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Abstract: Currently, object detection on remote sensing images has drawn significant attention due
to its extensive applications, including environmental monitoring, urban planning, and disaster
assessment. However, detecting objects in the aerial images captured by remote sensors presents
unique challenges compared to natural images, such as low resolution, complex backgrounds, and
variations in scale and angle. Prior object detection algorithms are limited in their ability to identify
oriented small objects, especially in aerial images where small objects are usually obscured by
background noise. To address the above limitations, a novel framework (ORCNN-X) was proposed
for oriented small object detection in remote sensing images by improving the Oriented RCNN. The
framework adopts a multiscale feature extraction network (ResNeSt+) with a dynamic attention
module (DCSA) and an effective feature fusion mechanism (W-PAFPN) to enhance the model’s
perception ability and handle variations in scale and angle. The proposed framework is evaluated
based on two public benchmark datasets, DOTA and HRSC2016. The experiments demonstrate its
state-of-the-art performance in aspects of detection accuracy and speed. The presented model can
also represent more objective spatial location information according to the feature visualization maps.
Specifically, our model outperforms the baseline model by 1.43% mAP50 and 1.37% mAP12 on DOTA
and HRSC2016 datasets, respectively.

Keywords: deep learning; remote sensing; object detection; attention module; multiscale feature extraction

1. Introduction

Small object detection is an important and challenging subject in the field of remote
sensing image analysis [1]. Compared to natural images, remote sensing images contain
small objects with complex environments and large-scale variations. Moreover, objects can
be oriented at different angles in remote sensing applications, which further increases the
difficulty of small object detection [2].

Oriented small object detection in aerial images is a demanding task due to various
factors. The challenges arise mainly because of the unique characteristics of the collected
images, such as the presence of low resolution, noise, and occlusion [3]. Furthermore, small
objects in these images often exhibit various orientations and aspect ratios, which makes
their detection even more challenging.

In addition to the image-specific challenges, the detection of oriented small objects is
further complicated by the limitations of traditional object detection algorithms. Traditional
algorithms commonly rely on feature pyramids to fuse features of multiple scales directly
and enhance the model’s ability to detect objects of varying sizes. However, during the
process of feature fusion and scale transformation, the feature information between different
scales often gets lost or diluted, leading to a reduction in the model’s feature expression
capability [4,5]. This challenge is further compounded in remote sensing images, where
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small objects occupy only a small fraction of the image, and their discriminative features
tend to be obscured by background noise [6].

To overcome the challenges of detecting small objects in remote sensing images,
effective feature extraction and fusion methods are necessary to improve the model’s
perception ability and handle variations in scale and angle. Enhancing the model’s ability
to detect objects of various sizes and angles while mitigating the effects of scale and angle
variations is critical.

In this research, we propose an innovative framework for oriented small object detec-
tion in remote sensing images. Our framework is based on an effective feature extraction
network and an adaptive feature fusion mechanism to improve detection performance.
We evaluate our framework on two public datasets and demonstrate that it achieves
state-of-the-art performance on both datasets.

This work makes several significant contributions to addressing the limitations men-
tioned above.

1. An adaptive attention structure was constructed to enhance feature extraction ability.
By designing and implementing this attention structure, the model is able to selectively
focus on important features and effectively capture relevant information from the
input data.

2. A creative feature extraction network is proposed for rotation-based small object
detection, which leverages the multi-grid strategy to enhance the model’s ability to
capture and represent features of objects with different scales and orientations.

3. A novel feature fusion mechanism is introduced to address the issue of feature dilu-
tion in traditional feature pyramid networks. This mechanism aims to alleviate the
loss of feature information by preserving more relevant features during multi-scale
feature fusion.

4. The proposed framework achieves a promising performance on public datasets.

The rest of this article is arranged as follows. Section 2 presents a comprehensive
overview of the research related to small object detection, feature extraction and feature
fusion. In Section 3, we provide an explanation of the methodology and the corresponding
flowchart of the proposed system. The data used to validate the performance of the
presented framework are described in Section 4. In Section 5, a series of experiments
are carried out to showcase the advancements achieved through this study. Finally, the
article concludes by pointing out the current limitations and potential areas for future work
in Section 6.

2. Related Work

In recent years, many studies have been conducted on small object detection in aerial
images. Some researchers have focused on improving feature extraction methods, while
others have explored various techniques to enhance feature fusion mechanisms. In this
section, some recent papers in the relevant areas are reviewed and analyzed.

To address the limitations of small object detection, many studies have proposed
effective feature extraction methods. In [7], the authors proposed a deep learning-based
approach that utilizes a feature fusion module to extract multi-scale and multi-directional
features for small object detection. However, it required a large number of computational
resources and was computationally expensive. Similarly, in [8], the authors proposed an
end-to-end network that uses residual blocks to refine features and a region proposal net-
work to detect objects, but it had limitations in terms of scale variations. In [9], the authors
proposed a method that uses a feature pyramid network to extract multi-scale features and
a deformable convolutional network to enhance the model’s feature representation. How-
ever, this method required a huge amount of training data and high computational cost.
Furthermore, leveraging more efficient feature extraction networks such as ResNeSt [10]
and ResNeXt [11] is considered an effective approach to enhance the accuracy of small
object detection algorithms. However, there is still room for improvement in their capability
to extract multi-scale features and spatial positional information.
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Several studies have focused on feature extraction and fusion approaches for small
object detection. For instance, the multi-level feature fusion networks proposed in [12,13]
have the advantage of fusing features from multiple levels of a CNN (Convolutional Neural
Network), which can enhance the ability of the model to detect small objects with varying
sizes and scales. The networks achieved multi-level feature fusion via convolutional layers
and pooling layers. However, this approach may suffer from the problem of feature
dilution, which occurs when the feature information from different scales is merged. The
improved FPN (Feature Pyramid Network) proposed in [14] overcomes the problem of
feature dilution by using bottom-up and top-down pathways to enhance feature expression
and fusion. This approach can help the model to detect small objects with high accuracy and
robustness. However, the improved FPN still has limitations in handling scale variations,
as it cannot dynamically allocate the weights of features of diverse scales. The feature
fusion process is still based on fixed weight coefficients, which may not be optimal for
small object detection in the whole image, with large variations in scale and orientation.

In this work, we propose a novel framework to detect oriented small objects in aerial
images. Our presented framework addresses the weaknesses of previous studies by intro-
ducing an effective feature extraction network and an adaptively feature fusion mechanism.
Specifically, an effective multiscale network with a dynamic attention module is designed to
improve the feature extraction ability, and a novel feature fusion mechanism is introduced
to alleviate the feature dilution issue in the multi-scale feature fusion process. Moreover,
our framework can dynamically allocate the contribution of the features with different
scales, which is critical for small object detection in aerial images with large variations in
scale and orientation.

3. Methodology

Figure 1 depicts the overall architecture of our proposed rotation-based small object
detection algorithm (ORCNN-X), which is based on ORCNN (Oriented Region-based
Convolutional Neural Network) [15]. It consists of a feature extraction module (a), a feature
pyramid module (b), ORPN (Oriented RPN) (c), and a prediction head (d). The feature
extraction module is responsible for distinguishing between object and background in the
input image and extracting the semantic information of the target object. Four different
scales of feature maps are extracted from the backbone network to address objects of
different sizes in object detection. The feature pyramid module includes four branches that
process feature maps of distinct scales from the feature extractor and then fuse them by
upsampling to obtain more comprehensive feature information.
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After multiple information extraction and fusion, the feature pyramid module outputs
five different feature maps containing various semantic information to the ORPN structure.
ORPN uses anchor boxes with various aspect ratios and orientations to generate proposals
for objects with rotated bounding boxes in the first stage. It generates anchors with pre-
defined angles instead of horizontal anchors to cover the possible orientation range of
objects, which helps accurately detect objects with rotated bounding boxes. Then, the
Oriented Head uses a combination of classification and regression layers to predict the class
label and the offset of the oriented bounding box for each proposal. The regression layer
provides the offsets of the four corners of the oriented bounding box relative to the anchor
box, and the classification layer predicts the class label probabilities for each proposal. In
the following sections, we describe the analysis and improvements made to the feature
extractor and feature pyramid.

3.1. Effective Feature Extraction Structure

In deep learning, the feature extraction module is one of the most crucial parts of a
model, as it directly affects the model’s performance. A good feature extraction module
can extract the most useful features from the data, making the model more accurate and
faster in completing various computer vision tasks (image classification, object detection,
and semantic segmentation). For example, the feature extraction module is responsible
for transforming low-level features, such as edges and textures, into higher-level semantic
features that better describe the image’s content. In recent years, residual networks have
been extensively used in diverse tasks and have gained remarkable performance. In this
study, we conducted a thorough analysis of the deep residual module ResNeSt [9] and
proposed an effective multi-scale residual network.

3.1.1. ResNeSt

ResNeSt (Introduced in 2020) has emerged as a prominent deep neural network ar-
chitecture that has achieved remarkable success in image classification tasks, surpassing
many other models in performance on several benchmark datasets, such as ImageNet [16],
COCO [17], and CIFAR [18]. Thus, it was selected as a basic extractor model to replace the
backbone in Oriented RCNN. ResNeSt is an enhanced version of ResNet [19] that adopts
a multi-branch architecture to increase the model’s capacity and an attention mechanism
to selectively highlight important features in the object regions. It employs two hyperpa-
rameters, namely cardinality (K) and radius (R), to embody the multi-branch idea. The
input features are partitioned into K groups, and each group is further split into R subsets.
Each subset is processed by a layer of 1 × 1 convolution and a layer of 3 × 3 convolution.
These layers apply mathematical operations to the input features in order to extract and
transform information that can be used by the network for further processing. In this
approach, the feature maps generated by each subset within a group are combined and
passed through a split attention module. This module then selectively emphasizes relevant
features within each channel, effectively re-weighting the importance of different channels
to improve overall feature representation. The split attention module employs a softmax
function to compute attention weights for each subset, and these weights are used to scale
the input features from each subset before combining them to form new feature maps. This
process helps to emphasize informative features and suppress less useful ones, leading to
improved performance in object detection tasks.

3.1.2. ResNeSt+

ResNeSt has been utilized for object detection tasks and achieved satisfactory per-
formance, but still suffers from false positives and false negatives when dealing with
high-density multi-object scenes with varying sizes, such as aerial images and drone
images. To improve the model’s recognition ability for multi-scale objects in complex back-
grounds, we made two improvements to ResNeSt. Firstly, we used the multi-Grid strategy
to strengthen the model’s feature extraction capability. As shown in Figure 2a, each group
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was assigned 64 channels when the input channel is set to 256. Each 3 × 3 convolution
operation within a group was replaced by a multi-Grid convolution module, in which
each convolution branch used a different dilation rate to increase the model’s sensitivity
to objects of different scales. The dilation rate of each branch was calculated as 2R−1. R is
the index of the branch. For example, the dilation rate of the first branch is 1. Secondly, we
proposed a DCSA (Dynamic Channel-Spatial Attention) module to replace split attention
in order to further ameliorate the feature extraction ability of the backbone.
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The structure of DCSA is shown in Figure 2b. The DCSA consists of two sections: a
DCA (dynamic channel attention) module and a DSA (dynamic spatial attention) module.
The DCA module adaptively recalibrates channel-wise feature responses by learning
channel attention weights. The channel attention module is inspired by ECANet (Efficient
channel attention) [20], which uses the idea of one-dimensional convolution to reduce
computational complexity. Firstly, the average pooling operation reduces each channel
of the feature map to a single value, capturing the global correlations between channels.
Then, the one-dimensional convolution performs convolution on each channel in different
branches based on global correlations, capturing local correlations. Finally, the sigmoid
activation function normalizes the output of the multiple branch convolutions, and uses
the attention coefficient as the weight of the channel to perform a weighted sum on the
feature maps of different branches, obtaining the feature map with enhanced channels. The
calculation can be expressed as:

YB
i = f (ωaB)·Xi, a ∈ RC, X ∈ RC×H×W (1)

where Xi denotes the ith channel of the input feature map, ω indicates the parameters of the
one-dimensional convolution operation, f is the sigmoid activation function, and Yi refers
to the output of that channel. With the one-dimensional convolution operation, we can
learn a channel weight that can adaptively weight each channel’s feature value to enhance
useful features and suppress noise points during feature processing. B represents the index
of the branch, which ranges from 1 to R. C, H, W, respectively, refer to the channel, height,
and weight of the feature tensor. a is the average value of features over each channel, which
is calculated as shown in Equation (2).

Equation (3) represents the calculation of attention weight for a single branch. In the
equation, z represents the input feature tensor, and W∗ is the learned weight matrix.
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ac =
1

H ×W

H

∑
i=1

W

∑
j=1

xc,i,j (2)

f (zB)i =
1

1 + exp(−(W∗·zB)i)
, i = 1, 2, . . . , c (3)

The output feature maps are fed into the DSA module, which improves the infor-
mative spatial regions by assigning them higher weights. The DSA module achieves its
functionality by two-dimensional convolutional layers and a sigmoid activation function.
DCA and DSA work together to learn the most important features and suppress irrelevant
features, making the backbone more robust to various scales and aspect ratios of objects,
especially for small object detection. Afterwards, a fully connected layer is used to trans-
form the channel numbers of different branches to guarantee that all feature maps have
the same channel number. The introduction of the DCSA structure and incorporation of
the multi-Grid convolution module significantly enhanced the performance of ResNeSt+.
Compared with prior studies, the proposed ResNeSt+ gained considerable improvement in
terms of computation complexity (parameters and FLOPs) and detection accuracy (mAP,
AP50, and AP75).

3.2. Feature Fusion Mechanism

The PAFPN (Path Aggregation Pyramid Fusion) model [13] is a type of feature pyramid
network used in object detection tasks. As an upgraded version of FPN [21], PAFPN does
not simply select a single feature map from different levels of the feature pyramid. Instead,
it aggregates information about the feature pyramid at all levels through path aggregation,
thereby improving the accuracy and stability of the features. It consists of a bottom-up
pathway and a top-down pathway as illustrated in Figure 3a. In the bottom-up pathway,
features of different scales are extracted from the input image using a CNN backbone. The
features are then passed via a series of convolution layers to generate a feature pyramid. In
the top-down pathway, the feature pyramid is processed in a reverse manner to generate
a set of feature maps with the same spatial resolution as the original input image. These
feature maps are then aggregated using a fusion strategy to yield the final detection results.

The fusion strategy in PAFPN is based on path aggregation and pyramid fusion.
The path aggregation is performed by connecting the feature maps at different levels of
the feature pyramid using lateral connections. This allows the high-level features to be
combined with the low-level features to improve the detection results of small objects. The
pyramid fusion is performed by using a weighted sum value to combine the features from
different levels of the pyramid. The weights are learned during the training process and
are used to manage the contribution of each level of the pyramid.

However, the PAFPN model has some limitations when it comes to small object
detection. Since the feature areas of such objects are small, the PAFPN model divides the
image into multiple scales through a feature pyramid, which can lead to small objects
being ignored or misclassified during feature extraction. Additionally, multiple fusions can
dilute important features, as feature fusion reduces the clarity of feature maps. Diluted
features cannot provide sufficient information to detect small objects. Therefore, the feature
fusion mechanism of the PAFPN model needs to be optimized and adjusted to improve
its performance.

Figure 3b shows the structure of our proposed W-PAFPN (Weighted PAFPN) model,
which has three main improvements: 1. The proposed DCSA attention module is added
between ResNeSt+ and PAFPN to receive four different-sized feature maps and to control
the contribution of features from different stages. 2. The lateral shortcut (red dashed line) is
added to establish a direct connection between high-resolution and low-resolution feature
maps, allowing information to flow more smoothly between different levels and improving
the model’s performance. 3. ASFF (Adaptively Spatial Feature Fusion) [22] is used to further
process the output features. Through ASFF, feature maps of different resolutions can be
effectively fused without being forced to concatenate them together. ASFF can preserve
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high-resolution feature information while effectively capturing contextual information
from lower-resolution feature maps. Combining ASFF and PAFPN can further improve the
model’s feature fusion effect and detection performance, even in complicated background
situations. Additionally, since both methods are based on feature fusion, combining them
does not lead to a significant computation cost.
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Assuming there are K feature maps with sizes of Hk ×Wk × Ck, where Hk and Wk
represent the height and width of the feature map, respectively, for the K-th feature map,
ASFF uses a weight coefficient vector αk of size Hk ×Wk to represent the importance of
each position. This weight coefficient vector is obtained by a branch network and can
be adaptively trained for different tasks. Let x(k)i,j represent the feature vector at the (i, j)
position of the K-th feature map, yi,j represent the weighted result at the corresponding

position, and α
(B)
i,j represent the weight coefficient at position (i, j) of the feature maps in

B-th branch. Then, the calculation equation of ASFF can be defined as:

yi,j =
k

∑
k=1

α
(B)
i,j x(k)i,j (4)
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4. Dataset

The datasets investigated in this research are DOTA [23] and HRSC2016 [24]. DOTA is
a large-scale data for aerial object detection. It consists of 2806 high-resolution aerial images
with diverse scenes and objects, such as airports, ships, and vehicles. The dataset covers a
total area of 15 square kilometers and includes over 188,000 annotated instances of 15 object
categories. Table 1 displays the abbreviations of 15 categories. The dataset consists of a
training set, a validation set, and a testing set, with 1411, 458, and 938 images, respectively.
The image sizes range from 800 × 800 pixels to 4000 × 4000 pixels, with a mean size of
2000 × 2000 pixels. The annotations are provided in both text and XML formats.

Table 1. The category names and corresponding abbreviations in DOTA dataset.

Classes Abbreviations Classes Abbreviations Classes Abbreviations

Bridge BR Small vehicle SV Basketball court BC

Harbor HA Large vehicle LV Soccer-ball field SB

Ship SH Baseball diamond BD Roundabout RA

Plane PL Ground
track field TF Swimming pool SP

Helicopter HC Tennis court TC Storage tank ST

To increase the diversity and richness of the dataset, as well as to avoid cases where
some targets are ignored or segmented into two parts, the DOTA training and testing sets
are cropped and sliced into different scales using Python tools. The processed dataset
contains approximately 160,000 images.

HRSC2016 dataset is a publicly available remote sensing dataset for ship detection
and identification, which was collected by the optical and SAR (Synthetic Aperture Radar)
sensors mounted on satellites. The dataset has a total of 1070 SAR images with correspond-
ing annotations. The annotations are offered in the form of rectangular bounding boxes,
which indicate the locations of ships in the images. The dataset is divided into two parts:
the training set contains 626 images, and the testing set contains 444 images. Some sample
images from the two datasets are shown in Figure 4.
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5. Experimental Results

For the experimental setup, we utilized a powerful server with four Tesla V100 GPUs,
which is a widely used hardware configuration for deep learning tasks. In addition, the
server was equipped with an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20 GHz processor
and 256 GB RAM, providing sufficient computational resources for training and evalu-
ation. To implement our proposed framework, we chose PyTorch as the deep learning
framework due to its popularity and ease of use. The experiments were performed on the
Ubuntu 18.04 operating system. To ensure the reliability of our experimental results, all the
experiments were performed using the same hardware and software environment. This
approach enables us to conduct a fair comparison of the results and eliminate the impact of
hardware or software discrepancies.

5.1. Features Extraction

In this section, we designed experiments to prove the feature extraction capability
of the proposed multiscale backbone model. Table 2 shows a comparison of different
backbones and frameworks for the task of oriented object detection. The evaluated metrics
include the Param (number of parameters) and FLOPs (floating-point operations) required
for each model, as well as the mAP (mean average precision) at different IoU (intersection
over union) thresholds (mAP, AP50 and AP75). Four different backbone networks were
evaluated, namely ResNet, ResNeXt, ResNeSt, and ResNeSt+ (the proposed backbone). All
models use the FPN neck and the Oriented RCNN framework with multi-scale training.

Table 2. Oriented object detection performances of different backbone models on DOTA dataset.
Note: Params is short for parameters, FLOPs stands for Floating Point Operations per Second.

Backbones Neck Framework Params FLOPs mAP (%) AP50 (%) AP75 (%)

ResNet

FPN Oriented RCNN

60.13 M 282.88 G 51.89 80.63 56.93

ResNeXt 59.79 M 286.58 G 52.06 80.72 57.01

ResNeSt 44.93 M 227.65 G 52.25 81.06 57.22

ResNeSt+ (Proposed) 44.78 M 227.42 G 52.30 81.27 57.34

As shown in the table, the proposed ResNeSt+ backbone achieved the highest AP50 of
81.27% on the DOTA testing set, which is 0.64% higher than the baseline model. It also had
the lowest number of parameters and FLOPs compared to the other backbone networks,
making it more computationally efficient. The ResNeSt backbone achieved the second-best
mAP scores, with a mAP of 52.25%. The ResNet and ResNeXt backbones had lower mAP
scores than ResNeSt and ResNeSt+ but required a similar amount of parameters and FLOPs.
Overall, the results suggest that ResNeSt+ is a promising backbone network for oriented
object detection tasks due to its high performance and computational efficiency.

Moreover, to validate the feature extraction capability of the proposed model on
small objects, a test dataset consisting only of small objects was created by extracting
images from the DOTA validation set. The dataset contains 10,000 patch images with a
size of 1024 × 1024. Two models are trained on the training dataset. Table 3 presents the
performance comparison between two models, ResNet and ResNeSt+, on the new test
dataset. The evaluation metric used is mAP. ResNet achieves a mAP score of 77.8%, while
ResNeSt+, which is the proposed model, achieves a higher score of 78.9%. The table also
shows the mAP scores for each of the 15 object categories, including Baseball diamond (BD),
Harbor (HA), Storage tank (ST), etc. ResNeSt+ outperforms ResNet in most categories,
indicating the better feature extraction capability of the proposed model on small objects.
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Table 3. Performance comparison of ResNet and proposed ResNeSt+ on small objects detection using
our DOTA testing set. ‘*’ based on the Oriented RCNN framework with FPN.

Models BR HA SH PL HC SV LV BD TF TC BC SB RA SP ST mAP

ResNet * 62.7 80.2 81.9 89.4 66.1 73.7 83.8 83.3 78.6 90.2 85.2 70.0 65.3 74.9 82.4 77.8

ResNeSt+ *
(Proposed) 64.4 81.3 81.7 90.2 67.7 75.4 84.5 84.7 79.3 90.1 87.6 71.9 66.4 75.8 83.2 78.9

Figure 5 demonstrates the visual effects of the two models on the small object testing
set. Compared to ResNet, our proposed ResNeSt+ model extracts more discriminative
features to support the detector in recognizing more objects. From the figure (in red circles),
it can be observed that the detector based on ResNet tends to overlook the edge features
of the targets, especially when the input image is of poor clarity. This can result in the
detector confusing the targets with the background or predicting inaccurate bounding boxes.
Although the ResNeSt model pays attention to the edge information, it still cannot offer
a precise detection result. In contrast, the proposed ResNeSt+ utilizes multi-scale object
features more effectively through the use of multi-receptive field convolution and dynamic
attention mechanisms, which further enhances the detector’s sensitivity to small objects.
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5.2. Feature Fusion

To further improve the detector’s performance, a novel dynamic feature pyramid
network called W-PAFPN is introduced to replace FPN. W-PAFPN incorporates sev-



Remote Sens. 2023, 15, 3497 11 of 17

eral modules, including DCSA, Lateral Shortcuts, and ASFF. To verify the influence of
each component on the model, we designed an ablation study on two distinct datasets,
HRSC2016 and DOTA. The experimental results are summarized in Table 4. All models
adopt ResNeSt+ 101 as backbone, and different combinations of neck structures are evalu-
ated. FPN is used as the baseline neck structure. The evaluated metrics are mAP07 and
mAP12 for the HRSC2016 dataset, and AP50 for the DOTA dataset. The results demon-
strate that PAFPN outperforms FPN. Moreover, the incorporation of DCSA and lateral
shortcut components further enhances the performance of PAFPN. Additionally, the in-
clusion of ASFF on top of these structures yields the best results on both datasets. Finally,
the proposed W-PAFPN achieves remarkable performance, achieving 98.97% mAP12 on
HRSC2016 dataset, and 81.97% AP50 on DOTA testing set.

Table 4. Ablation study of W-PAFPN on HRSC2016 and DOTA datasets.

Backbone
Neck HRSC2016 DOTA

FPN [21] PAFPN [13] DCSA Lateral Shortcut ASFF [22] mAP07 mAP12 AP50

ResNeSt+
101

√
90.61 97.95 81.27

√
90.69 98.17 81.38

√ √
90.77 98.46 81.63

√ √ √
90.80 98.63 81.70

√ √ √ √
90.84 98.97 81.97

To visually demonstrate the effectiveness of the designed feature fusion structure in
capturing informative features, we extracted the feature maps from three different feature
pyramid model and generated the saliency maps as displayed in Figure 6. The results verify
that the proposed modules can extract more accurate details of the objects compared to FPN
and PAFPN, which supports the detector in discriminating object categories and rotation
angles. Additionally, the DCSA and ASFF modules alleviate the feature dilution problem
during the process of feature propagation and fusion at different scales, further enhancing
the feature representation capability of the model. These improvements contribute to the
better performance of the proposed approach on the small object detection task.
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Figure 7 shows the AP (average precision) for each class in our DOTA testing set using
two different models, Oriented RCNN and ORCNN-X. The range of AP scores starts at
0 and goes up to 1, where a higher score means better performance in detecting objects of
that class. Overall, ORCNN-X outperforms Oriented RCNN in terms of AP scores for all
classes. Specifically, ORCNN-X achieved an average improvement of 2.5% in AP scores
compared to Oriented RCNN, with the largest improvement seen in the “SV” class (3.9%).
These results verify the effectiveness of the proposed ORCNN-X framework in detecting
objects in aerial images, particularly for images with small, oriented objects.
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5.3. Comparison with Previous Work

In this section, a fair comparison is made between recently proposed oriented object
detection models and our proposed model on two challenging datasets, including model
accuracy and speed. In this comparison, all models were trained fairly, and then tested
using the same parameter settings. Table 5 presents the testing results of different models
on the DOTA testing dataset, including the AP for each of the 15 object categories in the
dataset. The first row indicates the depth of the feature extractor and the names of the
15 categories. The ORCNN-X model is our proposed model. The results show that the
ORCNN-X exceeds other models in terms of AP for most classes and achieves the highest
AP50 score. In addition, we demonstrate the performance of the presented model using a
multi-scale training approach in the table. The experimental results suggest that multi-scale
training can considerably improve the detection performance of ORCNN-X, and the final
AP50 score reached 81.97% with a feature extraction model depth of 101.
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Table 5. Comparison of our method with other state-of-the-art techniques on the DOTA dataset.
‘Dep.’ is the depth of feature extraction network. ‘ms’ is multi-scale training.

Method Dep. PL BD BR TF SV LV SH TC BC ST SB RA HA SP HC AP50

R3Det [25] 101 88.76 80.09 50.91 67.27 76.23 80.39 86.72 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94 73.79

S2ANet [26] 50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12

RoI Transformer [27] 101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet [28] 101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

Gliding Vertex
[15,29] 101 89.64 85.00 52.26 77.34 73.01 73.14 85.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

Mask OBB [30] 50 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86

ReDet [31] 50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25

Oriented
RepPoints [32] 50 87.02 83.17 54.13 71.16 80.18 78.40 87.28 90.90 85.97 86.25 59.90 70.49 73.53 72.27 58.97 75.97

Oriented RCNN [15] 50 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87

Oriented RCNN [15] 101 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

Ours

ORCNN-X 50 88.18 84.2 55.7 75 78.31 83.11 87.76 89.87 85.48 85.61 67.97 66.43 76.77 69.81 65.12 77.29

ORCNN-X 101 88.9 84.12 56.37 74.64 79.29 83.94 88.26 89.59 86.19 86.35 68.4 66.91 76.52 70.63 65.58 77.71

ORCNN-X (ms) 50 90.58 88.2 62.72 80 80.31 83.11 88.06 91.87 87.48 87.74 72.97 74.43 80.77 80.81 75.12 81.61

ORCNN-X (ms) 101 90.41 88.74 63.4 80.51 80.67 83.59 88.11 92.35 87.27 88.39 73.88 73.82 81.57 81.56 75.23 81.97

Table 6 presents the mAP07 and mAP12 results of different object detection methods on
the HRSC2016 testing set. The methods compared include R3Det [25], S2ANet [26], Rotated
RPN [33], Oriented RCNN [30], ReDet [31], Oriented RepPoints [32], and the proposed
ORCNN-X. The “Dep.” column indicates the number of layers in the backbone model used
in each method. The table shows that ORCNN-X achieves the best performance among all
approaches, with mAP07 of 90.84% and mAP12 of 98.97% using a backbone network with
101 layers, which are respectively 0.34% and 1.37% higher than Oriented RCNN.

Table 6. Comparison of our method with other state-of-the-art techniques on the HRSC2016 dataset.

Method Dep. mAP07 mAP12

R3Det [25] 101 89.26 96.01

S2ANet [26] 101 90.17 95.01

Rotated RPN [33] 101 79.08 85.64

ReDet [31] 101 90.46 97.63

Oriented RepPoints [32] 50 90.38 97.26

Point RCNN [34] 50 90.53 98.53

Oriented RCNN [15] 50 90.40 96.50

Oriented RCNN [15] 101 90.50 97.60

ORCNN-X 50 90.76 97.72

ORCNN-X 101 90.84 98.97

In Table 7, we compared AP50 and FPS (frames per second) of different models for
oriented object detection on the DOTA testing dataset. The models include RoI Transformer,
Faster RCNN-O, RetinaNet-O, S2Net, Oriented RCNN, and our proposed ORCNN-X.
Among these models, ORCNN-X achieves the highest AP50 of 77.3%, outperforming other
models by a significant margin. S2Net and Oriented RCNN follow closely with AP50s of
74.1% and 75.9%, respectively. RoI Transformer, Faster RCNN-O, and RetinaNet-O exhibit
relatively lower AP50s of 74.6%, 69.1%, and 68.4%, respectively.
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Table 7. Comparison of AP50 and FPS for Various Oriented Object Detection Models. ‘*’ refers to the
results from Aerial Detection.

RoI Transformer * Faster RCNN-O * RetinaNet-O * S2Net [26] Oriented RCNN [15] ORCNN-X

AP50 74.6 69.1 68.4 74.1 75.9 77.3

FPS 11.3 14.5 15.9 15.4 15.0 16.1

In terms of FPS, ORCNN-X achieves the highest speed of 16.1, followed by RetinaNet-
O with an FPS of 15.9. Oriented RCNN exhibits a relatively lower FPS of 15.0, while RoI
Transformer, Faster RCNN-O, and S2Net exhibit even lower FPSs of 11.3, 14.5, and 15.4,
respectively. Overall, the results demonstrate that ORCNN-X achieves state-of-the-art
performance on oriented object detection in aerial images while maintaining high inference
speed. Furthermore, some visualization results of ORCNN-X on two datasets are shown in
Figures 8 and 9.
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6. Conclusions

In this study, we proposed an innovative framework (ORCNN-X) for oriented small
object detection in remote sensing images, which is based on Oriented RCNN. The frame-
work addressed the unique challenges of detecting objects in aerial images, such as low
resolution, complex backgrounds, and variations in scale and angle. It incorporated a mul-
tiscale feature extraction network with a dynamic attention module and an effective feature
fusion mechanism to strengthen the model’s perception ability and handle variations in
scale and angle. We evaluated our proposed framework on two public datasets, DOTA
and HRSC2016, and demonstrated its state-of-the-art performance. The experimental re-
sults showed that our model outperformed the baseline model by a significant margin,
achieving 1.43% AP50 and 1.37% mAP12 improvement on DOTA and HRSC2016 datasets,
respectively. Our proposed framework provides a promising approach for oriented small
object detection in aerial images. In addition, it has potential and practical significance in
urban planning, environmental monitoring, and disaster assessment.

Since this research employed multiple receptive fields to capture fine-grained details
and contextual information for achieving high-precision small object detection, the sizes of
these receptive fields were pre-defined and fixed. Therefore, it may lead to variations in the
effectiveness of feature extraction for different data. Moreover, the non-dynamic receptive
field selection method will also affect the model’s inference speed. In future work, more
effort should be put into extracting multi-scale contextual information. Further improve-
ments in the accuracy and speed of small object detection models will be sought through
in-depth exploration of algorithm design for dynamic receptive fields selection. The use
of transfer learning will also be explored to further improve the model’s generalization
ability on different datasets. Additionally, the investigation of other data augmentation
techniques, such as geometric transformations, will be conducted to boost the model’s
robustness to variations in orientation and scale.
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