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ABSTRACT The conventional heatmap regression with deep networks has become one of the mainstream
approaches for landmark detection. Despite their success, these methods do not exploit the overall landmarks
structure. We present a new landmark detection which is capable to capture the overall structure of
landmarks by modeling these landmarks as a graph structure. Our method combines a deep heatmap
regression network with Graph Convolutional Network (GCN) into an end-to-end differentiable model. The
proposed method can utilize both visual information and overall landmarks structure to localize landmarks
from an image. The ad hoc spatial relationships between landmarks are learned naturally with GCN network.

Experiments on multiple datasets show the robustness of the proposed method.

INDEX TERMS Face alignment, Graph Convolutional Network, High Resolution Net, Heatmap

. INTRODUCTION

Facial landmark detection aims to detect multiple predefined
points of human facial components and contours. It has be-
come increasingly important in various facial analysis tasks
like pose estimation [1], face recognition [2], [3], and face
alignment [4], [5]. Nevertheless, it is still a challenging task
in the real world principally because different poses and
facial expressions can easily influence the accuracy and reli-
ability of landmark detection. As a result, there is a pressing
need to develop a framework that can precisely and robustly
detect facial landmarks.

To address this problem, the existing approaches are
mainly separated into three different categories, which in-
clude coordinate regression methods [6]-[8], heatmap re-
gression methods [9]-[11], and graph learning methods [10],
[12], [13]. The difference among them is how to use the
information on facial appearance. The coordinate regression
methods directly learn the mapping relationship between
discriminative features and coordinates vectors of landmarks,
drawing lots of attention. Many previous methods [6], [14]
reached satisfactory performances, while the results of co-
ordinate regression methods are sensitive to face occlusion.
Besides, the heatmap regression approach creates a probabil-
ity heatmap for all target landmarks, which achieved state-
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of-the-art performances in the studies of landmark detection
for multiple views [5]. In addition, the landmark detection
methods with graphs also have the potential to represent the
predefined landmarks as a graph. The landmark detection
with graphs makes the landmarks learnable, and it is robust
against appearance variations [12], [13].

Graph-structured data are ubiquitous in computer vision,
such as point-cloud, human body joints (pose estimation),
hand joints (hand gesture classification), and scene graphs.
Integrating relation inductive biases from graph-structured
data into deep learning architectures is essential for these
deep learning systems to learn, reason, predict and generalize
well on these kinds of data. Recent years have seen a surge
in research on deep learning for Graph-structured data. The
advancement in graph representation learning creates a new
way for tackling many challenging computer vision problems
by leveraging the inter-relationship between entities in a
scene.

A facial landmark can represent a node, and these nodes
form a graph that represents the overall facial structure.
Unlike some graph-structured data in which the topology of
a graph comes naturally (e.g. atoms in protein molecules),
facial landmarks do not have an intrinsic graph connectivity
scheme. Therefore, the graph topology for facial landmarks is
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either made using heuristic [15] or learned from data [12]. In
this work, the latter approach is selected and further improved
with a per-image graph connectivity scheme where graph
topology changes based on the input image to increase the
system’s robustness in some challenging scenarios where the
initial prediction of the landmarks may not be reliable.

Formally, a graph G = (V, E) is defined on a set of
vertices V and a set of edges £ which connect the vertices.
A convenient way to represent the connection of nodes in a
graph is using adjacency matrix A € RVl An edge e
connects a node v and u can be represented in the adjacency
matrix as an entry A(u,v) = 1. While the adjacency matrix
can represent a graph without any loss of information, Graph
Laplacian matrices with some useful mathematical properties
come as alternatives for analyzing a graph. In spectral graph
theory, characteristic matrices such as adjacency matrices
and Laplacian matrices are used to study the properties of
a graph.

Graph Neural Network (GNN) is a class of deep learning
architectures for graph-structured data. GNN can be roughly
categorized into Spectral Graph Convolution methods [16],
and Spatial Graph Convolution method [17]. The difference
between spectral and spatial methods is whether a method
requires Eigen-decomposition of the graph Laplacian or not.
Regardless of spectral or spatial domains, a GNN layer can
be modelled with a neural message-passing mechanism in
which nodes interact with each other with vector messages.
In general, Spatial Graph Convolution methods are simpler
and faster than spectral methods while still achieving good
performance on many benchmarks. In this paper, we develop
our graph model based on [17] which is a spatial graph
method.

We propose a landmark detection framework to efficiently
and accurately locate landmarks on facial images by lever-
aging the overall facial landmark structure with a graph
convolutional network. The proposed method combines the
heatmap regression method and graph neural network to
utilise both approaches’ advantages. The main contributions
of this study can be listed as follows.

o We proposed a novel learnable algorithm based on
per image graph connectivity, which accounts for both
landmarks’ class and prediction likelihood. It allows the
graph connectivity scheme to change depending on the
input image, in order to adapt to different scenarios.

o Our method allows the reuse of pre-trained heatmap
models to obtain powerful landmark preliminaries and
visual features, which are then used to construct the
node features of our graph model.

e Our method achieves satisfactory and robust per-
formance on three main metrics NME, FRO.1, and
AUCO.1, on a highly challenging WFLW dataset. Ex-
periments demonstrated that the proposed method is
balance in utilizing local visual information and the
global structure of landmarks.

Il. RELATED WORK

There are many algorithms that have been reported in the
field of facial landmark detection over the years, including
coordinate-based methods [6]-[8], [14], [18], heatmap-based
methods [9], [11], [19]-[21], and graph-methods [10], [12],
[13], [22].

Coordinate regression methods. This deep learning-
based approach directly maps the input images to the land-
mark coordinates, which are applied to lots of landmark de-
tection works. For example, the Mnemonic Descent Method
(MDM) that adopts the combination of CNN and RNN to
detect landmark locations was firstly proposed in [6]. Zhang
et al. [18] applied multi-task learning methods to obtain
more auxiliary information (like gender and expression) to
improve the accuracy of face alignment. Experiments showed
that the proposed method performed better than other face
alignment methods, especially in handling the scenarios of
pose changes and severe occlusion [18]. Zhu et al. presented
a coarse-to-fine shape searching method to improve the ro-
bustness of the convolutional neural network (CNN) [7].
Besides, the authors in [14] proposed an end-to-end model
based on deep learning and a new loss function (LUVLi)
to focus on the locations and effectiveness of landmarks. In
[8], Cascaded Regression and De-occlusion (CRD) algorithm
was proposed to remove the occluded part of the face to
obtain more accurate locations of landmarks. Even the above
coordinate regression methods obtained state-of-the-art per-
formances, they lack the ability of spatial generalization, and
it is easy to lose the spatial information on feature maps.

Heatmap regression methods. Another category of meth-
ods predicts likelihood heatmaps of landmarks and per-
forms well on facial landmark detection. Chandran et al.
presented the first fully convolutional regional network for
landmark prediction on high-resolution images [9], which
performed well on the images with different resolutions. In
another work, a framework combining unsupervised learning
and fully supervised learning was designed to generate the
heatmaps with landmarks, which can reduce the overfitting
problem in the training process [19]. The global heatmap
correction unit (GHCU) was designed to correct the detected
anomalous points to improve the accuracy of landmark de-
tection in low-quality or partially occluded images. Exper-
iments demonstrated that the method achieved encouraging
results on different databases [20]. Wu et al. introduced
a novel algorithm to estimate the heatmap of the facial
boundary and then locate the key points of the face using
the boundary information [21]. According to the style and
shape transformation of different regions in the facial image,
an image enhancement method is proposed to improve the
robustness of the face landmark detection algorithm [11].
Unfortunately, the heatmap regression method is not an end-
to-end differential model. By using the soft argmax algorithm
to convert the heatmap information into coordinate values,
the values obtained are integers, which results in the loss of
part of the accuracy and the offset of the coordinate position
predicted by the model in the case of low resolution. Besides,
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the heatmap regression method has a slow training speed and
large memory consumption because it requires a large output
feature map.

Graph learning methods. Graph learning methods con-
struct graphs by learning global and local features, which
were applied in the landmark detection and expression recog-
nition tasks. Li et al. designed a novel deep graph neural
network to learn the relationship between human facial land-
marks so as to detect landmarks accurately [12]. Similarly,
a three-dimensional network was built to generate proposals
for the facial area, and then the graphic prior knowledge is
used to improve the performance of facial landmark detection
[13]. In [10], a graph-based CNN was introduced to extract
and fuse different features in order to improve expression
recognition performance. Ngoc et al [22]. applied a graph
neural network to obtain facial expression information by
fusing image features and landmark images. Experimental re-
sults verified that the presented network obtained promising
performance on various datasets.

Unlike the previous studies that focus on graph classifi-
cation from the predefined graph, our approach learns the
relationship between nodes from data, and it performed well
without explicitly labelling occlusion landmarks. In addition,
the proposed method combining heatmap information and
graph neural networks to detect facial landmarks with a
top-performing result. Furthermore, the presented method is
robust for many challenging scenarios like noise, occlusion,
poor illumination, etc.

lll. METHODOLOGY

In this work, we develop an end-to-end landmark detec-
tion model which combine heatmap keypoint detection and
GCN landmark regression. Given an input image, our model
first predict a coarse landmark location and likelihood with
heatmap model. The landmark prediction then is refined
with GCN landmark regression model. An overview of our
proposed method is shown in figure 1

A. PRELIMINARY

Let I € R™*W>3 be an input image of size (W, H) where
(W, H, 3) is the width, height and number of channels of the
input image respectively. Our model first take in image I as
input and produce a heatmap Y € [0,1]% %% *C, where R
is a downsampling factor and C is the number of landmark
types. We employ the HRNet18 [23] as a CNN backbone
to generate a heatmap. We also use features extracted from
the backbone to construct node features for the landmark
regression model.

High-Resolution Net (HRNet) [23] is a universal CNN-
based architecture designed for many computer vision tasks,
including object segmentation, human pose estimation, and
object detection. The design of HRNet architecture is based
on two main concepts: maintaining high-resolution represen-
tations and multi-scale features fusion. HRNet architecture
starts with a high-resolution convolution stream, then grad-
ually adds high-to-low resolution streams as stream flow to
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the next stages. Every time the network transit to the next
stage, the multi-scale features are fused for each stream. An
overview of HRNet architecture is illustrated in figure 2.

B. GRAPH CONVOLUTION
Let G = (V,E) be a graph, where the vertex of graph
V' = {v;} denotes landmarks and edges E = {e;;} repre-
sents the learned connectivity between landmarks. Similar to
[12], we also use graph convolutional networks (GCN) [17]
for handling the information exchanging between nodes.

Let hé be the hidden of vertex v; at iteration [ and e;;
be the learned connectivity of between node, Information is
propagated through the graph G as follow:

Wt = Wihl+> e Wih, (1)
J

C. NODE FEATURES

Following the work of 1i et al. [12], we also enrich Node
features with visual features and shape features. We think
that visual information can provide some useful information,
such as boundary constraint, while shape feature explicitly
provides information on the overall landmark structure. This
information is beneficial to the GCN landmark regression
model for refining initial landmark prediction.

Visual features is taken feature map from the final layers
of HRNet18 [23] just before the heatmap layer. The size of
the visual feature vector taken from the feature map is 270
(from HRNet18 [23]), which is much larger than the 2D
location vector [z;, y;]. Therefore, we use a small multi-layer
perceptron network (MLP) as an embedding layer to reduce
the size of the visual feature vector. The node feature of a
node v; is constructed by concatenating the embedded visual
feature vector f; with the landmark 2D location

hY = [z, y:] @ f; 2)

Shape features: similar to [12], We also use displacement
between two nodes as shape features ¢;; = [z; —x;, y; — y;].
The shape features g;; are concatenated to node features of
neighbor nodes v; before aggregate information to target
node v;. The shape features are added to the hidden of
neighbor nodes for every iteration to ensure overall shape in-
formation persists as the graph model progressively updates.

b« bY@ g 3)

For simplicity, we can combine equation 1 and 3 as follow:

W = Wik + ) ey Wi(h @ ¢ij) “)
J
D. LEARNABLE GRAPH CONNECTIVITY
The graph connectivity illustrates the relationship between a
pair of landmarks and determines the impact of an incoming

signal from a neighbor node to a target node in GCN. As
analyzed in [12], using hand-crafted graph connectivity may

3
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FIGURE 1. Overview of the proposed method. A heatmap is generated from input image by a CNN backbone. Initial landmark predictions and feature map is then
used for constructing a graph representation of landmarks structure. The landmark graph representation is fed to the GCN landmark model to produce the final

landmark prediction.
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FIGURE 2. Overview of HRNet architecture

introduce some biases, which could lead to sub-optimal per-
formance. In their work, li et al. [12] treat graph connectivity
E = {e;;} as a learnable adjacency matrix and is trained
in end-to-end manners. Therefore, the graph connectivity
remains the same for a given task and is independent of input
images.

We argue that may not be the optimal way to handle
some challenging situations like occlusion or blurry, where
the prediction of some landmarks may be highly uncertain.
If the initial prediction of 2 nodes is unreliable, even if
their location is highly correlated, it would be better if we
use other nodes with a more reliable prediction to estimate
the landmarks that are visually challenging for prediction.
Therefore, we think the graph connectivity should depend
on both the landmark types and the confidence scores of the
initial prediction from the heatmap.

For a pair of landmark (v;,v;) with corresponding land-
mark types (;,1;) and confidence scores (c;,c;), we first
compute a class embedding:

lij = MLP(g(L:) ® 9(;)) o)

where g is one-hot encoding operation. Then the graph
connectivity is computed from class embedding and nodes
confidence score:

€ij = MLP([C“ Cj} © l”) (6)

A softmax function is apply to the graph connectivity to
normalize the signal from neighbors nodes.

E. TRAINING

GCN landmark: we use L1 loss on all predicted landmark
coordinates to learn precise localization:

1 N
£1=N;\vi—vi\ ™

where v; = (z;,y;) and 0; = (&;,9;) are predicted and
ground truth landmark coordinates respectively, and N is the
number of landmarks in an image.

Heatmap model: Two potential problems may arise when
training the heatmap model. Firstly, there is an extreme im-
balance between the foreground landmarks and background
in the heatmap. The second problem is that the heatmap
influences the constructions of node features and edge fea-
tures for the GCN landmark model. So a dramatic change
in the heatmap may cause a large variation in the output of
the GCN landmark model. These two problems will lead
to unstable optimization behaviour. As suggested in [24],
[25], we employ the Focal loss [26] to stabilize the training
process:

P (1—?)alog(?) iy =1

N (1- Y)B Y log (1 - Y) otherwise
®)

where « and (3 are hyper-parameters of the focal loss, and IV
is the number of landmarks in an image. We pick o = 2 and
B = 4 in all experiments as following [24], [25]. The overall
loss function to train the model in end-to-end manners is the
combination of the two above loss functions:

L=MLy+ XLy 9

where \; and ), are the weights for each loss.
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FIGURE 3. Visualization of Landmark detection result. Image pairs are displayed side by side for comparison. Left images: result from heatmap model (HRNet18).
Right images result from GCN landmark model. Green dot: predicted landmark location. Red dot: groundtruth landmark location.
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FIGURE 4. Training loss and NME-validation on WFLW dataset

IV. EXPERIMENTS
A. DATASET
We evaluate our proposed method on two public datasets:

WFLW [21] dataset consist of 7500 facial images for
training and 2500 facial images for testing. All these images
are manually annotated with 98 landmarks and 6 attributes:
pose, expression, illumination, make-up, occlusion and blur.
These attributes depict different difficult scenarios to test the
robustness of the landmark detection method.

300W [27] dataset includes 5 face datasets: LFPW, AFW,
HELEN, XM2VTS and IBUG. All images are annotated with
68 landmarks. Following the common setting in [7], [28],
[29], the training set size is 3148 images taken from the
training set of LFPW, HELEN and the full set of AFW. 554
images from LFPW and HELEN testing form the common
set, and 135 images from IBUG are regarded as the challeng-
ing subset. The full set is the combination of common and
challenging subsets. The official test set has 600 face images
split into 300 indoor and 300 outdoor images.

B. IMPLEMENTATION DETAILS

Following the preprocessing step in [30], all the face images
are cropped according to the center location and resized to
256 x 256. The HRNet18 is selected as the backbone because
its network design allows us to extract deep semantic fea-
tures from high-resolution feature maps. The GCN landmark
model consists of 3 GCN blocks with hidden sizes of 64, 16
and 2, respectively. The final GCN block predicts the final
2D landmark coordinates. We choose \; = Ay = 1 for
different part of the overall loss function. The learning rate is
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setto 10~% and 103 for CNN backbone and GCN landmark
model. For data augmentation, we used: rotate an image with
a random angle [-30, 30], scale image with a random scale
factor in [0.8, 1.2], random translation in the range [0.9, 1.1],
random horizontal flip and color jitter.

C. EXPERIMENTAL RESULTS

WFLW is a challenging dataset with multiple difficult de-
tection scenarios. Testing result is reported in Table 1. Fol-
lowing previous research, we evaluate our method with 3
metrics: normalized mean error (inter-occular), AUC@0.1
and FR@0.1. Our method is among the top performers,
achieves 4.24% NME (second best), 2.68% FRO.1 (best), and
0.5892 AUCO.1. Training loss and NME on validation set is
shown in figure 4

300W: We also compare our approach with several top
performing methods on 300W dataset. Results on common,
challenge and full sets are evaluated using NME(%). We use
AUC@Q0.1 and FR@0.1 for testing set. Our method achieves
competitive result compare. As shown in table 2, our method
achieves competitive results to previous methods.

A visualization of landmark prediction on some images
is shown in figure 3. As can be observed from 3, the GCN
landmark model can correct the initial landmark prediction
from the backbone.

D. LEARNED CONNECTIVITY VISUALIZATION

We draw the landmark connection based on the learned edge
weight to study the graph structure. For ease of compari-
son, each column is in figure 5 shows the connection of a
landmark to its neighbor. As can be seen from figure 5, the
graph structure varies from image to image. This behavior
is intended, and we believe the graph structure’s flexibility
boosts GCN landmark model performance.

E. ABLATION STUDY

In this section, we examine the performance of our proposed
method for learning the graph connectivity by comparing it
to the learnable task-specific graph connectivity proposed by
Li et al. [12]. We experiment with both WFLW and 300W
datasets. We use the same HRNetl18 backbone pretrained
WFLW and 300W datasets and freeze its weights for a fair
comparison. The backbone in this experiment achieves the

5
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TABLE 1. Evaluation on the WFLW dataset (98 Landmarks). Top-2 results are highlighted with colors (1st, 2rd)

NME(%)
Method Year Test Pose Expr. Mum. | Make-up | Occlu. Blur
LAB 2018 5.27 10.24 5.51 523 5.15 6.79 6.32
SAN 2018 5.22 10.39 5.71 5.19 5.49 6.83 5.80
WING 2018 5.11 8.75 5.36 4.93 5.41 6.37 5.81
HRNet18 2020 4.60 7.94 4.85 4.55 429 5.44 5.42
STYLE 2019 4.39 8.42 4.68 4.24 4.37 5.60 4.86
AWING 2019 4.36 7.38 4.58 432 4.27 5.19 4.96
li et al. 2020 4.21 7.36 4.49 4.12 4.05 4.98 4.82
AnchorFace | 2020 4.32 7.51 4.69 4.20 4.11 4.98 4.82
DSCN 2021 5.66 10.43 6.06 5.48 7.97 14.44 9.96
Our 2022 4.24 7.57 4.47 4.20 4.01 5.03 4.83
FR@0.1
LAB 2018 7.56 28.83 6.37 6.73 7.77 13.72 10.74
SAN 2018 6.32 27.91 7.01 4.87 6.31 11.28 6.60
WING 2018 6.00 22.70 4.78 4.30 7.77 12.50 7.76
HRNet18 2020 4.64 23.01 3.50 4.72 243 8.29 6.34
STYLE 2019 4.08 18.10 4.46 2.72 4.37 7.74 4.40
AWING 2019 2.84 13.50 2.23 2.58 291 5.98 3.75
lietal 2020 3.04 15.95 2.86 2.72 1.45 5.29 4.01
AnchorFace | 2020 2.96 16.56 2.55 2.15 243 5.30 3.23
DSCN 2021 8.36 34.36 7.96 5.87 7.97 14.44 9.96
Our 2022 2.68 15.03 2.23 2.44 0.97 5.03 3.36
AUC@0.1
LAB 2018 | 0.5323 | 0.2345 | 0.4951 | 0.5433 0.5394 0.4490 | 0.4630
SAN 2018 | 0.5355 | 0.2355 | 0.4620 | 0.5552 0.5222 0.4560 | 0.4932
WING 2018 | 0.5504 | 0.3100 | 0.4959 | 0.5408 0.5582 0.4885 | 0.4932
HRNet18 2020 | 0.5237 | 0.2506 | 0.5102 | 0.5326 0.5445 0.4585 | 0.4515
STYLE 2019 | 0.5913 | 0.3109 | 0.5490 | 0.6089 0.5812 0.5164 | 0.5513
AWING 2019 | 0.5719 | 0.3120 | 0.5149 | 0.5777 0.5715 0.5022 | 0.5120
lietal 2020 | 0.5893 | 0.3150 | 0.5663 | 0.5953 0.6038 0.5235 | 0.5329
AnchorFace | 2020 | 0.5769 | 0.2923 | 0.5440 | 0.5865 0.5914 0.5193 | 0.5286
DSCN 2021 | 0.4784 | 0.1827 | 0.4354 | 0.4653 | 0.4980 0.3965 | 0.4220
Our 2022 | 0.5892 | 0.3226 | 0.5615 | 0.5951 0.6083 0.5258 | 0.5390

FIGURE 5. Visualization of node connectivity. Each column shows the connection of a landmark to its neighbor. Only edges with value larger than a certain

threshold are shown

TABLE 2. Evaluation on the 300W dataset (68 Landmarks)

NME(%)

Method Year Common | Challenge | Full AUC@O.1 | FR@O0.1
LAB [21] 2018 2.98 5.19 3.49 0.5885 0.83
STYLE [11] 2019 3.21 6.49 3.86 - -
AWING [31] 2019 2.72 4.52 3.07 0.6440 0.33

li etal. [12] 2020 2.62 4.77 3.04 0.6361 0.33
AnchorFace [32] | 2020 3.12 6.19 3.72 - -
HORNet [33] 2020 3.38 6.36 3.96 - -
DSCN [34] 2021 3.58 5.36 3.85 - -
Our 2022 2.95 5.15 3.38 0.6024 0.50

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2016



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3200037

IEEE Access

NME of 4.72 and 3.92 on the WFLF and 300W datasets,
respectively. The other part of the GCN model is the same
as described in section III. We set the learning rate for
the GCN landmark model to 10~ for two epochs, then
reduce it to 10™* for 30 epochs. As shown in table 3,
our proposed method significantly improves the NME on
the WFLW dataset, while the performance on the 300W
dataset is near identical to the task-specific learnable graph
connectivity method. As the WFLW dataset is considered
more challenging than the 300W dataset, we conclude that
our method improves the final prediction results significantly
when encountering challenging scenarios that are pretty com-
mon in the WFLW dataset.

TABLE 3. Ablation study on graph connectivity

NME (%)
Method 300W full | WELW
backbone 3.92 4.72
lietal [12] 3.23 4.40
our 3.23 4.23

V. DISCUSSION

Utilizing landmark structure to improve prediction is a well-
studied approach for facial landmark detection. Wu et al.
[21] propose explicitly using heatmap boundary to group
highly correlated landmarks. In AnchorFace [32], the authors
proposed to use a set of anchors as a template to model
landmark positions. While the GNN is widely used in other
computer vision tasks such as pose estimation, research on
applying GNN for facial landmark detection is still quite
lacking despite its potential.

To the best of our knowledge, besides the work of Li et al.
[12], our paper is the only work that applies GNN for learning
the facial landmark structure. The main difference between
our work and [12] is in how the initial landmark position
is obtained. In [12], the initial landmark prediction is from
the mean average of 2D locations of landmarks, while in our
work, the initial landmark prediction results from a heatmap
model. By utilizing the heatmap model, we can access the
confidence score for each landmark for constructing the
graph connectivity. While in [12], the graph connectivity is
modelled as a learnable adjacency matrix. The comparison
of these two approaches is analyzed in the ablation study.
Another advantage of using heatmap for initial landmark
prediction is that we only need a single stage GCN for
landmark regression, while [12] method requires a 2-stages
cascaded GCN regression model for coarse-to-fine prediction
because the mean average 2d location is not good enough
for coarse prediction. Our method can reuse pre-trained land-
mark detection directly, which eases the training process. We
can freeze the heatmap model during training and still obtain
a good result and simplify the training process.

Other methods, such as WING [35], and AWING [31]
about loss function so orthogonal to our approach and can
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be used in conjunction with our work to improve landmark
detection further.

Our method is built on top of a heatmap model, and its
performance is aligned with the quality of the used heatmap
model. Even though we only test our method with HRNet18,
our method can be plugged into any kind of heatmap model
and enjoy the boost in accuracy as analyzed in the ablation
study section. In addition, figure 4 shows a clear gap in
NME between landmark prediction from the heatmap model
and one from the graph model. It means our graph model
can consistently improve the landmark prediction from the
heatmap model. On the contrary, an obvious limitation of our
approach is that the graph model only performs well when
the initial guess from the heatmap model is good enough.

VI. CONCLUSION
Due to its performance, heatmap prediction is currently the
mainstream solution for facial landmark prediction. One of
the flaws of the heatmap model is lacking a mechanism to
exploit the overall structure of the human face to aid the
landmark prediction when visual information is insufficient.
Using Graph Neural Network (GNN) utilizing the overall
human face structure to refine the landmark prediction from
heatmap is a good solution in challenging cases such as
pose variation, blurry image, low illumination and expression
variation.

We propose a novel landmark detection model based on
a graph convolutional network, which utilizes the overall
landmark structure by modelling them as a graph. The graph
structure varies depending on the input images for adapting
to different situations. The experimental results show that
our approach is competitive with some current state-of-the-
art methods. The proposed method can be applied to any
heatmap model to boost landmark prediction accuracy. Ex-
periment shows that the proposed method can consistently
boost the heatmap model’s accuracy. The proposed method is
model agnostic. Hence it can apply to any heatmap prediction
model. This quality allows easy integration of the proposed
graph model into an existing system.
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