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Abstract 

In this work, we tackle class incremental learning (CIL) for video action recognition, a relatively 

under-explored problem despite its practical importance. Directly applying image-based CIL 

methods does not work well in the video action recognition setting. We hypothesize the major 

reason is the spurious correlation between the action and background in video action recognition 

datasets/models. Recent literature shows that the spurious correlation hampers the generalization 

of models in the conventional action recognition setting. The problem is even more severe in the 

CIL setting due to the limited exemplars available in the rehearsal memory. We empirically show 

that mitigating the spurious correlation between the action and background is crucial to the CIL for 

video action recognition. We propose to learn background invariant action representations in the 

CIL setting by providing training videos with diverse backgrounds generated from background 
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augmentation techniques. We validate the proposed method on public benchmarks: HMDB-51, 

UCF-101, and Something-Something-v2. 

Keywords:  

action recognition, class incremental learning, debiasing, temporal shift module 

 

1. Introduction 

Recent advances in video action recognition show remarkable performance due to the 

rapid progress of deep neural network architectures [1, 2, 3, 4] and a large amount of training data 

[5, 6, 7, 8]. Most video action recognition approaches share an unrealistic assumption: all the 

labeled training data is available during a single stage. This assumption is unrealistic as it is almost 

impossible to define and collect videos containing all human action categories at once. In the real 

world, we inevitably encounter new action categories as time goes on. Storing all the growing data 

and retraining the model is impractical due to growing cost, privacy, and legal constraints. 

Therefore, we need to incrementally update the action recognition model using the videos of novel 

categories without access to the previous data. We formulate the aforementioned action 

recognition problem as a class incremental learning problem. 

 

Figure 1: Class incremental learning for video action recognition. A model learns new classes 

in a sequential manner rather than learning all at once. To prevent catastrophic forgetting, we keep 

limited examples from the previous tasks in the rehearsal buffer and we reuse them in each 

incremental learning step. 
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In the class incremental learning (CIL) setting, data arrive sequentially and we do not have 

access to previous data or we have access to only a limited amount of previous data as shown in 

Figure 1. This setting is challenging due to the catastrophic forgetting problem [9, 10] in which 

model performance on the old tasks degrades. To overcome the catastrophic forgetting problem, 

there have been extensive efforts which show great progress in the image domain [11, 12, 13, 14, 

15, 16, 17]. However, CIL for video action recognition is relatively under-explored. Although CIL 

methods working well in the image domain [11, 12, 13, 14, 15, 16], extending these methods 

effectively to the video domain poses non-trivial challenges. Naive extensions do not show 

satisfactory performance. There are only a few recent works on CIL designed for video action 

recognition [18, 19, 20, 21, 22]. These approaches leverage the temporal dynamics property 

inherent in videos. These methods either focus on spatial-temporal distillation [18, 19], key frames 

selection for replay buffer set [19], temporal consistency regularization [21], and learn to 

condensed frames with prompt [22]. Despite the great advances, they overlook the representation 

bias problem which is prevalent in many video action recognition datasets [23]. 

Representation bias is a property of a dataset, and a model trained with a biased dataset 

inherits this bias when making predictions. Many video action recognition datasets such as 

HMDB-51 [24], UCF-101 [8], Kinetics-400 [5], and ActivityNet [7] exhibit static bias [23]. This 

static bias is caused by the spurious correlation between static cues and the actual action. For 

example, most videos of the ”Make Up” class contain up-close faces, or videos of the ”Soccer 

Penalty” class often include scenes of grass fields. Training a video action recognition model with 

these static bias datasets often leads to the model prioritizing scene features over the actions being 

performed when making predictions. In this work, we refer to these static cues as backgrounds, 

and the bias toward the static cues is called background bias. 
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Additionally, video is more complex than image due to the additional temporal dimension. 

Hence training video classification models requires more data to generalize well compared to 

training image classification models. Unfortunately, collecting and labeling videos is more 

expensive than image collecting and labeling. Consequently, video datasets have even a smaller 

number of training examples compared to the image datasets despite their complexity: e.g., The 

Kinetics-700 dataset [5] has  650 K training examples while ImageNet [25] has 1M training 

examples. Hence, even large-scale video datasets e.g., Kinetics, and ActivityNet [7] have spurious 

correlations between action and scene/object [23]. The class incremental learning setting makes 

the bias problem even more severe due to the scarcity of the previous task examples. Moreover, the 

inter-task confusion challenge of class incremental learning [26] promotes the bias of models. 

Since models are not aware of future classes, they may pick up some representation biases. While 

these biases are beneficial for discriminating old and current classes, they might be detrimental to 

distinguishing future classes. For example, in the UCF-101 dataset, videos of ”Apply Eye 

Makeup,” ”Apply Lipstick,” and ”Brushing Teeth” classes all contain close-up faces. In a CIL 

setting, these classes may not come simultaneously. If the ’Apply Lipstick’ class arrives first and 

the model picks up the facial features bias, this inductive bias will not be helpful in classifying later 

arrival videos of the ’Apply Eye Makeup’ and ’Brushing Teeth’ classes. Therefore, we 

hypothesize that mitigating the representation biases when training models on every incremental 

learning step is crucial to addressing the catastrophic forgetting problem of class incremental 

learning for video action recognition. 

 

Figure 2: Motivation of diversifying background in CIL for video action recognition. Due to 

the data scarcity in CIL, a model is prone to background bias which leads to catastrophic 
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forgetting. With the proposed method, we diversify the videos in the rehearsal buffer. Hence, we 

can mitigate the forgetting problem. 

 

In this paper, we focus on mitigating the background bias in every incremental learning 

step. Specifically, we employ a background augmentation to diversify the videos in the rehearsal 

buffer. We blend an original video from the rehearsal buffer with a background frame extracted 

from another video. Figure 2 shows how videos with various backgrounds diversify the training 

data to regularize models from learning to exploit the spurious correlation between backgrounds 

and actions as a shortcut. Additionally, we employ photometric/geometric augmentations to 

further diversify the videos from the rehearsal buffer. To verify the hypothesis and effectiveness of 

our approach, we conduct extensive experiments on public benchmarks: HMDB-51 [24], 

UCF-101 [8] and Something-Something-v2 [6]. Our debiased class incremental learning method 

shows consistent performance improvement over state-of-the-arts without debiasing. We make the 

following major contributions in this paper. 

• We identify a background bias problem in class incremental learning for video action 

recognition (video CIL). We further analyze the background bias problem in the Video 

CIL setting using scene distance experiment (see Section 4.6), and Grad-CAM 

visualization (see Section 4.7) to confirm our hypothesis about background bias 

problem in video CIL 

• We propose a simple, yet effective plug-and-play method for class incremental 

learning for video action recognition by augmenting backgrounds for every 

incremental learning step. The proposed background augmentation mitigates 

background biases and catastrophic forgetting. 
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• By addressing the background bias, our method achieves significant performance 

improvements compared to CIL baselines that do not account for it in various public 

benchmarks, and our proposed method achieves state-of-the-art performance. 

 

Figure 3: Overview of the proposed approach for class incremental learning for video action 

recognition. We learn the model parameters t  at each incremental training step t  with the 

training data '

tD . '

tD  consists of current step training data tD  and examplars from the previous 

tasks 0: 1tE  . We randomly sample videos from '

tD  and extract background frames from other 

videos in '

tD . To extract backgrounds, we employ the temporal median filter. The videos and 

backgrounds are input to photometric/geometric augmentation and background augmentation. 

Then we feed the augmented videos into the model. Diversifying data is crucial to every 

incremental learning step due to limited data. We employ a knowledge distillation loss KDL  to 

mitigate forgetting and a NCAL  loss to learn categories. 

 

2. Related Work 

Video Action Recognition. In the past decade, there has been great progress in video action 

recognition thanks to deep neural networks and a massive amount of training data [24, 8, 6, 7]. 

Recent literature could be grouped into improving network design such as two-stream networks 

[27, 28], 3D CNNs [29, 1, 30, 31], 2D plus 1D CNNs [32, 33], channel shifting along temporal axis 

[3], and Transformers [34, 35, 36, 4, 37], improving data efficiency [38, 39], long-term temporal 

context modeling [31, 2, 40, 41], and multi-modal fusion of video and audio [42]. These works 

assume all the training data is readily available at once which is often unrealistic as we cannot 
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define and collect all the action categories in advance. In contrast, our focus is a more realistic 

setting, i.e., class incremental learning for video action recognition. Class incremental learning. 

Class incremental learning approaches can be categorized according to how to address 

catastrophic forgetting. To prevent catastrophic forgetting, replay memory based methods [14, 43, 

44, 18] store limited number of exemplars from the previous tasks and then use them as training 

data during the current task training step. In knowledge distillation based methods [17, 14, 13, 45, 

46, 11, 12], teacher models transfer the knowledge learned from the previous tasks to students to 

alleviate catastrophic forgetting. Another line of works focuses on regularizing updates of 

individual model parameters that are important for the previous tasks [16, 15, 47, 48, 49]. Since 

class incremental learning methods are often prone to class imbalance problems, recent literature 

proposes to correct the class bias for the improved performance [12, 13, 50]. Although these class 

incremental learning methods show some promising results, most of the them focus on the image 

domain. There are only a few works on class incremental learning for video action recognition [18, 

19, 21, 22]. Time-Channel Distillation (TCD) [18] preserves the knowledge learned from previous 

tasks by applying knowledge distillation loss on the spatial-temporal features. TCD regularizes the 

knowledge transfer according to the time-channel importance mask. In this work, we complement 

the recent advances in class incremental learning for video action recognition by plug-and-play 

background debiasing. 

Mitigating Biases. Many action recognition datasets e.g., UCF-101 [8], Kinetics [5], ActivityNet 

[7], are static biased, which means there exists a spurious correlation between actions and scenes in 

a dataset. Therefore, it is possible to achieve good performance on these datasets by just exploiting 

the spurious correlation between action and background/object types [23]. However, such a 

background-biased representations do not generalize across domains and tasks [51]. Recent 
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literature addresses the background bias problem by adversarial learning [51, 52, 53] in the context 

of video action recognition. Another effective approach to mitigate background bias is to 

incorporate data augmentation methods [39, 54], which encourage the model to become invariant 

to the background during training. In the class incremental learning setting, background-bias is 

even more severe as shown in Figure 1 as we have only limited examplars from the previous tasks. 

In this work, we address the background bias problem in class incremental learning by introducing 

background augmentations. 

 

3. Method 

3.1. Overview 

Figure 3 illustrates the overview of the proposed method. We adopt a typical knowledge 

distillation-based class incremental learning framework [11, 18]. Specifically, we choose 

PODNet-Pixel baseline to test our method. There are two stages of training. The first stage is the 

pre-training stage where we train the model parameters   with base classes (task 0) only. The 

second stage is the incremental training stage. In this stage, we learn the model parameters t  at 

each incremental training step t  with the training data '

tD  consists of K  videos in total. The 

training data '

tD  consists of current step training data tD  and exemplars from the previous steps 

0: 1tE  . 

 

3.2. Temporal Shift Module 

The Temporal Shift Module (TSM) [3] is a lightweight spatio-temporal model designed for 

video action recognition. TSM captures temporal information in videos by shifting feature maps 
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extracted from a CNN backbone along the temporal dimension. This shifting can occur either in a 

bi-directional manner for offline applications or a uni-directional manner for online applications 

(see Figure 4). Following the TCD benchmark [18], we select ResNet34 TSM and ResNet50 TSM 

video action recognition models, which are based on the ResNet34 and ResNet50 backbones [55]. 

 

Figure 4: Temporal Shift Module (TSM). The temporal information is Incorporated into features 

by shifting channels in the original features along the temporal axis 

 

Figure 5: PODNet-Pixels baseline. The knowledge distillation loss is applied to several CNN 

blocks and on embedding. 

 

3.3. Knowledge distillation-based CIL 

In Knowledge distillation-based Class Incremental Learning (CIL), the teacher model 

corresponds to the model trained on the preceding task 1t  , while the student model represents the 

current task t . The knowledge from the previous task is retained by applying a Knowledge 

Distillation loss (KD loss), which ensures that the representations outputted by the teacher model 

are effectively transferred to the student model. In PODNet, the KD loss is applied to the feature 

maps outputted from several CNN blocks and the final embedding. One important factor when 

applying knowledge distillation in CIL is to balance the rigidity-plasticity trade-off. In PODNet, 

this trade-off is controlled by applying various pooling strategies on feature maps before applying 

the KD loss. The PODNet-Pixels is a variant of PODNet where no pooling is applied to the feature 

maps. Let , , ,

t

l c w hh  be the feature maps of size ( , , )h w c  extracted from layer l , and th  be the final 

embedding of the model t . The KD loss for feature maps is: 
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 1

, , , , , ,

=1 =1 =1

= || ||,
C W H

t t

POD Pixels l c w h l c w h

c w h

L h h

   (1) 

and the KD loss for the final embedding: 

 
1=|| || .t t

POD flatL h h

   (2) 

The total KD loss is: 

 
=1

=
L

KD l POD Pixels flat POD flat

l

L w L w L   (3) 

where lw  and flatw  are weight factors. Figure 5 illustrates the overview of PODNet-Pixels 

baseline. 

 

3.4. Classifier in CIL 

In many deep learning models, the classification head is a dense layer parameterized by 

=1= ( )n

i i   where n  is the number of classes, and i  is a vector with the same dimension as the 

final embedding h . The prediction score for a class c  for a typical softmax classifier is 

calculated as: 

 

=1

( )
ˆ =

( )

c
c n

ii

exp h
y

exp h








 (4) 

In the CIL setting, one of the major causes of catastrophic forgetting is the class imbalance 

between the older classes and newer classes, since only a small number of training samples from 

previous tasks are kept when moving to a more recent task. Hou et al. [12] observe the 

manifestation of the class imbalance problem on the parameters   of the classification head. 

Specifically, the magnitude of the vectors i  for newer classes is much larger than those for older 

classes; hence, the prediction scores ˆ
cy  for newer classes tend to be higher than those for older 
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classes. In other words, the model tends to bias toward more recent classes, and this problem is 

called task-recency bias [26]. In UCIR [12], this problem is tackled by applying L2-normalization 

on both the final embedding h  and the classifier parameter i , which transforms the dot product 

into cosine similarity. The classification score from UCIR is as follows: 

 

=1

( , )
ˆ =

( , )

c
c n

ii

exp h
y

exp h

 

 

 

 
 (5) 

where .,.   is cosine similarity and   is a learnable scale. 

Despite the effect of KD loss to keep the final embedding consistent, the distribution of h  

often changes over time in the CIL setting. Since cosine similarity is sensitive to these changes, 

Douillard et al. [11] propose using K  vectors ,c k  to represent each class c  instead of only 

using one proxy vector c  as in UCIR [12]. In PODNet [11], this classifier is called the Local 

Similarity Classifier (LSC), and the classification score in LSC is calculated as follows: 

 
,

, , ,

=1,=1

( , )
ˆ= , = ,

( , )

n
c k

c k c c k i kn
ki ki

exp h
s y s h

exp h






 
 

 



 (6) 

Empirically, Douillard et al. [11] found that using the NCA loss [56, 57] allows the model 

to converge faster than with simple cross-entropy loss. The NCA loss function is formulated to 

train a model using triplet data. Let x  represent an anchor, y  denote a positive sample, and Z  

represent a set of negative samples. The NCA loss encourages x  to be closer to y  than to any 

element z Z . 

 
( ( , ))

( , , ) = ,
( ( , ))

NCA

z Z

exp d x y
L x y Z log

exp d x z






 (7) 

where (.)d  is a distance function. 

We adopt the NCA loss NCAL  for training the model to classify videos, following PODNet 
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[11] and TCD [18]. When applying the NCA loss to the output of LSC, denoted as LSCL , it is 

calculated as described in PODNet[11]: 

 
  ˆexp

= log
ˆexp

y

LSC

ii y

L
 






 
 
 
 

y

y
 (8) 

where ˆ
yy  is the score prediction for groundtruth class y  from LSC,   is a small margin 

to enforce stronger class separation,   is a learnable scaling factor. A hinge [ ]  is used to keep 

the loss bounded. 

We compute the final loss function as follows: 

 = LSC KDL L L  (9) 

where   is the KD loss factor to control the influence of the knowledge distillation when training 

the model. 

 

Figure 6: Types of extracted backgrounds. We categorize extracted backgrounds using the 

temporal median filter into 3 types. We hypothesize that when blended with other videos, the 

backgrounds type (a) actor-and-scene background is harmful to the task as the backgrounds 

contain humans as well. (b) scene-only background is beneficial as they are clean backgrounds. (c) 

high-motion background is beneficial as we can regard them as color jitter. We manually grouped 

each type after collecting the TMF output on the UCF-101 dataset. Best viewed with zoom and 

color. 

 

3.5. Background augmentation 

To mitigate background bias, we propose to employ background augmentation in class 
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incremental action recognition. We transform a video clip iV  into 
iV  by blending iV  with a 

background 
jB  randomly selected from the background buffer tBG  as follows: 

 ( ) = (1 ) ( )i i jV k V k B    (10) 

where, 0 < <1  is a blending factor. 

For each incremental learning step t , firstly we extract a background iB  from each i -th 

video iV  with length il  by using temporal median filter (TMF) [58] as follows where ( )Mdn   

stands for median operation. 

 ( , ) = ( ( , ,1), ( , ,2),..., ( , , ))i i i i iB x y Mdn V x y V x y V x y l  (11) 

Each background pixel ( , )iB x y  is assigned a value equal to the median of all pixels at position 

( , )x y  from all frames of a video iV . Examples of TMF background are shown in Appendix .1. 

We store the extracted background frames 
=1= K

t iiBG B  for later use. 

As shown in (11), we extract backgrounds from videos by the temporal median filter 

(TMF). The TMF is sensitive to the prevalent motion type in the video. We can categorize the 

extracted backgrounds into three types according to the prevalent motion types of videos as shown 

in Figure 6. Type I is low camera and human motion. In this case, visual information of both 

humans and scenes are preserved well by the TMF. We denote this kind of background as 

actor-and-scene background. Scene-only background is obtained in videos that have type II 

motion: the camera motion is low or zero and the humans move a lot in the video. In this case, 

scenes are mostly preserved well while the humans are removed from the background by the TMF. 

Type III motion videos have a high camera and human motions. Visual information of both scenes 

and humans is not preserved well by the TMF. Consequently, we get a blurry and random color 

blob as a background. We denote this kind of background as high-motion background. 
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Intuitively, blending videos with scene-only backgrounds increases the diversity of the 

static scenes, hence encouraging the model to focus on actors for prediction. This mechanism is 

similar to how ActorCutMix [39] encourages scene invariance. In ActorCutMix method [39], the 

first step involves obtaining the actor region for each frame. This region is defined as the bounding 

box of the actor, which is obtained by running an object detection model on the video frames. Once 

the actor region is determined, the background region is generated by removing this actor region 

from each frame. Finally, a training video is created by copy actor regions from one video to 

background region from another video frame-by-frame. Replacing ActorCutMix with our 

background augmentation offer a few advantages. First, we do not need extra learning to detect 

actors in videos. Second, an augmented video clip generated by ActorCutMix might contain 

high-frequency artifacts because of the copy-and-paste operation [39]. These artifacts may be 

detrimental because they break the temporal coherence of video clips and neural networks might 

pick up the high-frequency signals as a shortcut. As high-motion background mainly consists of 

random color blobs, blending a high-motion background to a video creates an augmentation effect 

similar to color jitters which is a commonly used data augmentation, hence it is likely to be 

beneficial for the training process as well. Augmented clips with actor-and-scene backgrounds 

might be problematic for training the model because the leftover actors in the background could 

confuse the model. The leftover actors might hamper the model to focus on the real actor in the 

video. We conduct a controlled experiment to validate the hypotheses above in Section 4.5 and 

Table 7. 

 

3.6. Photometric/Geometric Augmentation 

Inspired by high-motion background in Section 3.5, we employ photometric/geometric 
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augmentation as well to further debias class incremental learning. Intuitively, moderate color jitter 

and geometric transformations do not change the action class semantics. Therefore, adding 

photometric/geometric transformation might be beneficial for the class incremental learning for 

video action recognition as it can diversify the videos in every incremental learning step. With this 

motivation, we adopt RandAug [59] as our photometric/geometric augmentation. We apply the 

same photometric/geometric augmentation for every frame within the same video to ensure the 

temporally-coherent frames by following a recent work [60]. Applying different augmentations for 

each frame within the same video might be harmful as it could break the temporal consistency of a 

video. 

 

Table 1: Comparison with the state-of-the-arts on the UCF-101 dataset. All the methods use a 

ResNet-34 TSM backbone. Column headers "Reg.", "Dist." and "Mem." stand for "Parameter 

Regularization", "Knowledge Distillation" and "Rehearsal" respectively. The memory size is set to 

5 videos/class for all experiments. The experimental results are obtained by averaging across three 

random seeds. We choose PODNet-Pixel baseline to report our results. The best performance is in 

bold and the second best is underlined. 

Number of classes    10 5  stages 5 10  stages 2 25  stages 

Method Reg

. 

Dist

. 

Mem

. 

CNN NME Avg. CNN NME Avg. CNN NME Avg. 

Fine-tuning    24.9

7 

- 24.9

7 

13.4

5 

- 13.4

5 

5.78 - 5.78 

LwFMC [17]    42.1

4 

- 42.1

4 

25.5

9 

- 25.5

9 

11.6

8 

- 11.6

8 
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LwM [46]    43.3

9 

- 43.3

9 

26.0

7 

- 26.0

7 

12.0

8 

- 12.0

8 

iCaRL [14]    - 65.3

4 

65.3

4 

- 64.5

1 

64.5

1 

- 58.7

3 

58.7

3 

UCIR [12]    74.3

1 

74.0

9 

74.2

0 

70.4

2 

70.5

0 

70.4

6 

63.2

2 

64.0

0 

63.6

1 

PODNet [11]    73.2

6 

74.3

7 

73.8

2 

71.5

8 

73.7

5 

72.6

7 

70.2

8 

71.8

7 

71.0

8 

TCD [18]    74.8

9 

77.1

6 

76.0

3 

73.4

3 

75.3

5 

74.3

9 

72.1

9 

74.0

1 

73.1

0 

FrameMaker [22]    78.1

3 

78.6

4 

78.3

9 

76.3

8 

78.1

4 

77.2

6 

75.7

7 

77.4

9 

76.6

3 

Ours    81.0

4 

79.8

4 

80.4

4 

80.0

7 

79.5

7 

79.8

2 

77.5

5 

77.7

6 

77.6

6 

Oracle (Upper Bound)    84.1

5 

83.3

7 

83.7

6 

83.9

6 

83.2

0 

83.5

8 

83.8

2 

83.1

6 

83.4

9 

4. Experimental Results 

4.1. Datasets 

We validate the proposed method on the three publicly available video action recognition 

datasets: UCF-101 [8], Something-Something-v2 [6], and HMDB-51 [24]. The UCF-101 consists 

of 13,320 videos of 101 action categories. The HMDB-51 consists of 6,766 videos with 51 action 

categories. Both HMDB-51 and UCF-101 datasets come with 3 splits for training and testing. We 

choose split 1 following previous work [18]. The Something-Something-v2 is a large-scale dataset 
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with 165K training videos of 174 action classes. Something-Something-v2 requires more temporal 

reasoning to perform well when compared to UCF-101 and HMDB-51 datasets. 

 

4.2. Evaluation protocol 

Different task splitting results in substantial variations in the overall performance in class 

incremental learning settings. Therefore, we strictly follow the evaluation protocol of TCD [18] by 

using the same task size, random seeds1, and the splits. We report our results using the 3 task splits 

scheme defined in TCD [18] for a fair comparison. Following the previous works, we use both 

CNN and NME evaluation protocols. Accuracy in CNN is calculated from the output of the 

classifier and this term comes from UCIR [12]. Nearest-mean-exemplar (NME) classifier [14] 

makes a prediction by comparing a feature representation of a test sample to the mean class 

representation of exemplars. Backward forgetting (BWF) [61, 21] measures the influence of 

learning from the current task affects performance on test data of the previous task. Oracle model 

[18] is incrementally trained while preserving all data from the previous task. Oracle model does 

not suffer from catastrophic forgetting, hence it serves as the upper bound. 

 

4.3. Implementation Details 

PODNet-Pixel baseline. For a fair comparison with other video CIL methods [18, 22], we use 

ResNet-34 TSM as the backbone for UCF-101 dataset, and ResNet-50 TSM for 

Something-Something-v2 dataset. All backbones are pretrained on ImageNet dataset and 

implemented in mmaction2 library [62]. Unless otherwise specified, we set the memory size as 5 

videos/class for experiments on the HMDB-51 and UCF-101 datasets, and 20 videos/class for the 

                                                 
1 Random seeds: 1000, 1993, 2021 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Something-Something-v2 dataset. Knowledge distillation loss is calculated on logits and 

immediate features output of TSM layers in the backbone. On the incremental training stage, we 

split the training into 2 steps for each task. For the first step, model is trained with training data '

tD

, then we create exemplars tE  with herding strategy [14]. We finetune the model using data of the 

current task exemplar set tE  and the exemplar set of previous tasks 0: 1tE  . Unlike previous works 

[18, 11, 12] where they finetune the classifier while freezing the backbone, we finetune both the 

backbone and classifier because they empirically improve the accuracy of the model. We use the 

local similarity classifier (LSC) in all experiments with only one proxy and a learnable parameter 

 . We set = 0.6  in all experiments following PODNet [11] and TCD [18]. For the UCF-101 

dataset [8] 10 5  stages experiment, we set KD loss factor   to 1.0 for the feature maps of 

immediate layers and 0.01 for logits. For the UCF-101 5 10  stages and 2 25  stages 

experiments, we set   to 0.01 for both the feature maps of immediate layers and logits. For the 

Something-Something-v2 dataset, we set   to 0.5 for the feature maps of immediate layers and 1 

for logits. For the HMDB-51 dataset, we set   to 3.0 for the feature maps of immediate layers 

and 0.1 for logits. For all the experiments, we multiply   with an adaptive scaling factor 

1:| |
=

| |
k

adaptive

k

C

C
  where 1:kC  denotes the number of seen classes until task k , following the 

previous works [12, 11, 18]. We choose PODNet-Pixel as the main baseline to test our methods 

when comparing with other CIL methods due to its simplicity and good performance. 

iCaRL baseline. To compare different video data augmentation methods, we use the iCaRL 

baseline since both ActorCutMix [39] and VideoMix [63] require label smoothing. The NCA loss 

used in the PODNet-Pixel baseline is not applicable for label smoothing. The iCaRL 
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implementation used in Table 5 and Table 8 differ slightly from the original iCaRL [14]. As 

suggested in the previous work [64], we train the iCaRL baseline using the cross-entropy loss, 

which has been shown to improve overall accuracy over the binary cross-entropy loss. 

For both baselines, the model is trained with batch size of 96 on UCF-101, and the batch 

size of 48 for HMDB-51 and Something-Something-v2 datasets. The models are trained for 50 

epochs per incremental task. We train the model using SGD with a learning rate of 310 , decay 

rate of 410 , and 0.9 in momentum. The learning rate is decreased by 10 times at epochs 20 and 30. 

In all experiments, we set the background blending factor = 0.5 , and the background 

augmentation probability = 0.25p , unless stated otherwise. For training samples that are not 

background augmented, they are fed to the photometric/geometric augmentation pipeline when 

both pipelines are used. We use either four Tesla V100 or RTX 3090 GPUs for the model training 

and testing. 

 

4.4. Comparison with state-of-the-art 

Here, we compare our method with state-of-the-art on public benchmarks. Note that every 

method compared here is equipped with the same TSM backbone. As shown in Table 1, the 

proposed method achieves state-of-the-art performance on the UCF-101 dataset, consistently 

across all class incremental learning settings with both CNN and NME evaluation protocols. 

Remarkably, our method is only 3.3  points below the upper bound on average. Additionally, we 

show the results on the Something-Something-v2 dataset in Table 2. In all settings, our method 

outperforms FrameMaker [22], the former state-of-the-art method, with a significant margin (

7.78 8.45  points) under the CNN evaluation protocol. The results show that our background 
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debiased class incremental learning method is effective in a dataset that requires complex temporal 

reasoning as well. 

As shown in Table 3, the proposed method shows favorable performance on the HMDB-51 

dataset [24] in terms of both CNN and NME evaluation protocol. We observe 4.09 points 

improvement on average compared to FrameMaker [22]. Remarkably, our method is only 2.09 

points below the upper bound on average. 

Figure 7 shows the average accuracy for each incremental training step. In all settings, our 

method achieves the highest accuracy under the CNN evaluation protocol. In the 

Something-Something-v2 518 stages setting, our method achieves the highest accuracy for the 

last few incremental steps under NME evaluation protocol as well. 

 

Table 2: Comparison with the state-of-the-arts on the Something-Something-v2 dataset. All 

the methods use a ResNet-50 TSM backbone. The memory size is set to 20 videos/class for all 

experiments. The experimental results are obtained by averaging across three random seeds. We 

choose PODNet-Pixel baseline to report our results. The best performance is in bold and the 

second best is underlined. 

Number of classes 10 9  stages 5 18  stages 

Method CNN NME Avg. CNN NME Avg. 

UCIR 26.8

4 

17.9

8 

22.4

1 

20.6

9 

12.5

7 

16.3

0 

PODNet 34.9

4 

27.3

3 

31.1

4 

26.9

5 

17.4

9 

22.2

2 

TCD 35.7 28.8 32.3 29.6 21.6 25.6



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

8 8 3 0 3 2 

FrameMaker 37.2

5 

29.9

2 

33.5

9 

30.9

8 

22.8

4 

26.9

1 

Ours 45.0

3 

24.4

3 

34.7

3 

39.4

3 

24.1

4 

31.1

9 

Table 3: Comparison with the state of the arts on the HMDB51 dataset. All the methods use a 

ResNet-50 TSM backbone. The memory size is set to 5 videos/class, and use 5 5  stages setting 

for all experiments. The experimental results are obtained by averaging across three random seeds. 

We choose PODNet-Pixel baseline to report our results. The best performance is in bold and the 

second best is underlined. 

Method CNN NME Avg 

Fine-tuning 16.8

2 

- 16.8

2 

LwFMC [17] 26.8

2 

- 26.8

2 

LwM [46] 26.9

7 

- 26.9

7 

iCaRL [14] - 40.0

9 

40.0

9 

UCIR [12] 44.9

0 

46.5

3 

45.7

2 

PODNet [11] 44.3

2 

48.7

8 

46.5

5 
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TCD [18] 45.3

4 

50.3

6 

47.8

5 

FrameMaker [22] 47.5

4 

51.1

2 

49.3

3 

Ours 55.2

0 

51.6

4 

53.4

2 

Oracle (Upper Bound) 55.0

3 

55.9

8 

55.5

1 

 

Figure 7: Average accuracy across tasks on the UCF-101, Something-Something-v2, and 

HMDB-51 datasets. The proposed method shows significant performance gain compared to the 

existing methods. 

 

Comparison of biased start baseline with state-of-the-art. To emphasize the 

effectiveness of the proposed method in the context of CIL, we show the results obtained from the 

biased start baseline in Figure 8 together with other CIL and video augmentation methods. In this 

baseline, we disable the debiasing augmentations during the base task (task 0) and activate them 

during the incremental learning steps. The figure below illustrates the average accuracy and 

absolute slope of the accuracy curve. We observe that the biased start baseline still achieves 

favorable average accuracy compared to the other methods while the base task accuracy of this 

baseline is similar to that of existing methods. Moreover, the biased start baseline shows a smaller 

absolute slope in the accuracy curve compared to the other methods being compared. These 

findings indicate the effectiveness of our proposed method not only in the base task but also in the 
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incremental learning steps. 

 

Figure 8: Comparison of biased start baseline with other CIL methods on the UCF-101 

dataset. The biased start baseline achieves higher average accuracy and a smaller absolute slope 

compared to existing methods, with similar base task accuracy. 

 

Effect of memory size. In Table 4, we analyze the effect of memory size (videos per class) 

in the UCF-101 5 10  stages setting. Following existing works [11, 18, 22], we evaluate CNN 

and NME performances with varying memory sizes. Our method outperforms all the existing 

methods with significant margins except for the memory size of 1 video/class case. Our results 

clearly indicate that diversifying the background is a crucial factor in achieving effective class 

incremental action recognition across different memory sizes. 

 

Table 4: Memory size analysis. The proposed method shows favorable performance across 

memory budgets. We show results on the UCF-101 dataset, 5 10  stages setting. The best 

performance is in bold and the second best is underlined. 

Memory size 1 2 5 10 

Method CNN NME CNN NME CNN NME CNN NME 

iCaRL - 58.0

5 

- 60.5

0 

- 64.5

1 

- 66.9

4 

UCIR 61.9

2 

65.5

2 

66.4

3 

67.5

8 

70.4

2 

70.5

0 

72.4

7 

71.6

9 

PODNet 63.1 70.9 65.9 72.7 71.5 73.7 75.4 76.3
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8 6 3 8 8 5 4 9 

TCD 64.5

2 

71.9

6 

68.4

0 

73.3

0 

73.4

3 

75.3

5 

76.6

6 

77.0

9 

FrameMaker 73.6

4 

76.9

8 

75.1

9 

77.4

3 

76.3

8 

78.1

4 

- - 

Ours 66.7

2 

72.4

2 

76.3

6 

76.3

8 

80.0

7 

79.5

7 

81.9

2 

81.5

9 

Comparison with existing video data augmentation methods. We validate the 

hypothesis that background debiasing is crucial in class incremental action recognition by 

comparing the proposed method with existing video augmentation methods. We compare the 

proposed method with VideoMix[63] and ActorCutMix[39] in Table 5. VideoMix is a video 

cut-and-paste method without background debiasing. ActorCutMix is a background debiasing 

augmentation. The results show that mixing videos without background debiasing (VideoMix w/o. 

photometric/geometric aug.) shows inferior performance than mixing videos with debiasing 

(VideoMix w. photometric/geometric aug., ActorCutMix, and ours). Among the compared video 

data augmentations, ours shows the best performance. The reason for choosing iCaRL as a 

baseline in this experiment is explained in Section 4.3. We also provide the accuracy curves for 

these experiments in Figure Figure 9 for a more complete comparison. 

 

Table 5: Comparison with existing video augmentations. Experiment on the UCF-101 dataset 

with the iCaRL baseline. The VideoMix method is tested with and without photometric/geometric 

augmentation (with aug. and without aug.). The memory size is set to 5 videos/class for all 

experiments. The best performance is in bold and the second best is underlined. 
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Number of classes  10 5  

stages 

5 10  

stages 

Method Debiasing

? 

NME NME 

VideoMix w/o. aug.   72.00 70.80 

VideoMix w. aug.  78.11 76.86 

ActorCutMix  78.72 78.09 

Ours  80.51 79.94 

Here, we also discuss the differences between our method and other fusion methods. 

VideoMix and ActorCutMix replaces a region on a video frame with a patch of a frame from 

another training video. As we discussed in Section 3.5, an advantage of the proposed method over 

VideoMix and ActorCutMix is that ours does not use copy-and-paste operations which create 

high-frequency artifacts. The high-frequency artifacts from copy-and-paste operations may be 

detrimental because the operations could break the temporal coherence of video clips [39]. 

 

4.5. Ablation study 

Effect of each debiasing augmentation. We validate the effectiveness of photometric/geometric 

and background augmentations using the UCF-101 and Something-Something-v2 datasets and 

present the results in Table 6. The results on the UCF-101 dataset are averaged over three random 

seeds. Since Something-Something-v2 is a very large dataset, we conducted the ablation study 

with a seed value of 1000 only. Photometric/geometric augmentation shows a significant accuracy 

improvement of 2.69  and 3.24  points on average compared to the respective baselines on the 

UCF-101 and Something-Something-v2 datasets. Similarly, background augmentation yields a 
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notable improvement of 2.91  and 1.42  points on average compared to the respective baselines. 

Finally, the combination of photometric/geometric augmentation and background augmentation 

results in a significant improvement of 4.64  and 4.89  points on average on the two datasets. 

Since UCF-101 is a static-bias dataset and Something-Something-v2 is a temporal-bias dataset, 

our results demonstrate that our proposed method is effective for both types of video action 

recognition datasets. 

 

Table 6: Ablation study on different augmentations. We show results on the UCF-101 and 

Something-Something-v2 (Sth-Sth) datasets. We use PODNet-Pixel baseline for all experiments 

in the table. The memory size is set to 5 videos/class for the UCF-101 experiments, and 20 

videos/class for the Something-Something-v2 experiments. The best performance is in bold and 

the second best is underlined. 

Dataset UCF-101 5 10  

stages 

Sth-Sth 10 9  

stages 

Method CNN NME Avg. CNN NME Avg. 

Baseline 75.61 75.99 75.80 41.53 19.63 30.58 

Photo./geo. aug. 78.64 78.34 78.49 44.21 23.42 33.82 

Background aug. 79.14 78.28 78.71 43.16 20.83 32.00 

Both aug. 81.04 79.84 80.44 45.68 25.26 35.47 

Figure 9: Comparison of biased start baseline with other video augmentation methods on the 

UCF-101 dataset. The biased start baseline achieves higher average accuracy and a smaller 

absolute slope compared to existing methods, with similar base task accuracy. 
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Effect of background type. As discussed in Section 3.5, we can categorize backgrounds extracted 

with temporal median filter into three types. We design several controlled experiments to study the 

effect of each background type. To simplify the task of categorizing 10 K training videos from 

UCF-101, we employ pseudo background data instead. This involves creating specific data 

generation pipelines, as described below: 

 

Table 7: Ablation study on different background types. We show experimental results on the 

UCF-101 dataset with a memory size of 5 videos/class. The results are from the 5 10  stages 

setting. The best performance is in bold and the second best is underlined. 

Method CNN NME Avg. 

Photometric/geometric aug. only 78.4

3 

78.6

7 

78.5

5 

+ Actor-and-scene (pseudo) bkg. aug. 78.3

0 

77.5

8 

77.9

4 

+ High-motion (pseudo) bkg. aug. 79.2

0 

79.1

2 

79.1

6 

+ Scene-only & high-motion bkg. aug. 79.9

8 

80.0

0 

79.9

9 

+ All backgrounds 79.8

4 

79.1

1 

79.4

8 

Type I: Pseudo actor-and-scene background. They have both actors and scenes well 

preserved. Therefore, we can get this type of pseudo backgrounds directly from a video. Given 

training data tD  of task t , we randomly select a video from tD  and then randomly select a 
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frame in the selected video. The randomly sampled frame contains both scene and actor(s) because 

UCF-101 is a temporally trimmed dataset. 

Type III: Pseudo high-motion backgrounds. They are backgrounds from videos with high 

motions. We can collect a set of pseudo backgrounds by simulating camera motion. For a video 

from training data, we apply temporally inconsistent spatial cropping for each frame of the video, 

then apply the temporal median filter on all cropped frames to obtain a pseudo high-motion 

background. 

Type II+III: Scene-only & high-motion backgrounds. We obtain this pseudo background 

set by discarding all actor-and-scene backgrounds from all backgrounds extracted by TMF. We get 

all actor-and-scene backgrounds by running Mask-RCNN [65] to detect humans. 

 

Figure 10: Analysis on the effect of background bias to the average accuracy and backward 

forgetting (BWF). The model with debiasing consistently outperforms the baseline without 

debiasing in both average accuracy and backward forgetting across different scene distances 

between exemplar set and test set. 

 

To study the effect of background type, we train three models by replacing the 

backgrounds tBG  with these pseudo backgrounds in our training pipeline described in Section 

3.1. We turn on the photometric/geometric augmentation for all the models for a fair comparison. 

We show the results in Table 7. We set photometric/geometric augmentation without background 

augmentation as a baseline. Compared to the baseline, actor-and-scene background shows inferior 

performance which validates the hypothesis: Augmented clips with actor-and-scene backgrounds 

might be problematic for training the model because the leftover actors in the background could 
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confuse the model. As shown in the result, high-motion background shows superior performance (

79.16% ) compared to the baseline ( 78.55% ). This result also verifies our hypothesis: blending a 

high-motion background to a video creates an augmentation effect similar to color jitters which is 

a commonly used data augmentation, hence it is likely to be beneficial for the training process. 

Scene-only & high-motion background shows the best performance ( 79.99% ) among all the 

methods. The results indicate that adding scene-only background augmentation on top of 

high-motion background augmentation is beneficial for the class incremental learning. The 

controlled experimental results verify all hypotheses we set in Section 3.5. In order to use 

scene-only & high-motion backgrounds, we need to filter out the actor-and-scene backgrounds by 

running a human detector on every background frame. While the performance gain from filtering 

out actor-and-scene backgrounds is not significant (0.51 points), running a human detector on 

every background frame is computationally expensive. Therefore we use all background types for 

our debiasing method in all experiments except for the experiments in Table 7. 

 

Table 8: Compatibility with different CIL methods. We show experimental results on the 

UCF-101 dataset with a memory size of 5 videos/class. The results are from the 10 5  stages 

setting. The best performance is in bold and the second best is underlined. 

Number of classes 10 5  

stages 

5 10  

stages 

2 25  

stages 

Method CNN NME CNN NME CNN NME 

iCaRL baseline - 77.74 - 76.80 - 74.64 

iCaRL w. debiasing - 80.51 - 79.94 - 77.23 

PODNet-Pixel baseline 75.61 76.00 75.00 75.98 70.37 72.32 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

PODNet-Pixel w. debiasing 81.04 79.84 80.07 79.57 77.55 77.76 

Compatibility with different CIL methods. In this work, we provide an effective plug-and-play 

background debiasing method that can be plugged into any CIL method. To validate the 

compatibility with different CIL methods, we plug the proposed method into two well-established 

CIL methods: iCaRL [14] and PODNet-pixel [11]. Table 8 shows that we can achieve significant 

improvement when the proposed method is plugged into iCaRL and PODNet. The proposed 

method achieves 2.59 3.14  and 3.59 7.18  points improvement compared to iCaRL and 

PODNet-Pixel baselines respectively. The results validate that the proposed method is compatible 

with different class incremental learning methods. 

Ablation study on hyperparameters. We provide empirical findings regarding the blending 

factor  , and the background augmentation probability p , as summarized in the Table 9. Our 

method demonstrates the highest performance when = 0.5  and = 0.5p . 

 

Table 9: Ablation study on blending factor   and the background augmentation 

probability p . We conduct the experiments on UCF-101 105 stages setting with a random seed 

1000. The memory size is set to 5 videos/class for all experiments. The best performance is in bold 

and the second best is underlined. 

  p  CNN 

  

NME 

  

0.2

 

0.25  79.04 77.55 

0.3  0.25  78.92 77.52 

0.4 0.25  79.96 77.47 
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0.5  0.25  80.36 78.94 

0.5  0.50

 

80.52 79.15 

0.5  0.75  78.77 77.78 

Figure 11: Grad-CAM visualization on the UCF-101 10   5 stages setting. Our debiased 

method consistently focuses and the actor instead of the background across different incremental 

learning steps. Green indicates correct and red indicates incorrect predictions. Best viewed with 

zoom and color. 

 

4.6. Analysis on background bias in CIL 

The background bias of action recognition models is even more severe in the context of 

CIL due to the scarcity of previous task examples. Here, we conduct a controlled experiment to 

demonstrate the importance of scene debiasing in the context of class-incremental action 

recognition. In Figure 10, we show two plots: i) the average accuracy vs. scene distance between 

exemplar set and test set. ii) the backward forgetting vs. scene distance between exemplar set and 

test set. 

In Figure 10, the model with debiasing consistently outperforms the baseline without 

debiasing in both average accuracy and BWF across different scene distances. When scene 

distance is high (0.22), the proposed method shows a significantly higher performance compared 

to the baseline ( 77.05%  vs. 72.63% ). The results demonstrate that the proposed method 

improves the robustness to background bias in the context of class-incremental action recognition. 

Experimental settings. To measure the scene distance between exemplar set and test set, we 

employ a scene classifier: ResNet-50 pre-trained on the place365 dataset [66]. We run the scene 
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classifier to extract scene features from all videos of the UCF-101 dataset. For each video, we 

uniformly sample 8 frames and feed them to the scene classifier to extract scene features. We 

average the 8 scene feature vectors to get a single scene feature vector per video. Then, we 

calculate a cosine distance matrix between videos in the training set and test set. We define the 

distance between a training video to the test set as the smallest distance between the training video 

and the test set. Similarly, we define the distance between an exemplar set and the test set as the 

average distance to the test set of all videos in the exemplar set. To control the scene distance 

between the exemplar sets to the test set, we pre-define the exemplar sets before training models. 

For each class, we sort the training videos by the scene distance to the test set. Then, we uniformly 

split the sorted training videos into 8 groups with different scene distances to the test set. We repeat 

this process for all classes, and form 8 exemplar sets. Then we train a baseline without debiasing 

and a model with debiasing with the pre-defined exemplar sets. We observe how the 

class-incremental learning performance changes according to the scene distance. 

Implementation details. We conduct the experiments in the UCF-101 105 stages setting with 

memory size set to 5 videos/class. We use a random seed 1000 for incremental task splits. As a 

scene feature extractor, we employ the ResNet-50 pre-trained on the place365 dataset [66]. The 

baseline is PODNet-Pixel. We use both photometric/geometric augmentation and background 

augmentation for debiasing. 

 

4.7. Qualitative evaluation 

We present the Grad-CAM [67] visualizations of class incremental action recognition 

models in Figure 11. We conduct the experiment on the UCF-101 10   5 stages setting with 

random seed of 1000. We use PODNet-Pixel as a baseline. To highlight the impact of catastrophic 
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forgetting related to background bias, we select videos from the testing set of the initial task ( = 0t

) that are incorrectly classified by the baseline at task 5 but correctly classified by the baseline at 

task 0 and our model at task 0 and 5. In example (a), the baseline model at task 0 focuses on the 

background but correctly predicts TennisSwing class. However, at task 5, the baseline model 

incorrectly predicts the same video sample as a more recently learned FieldHockeyPenalty class 

by focusing on the background. This scenario exemplifies a typical case of catastrophic forgetting 

where the model tends to favor the more recent class. In contrast, the proposed method focuses on 

the actor and predicts the correct TenisSwing class in the stage 5. We observe a similar pattern in 

the other two examples. 

 

5. Conclusions 

In this paper, we introduce a simple, yet effective plug-and-play method for class 

incremental learning for video action recognition. We hypothesize mitigating representation bias 

is crucial for the class incremental learning for video action recognition. We propose to employ 

background augmentation and photometric/geometric augmentation to diversify videos in every 

incremental learning step to tackle the catastrophic forgetting problem. We empirically validate 

the effectiveness of the proposed method through extensive experiments. We show promising 

video action recognition performance on the public benchmarks consistently across multiple 

datasets, class incremental learning settings, and evaluation protocols. 

 

6. Limitation 

While the method proposed in this study leverages the prevalence of background bias in 

datasets, it is pertinent to acknowledge its limitations, particularly concerning fine-grain action 
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recognition datasets such as the Diving48 dataset [23]. Unlike more generalized action recognition 

datasets like UCF-101, HMDB-51, ActivityNet, and Kinetics-400, which commonly exhibit 

background bias, these specialized datasets may vary in their degree of background bias. This 

variance could potentially constrain the applicability and effectiveness of the proposed method 

within this specific domain. 
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Appendix .1. Backgrounds extracted by TMF 

We show background frames extracted by TMF on the UCF-101 dataset in Figure .12. The 

extracted backgrounds are diverse. There are three types of backgrounds as we mention in Section 

3.5: 1) actor-and-scene, 2) scene-only, and 3) high-motion backgrounds. We manually select some 

samples for each background types 

 

Figure .12: Visualization of backgrounds extracted by temporal median filter (TMF). We 

categorize extracted backgrounds using the temporal median filter into 3 types. We hypothesize 

that when blended with other videos, the backgrounds type (a) actor-and-scene background is 

harmful to the task as the backgrounds contain humans as well. (b) scene-only background is 

beneficial as they are clean backgrounds. (c) high-motion background is beneficial as we can 

regard them as color jitter. We manually grouped each type after collecting the TMF output on the 

UCF-101 dataset. Best viewed with zoom and color. 

 

Appendix .2. Pseudo background for experiments on different background types 

As discussed in the Section 4.5, we design several controlled experiments to study the 

effect of each background type and present the results in Table 7. Figure .13 shows samples of the 

background types used for the experiments. 

 

Figure .13: Types of pseudo backgrounds. We visualize a few backgrounds used for the 

controlled experiments in Section 4.5. (a) pseudo actor-and-scene background obtained by 

randomly sampling a frame per video. (b) pseudo high-motion background obtained by applying 

temporally inconsistent spatial cropping followed by TMF to each video. (c) scene-only & 
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high-motion background extracted with TMF followed by human detector to discard the frames 

with humans. Best viewed with zoom and color. 
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Highlights 

Background Debiased Class Incremental Learning for Video Action Recognition 

Le Quan Nguyen, Jinwoo Choi, L.Minh Dang, Hyeonjoon Moon 

• We identify a background bias problem in class incremental learning for video action 

recognition (video CIL). We further analyze the background bias problem in the Video 

CIL setting using scene distance experiment, and Grad-CAM visualization to confirm our 

hypothesis about background bias problem in video CIL 

• We propose a simple, yet effective plug-and-play method for class incremental learning for 

video action recognition by augmenting backgrounds for every incremental learning step. 

The proposed background augmentation mitigates background biases and catastrophic 

forgetting. 

• By addressing the background bias, our method achieves significant performance 

improvements compared to CIL baselines that do not account for it in various public 

benchmarks, and our proposed method achieves state-of-the-art performance. 
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Highlights 

• Video-based class incremental learning (video CIL) is important, yet under-explored. 

• Identify the background bias problem in video CIL setting. 

• The proposed method diversifies the scenes of training videos in the CIL setting. 

• The proposed method is a plug-and-play video CIL method. 

• The proposed method is tested UCF-101, HMDB-51, and Something-Something v2. 
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