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Abstract: Pumpkins are a nutritious and globally enjoyed fruit for their rich and earthy flavor. The
biophysical properties of pumpkins play an important role in determining their yield. However,
manual in-field techniques for monitoring these properties can be time-consuming and labor-intensive.
To address this, this research introduces a novel approach that feeds high-resolution pumpkin images
to train a mathematical model to automate the measurement of each pumpkin’s biophysical properties.
Color correction was performed on the dataset using a color-checker panel to minimize the impact of
varying light conditions on the RGB images. A segmentation model was then trained to effectively
recognize two fundamental components of each pumpkin: the fruit and vine. Real-life measurements
of various biophysical properties, including fruit length, fruit width, stem length, stem width and fruit
peel color, were computed and compared with manual measurements. The experimental results on
10 different pumpkin samples revealed that the framework obtained a small average mean absolute
percentage error (MAPE) of 2.5% compared to the manual method, highlighting the potential of this
approach as a faster and more efficient alternative to conventional techniques for monitoring the
biophysical properties of pumpkins.

Keywords: pumpkin; deep learning; measurement; segmentation; biophysical properties

1. Introduction

Pumpkin, a popular winter squash native to North America, has gained worldwide
cultivation. Belonging to the Cucurbitaceae family alongside various squash types, cu-
cumbers, and melons [1], pumpkins are renowned for their large, round, or oblong shape
and thick, hard rind. While commonly orange, their rind can also appear in shades of
green, yellow, or white. Notably, their vibrant orange flesh is widely utilized in fall season
delicacies such as pies, soups, and other dishes. Pumpkins are cultivated and consumed
in various parts of the world, including Asia, Europe, and North America. China stands
out as a significant presence in pumpkin production, being one of the leading producers
in Asia and globally [2]. Additionally, various Asian countries, such as South Korea, have
a rich tradition of incorporating pumpkins, known as “hobak” in Korean [3], into their
cuisine. Traditional Korean dishes often feature pumpkins in soups, stews, and porridges
as a side dish or snack. It is worth noting that pumpkins grown in Korea are distinct; they
are characterized by their smaller size, heightened sweetness, denser texture, and nuttier
flavor, setting them apart from varieties found in other regions of the world.
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The regular monitoring of pumpkin biophysical properties is vital throughout the
growing season to assess crop conditions, model crop growth, and predict potential
yields [4]. Understanding and enhancing the pumpkin industry, from breeding and produc-
tion to marketing and consumption, heavily relies on the examination of these properties.
The biophysical properties of pumpkins offer valuable insights into their genetics and
physical characteristics, empowering plant breeders to develop new varieties with desir-
able properties, mitigate disease risks, boost yield, and enhance marketability. Moreover,
these properties serve as essential indicators for farmers and consumers, providing infor-
mation regarding pumpkin maturity, quality, and adherence to standards of size, shape,
and color [5]. By comprehending and leveraging these properties, stakeholders can en-
sure optimal pumpkin production and consumption while meeting the expectations of
diverse markets.

Previously, the measurement of biophysical properties heavily relied on manual in-
vestigations, which presented certain limitations. For instance, Nankar et al. conducted
a manual evaluation of various phenotypic and biochemical properties, including plant
height, fruit weight, color, firmness, and virus resistance [6], to underscore the significance
of phenotypic traits in characterizing and selecting plant accessions for breeding and crop
improvement. Similarly, Öztürk et al., assessed 11 pumpkin genotypes [7], examining
morphological characteristics like fruit shape, size, color, seed color, and seed size. Addi-
tionally, they utilized molecular markers, such as random amplified polymorphic DNA
(RAPD) and inter-simple sequence repeat (ISSR) markers, to analyze the genetic diversity
and relationships among the pumpkin genotypes. However, relying solely on the manual
measurement of phenotypic traits can be a time-consuming and labor-intensive process,
particularly when dealing with a substantial number of samples. This approach can result
in high costs, slow data acquisition, and the potential for errors or inconsistencies due
to human fatigue or subjectivity. Moreover, manual methods may lack scalability and
efficiency when it comes to large-scale phenotypic characterization, especially for complex
properties that necessitate multiple measurements or observations.

To address these challenges effectively, an increasing demand for advanced and auto-
mated techniques in measuring biophysical properties for pumpkin research has emerged.
Such techniques offer streamlined data collection, reduced human effort, improved accu-
racy, and enhanced scalability for phenotypic characterization. Incorporating automated
methods and technologies enables researchers to expedite the evaluation process, obtain
more robust data, and facilitate an efficient analysis of complex properties. Recent advance-
ments in computer vision (CV) and deep learning (DL) technologies [8,9] have made it
possible to automate the measurement of biophysical properties, significantly reducing the
time and effort required for assessment. CV techniques allow pumpkins to be captured
through cameras, and the resulting images can be analyzed using DL algorithms that
accurately measure biophysical properties like width, length, and color.

For example, Wittstruck et al. utilized RGB imagery acquired from a commercial
unmanned aerial vehicle (UAV) at different stages of pumpkin growth [10]. They pro-
cessed the images using CV techniques to automatically extract information related to
plant height, canopy width, and fruit count. The authors demonstrated a strong correla-
tion between the UAV-based RGB imagery and ground-based measurements. Dang et al.
showcased the potential of UAV-based RGB imagery in reducing labor and time for radish
disease monitoring, making it a cost-effective and efficient tool for precision agriculture [11].
Ropelewska et al. presented a non-destructive method for classifying different pumpkin cul-
tivars based on flesh characteristics [12], employing various CV methods. The experimental
results showed an accurate classification of pumpkin cultivars based on flesh characteristics
with over 90% accuracy. Notably, color and texture were identified as crucial features for
classification, as they corresponded to the distribution and quantity of carotenoids and
fibers in pumpkin flesh. Furthermore, Longchamps et al. emphasized the significance of
yield-sensing technologies in horticulture, providing a comprehensive overview of the
technologies developed and tested for perennial and annual horticultural crops [13]. This
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information is valuable for growers and researchers seeking to enhance their understanding
of yield-sensing technologies and their potential applications in horticulture. Compared
to manual approaches, CV-based methods offer non-destructive measurements, enabling
repeated assessments of the same sample without damage or alteration. This facilitates
high-throughput data acquisition and analysis [14,15], leading to a more comprehensive
and accurate characterization of phenotypic traits.

According to a review conducted by Li et al. [16], previous studies have explored
the manual measurement of phenotypic traits and genetic diversity in various plants and
crops; however, they often face challenges in terms of scalability and efficiency, particularly
when it comes to large-scale phenotypic measurement or complex properties requiring
multiple measurements or observations. The main objective of this study is to establish a
framework that uses smartphone imagery to extract the precise biophysical properties of
pumpkins. By implementing the framework introduced in this study, it becomes feasible to
automatically evaluate the growth status of pumpkins and integrate complex biophysical
properties that traditional breeding methods may not accomplish, thereby enabling the
development of new varieties with enhanced speed and accuracy. This approach allows for
the development of new pumpkin varieties with enhanced speed and accuracy. Moreover,
the study specifically focuses on pumpkins, highlighting their unique characteristics, such
as the distinctive properties of Korean pumpkins mentioned earlier. By considering the
specific context of pumpkin cultivation and consumption, insights that are tailored to the
pumpkin industry and its stakeholders were provided. The specific objectives of this study
include: (i) introducing a pumpkin component segmentation model based on SOLOv2
to effectively recognize relevant components, (ii) automatically measuring seven distinct
biophysical properties of pumpkins using the predicted masks, and (iii) estimating the
real-life values corresponding to the extracted biophysical properties.

The remaining manuscript contents are organized as follows: Various experiments are
presented in Section 2 to evaluate various aspects of the proposed framework. In Section 3,
the key findings and implications of the study are discussed. Section 4 describes the
pumpkin dataset for training the segmentation model. Section 5 discusses the fundamental
components of the proposed framework used to measure a pumpkin’s biophysical prop-
erties automatically. Finally, Section 6 provides a summary of the findings and suggests
potential areas for future research.

2. Results

This section provides a comprehensive evaluation of the proposed model through a series
of experiments. Section 2.1 demonstrates the effectiveness of the color calibration process
on outdoor images, showcasing its impact on improving accuracy. Section 2.2 thoroughly
assesses different aspects of the SOLOv2 model trained on the color-calibrated pumpkin
dataset, offering insights into its performance and capabilities. Finally, in Section 2.3, we
compare the results of the automated biophysical properties measurement with the actual
measurements, providing a comprehensive analysis of the model’s performance and its
ability to accurately estimate the properties.

2.1. Color Calibration

Color correction is a critical image processing technique that enhances the accuracy,
natural appearance, and visual appeal of colors in an image, making them appear true to
real life. This process is particularly crucial for accurately extracting the color properties of
pumpkins. Ideally, under controlled conditions, the RGB values of color checkerboard chips
from the reference image should exhibit a linear relationship with those from the collected
images captured outdoors [17]. However, due to the constantly changing outdoor lighting
conditions, the color chips in these images may deviate from the expected linear trend.

Figure 1 provides a visual comparison between the reference image and the collected
image for color-checking purposes. The matrix displayed in the figure represents the
average red, green, and blue channel values for each color chip on the color checkerboard in
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both images. The presence of red arrows indicates specific problematic chips in the source
image that do not follow the linear trend line for the red, green, and blue color channels.
This visual representation strongly emphasizes the significance of the color correction
process in achieving accurate color extraction and analysis.

Reference

In
p
u
t

Blue Green Red

Figure 1. Comparison of the R, G, B color values of various color chips from the color checker between
an input image and the reference image. Note: The red arrows point to sample problematic chips in
the input image deviate from the linear trend line.

The image depicted in Figure 2 shows the outcomes achieved by applying color
correction to an input image utilizing a reference image. The procedure involved extracting
the reference mask and input mask, which accurately identified the color checker’s location
in both images. Next, the color space was obtained from both the reference and input
images by detecting the color checker. Finally, the color space of the input image was
transformed to align with the preferred color space of the reference image. The corrected
input image exemplifies the enhanced accuracy and consistency of colors when compared
to the original input image.

2.2. SOLOv2 Performance Evaluations

After applying color correction, the processed images were used to train and evaluate
the SOLOv2 model with a ResNet101 backbone. The training loss mask and validation mAP
results are illustrated in Figure 3, revealing the effectiveness of the training process and
the stable convergence of the SOLOv2 model. The training loss mask showed a significant
decrease, reaching approximately 0.23 after 200 iterations, and eventually converged to a
stable loss of around 0.1 by the end of the training process (iteration 1200). The validation
mAP steadily increased, surpassing 0.6 after the 10th epoch and peaking at 0.88 during the
25th epoch. These results demonstrate the model’s robust segmentation capabilities and
its ability to consistently provide accurate segmentation for both pumpkin fruit and vine
components, indicating strong generalization capabilities.

To assess the segmentation performance of the SOLOv2 model, we performed a
comprehensive comparison with four other state-of-the-art segmentation models: Blend-
Mask [18], HTC [19], MS R-CNN [20], and Mask-RCNN [21]. Quantitative evaluation
metrics including mask AP and inference speed were computed. The results of the evalu-
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ation are summarized in Table 1, with the best-performing values for each metric on the
collected pumpkin segmentation dataset highlighted in bold font.

Reference image

Corrected image

Reference mask

Mask 

detection

Input image Detected color 

checker

Color 

checker 

detection

Color 

correction

Figure 2. Example of the color calibration process, which takes the source image and target image as
input and outputs the calibrated image.

Table 1. Comparison of different segmentation algorithms on the collected pumpkin dataset.

Model Mask AP (%) Inference Speed (FPS)

BlendMask [18] 85.9 11
HTC [19] 85.6 6

MS R-CNN [20] 82.1 10.7
Mask-RCNN [21] 84.8 11.2

SOLOv2 88 19.4
Note: The optimal values for each metric are highlighted in bold font. HTC refers to the hybrid task cascade
model, MS R-CNN denotes the mask scoring R-CNN model, and SOLOv2 represents scalable object localization
with a balanced positive instances-based model. AP stands for average precision, which serves as an evaluation
metric, and FPS represents frames per second, which quantifies the inference speed.

Table 1 demonstrates the segmentation performance of different algorithms, where
both SOLOv2 and BlendMask stand out with impressive mask AP scores of 88% and
85.9%, respectively. These results highlight the superior performance of these algorithms in
accurately segmenting pumpkin samples. When considering inference speed, SOLOv2 also
demonstrated exceptional performance by achieving a processing speed of 19.4 FPS, which
is nearly double the speed of Mask-RCNN at 11.2 FPS. On the other hand, HTC exhibited
a significantly slower inference speed of 6 FPS. Taking into account both mask AP and
inference speed, SOLOv2 emerges as the top-performing algorithm among the evaluated
models. It not only achieves the highest mask AP score but also boasts the fastest inference
speed, making it a compelling choice for pumpkin instance segmentation.
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Loss mask (training)

mAP curve (validation)
Figure 3. Training loss and validation mAP curves of the SOLOv2 model using the ResNet101 + DCN
backbone network.
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Figure 4 demonstrates four examples of predicted masks generated by the SOLOv2
model, consisting of two samples for Cucurbita maxima (C. maxima) and two for Cucurbita
moschata C. moschata pumpkins. Despite the similarity in color between the vine and fruit
components, the model accurately distinguished and localized them. Notably, it precisely
identified the vine sections closest to the fruit stem while avoiding false detections of vine
parts farther away. These outcomes emphasize the robustness and effectiveness of the
model in accurately segmenting the various components of pumpkins.

(b)

(a)

Figure 4. Four examples of the pumpkin segmentation results using the SOLOv2 model. Note: (a) is
the results for two Cucurbita maxima samples and (b) is the results for two Cucurbita moschata samples.

By utilizing SOLOv2, the framework was able to achieve precise segmentation, en-
abling the extraction of essential biophysical properties. The selection of SOLOv2 ensures
that the proposed system delivers accurate and reliable measurements, enhancing the
overall quality of the pumpkin biophysical property recognition.

2.3. Biophysical Properties Measurement

Table 2 provides a comprehensive comparison between the GT and predicted mea-
surements of various biophysical properties for 10 pumpkin samples (S1 to S10) using
the proposed framework. The measured biophysical properties include FL, FW, VL, VW,
and FPC. The table is divided into three main sections. The first section displays the
GT values for each sample and biophysical property, providing a reference for the actual
measurements. The second section presents the predicted values obtained through the
proposed framework, showing the model’s prediction of the biophysical properties for
each sample. Finally, the third section quantifies the accuracy, MAE, and MAPE of the
predictions, evaluating the model’s performance for each sample and biophysical property.
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Table 2. Comparison between the GT and the predicted biophysical properties measurement for 10
different pumpkin samples.

Sample

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

GT

FL (mm) 6.8 27.8 14.1 8.4 9.5 22.6 25.9 6.2 6.9 6.3
FW (mm) 10.2 9.6 12.2 12.9 12.1 9.2 8.1 8.6 11.1 9.7
VL (mm) 12.2 10.3 16.2 12.8 10.7 10 8.9 14.8 10.6 6.5
VW (mm) 1.4 0.9 1.2 1.64 1.8 0.67 1 1.1 1.4 1.6

FPC G OR LG G G LG LG G G G

Pre

FL (mm) 6.8 28.1 14.1 8.3 9.2 23 26.1 6.5 7 6.8
FW (mm) 9.9 9.1 12.3 13.1 12 9.1 8 8.9 11.5 9.5
VL (mm) 12 10.1 15.9 12.6 10.9 9.8 8.4 14.2 10 6.3
VW (mm) 1.4 0.85 1.3 1.63 1.8 0.68 1 1.2 1.3 1.6

FPC G OR LG G G LG LG G G G

Accuracy (%) 99.7 98.6 100 82.9 100 93.7 96.1 97.4 99 96.1
MAE 0.12 0.26 0.12 0.15 0.15 0.2 0.2 0.32 0.3 0.22

MAPE (%) 1.14 4.4 2.75 2.6 1.46 1.58 1.9 1.9 4.46 3.2
Note: S1–S10 represent the pumpkin samples numbered from 1 to 10. GT denotes the ground truth values
manually measured, while Pre refers to the predicted values. FL represents the fruit length, FW denotes the fruit
width, VL stands for vine length, VW represents vine width, and FPC represents fruit peel color. G stands for
green, OR represents orange, and LG indicates light green color. Additionally, MAE refers to the mean absolute
error, and MAPE signifies the mean absolute percentage error.

The GT row provides the actual measurements of the biophysical properties for
the ten pumpkin samples. These values are obtained through manual measurements of
the pumpkins using a tape measure. The tape measure ensured precise and consistent
measurements across different parts of the pumpkin. The range of FL spans from 6.2 mm
(sample S8) to 27.8 mm (sample S2), while FW ranges from 8.1 mm (sample S7) to 12.9 mm
(sample S4). VL varies from 6.5 mm (sample S10) to 16.2 mm (sample S3), and VW ranges
from 0.67 mm (sample S6) to 1.8 mm (samples S5 and S9). The FPC is categorized as G,
OR, and LG, with all samples sharing the same color except for samples S6 and S7, which
exhibit an LG color.

The prediction row represents the biophysical properties’ measurements predicted by
the framework for the 10 pumpkin samples. These predicted values are compared to the
GT values to determine the accuracy of the predictions. The accuracy is evaluated using
the formula: taking the absolute difference between the predicted and GT values, dividing
it by the GT value, and multiplying the result by 100. The values in this row indicate a high
degree of proximity between the predicted and GT values, demonstrating the accuracy of
the model in measuring the biophysical properties of the pumpkins. The accuracy values
are reported in the last row, ranging from 82.9% (sample S4) to 100% (samples S3, S5,
and S10), with an overall accuracy of 96.1%. These results highlight the model’s capability
to accurately measure the biophysical properties of pumpkins and its potential for broader
applications in measuring properties of other vegetables.

Furthermore, the effectiveness and reliability of the proposed framework is reinforced
by the low average MAE value of 0.87 and average MAPE value of 4.07% over the 10 sam-
ples. These metrics provide additional evidence for the effectiveness and reliability of the
framework in accurately measuring biophysical properties. The precise measurements
of biophysical properties achieved by the framework underscore its value in facilitating
plant breeding programs and genetic studies, as it enables a dependable detection and
quantification of crucial biophysical properties.
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3. Discussion

Previous research has been predominantly based on manual approaches to compute
the biophysical properties, which are tedious and susceptible to errors. This study over-
came these drawbacks by introducing a vision-based system for accurately measuring the
biophysical properties of pumpkins. The primary finding of our study demonstrated that
the automated framework precisely measured the biophysical properties of pumpkin fruits
and vines. In a wider context, prior studies have reported biophysical properties measure-
ments in pixels, which can pose challenges for end-users in terms of interpretation [6,22].
This research successfully solved this problem by precisely converting pixel values into
real-world measurements through the recognition of a ruler using a straightforward image
processing pipeline (Section 5.1.4). This approach not only simplifies the result interpreta-
tion but also enables the establishment of a comprehensive database of phenotypic traits
for pumpkins.

In addition to the main contribution of biophysical properties measurement in real-life
units, this research suggests several innovative schemes that make significant contributions
to the field of phenotyping. Firstly, many studies have pointed out the importance of the
pre-processing module, particularly color correction [23,24] for plant biophysical properties
measurement. We stressed the importance of this module for the images collected outdoors.
This module, described in Section 5.1.2, implements color calibration to correct variations,
which is particularly crucial given the potential impact of inaccurate color representation
on biophysical properties like FPC. Even though this module requires more computa-
tional resources and time, it can be selectively enabled or disabled based on the specific
requirements of the application.

Furthermore, previous research has often relied on contour detection [25] or bounding
box/mask methods [26] to measure the width and length traits of fruits. However, these
approaches are not accurate for fruits and plants with irregular shapes. In this study,
we propose a novel method for computing the length property based on the skeletoniza-
tion algorithm (Section 5.1.4). The length can be accurately determined by extracting the
fruit’s skeleton, making this approach suitable for various fruits and plants with irregular
shapes. Additionally, an affine transformation method was employed to precisely compute
the width trait, considering any asymmetry in the fruit’s placement during data collec-
tion. The experimental results demonstrate the effectiveness of the proposed width and
length measurement approach in this study with an average MAPE of 2.5% compared to
manual measurements.

When considering the impact of our proposed methodology on breeders, it becomes
evident that the automated computation of biophysical properties in real-life measurements
provided by the proposed framework has a profound effect. It diminishes the need for
manual measurements, which are both error-prone and time-consuming. By automating
the biophysical properties measurement process, breeders are able to save valuable time
and resources, thus enabling a more efficient analysis of larger populations of pumpkins.
The availability of accurate and comprehensive phenotypic data further empowers breeders
in their selection and breeding procedures, ultimately resulting in enhanced crop yield,
improved quality, and overall advancements in breeding progress.

4. Materials

The primary objective of this dataset was to facilitate the automated measurement of vari-
ous biophysical characteristics of pumpkins. The data were collected from two pumpkin green-
houses situated in Gyeonggi-do, Korea, spanning from September 2022 to November 2022.
Each greenhouse had dimensions of 6.5 m (width) × 65 m (length) × 3.5 m (height). Strin-
gent measures were established to ensure all collected images are uniformly captured.
These measures involve careful control of the pumpkin fields through the implementation
of drip irrigation. The irrigation system utilizes a nutrient solution comprising vital com-
pounds like nitrogen, potassium, and phosphorus. The primary objective is to mitigate the
occurrence of abiotic stresses, including drought and nutrient deficiencies, while concur-
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rently minimizing the risk of diseases and pests. Furthermore, daily field inspections were
carried out by farmers or specialists to proactively avoid the emergence of diseases, pests,
or abiotic stresses.

Specifically, two predetermined pumpkin cultivars, namely Cucurbita moschata (C. moschata)
and Cucurbita maxima (C. maxima) from the Cucurbitaceae family, were cultivated and
monitored for the purpose of analysis. C. moschata exhibits a distinctive long, cylindrical, or
oblong shape with slightly curved or crooked necks. Its fruit can reach lengths of 60–90 cm
and have a diameter ranging from 10 to 30 cm. The skin of C. moschata pumpkins is
typically tan or orange, and it can either be smooth or display slight ribbing. In contrast,
C. maxima showcases a round or oval shape. The skin can be smooth or ribbed, and it
displays a captivating range of colors, including orange, yellow, green, or white. The size
of C. maxima pumpkins can vary significantly, ranging from small pie pumpkins to giant
varieties, adding to their visual diversity.

Data collection was conducted using a Samsung Galaxy S22 smartphone equipped
with a rear camera that has impressive specifications, including a high resolution of
50 megapixels, an aperture of f/1.8, and advanced autofocus capabilities [27]. Each image
has a consistent size of 3000× 4000 pixels. The collection process took place within a
specific one-hour time frame from 11 a.m. to 12 p.m., which coincided with the solar noon
period. To guarantee uniform lighting conditions and minimize variations between images,
additional attention was given to avoiding instances where clouds partially obstructed
the sun. Additionally, an X-rite 4× 6 color checkerboard containing 24 colors was em-
ployed [28]. This color checkerboard serves as a reference for image calibration, facilitating
accurate color representation and enabling precise calibration during subsequent analysis,
thereby enhancing the overall accuracy of the collected data. Sample images depicting the
two pumpkin cultivars can be observed in Figure 5.

In order to achieve uniformed conditions for images captured using the smartphone,
a tripod was utilized to ensure a consistent distance and angle between the camera and the
test bed. The tripod was firmly positioned at the base of the test bed, securely holding the
smartphone camera. By adhering to this setup throughout the image capture process, the
tripod served as a reference point for both distance and angle. This approach allows images
to be captured under uniformed settings, as the camera and test bed remained consistently
aligned. As a result, this method substantially minimized the variability and enhanced the
dependability of the subsequent analysis conducted on the dataset.

This study focuses on measuring the biophysical properties of both the pumpkin
vine (the portion nearest to the stem) and the fruit. The pumpkin fruit holds significant
importance due to its biophysical properties, including the size, shape, and color, which are
important for breeders and growers in developing new cultivars that are more productive,
nutritious, and appealing to consumers. On the other hand, the pumpkin vine serves as
the structural foundation of the pumpkin crop, playing a critical role in essential functions
such as nutrient and water uptake, photosynthesis, and providing support for the fruit.
Understanding the biophysical properties of the pumpkin vine, such as vine length and
diameter, is crucial for optimizing pumpkin plant growth and productivity. Furthermore,
this knowledge aids in formulating effective management strategies to combat pests and
diseases that can cause damage to the vine, resulting in reduced fruit yield. As depicted
in Figure 5, a total of 900 images were collected and annotated. This dataset comprises
390 images for the vine class and 510 images for the fruit class. The distribution of training,
validation, and testing images is summarized in Figure 5.
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Cucurbita moschata Cucurbita maxima
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Figure 5. Sample images representing two different pumpkin cultivars in this study along with a
description of the number of training and testing images collected for the vine and fruit compo-
nents. Note: (a) shows sample images for the two pumpkin cultivars. (b) describe the collected
segmentation dataset.

5. Methods
5.1. VPBR

Figure 6 outlines the key processes involved in the automated measurement frame-
work for assessing the biophysical properties of pumpkins.
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Figure 6. Illustration of the proposed biophysical properties measurement framework for pumpkin
images collected by hand-held devices.

5.1.1. Overall Description

Detailed explanations for each process are provided as follows.

• Data collection and preprocessing (Figure 6a): The pumpkin component segmentation
dataset was collected by a Samsung Galaxy S22 device on two pumpkin green houses
in November 2022. The constantly changing light conditions of outdoor environments
can lead to inconsistencies in the color of images taken at different times. To address
this issue and ensure the quality of the dataset, color correction was performed before
the training process.

• Pumpkin segmentation (Figure 6b): SOLOv2 [29] is an extension of the mask region-
based convolutional neural network (Mask R-CNN) architecture and enables the
identification and localization of individual objects within an image. Unlike the tradi-
tional two-stage approach, SOLOv2 utilizes a single-stage network for object detection
and segmentation, resulting in faster processing times while maintaining high accuracy.
In this study, SOLOv2 is applied to segment the pumpkin’s components accurately.

• Biophysical properties measurement (Figure 6c): This study proposes an automated
pipeline that utilizes various CV techniques to measure the real-life values of diverse
biophysical properties of pumpkins. The pipeline includes recognizing the ruler
positioned near the pumpkin as a reference for measurement. This approach enables
the efficient and accurate extraction of biophysical property measurements from the
captured images.
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5.1.2. Data Preprocessing

The captured images were subjected to color correction to mitigate the impact of
varying lighting conditions [23]. In this study, pumpkin color is considered as one of the
biophysical properties, making color correction essential to ensure accurate and consistent
colors across different images. The color correction was achieved by utilizing a color
checkerboard containing a range of color patches with known values. By capturing an
image of the checkerboard using the same device, a comparison can be made between
the device’s color response and the known values of the patches. This facilitated color
adjustments to align the device’s colors with the known values.

The conventional approach for color correction involves selecting a reference image
with known color values, which serves as the basis for calculating the color correction
matrix [30]. This matrix is then applied to other images, modifying their color channels.
By performing matrix multiplication on the red, green, blue (RGB) color channels of the
input image using the estimated color correction matrix, the color balance of the image is
adjusted to match that of the reference image. This alignment enhances the precision of
color representation, providing a more accurate depiction of the actual plant colors. This
level of color accuracy is particularly valuable in plant phenotyping applications. The color
correction equation can be described as follows:

C = M ∗ I (1)

where the output image after applying color correction is denoted as C. The computed
color correction matrix based on the reference image is represented as M, and the input
image is denoted as I.

5.1.3. Pumpkin Segmentation

The SOLOv2 model is considered a state-of-the-art instance segmentation model [31],
which is capable of detecting and segmenting multiple objects within an image. Unlike
other segmentation models that only predict bounding boxes, SOLOv2 goes a step further
by providing pixel-wise instance masks for each object [29]. This unique characteristic
makes it a powerful tool with various applications in CV [32,33]. The choice of the SOLOv2
algorithm for pumpkin recognition in this study was driven by its distinct capabilities
in precise object segmentation with fast inference speed [34]. This characteristic makes
it particularly suitable for our goal of accurately segmenting the different components of
pumpkins, namely the vines and fruits. The architecture of the SOLOv2 model is depicted
in Figure 7.

The SOLOv2 architecture is built upon a fully convolutional neural network (FCN) [35],
which can be represented by the following equation:

Mi = Fmask(Ff usion(Fbackbone(I))) (2)

In this equation, I represents the input image, Fbackbone refers to the backbone network
responsible for extracting feature maps from the input image, Ff usion denotes the feature fu-
sion module that combines features of different scales and resolutions, and Fmask represents
the mask prediction module responsible for generating pixel-wise instance masks for each
object in the image.

To achieve feature fusion, the feature fusion module utilizes lateral connections that
connect the feature maps from various layers of the backbone network to their correspond-
ing layers. These lateral connections can be described using the following equation:

Pi = Laterali(Fbackbone(I)) (3)

where Laterali denotes the lateral connection function that connects the feature maps from
the i-th layer of the backbone network to the corresponding layer in the feature fusion
module. In SOLOv2, deformable convolutional networks (DCNs) are employed to replace
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the standard convolutional layers in the backbone network, allowing for improved handling
of the scale variation exhibited by objects in the input images.

Backbone

(ResNet-101 +DCN)
Input

Output 

mask

Neck

(FPN)

feature 

branch

kernel 

branch

(i,j)

𝐺: 𝑆 × 𝑆 × 𝐷

𝐹:𝑁 ×W× E

Figure 7. Full architecture of the SOLOv2-based pumpkin segmentation model. Note: F represents
the feature maps that are extracted from the input image by the backbone network. N is the number
of feature maps, and W is the width and height of the feature maps. G represents the grid maps that
are used to divide the feature maps into smaller regions, each of which is assigned a separate mask
prediction. S is the number of grids along each dimension, and D is the number of channels in the
grid maps.

The mask prediction module plays a crucial role in generating pixel-wise instance
masks by associating each pixel in the image with a specific object instance. This association
is established through the use of an embedding vector assigned to each pixel, which
determines the object instance to which the pixel belongs. The embedding vector can be
mathematically represented as follows:

Ei,j = Fembed(Ff usion(Fbackbone(I)))i,j (4)

where Fembed represents the embedding function responsible for generating the embedding
vectors, and i and j denote the spatial coordinates of the pixel within the feature maps.
Subsequently, the instance masks are generated by assigning each pixel to the object
instance with the highest value in the corresponding embedding vector. This process can
be expressed as:

Mi,j = argmaxk(Ek,i,j) (5)

where k is the index of the object instance.
The SOLOv2 model has demonstrated exceptional performance on various benchmark

datasets, including common objects in context (COCO), which is widely used for object
detection and segmentation [36]. In comparison to other instance segmentation models like
Mask R-CNN, SOLOv2 consistently achieves superior results across a range of evaluation
metrics. Moreover, the model exhibits high efficiency, and it is characterized by a rela-
tively low parameter count and fast inference speed, making it well-suited for real-world
applications [34].

5.1.4. Biophysical Properties Measurement

This section presents an automated pipeline designed to accurately measure the phys-
iological properties of various components of pumpkins by detecting the ruler placed
alongside the pumpkins in the captured images. The biophysical properties of both the
pumpkin fruit and vine were analyzed using a set of one qualitative and four quantitative
parameters, adhering to the guidelines provided by the International Union for the Pro-
tection of New Varieties of Plants (UPOV, 2021) [37]. The process involves a series of CV
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operations, as depicted in Figure 8, which includes ruler detection, pixel density conversion,
and actual measurement calculation.

The RGB input was initially converted to grayscale to facilitate the identification of
edge features [38]. To enhance the image quality and minimize unwanted artifacts that
could affect the vertical line detection process, a Gaussian blur was applied to the grayscale
image. Subsequently, the Canny edge algorithm, known for its effectiveness in detecting
various types of edges while minimizing false detections, was utilized to perform edge
detection on the blurred grayscale image. Finally, a Hough line transform technique was
employed to identify the ruler based on the detected edges. The resulting straight line
(x1, y1, x2, y2) represents the coordinates of the starting (x1, y1) and ending (x2, y2)
points of the ruler in the image.

Biophysical 

properties 

measurement

Input Blurred output Detected edge

Blurring Edge

detection

Ruler 

detection

Detected ruler
Output mask

Figure 8. Four main steps of the proposed real-life biophysical properties measurement based on
detecting the ruler.

Figure 9 presents an overview of the analyzed properties, which include both quan-
titative and qualitative aspects. The quantitative properties consist of fruit length (FL),
fruit width (FW), vine length (VL), and vine width (VW), while the qualitative property is
represented by fruit peel color (FPC). In the case of symmetric fruit, the width and length
properties can be accurately determined using the bounding box. However, in reality,
pumpkin fruits are often captured in non-symmetric orientations, as depicted in Figure 9.

Vine 

length (VL)

skeletonmask

Fruit 

length (FL)
Fruit peel 

color (FPC)

Affine 

transformation

Vine width 

(VW)

Fruit width 

(FW)

(b) Length properties 

measurement

(a) Width properties 

measurement

Figure 9. Automated measurement of different pumpkins’ biophysical properties, including VL, VW,
FL, FW, and FPC.

To address this challenge and provide a more precise and comprehensive measurement
of the fruit’s biophysical properties, this study proposes an end-to-end approach that
takes into account irregularities and asymmetries that may arise during fruit capture.
By considering these factors, the proposed approach aims to enhance the accuracy of
measurements and enable a more detailed analysis of the fruit’s physical characteristics.
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This, in turn, holds significant implications for crop management and breeding programs,
as it enables a more nuanced understanding of the fruit’s attributes.

• Width properties measurement (Figure 9a): When dealing with objects that do not have
symmetrical shapes, an affine transformation method provides an effective approach
to accurately calculate their width, as demonstrated in Figure 9a [39]. Initially, an
ellipse is utilized to fit the pumpkin’s fruit and vine components, as it offers a better
approximation of the shape compared to a rectangular bounding box. The center
coordinates, major and minor axis lengths, and rotation angle of the best-fit ellipse
are then extracted, enabling the construction of an affine transformation matrix for
rotation. By applying this transformation, the object is aligned with the image’s x and
y axes, facilitating the measurement of width by determining the distance between
the two farthest points within the transformed object.

• Length properties measurement (Figure 9b): In order to precisely compute the length
property, this study proposes the use of a skeletonization algorithm applied to the
segmented mask. This approach offers a more accurate and precise measurement of
the length, taking into account any irregularities or asymmetries that may be present
in the shape of the fruit. Additionally, the skeleton, being a simplified representation
of the fruit’s shape, enables more efficient data processing, facilitating the analysis of
large datasets of fruit images.
The skeletonization process involves iteratively thinning the object or shape until
a one-pixel-wide skeleton is obtained. This simplified representation captures the
essential features and structure of the object, providing a streamlined depiction of the
object [40]. One commonly used method for generating the skeleton is the medial
axis transform, which calculates the centerline of the object and produces a skeleton
that represents its main axis of symmetry [41]. Figure 9a displays the skeleton output
obtained from the medial axis skeletonization method applied to the input vine and
fruit masks. The resulting image is binary, with pixels on the skeleton assigned a value
of 1, while all other pixels are assigned a value of 0.
Previous research has shown that the object length can be determined using the
following formula once the object skeleton is extracted [8]:

Length =
∫

c
Cdl ∼= ∑ Cdl (6)

where the finite length of L is denoted by dl, and C represents the geometric calibration.
Initially, C was introduced as a calibration factor to account for pixel displacements in
the mask outputs. However, since the dataset used in this study exhibited no geometric
distortion, the parameter C was set to 1. This allowed for the direct summation of the
total pixels along the skeleton to calculate L.

• Color estimation: The estimation of the pumpkin’s FPC was based on the standard
color variations observed in pumpkins. According to findings of Kaur et al. [1], the
color of the pumpkin fruit peel can exhibit variations based on factors such as the
pumpkin variety and maturity stage. Typically, pumpkin fruit peel is characterized
by an orange hue, which can range from a pale, light orange to a deep, rich shade.
Additionally, certain pumpkin varieties may feature green, yellow, or white stripes
or patches on their peel. As the pumpkin undergoes ripening, the peel color tends
to deepen and become more vibrant. Hence, this study focused on three main FPC
categories: orange, green, and light green.
Figure 10 visually presents the process of classifying pumpkin’s FPC using the hue,
saturation, and value (HSV) color space. The HSV color space is favored over RGB for
color detection tasks due to its ability to separate color information from brightness or
luminance information, thereby providing a more intuitive representation [42]. In this
process, specific color ranges within the HSV color space were defined, enabling the
creation of binary masks for each color range. These binary masks were then employed
to determine the FPC by identifying the color range with the highest pixel count.
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Binary mask 

extraction (orange, 

green, light-green) 
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(each color mask)
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Color 

identification

Figure 10. FPC estimation process based on the HSV color channel.

5.2. Experimental Settings
5.2.1. Hardware and Software Platform

The proposed framework for measuring the biophysical properties of pumpkins was
primarily developed using Python 3.7 on a Ubuntu 20.04 system equipped with two Nvidia
Tesla V100 GPUs, each with 32 gigabytes of memory. The SOLOv2 segmentation model
was constructed using MMdetection 3.1.0 [43], an open-source object detection framework
based on PyTorch 2.0.0. In addition, PlantCV 1.1 [44], an open-source Python library
specifically designed for plant image analysis was implemented in this study. PlantCV
offers comprehensive support for a range of tasks, including feature extraction, image
processing, and data analysis.

5.2.2. Optimizer, Loss Function and Hyperparameters

The SOLOv2-based model used a pre-trained ResNet-101, which was initially trained
on the ImageNet dataset [45], as its backbone. During training, the model was specifically
configured to detect two classes: fruit and vine. The intermediate feature maps, consisting
of 512 channels, were utilized for generating precise object masks. The mask head of
the SOLOv2 model incorporated four convolutional layers to refine the mask predictions.
To optimize the model’s performance in generating accurate object masks, the dice loss
function was employed as the primary loss function during the training process. The model
was trained for 25 epochs with an Adam optimizer, using an initial learning rate of e−3 and
weight decay of e−4. The mini-batch size was set to 4.

5.2.3. Evaluation Metrics

Mean Average Precision (mAP) is a widely adopted evaluation metric for assessing
the performance of segmentation models on the COCO segmentation dataset [36]. The
evaluation process involves sorting the model’s predicted segmentation masks based on
their confidence scores. Precision and recall values are then computed for each class label
at various confidence thresholds. Precision represents the fraction of predicted pixels for a
given class that have an Intersection over Union (IoU) greater than the threshold, while
recall represents the fraction of ground truth (GT) pixels for that class with an IoU greater
than the threshold. By constructing a precision–recall curve, the Average Precision (AP)
can be calculated. Finally, the mAP is obtained by averaging the AP values across all class
labels in the dataset. The equation for mAP is expressed as follows:

mAP =
1
C

C

∑
c=1

APc (7)

where C is the number of semantic classes in the dataset and APc is the average precision
for class c.

To assess the predictive capability of the model in capturing various physiological
properties of pumpkins, two additional evaluation metrics, namely mean absolute error
(MAE) and mean absolute percentage error (MAPE) [46], are computed.

MAE calculates the mean absolute difference between the the GT values and the
predicted values, presenting a numerical measure of the model’s error magnitude. A lower
MAE signifies superior performance by indicating a smaller average deviation between
the predicted and GT values. With a different technique, MAPE calculates the average
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percentage difference between the GT values and the predicted values. It represents the
errors as a percentage of the actual values, providing a relative assessment of the model’s
performance. MAPE is particularly valuable when substantial variations in data scale
or magnitude occur across different samples. Like MAE, a lower MAPE denotes better
performance by indicating reduced percentage errors between the predicted and actual
values. The equations for MAE and MAPE are defined as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (8)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (9)

where N represents the number of biophysical properties, yi indicates the GT physiological
property value, and ŷi is the predicted physiological property value. The absolute value |.|
is used to ensure that the errors are positive values.

6. Conclusions and Future Works

This study presents the development of an automated framework specifically designed
for measuring the biophysical properties of pumpkins, with potential applications in
breeding selection programs. To facilitate accurate analysis, a comprehensive dataset
consisting of 900 high-resolution images was collected, covering two pumpkin varieties,
namely C. moschata and C. maxima.

The framework incorporates several crucial modules. Firstly, a color correction tech-
nique was implemented to ensure consistent and accurate color representation across all
images in the dataset. Compared to other well-known segmentation models (BlendMask,
HTC, MS R-CNN, and Mask-RCNN), the SOLOv2-based model demonstrated the highest
validation mAP of 88% and the fastest inference speed of 19.4 FPS, enabling precise seg-
mentation of the vine and fruit components of the pumpkin. Furthermore, the framework
employed the extraction of the fruit’s skeleton for measuring the length trait and an affine
transformation method for accurately determining the width trait. These techniques con-
tributed to achieving highly accurate measurements compared to manual methods with an
MAPE of about 2.5%.

Although this study mainly focused on the biophysical properties of pumpkins, the
framework has the potential to be applied to other plants, such as cucumbers and radishes,
given similar settings and sufficient segmentation datasets. The establishment of a mea-
surement standard for the biophysical properties of pumpkin to guide output analysis
would also be an intriguing topic for future exploration. Furthermore, since the current
framework is not suitable for real-time measurements due to its complexity, future work
should prioritize optimizing the framework for robustness and time efficiency to enable
real-time measurement capabilities.
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Abbreviations
The following abbreviations are used in this manuscript:

RGB Red–green–blue color channel
RCNN Region-based convolutional neural network
UAV Unmanned aerial vehicle
ISSR Inter-simple sequence repeat
FPN Feature pyramid network
FL Fruit length
FW Fruit width
VL Vine length
VW Vine width
FPC Fruit peel color
HSV Hue, saturation, and value
CNN Convolutional neural network
DCN Deformable convolutional networks
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