Rojas , Design, implementation and validation of a

novel open framework for agile development of mobile health applications,
Biomed. Eng. Online 14 (2) (2015) S6 . 

[103] R.L.S. Torres , D.C. Ranasinghe , Q. Shi , A.P. Sample , Sensor enabled wearable
RFID technology for mitigating the risk of falls near beds, in: 2013 IEEE In-

ternational Conference on RFID (RFID), IEEE, 2013, pp. 191–198 . 
[104] D. Anguita , A. Ghio , L. Oneto , X. Parra , J.L. Reyes-Ortiz , A public domain

dataset for human activity recognition using smartphones., in: 2013 Proceed-
ings, European Symposium on Artificial Neural Networks, Computational In-

telligence and Machine Learning (Esann), 2013, pp. 24–26 . 

[105] R. Chavarriaga , H. Sagha , A. Calatroni , S.T. Digumarti , G. Tröster , J.d.R. Mil-
lán , D. Roggen , The opportunity challenge: a benchmark database for on–

body sensor-based activity recognition, Pattern Recognit. Lett. 34 (15) (2013)
2033–2042 . 

[106] J.R. Kwapisz , G.M. Weiss , S.A. Moore , Activity recognition using cell phone
accelerometers, ACM SigKDD Explor. Newsl. 12 (2) (2011) 74–82 . 

[107] D. Xu , Y. Yan , E. Ricci , N. Sebe , Detecting anomalous events in videos by learn-

ing deep representations of appearance and motion, Comput. Vis. Image Un-
derst. 156 (2017) 117–127 . 

[108] N. Zerrouki , F. Harrou , Y. Sun , A. Houacine , Vision-based human action clas-
sification using adaptive boosting algorithm, IEEE Sens. J. 18 (12) (2018)

5115–5121 . 
[109] H. Kuehne , H. Jhuang , E. Garrote , T. Poggio , T. Serre , HMDB: A large video

database for human motion recognition, in: 2011 International Conference on

Computer Vision, IEEE, 2011, pp. 2556–2563 . 
[110] J.C. Nunez , R. Cabido , J.J. Pantrigo , A.S. Montemayor , J.F. Velez , Convolutional

neural networks and long short-term memory for skeleton-based human ac-
tivity and hand gesture recognition, Pattern Recognit. 76 (2018) 80–94 . 

[111] S. Ghazal , U.S. Khan , M.M. Saleem , N. Rashid , J. Iqbal , Human activity recogni-
tion using 2d skeleton data and supervised machine learning, IET Image Proc.

13 (13) (2019) 2572–2578 . 

[112] E. Cippitelli , S. Gasparrini , E. Gambi , S. Spinsante , A human activity recogni-
tion system using skeleton data from RGBD sensors, Comput. Intell. Neurosci.

2016 (2016) 21 . 
[113] J. Carreira, E. Noland, C. Hillier, A. Zisserman, A short note on the kinetics-700

human action dataset, arXiv: 1907.06987 (2019). 
[114] A. Shahroudy , J. Liu , T.-T. Ng , G. Wang , NTU RGB+D: A large scale dataset

for 3d human activity analysis, in: IEEE Conference on Computer Vision and

Pattern Recognition, 2016 . 
[115] H. Zhao , A. Torralba , L. Torresani , Z. Yan , HACS: Human action clips and

segments dataset for recognition and temporal localization, in: Proceedings
of the IEEE International Conference on Computer Vision, 2019, pp. 8668–

8678 . 
[116] M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S.A. Bargal, T. Yan,
L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, et al., Moments in time dataset:

one million videos for event understanding, IEEE Trans. Pattern Anal. Mach.
Intell. (2019) 1–8, doi: 10.1109/TPAMI.2019.2901464 . 

[117] S. Yeung , O. Russakovsky , N. Jin , M. Andriluka , G. Mori , L. Fei-Fei , Every mo-
ment counts: dense detailed labeling of actions in complex videos, Int. J.

Comput. Vis. 126 (2–4) (2018) 375–389 . 
[118] R. Goyal , S.E. Kahou , V. Michalski , J. Materzynska , S. Westphal , H. Kim ,

V. Haenel , I. Fruend , P. Yianilos , M. Mueller-Freitag , et al. , The something

something video database for learning and evaluating visual common sense,
in: 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, 2017,

pp. 5843–5851 . 
[119] G.A . Sigurdsson , A . Gupta , C. Schmid , A. Farhadi , K. Alahari , Actor and ob-

server: Joint modeling of first and third-person videos, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018,

pp. 7396–7404 . 

[120] P. Weinzaepfel, X. Martin, C. Schmid, Human action localization with sparse
spatial supervision, arXiv: 1605.05197 (2016). 

[121] F.C. Heilbron , V. Escorcia , B. Ghanem , J.C. Niebles , ActivityNet: A large-s-
cale video benchmark for human activity understanding, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 961–970 . 

[122] C. Chen , R. Jafari , N. Kehtarnavaz , UTD-MHAD: A multimodal dataset for hu-

man action recognition utilizing a depth camera and a wearable inertial sen-
sor, in: 2015 IEEE International Conference on Image Processing (ICIP), IEEE,

2015, pp. 168–172 . 
[123] A. Karpathy , G. Toderici , S. Shetty , T. Leung , R. Sukthankar , L. Fei-Fei , Large-s-

cale video classification with convolutional neural networks, in: Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, 2014,

pp. 1725–1732 . 

[124] F. Ofli , R. Chaudhry , G. Kurillo , R. Vidal , R. Bajcsy , Berkeley MHAD: A
comprehensive multimodal human action database, in: 2013 IEEE Work-

shop on Applications of Computer Vision (WACV), IEEE, 2013, pp. 53–
60 . 

[125] H.S. Koppula , R. Gupta , A. Saxena , Learning human activities and object affor-
dances from RGB-D videos, Int. J. Rob. Res. 32 (8) (2013) 951–970 . 

[126] K. Soomro, A.R. Zamir, M. Shah, UCF101: A dataset of 101 human actions

classes from videos in the wild, arXiv: 1212.0402 (2012). 
[127] K. Yun , J. Honorio , D. Chattopadhyay , T.L. Berg , D. Samaras , Two-person in-

teraction detection using body-pose features and multiple instance learning,
in: 2012 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), IEEE, 2012 . 
[128] M.S. Ryoo , J.K. Aggarwal , Spatio-temporal relationship match: video structure

comparison for recognition of complex human activities., in: 2009 IEEE Inter-

national Conference on Computer Vision (ICCV), vol. 1, Citeseer, 2009, p. 2 . 
[129] M. Marszałek , I. Laptev , C. Schmid , Actions in context, in: IEEE Conference on

Computer Vision & Pattern Recognition, 2009 . 
[130] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, A. Weber, Documen-

tation mocap database HDM05(2007). 
[131] G.A. Sigurdsson , G. Varol , X. Wang , A. Farhadi , I. Laptev , A. Gupta , Hollywood

in homes: crowdsourcing data collection for activity understanding, in: Euro-
pean Conference on Computer Vision, Springer, 2016, pp. 510–526 . 

[132] S. Bhattacharya , N.D. Lane , From smart to deep: Robust activity recogni-

tion on smartwatches using deep learning, in: 2016 IEEE International Con-
ference on Pervasive Computing and Communication Workshops (PerCom

Workshops), IEEE, 2016, pp. 1–6 . 
[133] H. Castro , V. Correia , E. Sowade , K. Mitra , J. Rocha , R. Baumann ,

S. Lanceros-Méndez , All-inkjet-printed low-pass filters with adjustable cutoff
frequency consisting of resistors, inductors and transistors for sensor applica-

tions, Org. Electron. 38 (2016) 205–212 . 

[134] S. Wang , X. Zhang , X. Liu , J. Zhang , S. Ma , W. Gao , Utility-driven adaptive
preprocessing for screen content video compression, IEEE Trans. Multimed.

19 (3) (2016) 660–667 . 
[135] C. Ma , A. Wang , G. Chen , C. Xu , Hand joints-based gesture recognition for

noisy dataset using nested interval unscented Kalman filter with LSTM net-
work, Vis. Comput. 34 (6–8) (2018) 1053–1063 . 

[136] A.D. Ignatov , V.V. Strijov , Human activity recognition using quasiperiodic time

series collected from a single tri-axial accelerometer, Multimed. Tools Appl.
75 (12) (2016) 7257–7270 . 

[137] Z. Wang , D. Wu , J. Chen , A . Ghoneim , M.A . Hossain , A triaxial ac-
celerometer-based human activity recognition via EEMD-based features

and game-theory-based feature selection, IEEE Sens. J. 16 (9) (2016) 
3198–3207 . 

[138] D. Triboan , L. Chen , F. Chen , Z. Wang , A semantics-based approach to sensor

data segmentation in real-time activity recognition, Future Gener. Comput.
Syst. 93 (2019) 224–236 . 

[139] N.Y. Hammerla , S. Halloran , T. Plötz , Deep, convolutional, and recurrent mod-
els for human activity recognition using wearables, in: Proceedings of the

Twenty-Fifth International Joint Conference on Artificial Intelligence, in: IJ-
CAI’16, AAAI Press, 2016, pp. 1533–1540 . 

[140] M.H.M. Noor , Z. Salcic , I. Kevin , K. Wang , Adaptive sliding window segmen-

tation for physical activity recognition using a single tri-axial accelerometer,
Pervasive Mob. Comput. 38 (2017) 41–59 . 

[141] Z. Qin , Y. Zhang , S. Meng , Z. Qin , K.-K.R. Choo , Imaging and fusing time series
for wearable sensor-based human activity recognition, Inf. Fusion 53 (2020)

80–87 . 

http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0091
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0091
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0091
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0091
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0091
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0091
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0092
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0092
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0092
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0092
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0092
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0092
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0092
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0093
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0093
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0093
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0093
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0094
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0095
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0095
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0095
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0095
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0095
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0096
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0096
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0096
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0096
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0096
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0097
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0097
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0097
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0097
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0097
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0098
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0098
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0098
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0098
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0099
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0099
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0099
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0100
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0101
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0101
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0101
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0101
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0101
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0102
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0103
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0103
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0103
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0103
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0103
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0104
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0104
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0104
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0104
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0104
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0104
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0105
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0105
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0105
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0105
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0105
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0105
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0105
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0105
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0106
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0106
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0106
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0106
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0107
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0107
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0107
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0107
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0107
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0108
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0108
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0108
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0108
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0108
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0109
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0109
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0109
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0109
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0109
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0109
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0110
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0110
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0110
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0110
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0110
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0110
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0111
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0111
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0111
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0111
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0111
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0111
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0112
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0112
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0112
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0112
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0112
http://arxiv.org/abs/1907.06987
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0113
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0113
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0113
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0113
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0113
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0114
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0114
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0114
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0114
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0114
https://doi.org/10.1109/TPAMI.2019.2901464
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0116
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0116
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0116
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0116
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0116
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0116
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0116
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0117
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0118
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0118
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0118
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0118
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0118
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0118
http://arxiv.org/abs/1605.05197
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0119
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0119
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0119
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0119
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0119
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0120
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0120
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0120
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0120
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0121
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0121
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0121
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0121
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0121
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0121
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0121
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0122
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0122
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0122
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0122
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0122
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0122
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0123
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0123
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0123
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0123
http://arxiv.org/abs/1212.0402
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0124
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0124
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0124
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0124
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0124
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0124
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0125
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0125
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0125
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0126
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0126
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0126
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0126
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0127
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0127
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0127
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0127
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0127
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0127
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0127
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0128
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0128
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0128
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0129
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0129
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0129
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0129
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0129
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0129
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0129
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0129
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0130
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0130
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0130
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0130
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0130
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0130
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0130
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0131
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0131
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0131
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0131
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0131
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0132
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0132
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0132
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0133
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0133
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0133
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0133
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0133
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0133
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0134
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0134
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0134
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0134
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0134
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0135
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0135
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0135
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0135
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0136
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0136
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0136
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0136
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0136
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0137
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0137
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0137
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0137
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0137
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0137


22 L. Minh Dang, K. Min and H. Wang et al. / Pattern Recognition 108 (2020) 107561 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

[142] H. He , Y. Tan , W. Zhang , A wavelet tensor fuzzy clustering scheme for
multi-sensor human activity recognition, Eng. Appl. Artif. Intell. 70 (2018) 

109–122 . 
[143] S.U. Jan , Y.-D. Lee , J. Shin , I. Koo , Sensor fault classification based on support

vector machine and statistical time-domain features, IEEE Access 5 (2017)
8682–8690 . 

[144] F. Gu , K. Khoshelham , S. Valaee , J. Shang , R. Zhang , Locomotion activity recog-
nition using stacked denoising autoencoders, IEEE Internet Things J. 5 (3)

(2018) 2085–2093 . 

[145] J. Wang , X. Zhang , Q. Gao , X. Ma , X. Feng , H. Wang , Device-free simultaneous
wireless localization and activity recognition with wavelet feature, IEEE Trans.

Veh. Technol. 66 (2) (2017) 1659–1669 . 
[146] J. Guo , Y. Mu , M. Xiong , Y. Liu , J. Gu , Activity feature solving based on TF-IDF

for activity recognition in smart homes, Complexity 2019 (2019) . 
[147] A. Bhavan , S. Aggarwal , Stacked generalization with wrapper-based feature

selection for human activity recognition, in: 2018 IEEE Symposium Series on

Computational Intelligence (SSCI), IEEE, 2018, pp. 1064–1068 . 
[148] F. Viegas , L. Rocha , M. Gonçalves , F. Mourão , G. Sá, T. Salles , G. Andrade ,

I. Sandin , A genetic programming approach for feature selection in highly di-
mensional skewed data, Neurocomputing 273 (2018) 554–569 . 

[149] D.D. Dawn , S.H. Shaikh , A comprehensive survey of human action recognition
with spatio-temporal interest point (STIP) detector, Vis. Comput. 32 (3) (2016)

289–306 . 

[150] B. Sun , Y. Li , C. Guosheng , J. Zhang , B. Chang , C. Min , Moving target segmen-
tation using Markov random field-based evaluation metric in infrared videos,

Opt. Eng. 57 (1) (2018) 013106 . 
[151] M. Babaee , D.T. Dinh , G. Rigoll , A deep convolutional neural network for video

sequence background subtraction, Pattern Recognit. 76 (2018) 635–649 . 
[152] H. Mliki , F. Bouhlel , M. Hammami , Human activity recognition from UAV-cap-

tured video sequences, Pattern Recognit. 100 (2019) 107140 . 

[153] W. Kim , Y. Kim , Background subtraction using illumination-invariant struc-
tural complexity, IEEE Signal Process. Lett. 23 (5) (2016) 634–638 . 

[154] K. Goyal , J. Singhai , Texture-based self-adaptive moving object detection tech-
nique for complex scenes, Comput. Electr. Eng. 70 (2018) 275–283 . 

[155] B.N. Subudhi , S. Ghosh , S.C. Shiu , A. Ghosh , Statistical feature bag based
background subtraction for local change detection, Inf. Sci. 366 (2016) 

31–47 . 

[156] Y. Shen , W. Hu , M. Yang , J. Liu , B. Wei , S. Lucey , C.T. Chou , Real-time and
robust compressive background subtraction for embedded camera networks,

IEEE Trans. Mob. Comput. 15 (2) (2016) 406–418 . 
[157] S. Jiang , X. Lu , WeSamBE: A weight-sample-based method for background

subtraction, IEEE Trans. Circuits Syst. Video Technol. 28 (9) (2018) 2105–2115 .
[158] D.K. Panda , S. Meher , Detection of moving objects using fuzzy color differ-

ence histogram based background subtraction, IEEE Signal Process. Lett. 23

(1) (2016) 45–49 . 
[159] Z. Zeng , J. Jia , D. Yu , Y. Chen , Z. Zhu , Pixel modeling using histograms based

on fuzzy partitions for dynamic background subtraction, IEEE Trans. Fuzzy
Syst. 25 (3) (2017) 584–593 . 

[160] A . Darwich , P.-A . Hébert , A . Bigand , Y. Mohanna , Background subtraction
based on a new fuzzy mixture of gaussians for moving object detection, J.

Imaging 4 (7) (2018) 92 . 
[161] D. Sakkos , H. Liu , J. Han , L. Shao , End-to-end video background subtraction

with 3d convolutional neural networks, Multimed. Tools Appl. 77 (17) (2018)

23023–23041 . 
[162] T. Minematsu , A. Shimada , H. Uchiyama , R.-i. Taniguchi , Analytics of deep

neural network-based background subtraction, J. Imaging 4 (6) (2018) 78 . 
[163] H. Yong , D. Meng , W. Zuo , L. Zhang , Robust online matrix factorization for

dynamic background subtraction, IEEE Trans. Pattern Anal. Mach. Intell. 40
(7) (2018) 1726–1740 . 

[164] M. Chen , X. Wei , Q. Yang , Q. Li , G. Wang , M.-H. Yang , Spatiotemporal GMM for

background subtraction with superpixel hierarchy, IEEE Trans. Pattern Anal.
Mach. Intell. 40 (6) (2018) 1518–1525 . 

[165] X. Liu , J. Yao , X. Hong , X. Huang , Z. Zhou , C. Qi , G. Zhao , Background subtrac-
tion using spatio-temporal group sparsity recovery, IEEE Trans. Circuits Syst.

Video Technol. 28 (8) (2018) 1737–1751 . 
[166] D. Berjón , C. Cuevas , F. Morán , N. García , Real-time nonparametric back-

ground subtraction with tracking-based foreground update, Pattern Recognit.

74 (2018) 156–170 . 
[167] A. Ladjailia , I. Bouchrika , H.F. Merouani , N. Harrati , Z. Mahfouf , Human ac-

tivity recognition via optical flow: decomposing activities into basic actions,
Neural Comput. Appl. (2019) 1–14 . 

[168] A. Ullah , K. Muhammad , J. Del Ser , S.W. Baik , V. Albuquerque , Activity recog-
nition using temporal optical flow convolutional features and multi-layer

LSTM, IEEE Trans. Ind. Electron. 66 (12) (2018) 9692–9702 . 

[169] R. Singh , J.K. Dhillon , A.K.S. Kushwaha , R. Srivastava , Depth based enlarged
temporal dimension of 3d deep convolutional network for activity recogni-

tion, Multimed. Tools Appl. 78 (21) (2019) 30599–30614 . 
[170] L. Liu , S. Wang , Y. Peng , Z. Huang , M. Liu , B. Hu , Mining intricate temporal

rules for recognizing complex activities of daily living under uncertainty, Pat-
tern Recognit. 60 (2016) 1015–1028 . 

[171] C. Dhiman , D.K. Vishwakarma , A review of state-of-the-art techniques for

abnormal human activity recognition, Eng. Appl. Artif. Intell. 77 (2019) 21–
45 . 

[172] K. Kim , A. Jalal , M. Mahmood , Vision-based human activity recognition sys-
tem using depth silhouettes: a smart home system for monitoring the resi-

dents, J. Electr. Eng. Technol. 14 (6) (2019) 2567–2573 . 
[173] F. Baumann , A. Ehlers , B. Rosenhahn , J. Liao , Recognizing human actions using
novel space-time volume binary patterns, Neurocomputing 173 (2016) 54–63 .

[174] O. Kihl , D. Picard , P.-H. Gosselin , Local polynomial space–time descriptors for
action classification, Mach. Vis. Appl. 27 (3) (2016) 351–361 . 

[175] Y. Fu , T. Zhang , W. Wang , Sparse coding-based space-time video rep-
resentation for action recognition, Multimed. Tools Appl. 76 (10) (2017)

12645–12658 . 
[176] A. Shahroudy , T.-T. Ng , Q. Yang , G. Wang , Multimodal multipart learning for

action recognition in depth videos, IEEE Trans. Pattern Anal. Mach. Intell. 38

(10) (2016) 2123–2129 . 
[177] G.V. Kale , Human activity recognition on real time and offline dataset, Int. J.

Intell. Syst. Appl. Eng. 7 (1) (2019) 60–65 . 
[178] M.A.R. Ahad , J. Tan , H. Kim , S. Ishikawa , Activity representation by SUR-

F-based templates, Comput. Methods Biomech. Biomed. Eng. Imaging Visual.
6 (5) (2018) 573–583 . 

[179] C.I. Patel , S. Garg , T. Zaveri , A. Banerjee , R. Patel , Human action recognition

using fusion of features for unconstrained video sequences, Comput. Electr.
Eng. 70 (2018) 284–301 . 

[180] F. Patrona , A. Chatzitofis , D. Zarpalas , P. Daras , Motion analysis: action de-
tection, recognition and evaluation based on motion capture data, Pattern

Recognit. 76 (2018) 612–622 . 
[181] J. Tang , H. Cheng , Y. Zhao , H. Guo , Structured dynamic time warping for

continuous hand trajectory gesture recognition, Pattern Recognit. 80 (2018)

21–31 . 
[182] M. Li , Z. Zhou , X. Liu , Multi-person pose estimation using bounding box con-

straint and LSTM, IEEE Trans. Multimed. 21 (10) (2019) 2653–2663 . 
[183] K. Nishi , J. Miura , Generation of human depth images with body part labels

for complex human pose recognition, Pattern Recognit. 71 (2017) 402–413 . 
[184] Y. Zhang , H. Lu , L. Zhang , X. Ruan , Combining motion and appearance cues

for anomaly detection, Pattern Recognit. 51 (2016) 443–452 . 

[185] L. Liu , S. Wang , G. Su , Z.-G. Huang , M. Liu , Towards complex activity recogni-
tion using a bayesian network-based probabilistic generative framework, Pat-

tern Recognit. 68 (2017) 295–309 . 
[186] L. Liu , S. Wang , B. Hu , Q. Qiong , J. Wen , D.S. Rosenblum , Learning structures

of interval-based bayesian networks in probabilistic generative model for hu-
man complex activity recognition, Pattern Recognit. 81 (2018) 545–561 . 

[187] R. Akhavian , A.H. Behzadan , Smartphone-based construction workers’ activity

recognition and classification, Autom. Constr. 71 (2016) 198–209 . 
[188] M. Muaaz , R. Mayrhofer , Accelerometer based gait recognition using adapted

gaussian mixture models, in: Proceedings of the 14th International Con-
ference on Advances in Mobile Computing and Multi Media, ACM, 2016,

pp. 288–291 . 
[189] M. Jiang , Y. Liang , X. Feng , X. Fan , Z. Pei , Y. Xue , R. Guan , Text classification

based on deep belief network and softmax regression, Neural Comput. Appl.

29 (1) (2018) 61–70 . 
[190] L. Wang , Recognition of human activities using continuous autoencoders with

wearable sensors, Sensors 16 (2) (2016) 189 . 
[191] M. Gnouma , A. Ladjailia , R. Ejbali , M. Zaied , Stacked sparse autoencoder and

history of binary motion image for human activity recognition, Multimed.
Tools Appl. 78 (2) (2019) 2157–2179 . 

[192] S.S. Khan , B. Taati , Detecting unseen falls from wearable devices using chan-
nel-wise ensemble of autoencoders, Expert Syst. Appl. 87 (2017) 280–290 . 

[193] J.D. Farah , N. Baddour , E.D. Lemaire , Design, development, and evalua-

tion of a local sensor-based gait phase recognition system using a logistic
model decision tree for orthosis-control, J. Neuroeng. Rehabil. 16 (1) (2019) 

22 . 
[194] U.M. Nunes , D.R. Faria , P. Peixoto , A human activity recognition framework

using max-min features and key poses with differential evolution random
forests classifier, Pattern Recognit. Lett. 99 (2017) 21–31 . 

[195] A .-A . Liu , W.-Z. Nie , Y.-T. Su , L. Ma , T. Hao , Z.-X. Yang , Coupled hidden condi-

tional random fields for RGB-D human action recognition, Signal Process. 112
(2015) 74–82 . 

[196] A. Tharwat , H. Mahdi , M. Elhoseny , A.E. Hassanien , Recognizing human ac-
tivity in mobile crowdsensing environment using optimized k-NN algorithm,

Expert Syst. Appl. 107 (2018) 32–44 . 
[197] J.-F. Hu , W.-S. Zheng , L. Ma , G. Wang , J.-H. Lai , J. Zhang , Early action predic-

tion by soft regression, IEEE Trans. Pattern Anal. Mach. Intell. 41 (11) (2018)

2568–2583 . 
[198] M.A. Khan , T. Akram , M. Sharif , M.Y. Javed , N. Muhammad , M. Yasmin , An

implementation of optimized framework for action classification using mul-
tilayers neural network on selected fused features, Pattern Anal. Appl. 22 (4)

(2019) 1377–1397 . 
[199] P. Khaire , P. Kumar , J. Imran , Combining CNN streams of RGB-D and skele-

tal data for human activity recognition, Pattern Recognit. Lett. 115 (2018)

107–116 . 
200] W. Li , L. Wen , M.-C. Chang , S. Nam Lim , S. Lyu , Adaptive RNN tree for large-s-

cale human action recognition, in: Proceedings of the IEEE International Con-
ference on Computer Vision, 2017, pp. 14 4 4–1452 . 

[201] M. Inoue , S. Inoue , T. Nishida , Deep recurrent neural network for mobile hu-
man activity recognition with high throughput, Artif. Life Rob. 23 (2) (2018)

173–185 . 

[202] J. Dou , Q. Qin , Z. Tu , Robust visual tracking based on generative and
discriminative model collaboration, Multimed. Tools Appl. 76 (14) (2017)

15839–15866 . 
[203] H.J. Escalante , E.F. Morales , L.E. Sucar , A naive bayes baseline for early gesture

recognition, Pattern Recognit. Lett. 73 (2016) 91–99 . 

http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0138
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0138
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0138
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0138
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0139
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0139
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0139
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0139
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0139
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0140
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0140
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0140
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0140
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0140
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0140
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0141
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0141
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0141
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0141
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0141
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0141
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0141
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0142
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0142
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0142
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0142
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0142
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0142
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0143
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0143
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0143
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0144
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0145
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0145
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0145
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0146
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0146
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0146
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0146
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0146
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0146
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0146
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0147
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0147
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0147
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0147
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0148
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0148
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0148
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0148
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0149
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0149
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0149
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0150
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0150
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0150
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0151
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0151
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0151
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0151
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0151
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0152
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0152
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0152
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0152
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0152
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0152
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0152
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0152
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0153
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0153
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0153
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0154
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0154
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0154
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0155
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0155
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0155
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0155
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0155
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0155
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0156
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0156
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0156
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0156
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0156
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0157
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0157
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0157
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0157
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0157
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0158
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0158
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0158
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0158
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0158
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0159
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0159
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0159
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0159
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0159
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0160
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0160
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0160
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0160
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0160
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0160
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0160
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0161
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0161
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0161
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0161
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0161
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0161
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0161
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0161
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0162
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0162
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0162
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0162
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0162
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0163
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0163
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0163
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0163
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0163
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0163
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0164
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0164
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0164
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0164
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0164
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0164
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0165
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0165
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0165
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0165
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0165
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0166
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0166
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0166
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0166
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0166
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0166
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0166
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0167
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0167
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0167
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0168
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0168
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0168
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0168
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0169
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0169
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0169
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0169
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0169
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0170
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0170
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0170
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0170
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0171
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0171
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0171
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0171
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0172
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0172
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0172
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0172
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0172
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0173
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0173
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0174
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0174
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0174
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0174
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0174
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0175
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0175
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0175
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0175
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0175
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0175
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0176
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0176
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0176
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0176
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0176
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0177
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0177
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0177
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0177
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0177
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0178
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0178
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0178
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0178
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0179
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0179
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0179
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0180
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0180
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0180
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0180
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0180
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0181
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0181
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0181
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0181
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0181
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0181
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0182
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0182
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0182
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0182
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0182
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0182
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0182
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0183
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0183
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0183
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0184
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0184
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0184
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0185
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0185
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0185
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0185
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0185
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0185
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0185
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0185
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0186
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0186
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0187
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0187
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0187
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0187
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0187
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0188
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0188
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0188
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0189
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0189
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0189
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0189
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0190
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0190
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0190
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0190
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0191
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0191
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0191
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0191
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0191
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0191
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0191
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0192
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0192
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0192
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0192
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0192
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0193
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0193
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0193
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0193
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0193
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0193
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0193
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0194
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0194
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0194
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0194
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0194
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0194
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0194
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0195
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0195
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0195
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0195
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0196
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0196
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0196
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0196
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0196
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0196
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0197
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0197
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0197
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0197
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0198
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0198
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0198
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0198
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0199
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0199
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0199
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0199


L. Minh Dang, K. Min and H. Wang et al. / Pattern Recognition 108 (2020) 107561 23 

[  

 

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N  

t  

i

204] M.K. Mustafa , T. Allen , K. Appiah , A comparative review of dynamic neural
networks and hidden Markov model methods for mobile on-device speech

recognition, Neural Comput. Appl. 31 (2) (2019) 891–899 . 
[205] R. San-Segundo , J.D. Echeverry-Correa , C. Salamea , J.M. Pardo , Human activ-

ity monitoring based on hidden Markov models using a smartphone, IEEE
Instrum. Meas. Mag. 19 (6) (2016) 27–31 . 

206] G.J. McLachlan , S.X. Lee , S.I. Rathnayake , Finite mixture models, Annu. Rev.
Stat. Appl. 6 (2019) 355–378 . 

[207] N. Ding , H. Ma , H. Gao , Y. Ma , G. Tan , Real-time anomaly detection based on

long short-term memory and gaussian mixture model, Comput. Electr. Eng.
79 (2019) 106458 . 

[208] P. Arora , S. Varshney , et al. , Analysis of k-means and k-medoids algorithm for
big data, Procedia Comput. Sci. 78 (2016) 507–512 . 

[209] D. Biswas , A. Cranny , N. Gupta , K. Maharatna , J. Achner , J. Klemke , M. Jöbges ,
S. Ortmann , Recognizing upper limb movements with wrist worn inertial

sensors using k-means clustering classification, Hum. Mov. Sci. 40 (2015)

59–76 . 
[210] G.E. Hinton , A practical guide to training restricted Boltzmann machines, in:

Neural Networks: Tricks of the Trade, Springer, 2012, pp. 599–619 . 
[211] C. Jia , M. Shao , S. Li , H. Zhao , Y. Fu , Stacked denoising tensor auto-encoder for

action recognition with spatiotemporal corruptions, IEEE Trans. Image Pro-
cess. 27 (4) (2018) 1878–1887 . 

[212] B. Kami ́nski , M. Jakubczyk , P. Szufel , A framework for sensitivity analysis of

decision trees, Cent. Eur. J. Oper. Res. 26 (1) (2018) 135–159 . 
[213] J.Y. Chang , Nonparametric feature matching based conditional random fields

for gesture recognition from multi-modal video, IEEE Trans. Pattern Anal.
Mach. Intell. 38 (8) (2016) 1612–1625 . 

[214] A.M. Murugavel , S. Ramakrishnan , Hierarchical multi-class SVM with ELM
kernel for epileptic eeg signal classification, Med. Biol. Eng. Comput. 54 (1)

(2016) 149–161 . 

[215] Z. Deng , X. Zhu , D. Cheng , M. Zong , S. Zhang , Efficient kNN classification al-
gorithm for big data, Neurocomputing 195 (2016) 143–148 . 

[216] A. Voulodimos , N. Doulamis , A. Doulamis , E. Protopapadakis , Deep learning
for computer vision: a brief review, Comput. Intell. Neurosci. 2018 (2018) . 

[217] A .A . Heidari , H. Faris , I. Aljarah , S. Mirjalili , An efficient hybrid multilayer per-
ceptron neural network with grasshopper optimization, Soft Comput. 23 (17)

(2019) 7941–7958 . 

[218] A. Krizhevsky , I. Sutskever , G.E. Hinton , ImageNet classification with deep
convolutional neural networks, in: Advances in Neural Information Process-

ing Systems, 2012, pp. 1097–1105 . 
[219] Y. Xing , C. Lv , H. Wang , D. Cao , E. Velenis , F.-Y. Wang , Driver activity recogni-

tion for intelligent vehicles: a deep learning approach, IEEE Trans. Veh. Tech-
nol. 68 (6) (2019) 5379–5390 . 

[220] P. Rivera , E. Valarezo , T.-S. Kim , Recognition of human hand activities based

on a single wrist IMU using recurrent neural networks, Int. J. Pharma Med.
Biol. Sci. 6 (4) (2017) 114–118 . 

[221] Y. Zhao , R. Yang , G. Chevalier , X. Xu , Z. Zhang , Deep residual Bidir-LSTM for
human activity recognition using wearable sensors, Math. Prob. Eng. 2018

(2018) . 
[222] F. Ordóñez , D. Roggen , Deep convolutional and LSTM recurrent neural net-

works for multimodal wearable activity recognition, Sensors 16 (1) (2016)
115 . 

[223] J. Margarito , R. Helaoui , A.M. Bianchi , F. Sartor , A.G. Bonomi , User-indepen-

dent recognition of sports activities from a single Wrist-Worn accelerometer:
a template-matching-based approach, IEEE Trans. Biomed. Eng. 63 (4) (2016)

788–796 . 
[224] A.K.S. Kushwaha , R. Srivastava , Multiview human activity recognition system

based on spatiotemporal template for video surveillance system, J. Electron.
Imaging 24 (5) (2015) 051004 . 

[225] Y. Li , D. Xue , E. Forrister , G. Lee , B. Garner , Y. Kim , Human activity classifi-

cation based on dynamic time warping of an on-body creeping wave signal,
IEEE Trans. Antennas Propag. 64 (11) (2016) 4 901–4 905 . 

[226] S.M. Salaken , A. Khosravi , T. Nguyen , S. Nahavandi , Seeded transfer learn-
ing for regression problems with deep learning, Expert Syst. Appl. 115 (2019)

565–577 . 
[227] L. Guo , L. Wang , J. Liu , W. Zhou , B. Lu , HuAc: Human activity recognition us-

ing crowdsourced WiFi signals and skeleton data, Wirel. Commun. Mob. Com-

put. 2018 (2018) . 
[228] F. Caba Heilbron , V. Escorcia , B. Ghanem , J. Carlos Niebles , ActivityNet: A

large-scale video benchmark for human activity understanding, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 961–970 . 
[229] Z. Pei , X. Qi , Y. Zhang , M. Ma , Y.-H. Yang , Human trajectory prediction in

crowded scene using social-affinity long short-term memory, Pattern Recog-

nit. 93 (2019) 273–282 . 
[230] K. Akila , S. Chitrakala , Highly refined human action recognition model to han-

dle intraclass variability & interclass similarity, Multimed. Tools Appl. (2019)
1–19 . 

[231] M. Rohrbach , A. Rohrbach , M. Regneri , S. Amin , M. Andriluka , M. Pinkal ,
B. Schiele , Recognizing fine-grained and composite activities using hand-cen-

tric features and script data, Int. J. Comput. Vis. 119 (3) (2016) 346–373 . 
[232] H. Zhang , J. Smeddinck , R. Malaka , Y. Shu , C. Chen , B. He , Z. Fu , M. Lawo ,
Wireless non-invasive motion tracking of functional behavior, Pervasive Mob.

Comput. 54 (2019) 29–44 . 
[233] M.Á. Antón , J. Ordieres-Meré, U. Saralegui , S. Sun , Non-invasive ambient intel-

ligence in real life: dealing with noisy patterns to help older people, Sensors
19 (14) (2019) 3113 . 

[234] L. Zheng , D. Wu , X. Ruan , S. Weng , A. Peng , B. Tang , H. Lu , H. Shi , H. Zheng ,
A novel energy-efficient approach for human activity recognition, Sensors 17

(9) (2017) 2064 . 

[235] C. Xu , D. Chai , J. He , X. Zhang , S. Duan , InnoHAR: A deep neural network for
complex human activity recognition, IEEE Access 7 (2019) 9893–9902 . 

[236] T.N. Nguyen , C.H. Thai , A.-T. Luu , H. Nguyen-Xuan , J. Lee , NURBS-based post-
buckling analysis of functionally graded carbon nanotube-reinforced compos-

ite shells, Comput. Methods Appl. Mech. Eng. 347 (2019) 983–1003 . 

L. Minh Dang received the B.S. degree majoring in In-

formation Systems in 2016 from the University of Infor-
mation Technology, VNU HCMC, Vietnam. He is currently

pursuing the Ph.D. degree in Computer Science from Se-
jong University, Seoul, South Korea. He joined the Com-

puter Vision Pattern Recognition Laboratory (CVPR Lab) at

the beginning of 2017. His current research interests in-
clude computer vision, natural language processing, video

coding, and deep learning. 

Kyungbok Min received the B.S. degree in Electronics and

Computer Engineering from Korea University. He is cur-
rently pursuing Ph.D. in Computer Science from Sejong

University, Seoul, South Korea. He joined Computer Vision
Pattern Recognition Laboratory (CVPR Lab) from 2017. His

current research interests include computer vision, natu-
ral language processing and artificial intelligence. 

Hanxiang Wang received the B.S. degree in Software en-
gineering in 2018 from the LinYi University. He is cur-

rently pursuing Ph.D. degree in Computer Science from

Sejong University, Seoul, South Korea. He joined Com-
puter Vision Pattern Recognition Laboratory (CVPR Lab)

at the beginning of 2018. His current research interests
include computer vision, deep learning, image processing,

video coding and artificial intelligence 

Md. Jalil Piran (S’10-M’16) received the Ph.D. degree in
electronics and radio engineering from Kyung Hee Uni-

versity, South Korea, in 2016. Subsequently, he contin-
ued his work as a Postdoctoral Research Fellow in the

field of resource management and quality of experience

in 5G-Cellular Networks, and the Internet of Things with
the Networking Laboratory, Kyung Hee University. He is

currently a Professor with the Department of Computer
Science and Engineering, Sejong University, Seoul, South

Korea. He has published substantial number of technical
papers in well-known international journals and confer-

ences in research fields of: resource allocation and man-

agement in; 5G mobile and wireless communication, Het-
et, the Internet of Things (IoT), multimedia communication, streaming, adapta-

ion, and QoE, cognitive radio networks, wireless sensor networks, machine learn-
ng, fuzzy logic, and neural networks. 

http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0200
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0200
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0200
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0200
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0201
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0201
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0201
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0201
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0201
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0202
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0202
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0202
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0202
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0203
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0203
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0203
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0203
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0203
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0203
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0204
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0204
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0204
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0204
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0205
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0206
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0206
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0207
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0207
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0207
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0207
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0207
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0207
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0208
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0208
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0208
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0208
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0209
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0209
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0210
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0210
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0210
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0211
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0211
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0211
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0211
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0211
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0211
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0212
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0212
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0212
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0212
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0212
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0213
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0213
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0213
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0213
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0213
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0214
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0214
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0214
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0214
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0215
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0215
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0215
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0215
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0215
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0215
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0215
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0216
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0216
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0216
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0216
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0217
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0217
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0217
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0217
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0217
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0217
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0218
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0218
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0218
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0219
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0219
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0219
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0219
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0219
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0219
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0220
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0220
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0220
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0221
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0221
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0221
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0221
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0221
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0221
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0221
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0222
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0222
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0222
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0222
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0222
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0223
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0223
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0223
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0223
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0223
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0223
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0224
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0224
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0224
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0224
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0224
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0225
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0225
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0225
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0225
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0225
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0225
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0226
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0226
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0226
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0227
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0227
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0227
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0227
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0227
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0227
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0227
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0227
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0228
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0229
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0229
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0229
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0229
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0229
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0230
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0231
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0231
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0231
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0231
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0231
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0231
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0232
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0232
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0232
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0232
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0232
http://refhub.elsevier.com/S0031-3203(20)30364-2/sbref0232


24 L. Minh Dang, K. Min and H. Wang et al. / Pattern Recognition 108 (2020) 107561 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

a  

t  

h  

s  

i

Cheol Hee Lee received the B.S. degree in Civil Engineer-

ing from Chungbuk National University. He is currently
pursuing Ph.D. in Structural Engineering from Chungbuk

National University, South Korea. He has founded AI start-
up specialized in inspection for public facilities, Deep In-

spection in 2015. He has completed the expert course re-

garding machine learning, deep learning, and neural net-
work through deeplearning.ai. His current research inter-

ests include computer vision, artificial intelligence, XAI,
and meta-learning. 
Hyoenjoon Moon received the B.S. degree in Electron-

ics and Computer Engineering from Korea University in
1990. He received the M.S. and the Ph.D. degrees from

Electrical and Computer Engineering at State University of
New York at Buffalo in 1992 and 1999, respectively. From

January 1996 to October 1999, he was a senior research

in Electro-Optics/Infrared Image Processing Branch at U.S.
Army Research Laboratory (ARL) in Adelphi, MD. He de-

veloped a face recognition system evaluation methodol-
ogy based on the Face Recognition Technology (FERET)

program. From November 1999 to February 2003, he was
a principal research scientist at Viisage Technology in Lit-

tleton, MA. His main interest is on research and devel-

pment is on real-time facial recognition system for access control, surveillance,
nd big database applications. He has extensive background on still image and real-

ime video based computer vision and pattern recognition. Since March 2004, he
as joined the Department of Computer Science and Engineering at Sejong Univer-

ity, where he is currently a professor and chairman. His current research interests
nclude image processing, biometrics, artificial intelligence and machine learning. 


	Sensor-based and vision-based human activity recognition: A comprehensive survey
	1 Introduction
	1.1 Real-world applications
	1.2 Relevant surveys
	1.3 Contributions
	1.4 Review techniques

	2 Background
	2.1 Level of human activities
	2.2 Sensor-based HAR and vision-based HAR
	2.3 Machine leaning and deep learning-based HAR

	3 Data collection and benchmark datasets
	3.1 Sensor-based HAR
	3.1.1 Wearable sensors
	3.1.2 Object sensors
	3.1.3 Environmental sensors
	3.1.4 Hybrid sensors

	3.2 Vision-based HAR
	3.2.1 RGB data
	3.2.2 RGB-D data

	3.3 Discussion

	4 Pre-processing and feature engineering
	4.1 Sensor-based HAR
	4.1.1 Pre-processing
	4.1.2 Feature extraction
	4.1.3 Feature selection

	4.2 Vision-based HAR
	4.2.1 Segmentation
	4.2.2 Feature extraction

	4.3 Discussion

	5 Learning algorithms
	5.1 Generative model
	5.1.1 Bayesian networks
	5.1.2 Markov model
	5.1.3 Mixture model
	5.1.4 Restricted Boltzmann machines
	5.1.5 Autoencoder

	5.2 Discriminative model
	5.2.1 Decision tree
	5.2.2 Conditional random fields
	5.2.3 Transform domain
	5.2.4 Lazy learning
	5.2.5 Deep learning

	5.3 Other models
	5.3.1 Template-based approach


	6 Challenges and future work
	6.1 Transfer learning
	6.2 Interpretable video model
	6.3 Multimodal data
	6.4 Physical aspect of activities
	6.5 Learning actions without labels

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References


