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H I G H L I G H T S

• A large fruit disease dataset of 6 different diseases containing over 81,000 images.

• An efficient transformer-based fruit disease detection framework.

• Analysis of the disease region using the transformer’s feature discriminability scores.

• The proposed model outperformed previous state-of-the-art object detection models.
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A B S T R A C T

Plant diseases pose a significant threat to fruit production and quality if not detected and managed promptly. 

Precise and efficient recognition of these diseases is critical for ensuring plant health and maximizing fruit pro-

duction. To tackle this issue, a range of image processing and deep learning techniques have been preferred for 

plant disease recognition due to their superior performance. This paper proposes an end-to-end transformer-based 

model that improves both the accuracy and detection rate of fruit diseases. The model is based on a state-of-the-

art transformer model and trained using the Collaborative Hybrid Assignment (Co-DETR) scheme. Moreover, 

several targeted modifications to the original model are conducted to optimize its performance. These modifica-

tions enable the model to detect six types of plant diseases with a mean average precision (mAP) of 0.89 while 

maintaining efficient training times. The proposed model consistently outperforms state-of-the-art detection mod-

els. In addition, the model offers interpretability through the visualization of feature discriminability scores to 

ensure that the prediction process is interpretable and understandable. Finally, the model demonstrates robust 

performance under challenging environmental conditions, such as poor lighting and image blurring, which are 

essential for real-world applications in disease management and precision agriculture.

1. Introduction

According to the Food and Agriculture Organization (FAO), global 

food demand is projected to surge by 70 % by 2050 as the world pop-

ulation surpasses 9.1 billion [1]. Fruits, as critical sources of essential 

nutrients, play a pivotal role in ensuring food security and combating

malnutrition [2]. However, it is increasingly challenging to achieve and 

sustain high fruit yields due to factors such as limited farmland, cli-

mate change, and the devastating impact of pests and diseases [3]. 

Among these threats, fruit diseases, such as mango scab and citrus thrips, 

often cause catastrophic yield losses and economic devastation when left 

undetected.
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Traditional fruit disease detection relied on manual inspection, 

a labor-intensive and error-prone process with delays in identifying 

early-stage symptoms [4]. The lag between symptom appearance and 

detection often results in significant losses. To address these challenges, 

automated detection systems using machine learning (ML) and deep 

learning (DL) have emerged as transformative solutions for scalable, 

accurate, and efficient disease monitoring [5].

While early ML approaches utilized handcrafted features, such as 

color, texture, and shape, with classifiers like support vector machines 

(SVMs) [6] and random forests (RFs) [7], their performance was con-

strained by domain-specific feature engineering and environmental vari-

ability [3]. Recent DL advancements, particularly convolutional neural 

networks (CNNs), have demonstrated superior performance in disease 

classification [8], segmentation [9], and detection [10,11]. However, 

CNN-based models often require manual hyperparameter tuning, such as 

anchors, proposals, and post-processing to reduce redundant predictions 

[12]. 

Transformers were initially developed for natural language process-

ing (NLP). Their self-attention mechanisms [13] enable global context 

modeling, which addresses CNN limitations in capturing long-range 

dependencies [12]. For instance, Longformer [14] introduced sliding 

window attention to process long documents efficiently. Reformer [15] 

reduced computational complexity using locality-sensitive hashing for 

large-scale NLP tasks. Beyond NLP, the adaptability of transformers 

was further enhanced by specialized variants customized to domain-

specific challenges. For example, in finance, transformer variants have 

been trained to model temporal patterns and forecast price movements 

[16,17], while in remote sensing and fault detection, they have enabled 

precise anomaly identification in high-resolution imagery and industrial 

systems [18]. In manufacturing, transformers powered quality inspec-

tion and predictive maintenance [19]. In protein sequence modeling, 

Performer with kernel-based attention was introduced to effectively 

model the scalable protein sequence [20]. However, their application 

to fruit disease detection remains underexplored, with challenges in 

convergence, data scarcity, and subtle symptom recognition in complex 

agricultural environments [21].

To bridge this gap, this study introduces FD-TR, a modified 

transformer-based fruit disease detection model based on Co-DETR 

training scheme [22]. The key contributions of this study are:

• The proposed model was trained on a large-scale fruit disease dataset

of 81,000 high-resolution images.

• Key modules (e.g., loss, optimizer) of Co-DETR were replaced, and

hyperparameters were fine-tuned to address the unique challenges 

of fruit disease detection.

• Introduction of a feature discriminability score visualization method

to enhance model interpretability for real-world deployment.

• The model demonstrated its robustness through systematic evalua-

tion across four benchmark datasets and an additional healthy fruit 

subset.

The outline of the manuscript is as follows. Section 3 provides a com-

prehensive description of the fruit disease dataset used in this study. 

Section 4 discusses in detail each component of the proposed fruit 

disease detection framework based on DINO with a Co-DETR train-

ing scheme. The results of various experiments conducted to evaluate 

the model’s performance are reported in Section 5. Section 6 dis-

cusses the main contributions and experimental results of this study. 

Finally, Section 7 provides conclusions and outlines future research 

directions.

2. Related work

Table 1 provides an overview of recent fruit disease detection stud-

ies. It highlights the diversity of models used, ranging from CNN models 

to hybrid and transformer-based architectures, applied to various fruit 

types. While most models achieved high accuracy on their respective

datasets, the majority were limited by small sample sizes, limited 

disease coverage, and lack of real-world deployment validation. These 

limitations emphasize the need for a more generalized, scalable, and 

interpretable solution.

2.1. Traditional machine learning approaches

Early efforts in fruit disease detection focused on ML models using 

handcrafted features. For instance, SVMs trained on color and texture 

features achieved moderate success in classifying diseases on fruits [6]. 

RFs were employed to distinguish apple fruit diseases based on color and 

texture descriptors [7]. However, these methods struggled with environ-

mental variability and required extensive domain expertise for feature 

design [3].

2.2. Deep learning-based approaches

The developments of CNNs revolutionized fruit disease detection. 

One-stage detectors like You Only Look Once (YOLO) and Single Shot 

MultiBox Detector (SSD), and two-stage frameworks such as Region-

based CNN (R-CNN), were progressively adopted for precise recognition 

of fruit diseases [3]. For example, Sun et al. [11] introduced an inno-

vative method for identifying fruit diseases in natural orchard settings 

using a combination of binocular cameras and DL techniques. They 

implemented a Unimatch stereo-matching algorithm to generate depth 

maps that focused detection on leaves and proposed a lightweight dis-

ease detection model based on YOLOv5-augmented with shuffle-channel 

blocks and attention modules. The experimental results revealed that it 

outperformed the YOLOv5-s architecture with 0.93 mean average preci-

sion (mAP). Syed et al. [25] presented a two-stage CNN for citrus disease 

detection. Firstly, the model employed a region proposal network to 

identify potential diseased areas on citrus leaves. After that, it classified 

these regions into specific disease categories using a classifier. The model 

demonstrated a high detection accuracy of 94.37 % for citrus black 

spot, citrus bacterial canker, and Huanglongbing. In another study, Xie 

et al. [23] addressed real-time detection of common grape leaf diseases 

using a customized Faster R-CNN with Inception-v1, Inception-ResNet0-

v2, and SE-block. The model achieved a mAP of 0.81 at a real-time 

detection speed of 15.01 frames per second (FPS). Although these DL 

models enabled early and accurate disease detection, they still required 

manually fine-tuned hyperparameters like anchors and proposals during 

training and additional post-processing algorithms to reduce duplicate 

predictions [12].

2.3. Transformer-based approaches

Transformers have introduced paradigm shifts in object detection. 

Vision Transformers (ViTs) effectively processed entire images as se-

quences of patches, which enhanced global context modeling and mo-

tivated researchers to extend their use to more complex tasks such as 

object detection [31]. For example, Carion et al.[32] proposed Detection 

Transformer (DETR), an end-to-end object detector that directly pre-

dicted bounding boxes (BB) and classes via learned object queries. DETR 

did not require extensive manual tuning and was proven to handle vary-

ing object sizes and overlapping objects more effectively. Subsequent 

extensions, such as Deformable DETR [33], DN-DETR [34], and DAB-

DETR [35], aimed to improve DETR’s convergence and performance. 

While these extensions showed better detection performance, they still 

performed worse than the CNN counterparts [12]. The recent introduc-

tion of a collaborative hybrid assignments training scheme for DETR 

(Co-DETR) [22] addressed the issue of sparse supervision in DETR 

models by utilizing multiple auxiliary heads with one-to-many label as-

signments to enhance the learning of both the encoder and decoder. 

Co-DETR improved the training efficiency and discriminative feature 

learning of DETR-based detectors without adding any extra computa-

tional cost or parameters during inference. The experimental results
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Table 1 

Summary of recent fruit disease detection studies (2020–2025).

Author(s) & Year Method Dataset Main findings Limitations

Xie et al. (2020) [23] Inception + SE-block Grape leaf images (4449

images) 

0.81 mAP at 15 FPS Computationally intensive

architecture 

You et al. (2022) [24] YOLO + Deep Metric Learning Strawberry dataset (7230

images)

97.8 % overall accuracy Complex architecture; lab-

based dataset

Syed et al. (2022) [25] Two-stage CNN Citrus leaf images (598 images) 94.37 % accuracy Limited generalizability

Huang et al. (2023) [26] EfficientNet-Inception CNN +

U-Net

Citrus dataset (800 images) 95.6 % classification accuracy;

87.7 % severity segmentation

Only 2 citrus diseases; small,

lab-based dataset

Arifin et al. (2024) [27] ResNet50 features + Logistic

Regression 

Citrus dataset (1814 images) 99.69 % accuracy Small, imbalanced dataset; no

lesion localization 

Sun et al. (2024) [11] YOLOv5 + shuffle-channel

blocks 

Natural orchard images (4252

images) 

0.93 mAP Manual hyperparameter tuning

and post-processing needed 

Aksoy et al. (2025) [28] ResNet152V2 (transfer

learning)

Kaggle apple fruit disease (502

images)

92 % classification accuracy Small dataset (4 classes)

Faye et al. (2025) [29] ResNet50 for severity grading SenMangoFruitDDS (862

images) 

97.8 % accuracy Only on mango; limited

background variability 

He et al. (2025) [30] Sparse Attention YOLOv11 Passion fruit dataset (10,000

annotated images)

90 % F1-score Only passion fruit; stem-

focused labels; high 

computational cost

Table 2 

Descriptions of several widely used plant disease datasets. Note: # stands for the number of 

something.

Dataset Year Category # Species # Classes # Images

PlantVillage [37] 2015 Classification 14 38 54,305

PlantDoc [36] 2020 Classification 13 27 2598

Citrus diseases [39] 2024 Classification 1 5 759

Pomegranate fruit diseases [38] 2024 Classification 1 5 5099

Fruit disease dataset [40] 2024 Detection 8 6 81,000

demonstrated a significant performance gain on various DETR vari-

ants. The integration of Co-DETR into DINO-Deformable-DETR achieved 

66.0 % AP on the Common Objects in Context (COCO) test-development 

set.

3. Materials

Table 2 highlights the evolution of benchmark datasets in plant dis-

ease research. Earlier datasets, such as PlantDoc [36] and PlantVillage 

[37], included diseases affecting both fruits and leaves on multiple 

species but did not specifically focus on fruit diseases. In contrast, 

smaller self-collected datasets, such as the Pomegranate Fruit Diseases 

[38] and Citrus Diseases [39], primarily focus on diseases of single fruit 

types and contain fewer than 3000 images, which limits their scalability 

and generalizability.

This research stands out by training the proposed model on a large 

fruit disease identification dataset containing roughly 81,000 images 

that cover six different fruit disease types [40]. Provided by the National 

Information Society Agency of Korea (NIA), 

1 this extensive dataset 

exceeds the scope and size of most existing datasets. The collection 

of data was made possible through the collaboration of Jeju Special 

Self-Governing Province, 

2 with additional support from Flexink 

3 and 

Bgrinfo 

4 for data acquisition, and GDS Consulting 

5 for data refinement 

and processing. The scale and diversity of this dataset significantly 

contribute to the strength and practical relevance of this study.

For details on the data collection process, including camera settings 

and acquisition methods, please refer to [40]. Fig. 1 presents representa-

tive images from each class of the fruit disease dataset on eight different

1 https://www.nia.or.kr/site/nia_kor/main.do
2 https://www.jeju.go.kr/index.htm
3 https://flexink.com/en/home/home-en/
4 http://www.bgrinfo.co.kr/
5 http://gdsconsulting.co.kr/

plant species, including banana, fig, lemon, mango, mandarin, olive, 

passion fruit, and pitaya.

Fruits displaying signs of disease, such as spots, lesions, or other vis-

ible deformities, are visually inspected in both natural environments 

like orchards and controlled settings such as research greenhouses. 

Annotations are made at the lesion or affected region level. Each symp-

tom is evaluated using specific attributes, including texture, spread, 

and severity, to ensure accurate labeling. Annotation guidelines follow 

established diagnostic criteria specific to each disease, as outlined below.

• Anthracnose (Colletotrichum spp.): Anthracnose affects a wide variety

of plants, including pitaya, passion fruit, and olive [41]. Anthracnose 

typically presents small, sunken, dark brown to black lesions on the 

fruit’s skin. These lesions may extend and eventually lead to signif-

icant areas of rot. The disease can cause premature fruit drop, leaf 

loss, and a significant reduction in overall fruit yield.

• Bacterial fruit blotch (Acidovorax citrulli): A serious disease caused by

the bacterium Acidovorax citrulli [42]. The disease typically manifests 

as dark, water-soaked lesions on the fruit’s surface. These lesions 

often start small but can rapidly expand to cover large portions of 

the fruit. As the disease progresses, the affected areas may crack and 

release a sticky, amber-colored bacterial exudate. The lesions can 

combine and lead to large, irregular blotches that severely affect the 

fruit’s appearance and marketability. In severe cases, the entire fruit 

may become soft and rot.

• Broad mite (Polyphagotarsonemus latus): Broad mite is a tiny pest

that can cause significant damage to various plants. The mites can 

infest young lemon fruits [43] and cause russeting or scars on the 

fruit surface. The affected fruits may become deformed and dropped 

prematurely in extreme cases.

• Weevil (Curculionoidea): Weevils [44] are small beetles that can

cause significant damage to a variety of plants, including fig. Some 

weevil species burrow into the fruit and cause internal damage that 

may not be immediately visible from the outside. As a consequence, 

weevil infestation can lead to premature fruit drop, and the affected
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(d3) Thrips

(d5) Broad mite

(d1) Anthracnose 

(d4) Weevil

(d6) Fungal infection

(d2) BFB

Fig. 1. Depiction of the six classes of fruit diseases from the dataset used in this study, with the affected regions highlighted by red BB.

fruits may become contracted. The entry points created by wee-

vils can also serve as gateways for secondary infections by fungi or 

bacteria, which can further degrade the fruit’s quality.

• Thrips (Thysanoptera): Thrips feed by piercing the surface of plant

tissues and sucking out the contents of the cells [45], which leads to 

a range of symptoms that can seriously affect the health and yield of 

the plants. The most common symptom is surface scars, which affect 

the quality of the fruits.

• Fungal infection: Fungal infections can significantly impact the qual-

ity, marketability, and production of fruits such as bananas, lemon, 

mango, and fig [46]. Each type of fruit can be affected by specific 

fungal pathogens, which lead to distinct symptoms and potential eco-

nomic losses. For example, black mildew forms a thin, black layer 

that can cover significant portions of the fruit’s surface, such as 

lemon and mango. Although the fungus does not penetrate the fruit, 

it can lead to an unsightly appearance on the affected fruits. Powdery 

mildew can appear as a white to greyish powdery growth on the skin 

of figs. This fungal layer can lead to a rough fruit’s surface and cause 

the fruit to crack in severe cases.

The annotation process focused on capturing both the visual charac-

teristics of lesions and any related symptoms or traits that could improve 

the disease detection performance of the models. A dedicated team of 15 

experts from MKG Engineering and Construction (MKGENC) was tasked 

with a five-month image annotation assignment. Each person annotated 

approximately 55 images per day to ensure that various disease symp-

toms were labeled precisely. An open-source annotation tool developed 

in Python was used to facilitate the entire annotation process [47]. Fig. 2 

provides an overview of the dataset by showing the number of images 

for each disease class. It includes a total of 81,000 labeled images, which 

were split into 80 % for training, 10 % for validation, and 15 % for test-

ing. Therefore, 64,800 images were used for training, while 8100 images 

were designated for both validation and testing.

4. Methods 

4.1. System overview

Fig. 3 illustrates the primary steps of the fruit disease detection 

framework, referred to as FD-TR. In this framework, “FD” represents 

fruit disease detection, while “TR” refers to the transformer-based 

model. The two core components of the framework are outlined as 

follows.

Fig. 2. A horizontal bar chart revealing the distribution of images per each 

disease class from d1–d6.

(II) Fruit disease 
detection

(I) Data collection

Detected disease

Collected images

Data augmentation

FD-TR model

Model analysis

Annotation

Mango Banana

Fig Mandarin

Lemon Olive

Passion 

fruit

Pitaya

Fig. 3. Description of the primary processes of the proposed fruit disease 

detection framework (FD-TR).

• Data pre-processing: Real-world data often presents significant vari-

ability due to factors such as inconsistent lighting (e.g., shade, 

overexposure, underexposure), blurriness (caused by camera motion 

or low-quality optics), diverse angles (e.g., oblique views, close-

ups), and noise (introduced by sensor imperfections or compression
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Fig. 4. Output images of applying predefined data augmentation techniques on 

the original dataset.

artifacts). Therefore, data augmentation is essential to improve the 

model’s robustness against these real-world challenges and its ability 

to generalize to unseen data [48]. The data augmentation technique 

involves artificially replicating these conditions within the dataset to 

effectively increase its size and diversity.

• Fruit disease detection: While existing object detection models like

Mask-RCNN [49], YOLO [50], and SSD [51] achieve strong perfor-

mance on benchmarks such as COCO [52] and Pascal VOC [53], they 

rely on manual hyperparameter tuning and multi-stage training. To 

address these limitations, we propose FD-TR, a transformer-based 

architecture with efficient end-to-end training. FD-TR focuses on spe-

cific parts of the input image most relevant for identifying diseases. 

Moreover, feature discriminability score analysis provides insights 

into the model’s decision-making process for practical applications 

[13].

4.2. Data augmentation

This section outlines the image augmentation process applied to 

the fruit disease training dataset to improve the model’s robustness 

and generalization by simulating various real-world conditions. These 

augmentation methods were performed on the original training set to 

better represent the variability encountered in real-world agricultural 

settings. The augmentation techniques expanded the original training 

set of 64,800 images fivefold to 324,000 images.

This process involved a series of transformations applied to the orig-

inal images, including random horizontal and vertical flips to replicate 

different orientations of fruits on trees, and rotations at angles of 90 

𓏸, 

180 

𓏸 , and 270 

𓏸 to enhance the model’s invariance to fruit positioning. 

In addition, color jittering, where the brightness, contrast, saturation, 

and hue of input images were randomly adjusted within predefined 

ranges was applied to mimic varying lighting conditions and poten-

tial color distortions caused by natural environments. To increase the 

model’s robustness against the effects of camera noise and environmen-

tal factors, Gaussian noise was introduced to the images. Furthermore, 

random cropping and resizing were performed to expose the model to

Fig. 5. Illustration of the architecture of the Co-DETR approach.

fruits at different scales and viewpoints. Fig. 4 provides a visual repre-

sentation of the sampled augmented images obtained through different 

augmentation techniques.

4.3. Co-DETR framework

Co-DETR introduces a novel collaborative hybrid assignment train-

ing scheme designed to enhance the efficiency and effectiveness of 

DETR-based detectors. This scheme relies on versatile label assignment 

strategies to significantly boost the encoder’s learning capabilities in 

end-to-end detection frameworks [22]. Co-DETR also optimizes the en-

coder’s learning process by training multiple parallel auxiliary heads 

with one-to-many label assignments. In addition, Co-DETR improves the 

overall detection performance by optimizing the attention learning of 

the decoder through customized positive queries derived from the pos-

itive coordinates identified by the auxiliary heads. Fig. 5 illustrates the 

Co-DETR model, which includes three primary modules: a backbone, a 

transformer encoder, and a decoder.

According to the standard DETR protocol, the input image is fed into 

the backbone and encoder to extract latent features. Several predefined 

object queries subsequently interact with the decoder through cross-

attention mechanisms. Co-DETR improves this process by integrating 

a collaborative hybrid assignment learning and a custom positive query 

generation module, which optimizes feature learning in the encoder and 

attention learning in the decoder.

4.3.1. Collaborative hybrid assignments training

To address the insufficient supervision of encoder outputs caused 

by the limited positive queries in the decoder of standard DETR ar-

chitectures, Co-DETR integrates multiple label assignment strategies 

(e.g., Adaptive Training Sample Selection (ATSS), Faster R-CNN) with 

auxiliary supervision heads. These auxiliary heads strengthen encoder 

supervision by refining discriminative learning. Specifically, after pro-

cessing the latent features F , the encoder transforms them into a feature 

pyramid F 1 

,... ,F via aJ   multi-scale adapter, where J denotes the num-

ber of feature maps with  

 

2+downsampling stride of 2 

J . Following the 

ViTDet framework, Co-DETR constructs its feature pyramid using a 

single-scale encoder feature map, which is upsampled using bilinear 

interpolation.

For example, the feature pyramid is built by sequentially apply-

ing upsampling (stride 2 with 3 𓏴 3 convolution) or downsampling 

to the encoder’s single-scale feature. In multi-scale encoders, only the 

coarsest resolution features are downsampled to generate the feature 

pyramid. For each  

  K collaborative heads, the predicted output P̂ isi  se-

quentially propagated through the feature pyramid F1  

,... ,F .J  

 

Within 

the i-th head, module A computes supervised targets for positive andi  

negative samples, P pos
i , Bpos

i , P neg
, using the supervised target set , asi       G  

follows:

P 

{pos}
i , B{pos}

i , P {neg}
i = A i(P̂ i, G) (1)
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Table 3 

Comprehensive explanation of the model fine-tuning process.

Model Auxiliary Loss Optimizer

Deformable DETR N/a Hybrid (L1 + GIoU) AdamW

DINO N/a Hybrid (L1 + GIoU) AdamW

FD-TR (This study) BatchFormerV2 [56] Hybrid (L1 + CIoU) LAMB

where pos and neg represent the spatial coordinates classified as posi-

tive and negative by Ai . The index j corresponds to the feature index 

within the feature pyramid F j 

. Bpos
i denotes the spatial coordinates of

pos neg
the positive samples, while

 

  P andi  P  

i refer to the supervised targets 

associated with these coordinates, including both category labels and BB 

regression offsets.

The encoder loss function can be defined as follows:

L 

enc
i = L i(P̂ 

{pos}
i , P {pos}

i ) + Li(P̂ 

{neg}
i , P {neg}

i ) (2)

For negative samples, the regression loss is excluded from considera-

tion. The objective of optimization for the K auxiliary heads is therefore 

defined as follows:

L 

enc =
K
∑

i=1
L 

enc
i (3)

4.3.2. Customized positive queries generation

In the one-to-one matching paradigm, each ground-truth box is 

paired with a single specific query as its supervised target. However, 

when the number of positive queries is insufficient, this can lead to 

inefficient cross-attention learning within the transformer decoder. To 

address this issue, Co-DETR generates a diverse set of customized pos-

itive queries. Specifically, in the i-th auxiliary head, the customized 

positive query Q i 
 

 

∈ R 

M
 

𓏴C (where M represents the numberi i   of positive

samples) is generated through the following process:

Q i = Linear(PE(B{pos}
i )) + Linear(E({F ∗}, {pos})) (4)

Here, PE(.) represents positional encoding, which extracts the rel-

evant feature from E(.) based on the spatial positive and negative 

coordinates (j, F ).j  

Therefore, there are K + 1 query groups involved in the one-to-one 

matching process, including those with label assignments. The auxiliary 

label assignment shares weights with the standard L decoder layers. 

In the auxiliary branches, all queries are conditioned on the positive 

query, eliminating the need for redundant matching. The loss for the 

l-th decoder layer in the i-th auxiliary head is formalized as follows:

Ldec
i,l = ~L( ~Pi,l , P

{pos}
i ) (5)

where L~dec 

 denotes the loss from the original one-to-one matching 

branch. Finally, the global objective function of Co-DETR is defined as:

L 

global =
L
∑ 

l=1
( ~Ldec

l + 𝜆 1

K
∑

i=1
L 

dec
i,l + 𝜆 2L 

enc ) (6)

Here, 𝜆 1 

and 𝜆2  

are the coefficients that balance the different losses. 

4.4. Model customization

Although Co-DETR can be applied to state-of-the-art transformer ar-

chitectures such as DETR with Improved deNoising Anchor Box (DINO) 

[54] and Deformable DETR [33] for fruit disease detection, the per-

formance of these base models remains sensitive to critical factors

Table 4 

Ablation study comparing the dynamic 𝛼 and 

fixed candidates {0.25, 0.5, 1.0}.

𝛼 Values Mean mAP

Dynamic 0.77

0.25 0.68

0.5 0.75

1 0.7

like label assignment strategies, robustness to complex backgrounds, 

and adaptability under varying environmental conditions. To opti-

mize transformer-based detection for fruit disease detection, several 

targeted adjustments were introduced to the original transformer mod-

els’ architecture and optimization process. These modifications were 

implemented before applying the Co-DETR approach, as outlined in 

Table 4.

The modifications include integrating BatchFormerV2 to enhance 

feature representation through batch-based learning, adopting the LAMB 

optimizer, known for its efficiency in training large-scale models [55], 

and utilizing the Complete Intersection over Union (CIoU) loss function 

instead of the GIoU to improve localization accuracy. These modifica-

tions are expected to improve the baseline models’ performance and 

generalization capabilities in the fruit disease domain (Table 3).

• BatchFormerV2 (BF): Proposed by Hou et al. [56], BF enhances trans-

formers’ capacity to model inter-sample relationships within mini 

batches. Unlike conventional transformer blocks that operate on 

pixel- or patch-level feature maps, BF processes feature structured 

by batch size. In FD-TR framework, BF implements a two-stream 

architecture where both branches share weights and merge into 

a unified transformer decoder. This design ensures efficiency and 

coherence during the training process as all shared blocks are con-

sistently trained with the same weights. Moreover, the original 

transformer blocks retain their full functionality without BF, which 

minimizes any additional computing during inference. The appli-

cation of BatchFormerV2 into various transformer models, such as 

DETR [32] and Deformable-DETR [33], consistently demonstrated a 

performance improvement of over 1.3 mAP on the benchmark MS 

COCO dataset.

• Complete Intersection over Union (CIoU): The Generalized IoU

(GIoU) extends the standard IoU metric by measuring the overlap 

between the predicted and ground truth BB while considering areas 

outside their intersection [57]. CIoU improves GIoU by introducing 

additional terms that account for localization precision and aspect 

ratio alignment. This refinement enables better convergence and im-

proved detection accuracy compared to GIoU loss. Therefore, CIoU 

and L1 loss are utilized to calculate the box regression reconstruction 

loss for FD-TR model in this study.

L CIoU = 1 - IoU + 

d 

2 

( 

p, p 

gt 

)

c 

2
+ 𝛼V (7)

The variable c denotes the diagonal length of the smallest enclos-

ing box that covers both the predicted and ground truth BB, while d 

represents the Euclidean distance between their center points. p and

p 

gt refer to the central points of the predicted and ground truth BB,

respectively. The variable V measures the consistency of the aspect 

ratios, and 𝛼 serves as a trade-off parameter that assigns less weight 

when the overlap is low and more weight when the overlap is high. 

The value of 𝛼 is computed dynamically as:

u = 

4
Π 

2

(

arctan 

w 

gt

h 

gt - arctan 

w
h

) 2
, 𝛼 = u

(1 - IoU) + u 

, (8)
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We compared a dynamically computed 𝛼 with fixed values 𝛼 ∈ 

{0.25, 0.5, 1.0} on the validation set (Table 4). The dynamic 𝛼 showed 

the highest peak validation mAP (0.77), but 𝛼 = 0.5 achieved a com-

parable validation mAP (0.75). To improve reproducibility and make 

cross-experiment comparisons more straightforward, we therefore 

use 𝛼 = 0.5 in all subsequent experiments. Moreover, fixed 𝛼 also 

reduces hyperparameter tuning. If the aim is to maximize single-run 

peak mAP, dynamic 𝛼 remains an appropriate choice.

• LAMB optimizer: While AdamW is commonly considered the de-

fault optimizer for a variety of vision transformer-based models 

[12,58] have identified potential training instability, particularly 

when there is an increased ratio between the L2-norm of weights 

and gradients. To mitigate this issue, this study adopts the Layer-

wise Adaptive Large Batch Optimization (LAMB) optimizer as an 

alternative. LAMB combines the strengths of both the Adam and 

Layer-wise Adaptive Rate Scaling (LARS) optimizers [55]. In par-

ticular, the layer-wise adaptive technique from LAMB normalizes 

each dimension based on the square root of the second mo-

ment, while also applying layer-wise normalization. This method 

has been proved to be effective for distributed training and has 

demonstrated effectiveness in transformer models on large-scale 

datasets.

m t = 𝛽 1m 

(prev )
t + 

( 

1 - 𝛽 1 

) 

g t 

u t = 𝛽 2u 

(prev )
t + 

( 

1 - 𝛽 2
) 

g2t

m t =
m t

1 -
(

𝛽1
) t

u t =
u t

1 -
(

𝛽2
) t

r t =
m t

√

ut + ∈

x 

(i)
t+1 = x 

(i)
t - 𝜂 t

Ø
(

||

||

||

x(i)t
||

||

||

)

||

||

||

r 

(i)
t + 𝜆x 

(i) 

t
||

||

||

(

r 

(i)
t + 𝜆x 

(i)
t

)

(9)

where the hyperparameters 𝛽 1 and 𝛽2 regulate momentum and 

weight decay, respectively. mt  

refers to the first moment estimate 

at time step t, and ut indicates the second moment estimate. The 

 

pa-

rameter 𝜆 manages the degree of layer-wise adaptiveness, while 𝜂 t 

represents the learning rate vector at time t, and Ø denotes the pa-

rameter vector at the same instance. A small constant ∈ is introduced 

to prevent division by zero. In addition, r representst  

 

the update ratio 

used in the LAMB optimizer.

4.5. Feature discriminability scores analysis

After training, feature discriminability maps are generated by ana-

lyzing the multi-scale feature outputs from the DETR-based model [32]. 

They offer valuable insights into how the model distributes its focus 

on different regions of the input image. The feature discriminability 

scores are obtained by extracting multi-scale features from the model’s 

final layers. For each feature map, the L2-norm is computed across the 

channel dimension to quantify the activation strength at each spatial 

location, consistent with established visualization practices for CNN ac-

tivations [59]. The resulting feature discriminability scores are then 

normalized by their maximum values to ensure consistent intensity of 

different scales.

To visualize the feature discriminability scores, each normalized fea-

ture map is resized to match the dimensions of the input image using 

linear interpolation. The resized maps from each scale are then aggre-

gated by combining them together, followed by averaging to produce a 

final feature map that integrates information from all scales. This final 

map highlights the regions that the model considers most relevant dur-

ing the prediction process, with higher values indicating areas of greater

Fig. 6. Visualization of the feature discriminability map prediction process.

focus. The output feature discriminability map is a valuable tool for eval-

uating the model’s interpretability and its ability to correctly identify 

disease-affected regions in the image.

Let feats be a list of multi-scale feature maps, each with dimensions

L 𓏴 B 𓏴 C 𓏴 H 𓏴 W . L is the number of layers or scales, B = 1 is the batch 

size, C is the number of channels, and H 𓏴W are the spatial dimensions. 

Based on the multi-scale feature maps, the feature discriminability map 

attn_map can be mathematically represented as follows:

attn_map = 

1
L 

L
∑ 

i=1
resize 

(

||feat[i]|| 2

max
(

||feat[i]||2 + ∈ 

) ,H img 

,W img

) 

(10)

where ||feat[i]|| 2 represents the L2-norm of the feature map at the i-th 

scale, calculated along the channel
(

 dimension
)

 for generating a feature 

 

map of size H𓏴W . The term max ||feat[i]||2 denotes the maximum value

in the normed feature map, which is used to normalize the map. The 

function resize(., H img,W img) interpolates the  

  

normalized feature map to 

match the dimensions H img 

𓏴 W img 

of the input image. The summation 

aggregates the resized feature discriminability maps from all scales, and 

the division by L averages the aggregated map.

In Fig. 6, the feature discriminability map extraction of an input im-

age highlights how FD-TR effectively focuses on disease-affected regions 

using multi-scale features from the encoder. The map illustrates the 

DETR-based model’s ability to precisely target the main regions show-

ing disease symptoms. This demonstrates the model’s robustness and 

accuracy in detecting various fruit diseases.

4.6. Implementation details

The fruit disease detection framework was developed using the 

MMDetection library v2.25.3, built on PyTorch 1.11.0. To ensure consis-

tent and fair experimentation, all detection models in the study utilized 

ResNet-50 and Swin backbone pre-trained on the ImageNet dataset. The 

training process was conducted on an Nvidia A100 GPU with 40 GB of 

memory.

We integrate our Co-DETR into existing DETR-like pipelines while 

maintaining similar training settings to the baseline models. For K = 2, 

we implement both ATSS and Faster-RCNN as auxiliary heads, whereas 

for K = 1, we use only the ATSS head. In addition, the number of learn-

able object queries is set to 300, and the weight coefficients {𝜆1 , 𝜆 2}  

  

are

set to their default values of {1.0, 2.0}.

For all transformer-based experiments (FD-TR and DETR variants), 

each model is trained for up to 15 epochs with validation process 

performed at the end of each epoch. Early stopping is applied to the 

validation bounding-box loss with a patience of three epochs and a min-

imum improvement threshold Δ = 10 

-3 . If the bounding-box loss fails 

to decrease by at least Δ for three consecutive epochs, training halts 

and the model reverts to the weights from the epoch with the lowest 

validation loss.
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4.7. Evaluation protocols

In this section, we comprehensively evaluate the fruit disease recog-

nition framework using several standard metrics, including mAP, preci-

sion, and recall. These metrics are computed based on the three elements 

of the confusion matrix: true positive (TP), false positive (FP), and false 

negative (FN). Precision reveals the ratio of correctly predicted positive 

instances out of all predicted positives, while recall captures the pro-

portion of true positives among all actual positives in the dataset. The 

formulations of these metrics are as follows:

Precision = TP
TP + FP 

Recall = TP
TP + FN

(11)

To evaluate the overall detection accuracy of multiple disease classes, 

a standard average precision metric was calculated. In particular, we 

adopt AP @[IoU = 0.50 : 0.95], which measures the detection perfor-

mance at IoU thresholds from 0.50 to 0.95. This threshold is used to 

evaluate the model’s ability to localize fruit diseases by calculating the 

area under the precision-recall curve at the specified IoU threshold. The 

AP for each class is determined from this curve, and the mAP is then 

computed as the average of the AP values on all disease types. The mAP 

is expressed as follows:

mAP = 

1
N

N
∑ 

i=1
AP i 

(12)

where N represents the number of disease types, and AP i 

denotes the 

average precision for the i-th disease class. AP i 

is calculated based on 

the precision-recall curve for that disease type.

5. Results 

5.1. Comparison of transformer models

In this experiment, a comprehensive comparison of fruit disease 

detection performance is conducted by applying Co-DETR on various 

DETR-based models, including Deformable DETR [33] and DINO [54]. 

Moreover, two different backbones, Swin Transformer and ResNet-50, 

are employed and compared, resulting in a total of four model variants. 

The models include Co-DETR on the Deformable DETR with the ResNet-

50 backbone (co_deformable_detr_r50), Co-DETR on the Deformable 

DETR with the Swin backbone (co_deformable_detr_swin), Co-DETR on 

the DINO model with the ResNet-50 backbone using 5-scale feature pro-

cessing (co_dino_5scale_r50), and Co-DETR on the DINO model with the 

Swin backbone using 5-scale feature processing (co_dino_5scale_swin). 

The performance comparison is shown in Fig. 7.

Overall, the co_dino_5scale_swin model demonstrates the highest per-

formance with a detection mAP starting at around 0.6 and steadily 

improving to around 0.81 by the 12th epoch. This indicates that the 

Swin backbone combined with 5-scale feature extraction is particu-

larly effective in detecting fruit diseases. The co_dino_5scale_detr model 

also performs well, closely following co_dino_5scale_r50 while main-

taining a high performance at around 0.79 at the 12th epoch. The 

co_deformable_detr_r50 model shows relatively stable performance but 

with lower performance compared to the DINO models. In contrast, 

the co_deformable_detr_swin model exhibits significant fluctuations in 

its performance, particularly between epochs 5 and 7, where it experi-

ences a sharp drop to around 0.25 mAP. However, the model recovers 

rapidly from epoch 8th and reaches a comparable mAP of approxi-

mately 0.72 by the 12th epoch. These fluctuations suggest that while 

the Deformable DETR architecture may be more sensitive to certain 

training conditions, it is capable of eventually reaching a competitive 

performance.

Given that Co-DETR on the DINO model with the Swin back-

bone demonstrated the highest fruit disease detection performance,

Fig. 7. Comparison of fruit disease detection performance using Co-DETR 

applied to two baseline DETR models: Deformable DETR and DINO.

Table 5 

Comparison of FD-TR model performance on original and aug-

mented data.

mAP Precision Recall

Original data 0.76 0.75 0.78

Data augmentation 0.81 0.79 0.82

we selected this configuration as the default model for subsequent ex-

periments (referred to as FD-TR). This extension was chosen because 

it delivered robust and stable detection accuracy during training and 

validation. FD-TR was then used to evaluate the effects of additional 

enhancements, such as data augmentation techniques, hyperparameter 

tuning, and its deployment in real-world environments.

5.2. Preprocessing module analysis

This section examines the impact of data augmentation on the pro-

posed FD-TR model by comparing its results with the one trained on 

raw data. As shown in Table 5, FD-TR trained with augmented images 

outperformed the one trained on raw data. For example, the mAP in-

creased by 0.05 from 0.76 to 0.81, indicating better overall accuracy 

in detection. The data augmentation approach also reduced the false 

positive detection (higher precision) and increased the rate of correctly 

identifying true positives (higher recall).

The observed performance improvement suggests that data augmen-

tation plays a crucial role in boosting FD-TR model’s ability to detect 

fruit diseases with higher detection accuracy. By introducing variations 

in the training data, augmentation not only boosts detection precision 

but also significantly improves the model’s robustness.

5.3. PD-TR performance evaluation

Fig. 8 provides a detailed performance evaluation of FD-TR model, 

which consists of two charts.

• The evaluation mAP performance (a) plots FD-TR’s mAP over 12

epochs of training. The mAP started at approximately 0.625 and 

steadily increased. It peaked at around 0.8 by the 12th epoch. 

This consistent improvement in mAP indicated that the model was 

learning effectively and becoming increasingly better at detecting 

diseases as training progressed. The gradual increase suggested that 

the model generalized well and converged to high performance, 

especially in the later epochs.
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(a) Evaluation mAP performance (b) Precision-Recall curve

Fig. 8. Detailed performance evaluation of FD-TR model using different evaluation metrics.

Table 6 

Evaluation results of the proposed model on different fruit disease classes.

d1 d2 d3 d4 d5 d6 Average

mAP 0.78 0.74 0.88 0.83 0.77 0.86 0.81

Precision 0.76 0.73 0.85 0.8 0.77 0.84 0.79

Recall 0.79 0.77 0.89 0.82 0.79 0.88 0.82

• The precision-recall curve (b) represents the trade-off between pre-

cision and recall for different thresholds. This curve can be used to 

evaluate how well FD-TR performs at different confidence levels. 

Overall, the model accurately detected diseases with minimal false 

positives because the curve showed high precision for most recall 

values. Key metrics like C75, C50, and Loc revealed precise localiza-

tion and detection capabilities, with precision values around 0.816 

to 0.823, suggesting that the model performed well even under chal-

lenging IoU thresholds. The model also excelled in distinguishing 

between similar diseases (Sim) and avoiding background errors (BG), 

with a precision near 1.0 in both cases. The curve’s slight decline 

at very high recall indicates that while the model maintained accu-

racy under most conditions, it introduced minor false positives when 

recall was pushed to its limit. Finally, a good false negative (FN) 

rate showed that the model had a very low rate of missing diseased 

fruits.

Table 6 describes the experimental results of FD-TR framework in de-

tecting six different fruit diseases, including anthracnose (d1), bacterial 

fruit blotch (d2), broad mite (d3), weevil (d4), thrips (d5), and fungal 

infection (d6). In general, FD-TR framework showed consistent perfor-

mance in detecting all disease classes with an average mAP of 0.81, 

precision of 0.79, and recall of 0.82. The model achieved the highest 

performance for detecting d3 and d6 with the mAP scores of 0.88 and 

0.86, respectively. These classes also obtained strong precision (0.85 and 

0.84) and recall (0.89 and 0.88). On the other hand, the detection per-

formance for d2 and d5 was slightly lower, with mAP values of 0.74 

and 0.77. The low detection performance of d2 and d5 could be due to 

several factors: 1) fewer labeled instances in the training data, which 

limited the framework’s ability to extract distinct features for these dis-

eases, and 2) visual similarities between d2 and d5 made it challenging 

for the model to effectively differentiate between these diseases and 

others.

5.4. Analysis of the feature discriminability analysis

Table 7 reports the mean and standard deviation of the normalized 

L 2 

-norm discriminability scores for each disease class over the test set. 

The scores confirm that the model focuses more strongly on classes 

with more distinct lesion features, such as anthracnose, broad mite, and 

fungal infection.

Table 7 

Mean (± std) of feature discriminability scores 

per disease class.

Disease class Mean (± std) score

(d1) Anthracnose 0.86 ± 0.05
(d2) BFB 0.65 ± 0.10
(d3) Thrips 0.72 ± 0.03
(d4) Weevil 0.68 ± 0.08
(d5) Broad mite 0.80 ± 0.01
(d6) Fungal infection 0.83 ± 0.03

Fig. 9 provides a detailed description of the proposed framework for 

effectively detecting six distinct fruit diseases. Each row in the figure 

serves a distinct purpose. Row (a) displays the original images of fruits 

affected by diseases such as anthracnose, BFB, thrips, weevil, broad mite, 

and fungal infection. The second row (b) demonstrates the model’s de-

tection results by highlighting the areas where the model has identified 

disease presence with BB and predicted labels.

Overall, the model correctly predicted and localized the fruit diseases 

precisely. In order to explain the model’s prediction process, the third 

row (c) further shows attention-weight visualizations from FD-TR model. 

The extracted attention map reveals where the model is focusing its at-

tention on the images. Warmer color areas indicate higher focus, which 

is typically around spots showing visible symptoms of the disease. It can 

be concluded by observing the attention maps that the model focused on 

disease regions but also provided visual explanations for its predictions. 

Moreover, the attention analysis also enhanced trust and understanding 

in its diagnostic capabilities.

Fig. 10 demonstrates FD-TR model’s performance on some chal-

lenging fruit disease detection cases, such as lighting variations, image 

blurring, and low contrast. The top row (a) displays the input images, 

while the second row (b) shows the detection results, including the 

predicted BB, disease name and confidence score. The attention map 

visualization in the bottom row (c) indicates how FD-TR model focuses 

on specific regions of the image for its predictions.

FD-TR model demonstrates strong disease prediction performance in 

real-world conditions. This is important for practical deployment in agri-

cultural environments where image quality may vary. For instance, the 

model demonstrates its robustness by accurately detecting anthracnose 

(first column) and black mold (fourth column) with high confidence 

scores of 0.94 and 0.77, respectively. In these cases, the model focuses 

effectively on the infected areas with well-defined and concentrated 

regions in the attention maps.

In contrast, for more challenging cases such as weevil (second col-

umn) and broad mite (third column), the attention maps appear more 

diffuse, with less sharply defined focus areas. Factors such as image blur-

ring and uneven lighting seem to affect the model’s ability to identify 

the diseased regions accurately. This results in a lower confidence score 

for weevil detection (0.48), indicating the model’s difficulty in isolating
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(a)

(b)

(d1) 

Anthracnose

(d2) BFB (d3) Thrips (d4) Weevil (d5) Broad 

mite

(d6) Fungal 

infection

(c)

Fig. 9. The proposed model’s outputs for each fruit disease, including (a) input images, (b) detection results, and (c) feature discriminability visualizations.

Fig. 10. The proposed model’s outputs for challenging cases, including (a) input images, (b) detection results, and (c) feature discriminability visualizations.

Table 8 

Ablation analysis for evaluating the effects of different components on the performance of 

FD-TR model.

Configuration CIoU+L1 loss LAMB optimizer BatchFormerV2 mAP

Baseline – – – 0.812

+ CIoU only ✓ – – 0.847

+ LAMB only – ✓ – 0.818

+ BatchFormerV2 only – – ✓ 0.853

+ CIoU & LAMB ✓ ✓ – 0.834

+ CIoU & BatchFormerV2 ✓ – ✓ 0.882

+ LAMB & BatchFormerV2 – ✓ ✓ 0.838

Full integration ✓ ✓ ✓ 0.894

the specific features of the disease. Nevertheless, FD-TR model manages 

to generate reasonable predictions.

5.5. Analysis of the effectiveness of customized components to the 

performance of FD-TR model

This section reports the effectiveness of important components of 

the proposed fruit disease detection model’s performance. Table 8 

summarizes the ablation study’s results of each component of FD-TR 

model.

The baseline configuration, without any of the proposed compo-

nents, achieved an mAP of 0.812. When added individually, CIoU+L1 

loss improved the mAP to 0.847, which demonstrated its significant

contribution to the model performance. The LAMB optimizer showed 

a marginal improvement to 0.818, while BatchFormerV2 alone boosted 

the mAP to 0.853. Further analysis of pairwise combinations revealed 

additional insights. The combination of LAMB optimizer with CIoU+L1 

loss or BatchFormerV2 yielded lower mAP compared to using CIoU+L1 

loss or BatchFormerV2 alone. However, these configurations achieved 

an average of 13 % faster convergence and reduced training time. 

Meanwhile, the integration of both CIoU+L1 loss with BatchFormer 

V2 led to a substantial increase to 0.882, which suggested a stronger 

interaction between these two components. Finally, the full integra-

tion of all three components achieved the highest performance at 

0.894, which highlighted their effectiveness in enhancing the model’s 

capabilities.
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Table 9 

Model performance evaluation between the proposed model 

and five state-of-the-art DL models on the validation dataset.

Model name mAP Precision Recall

SSD [51] 0.69 0.66 0.70

YOLOv8 [60] 0.8 0.81 0.83

DETR [32] 0.72 0.71 0.73

Deformable DETR [33] 0.74 0.74 0.77

DINO [54] 0.75 0.74 0.76

FD-TR (Ours) 0.89 0.86 0.87

5.6. Comparison with other models

Table 9 presents a performance comparison between the proposed 

FD-TR model and five other state-of-the-art detection models (YOLOv8 

[60], SSD [51], DETR [32], Deformable DETR [33], DINO [54]). When 

evaluated on the validation dataset, FD-TR consistently outperformed 

the others on all metrics. Specifically, FD-TR significantly outperformed 

the next best model by 9 % with an mAP of 0.89. In addition, with high 

precision and recall values, FD-TR demonstrated its ability to accurately 

identify and localize objects. In contrast, SSD exhibited the lowest per-

formance, with an mAP of 0.69, and a precision and recall values of 0.66 

and 0.70, respectively.

Moreover, while other transformer-based models like DETR, 

Deformable DETR, and DINO demonstrated higher performance over 

SSD, they were consistently outperformed by FD-TR. For example, 

Deformable DETR showed an mAP of 0.74, precision of 0.74, and re-

call of 0.77, while DINO achieved slightly better precision and recall 

but a comparable mAP. YOLOv8, well-known for its performance, per-

formed well with an mAP of 0.80 but was outperformed by FD-TR in all 

metrics. The results highlight that FD-TR model provides the most ac-

curate and reliable predictions for fruit disease detection due to several 

enhancements such as the Co-DETR scheme and effective integration of 

other components.

5.7. Comparison on various benchmark datasets

Table 10 describes the performance of FD-TR on four publicly avail-

able datasets compared to the baseline model (Co-DETR). This table 

includes two agricultural datasets (PlantVillage [61] and Pest-D2Det 

[62]) and widely used general benchmarks (COCO [52] and VOC2012 

[63]). The variation in domain complexity, class count, and dataset size 

provides a comprehensive evaluation of the model’s adaptability.

In the agricultural domain, FD-TR demonstrates significant advance-

ments, particularly on PlantVillage, where it achieves an mAP of 0.594, 

an 18.7 % gain over the YOLOv8 baseline (0.407). This improvement 

highlights FD-TR’s effectiveness in handling high-class diversity (38 

classes) and complex disease manifestations. Similarly, on Pest-D2Det, 

FD-TR obtains an mAP of 0.731, a 2.7 % increase over the D2Det base-

line (0.704), which confirms its strength in pest detection tasks with 

fewer classes (10). These results indicate that FD-TR performs well in 

agricultural context, where precise feature learning and optimization 

are critical for real-world applications like crop monitoring.

For general-domain datasets, FD-TR exhibits robust but context-

dependent performance. On VOC2012 (20 classes), it achieves an mAP 

of 0.812, a modest 0.8 % improvement over the baseline CoupleNet 

(0.804). However, on COCO (80 classes), FD-TR records an mAP of

Table 10 

FD-TR performance and gains compared to baseline methods. Note: pp stands for absolute gain in percentage points.

Dataset Domain # Classes # Images Baseline mAP FD-TR mAP pp (%)

PlantVillage Agriculture 38 54,308 0.407 (YOLOv8 [64]) 0.594 18.7

Pest-D2Det Agriculture 10 9472 0.704 (D2Det [65]) 0.731 2.7

COCO General 80 118,287 0.659 (Co-DETR [22]) 0.589 −7

VOC2012 General 20 11,540 0.804 (CoupleNet [66]) 0.812 0.8

0.589, approximately 7.0 % below Co-DETR’s reported 0.659. This 

gap does not undermine FD-TR’s efficiency but rather reflects key 

architectural and training differences. Co-DETR leverages a large ViT-

Large backbone and extensive pre-training on Objects365 (optimized 

for large-scale benchmarks like COCO). In contrast, FD-TR prioritizes 

lightweight efficiency using Swin as backbone, and targets agricul-

tural specialization without targeted pre-training. FD-TR’s modifications 

(BatchFormerV2 for enhanced feature representation, CIoU for im-

proved box learning, and LAMB for training stabilization) emphasize 

domain-specific adaptability over maximizing COCO accuracy. Despite 

the lower score, FD-TR remains competitive with many transformer-

based detectors and aligns with its goal of balancing performance, 

efficiency, and specialization. Overall, these results confirm FD-TR’s 

contributions, particularly in agricultural contexts, while maintaining 

versatility across domains.

5.8. Real-world robustness analysis

To evaluate the model’s ability to distinguish healthy fruits, which 

is a critical requirement for real-world agricultural applications, an in-

dependent test dataset comprising 500 images of healthy fruits was 

collected. These images were curated from a publicly available agricul-

tural image repository and verified by domain experts to confirm the 

absence of disease symptoms. This dataset was excluded from training 

and reserved solely for evaluating the model’s performance in real-world 

scenarios. An image was classified as “healthy” if no disease-related BB 

were predicted. The model correctly identified 431 out of 500 healthy 

images, leading to a false positive rate of 13.8 %. This demonstrates that 

FD-TR can effectively differentiate healthy fruits from unhealthy ones 

in most cases. Fig. 11 highlights three failure modes where natural fruit 

features were mistakenly classified as disease symptoms. In these cases, 

the model misinterpreted natural variations in fruit appearance, such 

as blemishes, color gradients, or developmental traits, as pathological 

indicators:

• Case (A): A healed scar on a citrus fruit (red arrow) was misclassified

as a fungal infection (confidence: 0.47). The model failed to dis-

tinguish the scar’s shallow, textured appearance from active fungal 

lesions.

• Case (B): A young dragon fruit exhibiting natural tip browning (red

arrow) was incorrectly flagged as infected with BFB, despite lacking 

characteristic water-soaked lesions.

• Case (C): A faint reddish patch on a young fig (red arrow) was pre-

dicted as a fungal spot, even though the coloration was uniform and 

confined to healthy epidermal tissue.

These examples revealed that the model’s false positives occurred not 

from complex background clutter or extreme lighting artifacts, but from 

everyday morphological and variations traits of healthy fruits that were 

not included in the training set. Such improvements would enhance the 

model’s robustness to real-world variability and reduce overfitting to 

disease-centric features.

6. Discussion

FD-TR model improves fruit disease detection by combining the Co-

DETR training scheme with the DINO transformer model, multi-scale 

feature extraction, and attention mechanisms. Key model customization,

Applied Soft Computing 186 (2026) 114137 

11 



Y. Li, M. Fayaz, S. Danish et al.

Fig. 11. Samples of false positive prediction by the model for healthy fruit 

images.

including CIoU loss for precise BB, the LAMB optimizer for faster con-

vergence, and BatchFormerV2 for scalable training, enhanced detection 

performance and efficiency for six fruit disease classes. FD-TR’s end-

to-end design and integrated data augmentation improved robustness 

under diverse real-world scenarios, such as lighting and angles.

The experimental results showed that targeted customization im-

proved detection mAP from 0.81 to 0.89. FD-TR also outperformed 

YOLOv8 (0.80) and Deformable DETR (0.74). With precision and recall 

rates of 0.86 and 0.87, respectively, it demonstrated robust gener-

alization across diverse disease symptoms, scales, and environmental 

conditions. These capabilities are crucial for real-world agricultural 

settings, where early and accurate detection is crucial for effective 

intervention and crop protection. Furthermore, its attention-based inter-

pretability via feature discriminability scores and deformable attention 

weights provided transparent insights into decision-making. The evalua-

tion on healthy fruit images, as introduced in Section 5.8, demonstrated 

the model’s potential to operate effectively in real-world settings where 

both diseased and healthy fruits are present. Although, a false positive 

rate of 13 % on healthy samples was promising, the misclassifica-

tions highlighted a limitation in the current training data, which lacked 

explicit healthy examples.

7. Conclusions

This research introduces an enhanced end-to-end transformer-based 

fruit disease recognition model that can be applied to real-life disease 

management systems. The dataset used to train the model consists of 

81,000 images of six different fruit diseases. The proposed FD-TR model 

demonstrates high detection performance on the dataset compared to 

state-of-the-art models such as YOLOv8, DINO, and Deformable DETR. 

FD-TR is based on the DINO transformer model with an improved Co-

DETR training scheme and additional components like CIoU loss, the 

LAMB optimizer, and BatchFormerV2. These improvements contribute 

to the model’s enhanced detection capabilities and faster convergence 

during training. Therefore, FD-TR model not only improves the accu-

racy of predictions but also achieves robust performance in various 

experiments.

Moreover, FD-TR model’s ability to maintain high performances on 

diverse testing scenarios demonstrates its generalization ability and re-

liability. Even in challenging cases, such as images affected by poor 

lighting or blurring, the model provides correct and robust predictions. 

The attention mechanism of the transformer allows the model to focus on 

relevant disease features, which reduces false predictions. In addition, 

the unique multi-scale attention map extracted from the transformer 

offers experts/farmers valuable insights into how the model detects 

and highlights disease-related areas. FD-TR model represents a signifi-

cant advancement in automated disease detection and offers substantial

potential to improve agricultural productivity and disease management 

in modern farming.

While FD-TR model demonstrates strong performance in detecting 

fruit diseases, several limitations persist. One of the main limitations 

is the reliance on a dataset with a limited number of disease classes, 

which fails to capture the full diversity of fruit diseases and environ-

mental conditions. Moreover, the model’s performance could be further 

optimized in challenging environmental conditions, where it occasion-

ally struggles to detect diseases accurately. In the future, the dataset can 

be expanded to include more diverse conditions and disease types to 

improve the model’s generalizability. In addition, techniques like multi-

modal data integration, which analyze data from sensors such as infrared 

cameras or spectroscopy, can be considered for further development and 

improvement. Finally, the model optimization on edge/mobile devices 

is a critical future work to enable real-time, on-field disease detection, 

especially in resource-constrained environments. This would involve ex-

ploring lightweight backbones and model compression techniques to 

reduce computational demands for edge devices.
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