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A B S T R A C T

The underground sewer network is a vital public infrastructure in charge of large-scale wastewater collection
and treatment. Complex defects can occur in sewer pipes due to various internal and external factors, which
increase the demand for frequent inspection. Previous defect detection research mainly depended on manual
inspection, which is tedious, costly, and error-prone. This study suggests an automatic pixel-level sewer defect
segmentation framework based on DeepLabV3+, which can recognize the defect’s type, location, geometric
information and severity. The impacts of various backbones and pre-processing methods on the model’s
performance were carefully evaluated. In addition, four state-of-the-art segmentation models (U-Net, SegNet,
PSPNet, and FCN) were compared with the presented model to demonstrate its superiority. The experimental
results revealed that the DeepLabV3+ with the Resnet-152 backbone structure efficiently identified ten defect
types under challenging conditions. The obtained mean pixel accuracy and mean intersection over union (IoU)
were 0.97 and 0.68, respectively. In terms of severity analysis, it was revealed that the framework outputs
were consistent with the NASSCO pipeline assessment certification program (PACP). In addition, during the
testing process, the proposed frame reduction algorithm only required about 16% of the original time required
to process an input video. Finally, with a generated detailed report for an inspection video, the suggested
framework can offer a decision-making base for more precise and efficient defect inspection and maintenance.
1. Introduction

Sewerage systems are essential public infrastructure in metropolitan
cities worldwide, which can significantly impact community assets and
lives. For instance, the total length of the sewer network in Korea was
reported to be 156,257 km in 2018 [1]. Even though underground
sewer systems have a long lifespan by design, environmental factors
or poor management can lead to the appearance of defects. Common
defects, such as cracks, tree roots, joint dislocation, and blockages,
are primary causes of pipe structural damage and may even lead to
severe functional failure, which is time-consuming and requires high
maintenance costs [2]. Some sample defects are described in Fig. 1(b).
As a result, periodic sewer inspection is the most critical measure to
prevent pipe deterioration, and there have been increasing demands
for accurate and efficient sewer inspection systems [3].

∗ Corresponding author.
E-mail address: hmoon@sejong.ac.kr (H. Moon).

1.1. CCTV-based sewer defect inspection

Multiple inspection approaches have been introduced for sewer
investigation in the last decades. A recent review categorized them into
vision-based, ultrasonic-based, acoustic-based, and electromagnetic-
based technologies and discussed each technology in detail [4]. Among
the technologies, vision-based closed-circuit television (CCTV) was
considered a well-accepted and cost-effective technique [5,6]. As il-
lustrated in Fig. 1(a), cameras and lighting equipment mounted on a
carrier, such as a robot, can effectively be utilized to inspect sewer
pipelines’ internal conditions.

A huge number of CCTV videos were collected after the data collec-
tion process, requiring human inspectors to manually check each video
for defects. This inspection process is time-intensive and error-prone
due to the inspectors’ conditions and experience [7]. Deep learning
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Fig. 1. Sewer defect inspection example. (a) introduces the sewer inspection process that uses a robot to record videos and (b) displays some defects in a sewer network.
(DL) models that automatically learn crucial features from data, have
been extensively adopted for sewer inspection-related topics and have
established state-of-the-art performances in recent decades. In general,
DL has been implemented for three main sewer inspection topics with
distinctive degrees of complexity, including defect classification, defect
detection, and defect segmentation [3].

It is noticeable that there is also a lack of evaluation standards
in current CCTV-based sewer inspection research [3]. In-depth train-
ing programs and uniform evaluation manuals, such as the NASSCO
pipeline assessment certification program (PACP) [8] and the manhole
assessment certification program (MACP), can partially solve these
drawbacks.

1.1.1. Defect classification
Initially, convolutional neural network (CNN) models were adopted

for sewer defect classification [7,9]. For instance, Hassan et al. demon-
strated a defect classification system using the AlexNet structure, which
supported video caption recognition [10]. Dang et al. proposed a deep
learning-based sewer defect classification model that was robust against
imbalanced data problems by implementing an ensemble approach [9].
Even though previous research has revealed the effectiveness and ro-
bustness of the various sewer defect classification models, an input
image was classified into a specific defect type without revealing the
exact location of the defects.

1.1.2. Defect detection
On the other hand, defect detection returns both the defect type and

bounding boxes indicating the exact location of detected defects for an
input image, which is more informative than defect classification [7,
11]. Recent defect detection research has mainly applied state-of-the-
art object detection structures, such as you only look once (YOLO),
faster region-based CNN (Faster R-CNN), and the latest transformer-
based approaches [12,13]. Notably, Oh et al. demonstrated that the
latest YOLOv5 models achieved satisfying detection performance and
could be implemented in real-time applications [13]. However, the
defect detection approach still fails to deliver crucial geometrical data
of the defects, such as area, width, length, and shape, which is essential
for the defect severity assessment.
1.1.3. Defect segmentation
Although numerous studies have previously been proposed to iden-

tify sewer defects, most of them belonged to classification [2,9], or
detection [12,13]. Semantic defect segmentation is the latest defect
investigation trend, which segments various defects by classifying a
defect class for each pixel of an input image. The pixels of different
types of defects (e.g., obstacles, cracks, protruding) can be classified
precisely. In addition, geometrical details of segmented defects can be
used to perform in-depth defect analyses [3]. Mainstream deep segmen-
tation structures, including fully convolutional network (FCN) [14], U-
Net [15,16], SegNet [17], and DeepLab [18,19], have been increasingly
applied to perform sewer defect investigation.

Previous studies mainly applied state-of-the-art segmentation net-
works to the defect segmentation systems, such as the SegNet model,
which was fine-tuned by Han et al. [17] and U-Net’s structure, which
was improved by Pan et al. [16]. In a more recent study, Li et al.
improved the state-of-the-art segmenting objects by locations (SOLOv2)
model by introducing a novel backbone structure to perform segmenta-
tion for six different defect types [20]. However, the number of defect
types was limited, and defect severity analysis was ignored. Moreover,
defect severity analysis, an essential process for sewer inspection, was
overlooked [21]. Finally, these studies did not compare the proposed
models with other segmentation approaches when implemented in the
same framework [3].

1.2. Main contributions

In order to fully solve these weaknesses, there is a desire for fully-
automated, practical and robust methods for sewer defect detection
and evaluation [9,18]. In consideration of the drawbacks of previous
studies, this research introduces a novel sewer defect segmentation
based on the DeepLabV3+ model that can accept both CCTV videos
and images as input. The proposed framework also supports an in-
depth analysis of the segmented defects, including defect severity. In
summary, the main contributions are as follows.

• Previous defect segmentation research has been computationally
intensive because they perform segmentation on every frame
extracted from a CCTV video. This study introduces a novel frame
reduction approach that recognizes the video’s captions data to
significantly lower the number of frames to be predicted.
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Fig. 2. Sample images, where the defects are highlighted, and a description of the number of training and validation images for ten defect types proposed in this study.
• To the best of our knowledge, the latest sewer defect segmenta-
tion framework can only detect a small number of defect classes,
such as five [16] and six [20,22]. In this study, we introduce
a high-quality sewer defect segmentation dataset carefully anno-
tated by experts that include ten types of sewer defects.

• A comprehensive experiment is carried out in order to com-
pare the proposed model with other well-known segmentation
models, such as U-Net, SegNet, and FCN. In addition, various
backbone structures and loss functions (9 combinations in total)
are implemented to find out the best combination (accuracy and
speed).

• The defect severity analysis, which was ignored in previous stud-
ies, is also added to the proposed system in order to enable a fully
automatic defect evaluation process.

. Dataset description

.1. Defect segmentation dataset

A total of 3699 frames containing defects were extracted from 60
losed-circuit television (CCTV) inspection videos recorded at various
nderground sewer manholes across South Korea. The time of the
ideos ranged from 3 to 10 min with a fixed frame rate of 30 frames
er second (FPS) of various pipe lengths and inner conditions. The
CTV videos were collected by an advanced inspection robot carrying
high-resolution 1/3-inch SONY Exmor CMOS camera on its head that

upports 360◦ rotation and up/down motions. In addition, the head of
he robot was equipped with a powerful light-emitting diode (LED) bulb
o enable it to record videos in the sewer pitch-dark environment.

As described in Fig. 2, ten different types of sewer defects are
efined as follows.
• Broken pipe (BK): The inner pipe is partially or completely dam-
aged. BK is a serious defect type requiring timely actions from
experts.

• Longitudinal crack (LC): Concrete foundation settling effect that
causes a vertical or diagonal crack emerges on the sewer’s inner
wall surface.

• Circumferential crack (CC): Pressure on the outside of the sewer’s
inner walls causes a crack to emerge parallel to the wall’s horizon-
tal axis. CC is considered a more serious defect compared to CL
because it can cause permanent damage to the pipe foundation.

• Displaced joint (DJ): A slight dislocation of the pipe joints.
• Lateral protruding (LP): Sewerage connection protrudes to the

primary sewer manhole.
• Lateral sealing (LS): Gap in sewerage connection but does not

extend to the outer wall.
• Surface damage (SD): Minor damages on the sewer’s inner wall

surface, corrosion by environmental factors or abrasion.
• Root intrusion (RI): Sewer pipe diameter reduction due to the

intrusion of roots.
• Hole (HL): Pipe diameter reduction due to the intrusion of roots

into the sewer manhole.
• Permanent obstruction (PO): Obstacles, such as hanging objects,

mortar, and welding byproducts, puncture through the sewer’s
surface or occupy part of the sewer manhole.

These defect categories were picked because they have been consid-
ered the most common type of sewer defect in Korea [3]. Most of these
defect classes also appear in the PACP [23].

A group of 5 civil engineers from an inspection company partici-
pated in a two-month image annotation task, where each individual an-
notated about 20 images per day. The data annotation process adopted
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Fig. 3. Essential captions on a single frame of an inspection video.
n open-source Labelme annotation tool programmed in Python.1 No
mage cropping method was implemented to pick the relevant areas.
t the end of the labeling process, a total of 3708 images were an-
otated. The images were resized to the input size requirement of the
eepLabV3+ network, which is 512 × 512 pixels. In order to increase

he number of training images, three data augmentation methods (hor-
zontal flip and random translation of ±20 pixels for the 𝑋-axis and
-axis) were applied to the processed defect segmentation dataset. The
umber of images after this step increased to 11,124 images. Finally,
he dataset was randomly split into two sets of 8914 images (80% of
he data) used for training and validation and 2210 images (20% of the
ata) used for testing purposes. The chart in Fig. 2 shows the number
f annotated images for each type.

.2. Caption recognition dataset

As displayed in Fig. 3, captions added on every frame of a sewer
nspection video provide essential information regarding the inspection
nd management of the sewers.

The explanation for some crucial captions is as follows.

• Pipe identifier: The unique identifier for a sewer pipe.
• Travel distance: The distance that the robot has moved inside a

specific sewer pipe.
• Pipe diameter: The diameter of a sewer pipe.
• Inspection date & time: The inspection date (year/month/day)

and current time (hour/minute/second).

A total of 1500 caption patches were extracted from the inspection
ideos. They were manually annotated for the text detection task. The
ataset was split using the 8:1:1 ratio with 1200 images for training,
50 for validation and 150 for testing.

. System overview

Fig. 4 describes the main components of the suggested sewer defect
egmentation framework.

Comprehensive descriptions of each process are defined as follows.

1 https://github.com/wkentaro/labelme
• Preprocessing: Frames extracted from an input sewer video can
be affected by external environments that lead to problems, such
as hazy and low-light conditions. Therefore, various image pre-
processing methods are applied to enhance the quality of the
extracted frames and ensure the defect segmentation framework
performance.

• Frame reduction: A novel approach to significantly reduce the
computational intensive defect segmentation task by recognizing
the caption information and selecting only crucial defect frames
based on the nature of the CCTV inspection video.

• Defect segmentation: DeepLabV3+, a state-of-the-art semantic
segmentation model, is tested with various backbone structures
and loss functions and trained to learn abstract defect features
under complex conditions to perform sewer defect segmentation.

• Defect severity analysis: Defect severity is useful and essential
information for inspectors to determine whether a defect is minor
or serious in order to commit timely action.

• Report generation: This module takes the output of defect seg-
mentation and severity analysis agents to provide a compre-
hensive report showing the crucial information related to the
segmented defects.

4. Methodology

4.1. Image pre-processing

Naturally, the environments inside a sewer pipe are always pitch
dark and have high humidity due to continuous water vapour, which
lead to various issues for the collected CCTV videos, such as low-light
images, illumination, and foggy data. As a result, various algorithms
were implemented to preprocess the dataset to enhance its visual
quality.

First, contrast enhancement is an effective method to enhance image
quality and reduce the low-light issue. Previous image contrast en-
hancement approaches have performed poorly on noisy images because
the appearance of unwanted noise significantly affected the proper
distribution of pixel intensities in the contrast-enhanced image. In order
to overcome the issue, the contrast enhancement framework proposed
by [24] was applied to process the extracted sewer frames. This ap-
proach first implemented the mean-shift algorithm to reduce irrelevant
pixels and noise from the input images. After that, the Moth Swarm
algorithm (MSA) was applied to redistribute the pixel intensities of

https://github.com/wkentaro/labelme
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Fig. 4. Detailed description of the suggested sewer defect segmentation framework for an input CCTV video.
the preprocessed histogram to maximize the Kullback–Leibler entropy
(KL-entropy) value.

After that, a pretrained lightweight DehazeNet model (LD-Net) [25]
was fine-tuned to efficiently enhance recorded CCTV videos’ quality at
a low computational cost. All hyperparameters were set as suggested in
the original article [25]. Different from previous methods, the LD-Net
model simultaneously estimates the atmospheric light and transmission
map based on an atmospheric scattering model to effectively lower
the processing time and computational cost. Moreover, the color dis-
tortion issue is prevented in the output images using color visibility
restoration module. LD-Net demonstrated high-quality denoising results
without affecting the image’s original brightness, and can be applied to
real-time applications.

Fig. 5 displays the preprocessing outputs of 4 random input frames
extracted from sewer inspection videos. The outputs of the two pre-
processing methods, including LD-Net and MSA, show a significant
enhancement of quality compared to the original inputs. For example,
it is impossible to identify defects in the low-light scenario or captions
in the illumination background, even with human eyes. However, a
substantial improvement in the image quality after the preprocessing
process enables a clear observation of defects or captions appearing in
the preprocessed images. In addition, the preprocessing module does
not introduce any artifacts to the output images.

4.2. Frame reduction

During the testing process, the users can feed either an image or
CCTV video into the proposed framework. In the case of a video,
after extracting every frame from the video, previous studies fed all
the frames into the system, which is computationally complex and
inefficient because most frames did not contain defects. Therefore, this
study proposes a frame reduction module aiming to select only frames
containing defects to be processed by the proposed defect segmentation
framework based on the caption information. The two main processes
are caption detection & recognition and frame reduction.

4.2.1. Caption detection & recognition
Transfer learning was applied to a pretrained YOLOv5 model to per-

form caption detection [26]. YOLOv5 includes three main components,

the backbone, neck and head. Cross-Stage-Partial Darknet (CSPDarknet)
was implemented as the backbone to obtain crucial features from the
input images. After that, the neck part uses a path aggregation network
(PANet) to create a feature pyramid network in order to perform feature
aggregation and forward it to the head module for detecting the cap-
tions. The head performs the text detection by applying anchor boxes
on extracted features and generates final output vectors, including
class, class probabilities, bounding boxes, and size.

After the text detection step, candidate regions that possibly contain
the captions are extracted. After that, a state-of-the-art four-stage scene
text recognition framework, which includes transformation, feature ex-
traction, sequence modeling, and prediction, was applied to recognize
the detected captions [27]. Initially, a thin-plate spline (TPS) transfor-
mation is implemented in order to increase the diversity of aspect ratios
of input text lines to produce normalized images. Next, in the feature
extraction stage, a ResNet-152 model [28] is implemented to obtain
abstract features from the normalized images in order to estimate the
character from each receptive field. In the sequence modeling stage,
the extracted feature maps are then converted into a sequence of
features. Contextual information within a sequence of characters is
then extracted by analyzing each frame of the sequence. Finally, in
the prediction process, the attention-based sequence prediction (Attn)
is implemented to estimate the flow of information within the identified
features sequence to output the final character sequence.

4.2.2. Frame reduction
Important captions of the CCTV videos, which were detected and

recognized in the previous section, are used in this section to select
frames containing defects to be segmented. During the sewer pipe
inspection, inspectors are required to follow predetermined steps when
a defect is detected, as follows.

• The robot is driven near the defect position.
• The inspectors remotely control the mounted camera on the head

of the robot to thoroughly capture the defect at various directions
and angles.

• The process lasts for a few seconds, depending on the defect

severity.
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Fig. 5. Visualization of the raw sewer images and output images after implementing the pre-processing process.
Fig. 6. A sample of four lateral protruding defect samples that were captured when the robot stopped in order to observe the defect for 4s from 09:31:17 to 09:31:20. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
As shown in Fig. 6, the robot travel distance caption remains
unchanged during this process, even when the inspection time changes.

Therefore, a frame reduction algorithm based on this characteristic
is introduced in order to significantly reduce irrelevant frames being
fed into the defect segmentation framework. Initially, all frames are
obtained from an input CCTV video. After that, the suggested caption
detection and recognition module from Section 4.2.1 is implemented to
detect and recognize the travel distance and inspection time captions
for each frame. These data are fed into the frame reduction algorithm.
The difference between the beginning and ending inspection time for
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the same ‘‘travel distance’’ caption is equal to or longer than 3000 ms,
indicating that the robot is stopped to inspect a defect. Only the first
and last frames are extracted and forwarded to the defect segmentation
framework to improve computational efficiency during the whole pe-
riod. A collection of defect frames will be extracted at the end of this
process.
Algorithm 1 Frame reduction
1: Input: CCTV video 𝑉 ,
2: Output: Frame with defect 𝐹𝑑
3: Initialize: Frames 𝐹 ← 𝑛𝑢𝑙𝑙, frame with defect 𝐹𝑑 ← 𝑛𝑢𝑙𝑙, tem-

porary data 𝑇𝑀𝑃 ← 𝑛𝑢𝑙𝑙, temporary frames 𝐹𝑡𝑚𝑝 ← 𝑛𝑢𝑙𝑙, moving
distance 𝑑 ← −1, current time 𝑐𝑡 ← −1, reset flag 𝑟 ← 1

4: Extract all frames 𝐹 from 𝑉
5: while 𝐹 not null do ⊳ Stop when all extracted frames were

processed
6: Get frame 𝑓
7: Initialize: begin time 𝑏𝑡 ← −1, end time 𝑒𝑡 ← −1
8: 𝑑 ← 𝑜𝑐𝑟(𝑓 ) ⊳ Detect and recognize the moving distance caption
9: 𝑐𝑡 ← 𝑜𝑐𝑟(𝑓 ) ⊳ Detect and recognize the current time caption
0:
1: if 𝑟 = 1 then
2: 𝐹𝑡𝑚𝑝 ← 𝑓 ⊳ Add frame 𝑓 to 𝐹𝑡𝑚𝑝
3: 𝑏𝑡, 𝑒𝑡 ← 𝑐𝑡
4: 𝑇𝑀𝑃 ← {𝑑, 𝑏𝑡, 𝑒𝑡}
5: 𝑟 ← 0
6: else
7: Select distance 𝑑𝑇𝑀𝑃 from 𝑇𝑀𝑃
8: if 𝑑𝑇𝑀𝑃 = 𝑑 then
9: 𝑒𝑡 ← 𝑐𝑡
0: 𝑇𝑀𝑃 ← 𝑒𝑡 ⊳ Update TMP with a new 𝑒𝑡
1: else
2: 𝑏𝑡, 𝑒𝑡 ← 𝑇𝑀𝑃
3: 𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 ← 𝑒𝑡 − 𝑏𝑡
4: if 𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 ≥ 3000 then
5: 𝐹𝑡𝑚𝑝 ← 𝑓 ⊳ Extract the last frame containing the

defect
6: 𝐹𝑑 ← 𝐹𝑡𝑚𝑝 ⊳ Frames with defects are added to the

final array
7: 𝑇𝑀𝑃 , 𝐹𝑡𝑚𝑝 ← 𝑛𝑢𝑙𝑙; 𝑟 ← 1;
8: Return 𝐹𝑑

4.3. Defect segmentation

A fine-tuned DeepLabV3+ [29] is implemented to learn discrimina-
tive features of ten primary defect types under challenging conditions
in order to perform pixel-level defect segmentation. It is currently a
well-known multi-class semantic segmentation model that has been
increasingly utilized to perform defect segmentation in the latest struc-
tural engineering-related studies. DeepLabV3+ extends the previous
DeepLabV3 by using an encoder–decoder structure. Fig. 7 shows the
overall training process of the DeepLabV3+ in this study. Raw defect
features are extracted using well-known DCNN backbone networks
and fed into the DeepLabV3+. The encoder is in charge of reducing
the spatial sizes of feature maps, extracting high-level semantic infor-
mation, and eliminating some unnecessary artifacts. In DeepLabV3+,
DeepLabV3 plays the role of the encoder. The decoder then boosts the
learned features and gradually recovers the spatial information via the
up-sampling operation.

For the encoder module, Atrous Spatial Pyramid Pooling (ASPP) is
applied to downsize feature maps’ dimensions and encode multi-scale
contextual information. ASPP comprises 4 atrous convolution layers
(𝐶𝑜𝑛𝑣1, 𝐶𝑜𝑛𝑣2, 𝐶𝑜𝑛𝑣3 and 𝐶𝑜𝑛𝑣4) with different kernel sizes in order
o enable it to obtain the filter’s field of view. After that, all extracted
ulti-scale features are concatenated, go through one pooling layer,

nd are sent to the decoder.
The decoder module predicts segmentation outputs having the same
size as the original images based on low-scale feature maps obtained
by the encoder. The feature maps received from the encoder are first
bilinearly upsampled by 4 using the transposed convolution operation
in order to expand the feature maps’ dimensions. These feature maps
are fused with low-level features extracted directly from the backbone
network via a special 1 × 1 convolution operation to enrich the ex-
tracted features. Finally, the initial spatial dimensions of the feature
maps are slowly recovered through concatenation, convolution and
up-sampling operations to produce the final segmentation outputs.

4.4. Defect severity analysis

Previous studies have ignored the severity analysis process of the
defects after detecting them, which plays an essential role in indicating
the sewer pipe’s condition and provides inspectors with additional
information to decide which defect needs to be maintained in time.
This study performs severity analysis based on the PACP standard [8].

PACP assigns the structural defect grade based on further deterio-
ration or failure risk, ranging from 1 to 5, with 1 indicating a minor
defect (complete failure is unlikely to happen in the long term) and 5
indicating a severe defect (was ruined or will probably fail in the next
five years). As displayed in Table 1, even though slight differences exist
in naming some defect classes between this study and the PACP, most
of the defect classes are interchangeable.

5. Experimental results

This section investigates the performance and robustness of the
suggested framework thoroughly through several experiments with
different settings. Section 5.1 shows the hardware and programming
environment where the proposed framework was developed. After that,
Section 5.2 explains the evaluation metrics computed to assess the
framework. Moreover, the hyperparameters required for all models
are also described. Finally, a series of experiments are carried out to
investigate the framework’s performance and robustness.

5.1. Implementation details

All experiments, including training and inference processes, were
done on a Linux machine (Ubuntu 18.04) equipped with an Nvidia
Tesla V100 32 GB. The framework was developed using Python pro-
gramming language and PyTorch,2 an open-source deep learning frame-
work.

In the following subsections, five well-known segmentation models,
including DeeplabV3+ [29], U-Net [30], SegNet [31], PSPNet [32], and
FCN [33] were adapted to perform crack segmentation on the ten-class
defect dataset introduced in this study. The dataset was labeled accord-
ing to the scheme defined in the COCO benchmark dataset. In order to
guarantee the fairness of the following experiments, all segmentation
models used abstract features extracted from pre-trained standard back-
bone networks on the ImageNet dataset, including VGG19, Xception,
ResNet152, and Densenet201. All models were trained for 80 epochs
with the batch size fixed to 16. Moreover, the stochastic gradient
descent optimization function with an initial learning rate of 0.01 and
a momentum of 0.9 was applied to train the model.

2 https://pytorch.org/

https://pytorch.org/
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Fig. 7. Main processes of the sewer defect segmentation framework based on the DeepLabV3+ model.
Table 1
Defect grade comparison between this study and the PACP standard.
This study PACP Structural grade

Broken pipe Pipe failures (broken) 5

Circumferential crack Crack (circumferential) 1

Longitudinal crack Crack (longitudinal) 2

Displaced joint Joint (offset) 1

Surface damage Surface damage 5

Protruding lateral Obstacles/Obstructions
(Pipe protruding through
the wall)

3

Root intrusion Roots (lateral) 3

Permanent obstruction Obstacles/Obstruction
(object)

2 (≤10%), 3 (≤20%), 4
(≤30%), 5 (>30%)

Hole Pipe failures (hole) 5

Lateral sealing External pipe in sewer 2 (≤10%), 3 (≤20%), 4
(≤30%), 5 (>30%)
5.2. Evaluation metrics

This study implements six standard segmentation evaluation metrics
in order to evaluate the performance of the defect segmentation models.
The short description and equation for each evaluation metric are
described as follows.

• Mean intersection over union (𝑚𝐼𝑜𝑈): While 𝐼𝑜𝑈 quantifies the
percent overlap between the ground truth mask and predicted
mask, m𝑚𝐼𝑜𝑈 indicates the class average 𝐼𝑜𝑈 .

𝐼𝑜𝑈 =
|𝐴𝑝 ∩ 𝐴𝑔|

|𝐴𝑝 ∪ 𝐴𝑔|
(1)

mIoU = IoU
K

(2)

where 𝐴𝑝 and 𝐴𝑔 is the area predicted and ground truth pix-
els/objects, correspondingly;

• Mean pixel accuracy (𝑚𝑃𝐴) denotes the ratio of accurately seg-
mented pixels to the total number of pixels in the image.

𝑚𝑃𝐴 = 1
𝐾 + 1

𝐾
∑ 𝑝𝑖𝑖

∑𝐾 (3)

𝐼=0 𝑗=0 𝑝𝑖𝑗
where 𝐾 is the number of class, 𝑝𝑖𝑖 corresponds to the total
number of true positives for class 𝑖. 𝑝𝑖𝑗 is the total number of
pixels labeled as class 𝑗.

• F-measure: reflects a model’s ability to segment different defect
types, computed based on the average between the recall and the
precision.

F-measure = 2 × Precision ∗ Recall
Precision + Recall (4)

• Inference time: provides information regarding the model seg-
mentation speed.

5.3. Image preprocessing

In order to demonstrate the necessity of the pre-processing ap-
proach, the comparison of the segmentation performances of
DeeplabV3+ [29], U-Net [30], SegNet [31], PSPNet [32], and FCN [33]
using the ResNet-152 backbone with and without the pre-processing
method was carried out on the validation dataset.

Table 2 reveals the performances of the 5 models with and with-
out the pre-processing process. The segmentation models trained with
pre-processed images showed significantly better F-measure and mPA
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Fig. 8. Segmentation outputs of raw and pre-processed images for three typical CCTV challenging environments, including blurring, low-light, and illumination.
Table 2
Cross-model segmentation performance validation with and without implementing the
pre-processing module.

Approach Architecture F-measure mPA (%)

Without pre-processing

DeeplabV3+ (Our) 0.59 89.3
U-Net [30] 0.07 85.2
SegNet [31] 0.09 82.4
PSPNet [32] 0.55 87.5
FCN [33] 0.52 88.4

With pre-processing

DeeplabV3+ (Our) 0.64 97.9
U-Net [30] 0.08 86.4
SegNet [31] 0.09 88.1
PSPNet [32] 0.61 96.8
FCN [33] 0.57 95.5

scores than those trained with original images. Overall, the mPA scores
showed a notable improvement between 1 to 9%. For the DeeplabV3+
model, in particular, the pre-processing approach allowed the mPA to
be improved to 97.9% from the original 89.3%. Therefore, the pre-
processing process is crucial for applications based on CCTV videos
because it can improve sewer defect segmentation results remarkably.

Fig. 8 demonstrates the effectiveness of the preprocessing procedure
on the defect segmentation performance for three common scenarios
appearing in CCTV videos, including blurring, low light, and illumina-
tion. Without the preprocessing step, the noise negatively affected the
segmentation results. For example, the DeeplabV3+ model failed to rec-
ognize the CC defect in the blurring scenario or mistakenly recognized
noise as a BK defect in the low-light scenario. When the environment
was dark, and the contrast between the defects and the background was
unclear, there was a high probability of false segmentations. However,
the model segmented all defects correctly after they were preprocessed.
5.4. Defect segmentation performance analysis

In this section, various backbone networks were implemented to
thoroughly validate the five segmentation models’ performance on the
proposed dataset after applying the pre-processing process. In sum-
mary, nine common model variations, including DeepLabV3+ (ResNet
152), DeepLabV3+ (Xception), U-Net (ResNet152), SegNet (ResNet
152), SegNet (VGG19), PSPNet (ResNet152), PSPNet (Densenet201),
FCN (VGG19), and FCN (ResNet152), were examined. The segmen-
tation results based on standard evaluation metrics (i.e. mPA, mloU,
mean F-measure, and inference time) of all the network variations are
described in Fig. 9.

Overall, the Resnet backbone showed better performance compared
to other backbone networks. Two variations of the DeepLabV3+ model
show the best segmentation performance for ten defect types. Except for
the longer inference time, the DeepLabV3+ (ResNet152) outperformed
other variations and obtained the best segmentation performances
in all evaluation metrics. The mPA and mIoU of the DeepLabV3+
(ResNet152) were at 0.979 and 0.689, respectively, falling into the
satisfying range for the segmentation topic [34]. In contrast, the mPA
and mIoU of the SegNet and SegNet were low, which indicates that the
network failed to learn representative features to perform the defect
segmentation properly during the training phase. Therefore, this study
does not recommend the U-Net and SegNet models for sewer defect
segmentation.

The variations of PSPNet and FCN models showed comparable
segmentation performances to the DeepLabV3+ model. The FCN model
is recommended for applications focusing on speed over performance
because its inference speed is almost two times faster than DeepLabV3+
and PSPNet. The DeepLabV3+(Resnet152) variation was considered the
best model for sewer defect segmentation using the proposed dataset.
Therefore, Fig. 10 displayed the accuracy and loss curves on the vali-
dation dataset to demonstrate the effectiveness of the training process
and network convergence of the DeepLabV3+(Resnet152) model. Gen-

erally, the model achieved stable convergence during the training
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Fig. 9. Reported validation results for nine segmentation model variations, which include mPA, mIoU, mean F-measure, and inference time.
Fig. 10. Validation accuracy and loss curves of the DeepLabV3+ model using the ResNet152 backbone network.
rocess. The model’s validation accuracy and loss curves change sig-
ificantly before step 600 to approximately 94% and 0.2, respectively.
fter that, the curves change gradually and stop at about 97% accuracy
nd 0.15 loss. Therefore, the model showed good generalization ability
nd can deliver reliable statistics for the following experiments.

The proposed framework is also compared with models reported in
revious studies in order to provide a general view of the progress of
ewer defect segmentation research. Table 3 describes several features
f previous sewer defect semantic segmentation research, including
odel, dataset, performance, and segmentation speed. Previous studies
ainly relied on state-of-the-art semantic segmentation models, such as
-Net, PSPNet, and FCN, to perform defect segmentation. Even though
IoU and F-measure values were relatively lower compared to previous

ewer defect segmentation studies [16,35], this study covered a signif-
cantly higher number of defect types (10 types) compared to previous
tudies (3–5 types) and contained the biggest number of images (11,097
mages). Some defect types (such as permanent obstruction and broken
ipes) were complicated because they could be mistakenly recognized
s other defects (i.e. lateral sealing, root intrusion) and even overlap.
inally, the preprocessing module was implemented in the proposed
ramework in order to improve defect segmentation performance. The
egmentation results and speed should only be used as a reference
Table 3
Segmentation performance comparison between the proposed framework and latest
defect segmentation studies.

Study Dataset size mIoU Speed (FPS)

DilaSeg-CRF [35] 3 classes (1885 images) 0.84 9

PipeUNet [16] 4 classes (3654 images) 0.76 32

PSPNet [22] 5 classes (480 images) 0.53 20

DeepLabV3+ (Our) 10 classes (11097 images) 0.69 26

because the datasets used for training these models, the hardware, and
the programming environment was different.

5.5. Qualitative evaluation

This section compares the best variation segmentation results quan-
titatively obtained from the previous section, which are DeepLabV3+
(Resnet152), PSPNet(Resnet152), U-Net(Resnet152), FCN(VGG19), and
SegNet(VGG19). As shown in Fig. 11, generally, DeepLabV3+ showed
the best segmentation results in terms of visual quality for ten defect
types. For instance, the predicted output of PO using the DeepLabV3+

model was almost similar to the ground truth. Demonstratively, the
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Fig. 11. Qualitative evaluation of the defect segmentation process for the ten defect types. The order is as follows: original images, ground truth images, and segmented masks
produced by the best variations of each segmentation model.
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model could recognize the small pipe on the bottom corner connecting
to the main pipe.

Even though the segmented outputs of FCN and PSP models were
scratchy, they can be considered acceptable for sewer defect segmen-
tation. On the other hand, the SegNetand U-Net models failed to
recognize complex defects, such as PO, BK, and CC. The two models
could not find the defect boundaries and thus led to noisy segmented
images. Too many defect regions were missed, making it challenging to
perform defect severity analysis based on their segmentation results.

Despite the overall good segmentation results, poor/inaccurate seg-
mentation results for challenging cases can still be witnessed during
the testing process. Fig. 12 offers two cases where the model showed
poor performance due to several potential causes. The first probable
reason is the defect position, where a defect was influenced by other
defects, such as an overlap between defects or defects near each other
(Fig. 12 (Case 1)). Another reason is the similarity of geometric features
of some defects, such as HL, BK, and PO, causing mixed segmentation
predictions (Fig. 12 (Case 2)).

5.6. Caption detection & recognition and frame reduction analysis

The YOLOv5 was trained using the caption dataset explained previ-
ously in Section 4.2.1. The recorded validation mAP was 0.99, demon-
strating that it correctly detected the captions with a good detection
rate. Fig. 13 displays some text detection results using the YOLOv5
model. It can be seen that the model successfully detected all captions
in the input images. After that, the detected captions were fed into a
pretrained TPS-ResNet-BiLSTM-Attn model [27] in order to recognize
the captions efficiently.

Table 4 demonstrates the effectiveness of the frame reduction al-
gorithm on 10 randomly selected CCTV videos that range from 3 to

8 min. Without the frame reduction algorithm, all frames extracted g
from the input CCTV video need to be processed by the preprocessing
and segmentation modules, which cost a significantly longer time.

It takes 0.33 s and 0.038 s for a single frame to be processed by the
preprocessing module and the defect segmentation model, respectively.
If the frame reduction algorithm is carried out, the time required for
text detection is approximately 0.02 s and 0.032 s for text recognition.
In summary, it takes approximately 0.368 s to process a frame without
the frame reduction algorithm and costs 0.42 s if the frame reduction
algorithm is implemented. Even though the algorithm requires more
time and computational power, the number of frames was significantly
reduced.

Take video ID number 1 as an example. The framework needs
approximately 41 min to process 6701 frames (= 6701 ∗ 0.368). On
the other hand, it takes only 6 min to complete the defect investigation
process using the frame reduction algorithm (= 6701 ∗ 0.052 + 22 ∗
0.368). Table 4 reveals that the frame reduction algorithm saved, on
verage, about 86% of the computational time compared to when all
rames were fed into the model.

.7. Defect severity analysis and report generation

This section investigates the effectiveness of the report generation
odule, which is essential for real-life sewer inspection applications.
he proposed framework automatically segments defects appearing in
n input CCTV video, analyzes the segmented defect severity, and
eturns an inspection report. The reports generated by the proposed
ramework were then compared with ground truth inspection reports
ade manually by experts, who inspect the CCTV videos in order to

dentify defects and place them in the report.
Fig. 14 shows an inspection report sample produced by the sug-
ested framework.
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Fig. 12. Defect segmentation outputs of the DeepLabV3+ based model for challenging cases.
Fig. 13. Text detection outputs using the trained YOLOv5 model.
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Important information includes visualized position of the robot
in the sewer pipe, segmented defect images with the exact location
highlighted, defect type, and defect severity score. As explained in
Section 4.4, the defect severity score is the structural grade extracted
from the PACP standard.

In order to demonstrate the effectiveness of the report generation
module, five inspection videos were randomly selected to obtain au-
tomatically generated reports using the proposed framework. Fig. 15
compares the reports generated by the proposed framework and manual
reports for five inspection videos.
 f
In general, 84 defects were identified and reported in the auto-
matically generated reports compared to 77 defects documented in
the manual reports. The reasons that led to the differences between
the generated and manual reports were a small number of additional
defects were detected by the proposed framework, such as 05 − 06072
(1 additional defect), 05 − 06350 (2 additional defects), 05 − 06351 (5
dditional defects), which was not reported in the manual reports. For
xample, Fig. 16 shows a BK defect (red bounding box) identified by
he report generation module that did not appear in the manual report
or the 05 − 06072.
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Fig. 14. A sample of the automatically generated inspection report for an input sewer inspection video using the proposed framework.
Assuming additional defects that the model detected as false posi-
ive, the overall accuracy of the generated reports was approximately
3.5%, where 72/77 defects were correctly detected.

. Discussion

This study suggested a novel sewer defect segmentation framework
ased on the DeepLabV3+ that added various modules compared to
revious techniques. The preprocessing module (Section 5.3), which
ncludes MSA and LD-Net models, significantly improved the mPA of
he DeepLabV3+ model by 8.6%. Other models also benefited from
he preprocessing module and witnessed improvements in the seg-
entation performance. The main reason for the improvement was

isualized and explained using Fig. 8, where noise from the raw images
could cause the model to make false segmentations. Even though this
module requires additional computation power and time, it can be
easily disabled or enabled depending on the applications.

Five state-of-the-art segmentation models, including DeepLabV3+,
U-Net, SegNet, PSPNet, and FCN, were trained using the proposed
defect segmentation dataset with several combinations of backbone net-
works in order to select the best combination for the collected dataset.
The DeepLabV3+ model (ResNet-152 backbone) achieved the highest
mPA and IoU scores at 97.9% and 0.69, respectively. In addition,
the DeepLabV3+ also surpassed previous state-of-the-art sewer defect
segmentation research, including PipeUNet, PSPNet, and DilaSeg-CRF,
demonstrating its superiority. Section 5.5 qualitatively evaluated the
segmentation results of the five models for the ten defect types. Over-
all, the DeepLabV3+ showed satisfactory segmentation results that
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Table 4
Processing time demanded by the framework with and without using the frame reduction algorithm for ten randomly selected CCTV videos.

Video ID Video length Travel distance All frames Frame reduction

Total frames Processing time Total frames Processing time

1 224 s 0-52 m 6701 41 min 22 6 min

2 334 s 0-68 m 10002 61 min 38 9 min

3 336 s 0-66 m 10064 61 min 18 9 min

4 293 s 0-48 m 8775 53 min 30 7 min

5 301 s 0-49 m 9013 55 min 12 8 min

6 258 s 0-46 m 7734 47 min 16 6 min

7 485 s 0-73 m 14539 89 min 26 13 min

8 237 s 0-42 m 7098 43 min 18 6 min

9 375 s 0-42 m 11237 69 min 22 10 min

10 375 s 0-46 m 8244 50 min 12 7 min
Fig. 15. A comparison between the number of defects identified by the proposed
ramework compared to that from the manual reports for five input videos.

esembled the ground truths. However, as displayed in Fig. 12, the
eepLabV3+ achieved poor segmentation performance for some chal-

enging cases, such as overlap between defects or defects with similar
eometric features, such as HL, BK, and PO.

Finally, the experiments in Section 5.6 on ten randomly selected
CTV videos revealed that the proposed frame reduction algorithm
ffectively reduced the processing time of an input CCTV video to 16%
f the original processing time. Even though the frame reduction algo-
ithm effectively saved computation time and power for the proposed
efect detection framework without losing the system performance,
t is only valid if the CCTV robot is stopped every time a defect
ppears, even for minor defects (such as cracks). This is the major
rawback of the proposed algorithm compared to the conventional
ethods, which perform defect detection using all extracted frames.
he proposed algorithm can be applied if the applications focus on
educing processing time with a limited reduction in defect detection
ate and on detecting severe defects that need urgent attention.

. Conclusions and future works

This research presents a novel deep learning-based defect segmenta-
ion framework for sewer CCTV videos. First, a total of 11,124 images
or ten defect classes were manually created from CCTV inspection
ideos. The corresponding annotations were then manually annotated
y professionals. Several variations of the five state-of-the-art defect
egmentation models were trained on the proposed dataset to verify
he defect segmentation performance. Unlike most previous defect seg-
entation research, which could only segment sewer defects, this study
lso determined the severity grade of detected defects. Finally, a frame
reduction algorithm based on recognizing captions on the frames was
introduced to reduce the computational complexity during the testing
process.

The recorded results from various experiments demonstrated that
the DeepLabV3+ model (Resnet-152 backbone) achieved the high-
est segmentation performance with mPA of 97% and mIoU of 0.68
for ten types of defects. Moreover, the mPA value of the model in-
creased significantly from 89% to 97% if the preprocessing module
was applied. The proposed framework also outperformed existing sewer
defect segmentation models, including PipeUNet [16], PSPNet [22],
and DilaSeg-CRF [35]. Finally, the suggested system demonstrated that
it could determine the defect severity effectively based on the PACP
manual and improve the computational efficiency due to the introduced
frame reduction algorithm.

Even though the dataset presented in this study contains more
defect types than previous sewer defect segmentation research, more
defect types, such as lining cracks, water intrusion, and silty debris, can
be supplemented for more accurate inspection. Moreover, the service
life of any pipeline can be determined if additional sensor data are
provided along with the inspection videos, which can greatly lower the
processing time needed to process segmented defects to determine their
severity. Finally, the suggested sewer defect segmentation system can
be further improved in terms of performance and robustness.
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Fig. 16. A sample of an additional defect that was identified by the report generation module that does not appear in the manual report. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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