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HIGHLIGHTS

« A large fruit disease dataset of 6 different diseases containing over 81,000 images.

« An efficient transformer-based fruit disease detection framework.

« Analysis of the disease region using the transformer’s feature discriminability scores.
« The proposed model outperformed previous state-of-the-art object detection models.

ARTICLE INFO ABSTRACT

Keywords: Plant diseases pose a significant threat to fruit production and quality if not detected and managed promptly.
Image processing Precise and efficient recognition of these diseases is critical for ensuring plant health and maximizing fruit pro-
Transformer duction. To tackle this issue, a range of image processing and deep learning techniques have been preferred for
Deep learning plant disease recognition due to their superior performance. This paper proposes an end-to-end transformer-based

Precision agriculture

Fruit i model that improves both the accuracy and detection rate of fruit diseases. The model is based on a state-of-the-
ruit disease

art transformer model and trained using the Collaborative Hybrid Assignment (Co-DETR) scheme. Moreover,
several targeted modifications to the original model are conducted to optimize its performance. These modifica-
tions enable the model to detect six types of plant diseases with a mean average precision (mAP) of 0.89 while
maintaining efficient training times. The proposed model consistently outperforms state-of-the-art detection mod-
els. In addition, the model offers interpretability through the visualization of feature discriminability scores to
ensure that the prediction process is interpretable and understandable. Finally, the model demonstrates robust
performance under challenging environmental conditions, such as poor lighting and image blurring, which are
essential for real-world applications in disease management and precision agriculture.

1. Introduction malnutrition [2]. However, it is increasingly challenging to achieve and
sustain high fruit yields due to factors such as limited farmland, cli-
mate change, and the devastating impact of pests and diseases [3].
Among these threats, fruit diseases, such as mango scab and citrus thrips,
often cause catastrophic yield losses and economic devastation when left
undetected.

According to the Food and Agriculture Organization (FAO), global
food demand is projected to surge by 70 % by 2050 as the world pop-
ulation surpasses 9.1 billion [1]. Fruits, as critical sources of essential
nutrients, play a pivotal role in ensuring food security and combating

* Corresponding author.

** Corresponding author at: The Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam.
Email addresses: tnnguyen@sejong.ac.kr (T.N. Nguyen), danglienminh@duytan.edu.vn (L.M. Dang).

https://doi.org/10.1016/j.as0c.2025.114137
Received 7 May 2025; Received in revised form 3 September 2025; Accepted 27 October 2025

Available online 28 October 2025
1568-4946,/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


http://www.sciencedirect.com/science/journal/1568-4946
https://www.elsevier.com/locate/ASOC
https://orcid.org/0009-0008-2201-8128
https://orcid.org/0009-0001-3575-0958
https://orcid.org/0000-0003-4114-9752
mailto:tnnguyen@sejong.ac.kr
mailto:danglienminh@duytan.edu.vn
https://doi.org/10.1016/j.asoc.2025.114137
https://doi.org/10.1016/j.asoc.2025.114137

Y. Li, M. Fayaz, S. Danish et al.

Traditional fruit disease detection relied on manual inspection,
a labor-intensive and error-prone process with delays in identifying
early-stage symptoms [4]. The lag between symptom appearance and
detection often results in significant losses. To address these challenges,
automated detection systems using machine learning (ML) and deep
learning (DL) have emerged as transformative solutions for scalable,
accurate, and efficient disease monitoring [5].

While early ML approaches utilized handcrafted features, such as
color, texture, and shape, with classifiers like support vector machines
(SVMs) [6] and random forests (RFs) [7], their performance was con-
strained by domain-specific feature engineering and environmental vari-
ability [3]. Recent DL advancements, particularly convolutional neural
networks (CNNs), have demonstrated superior performance in disease
classification [8], segmentation [9], and detection [10,11]. However,
CNN-based models often require manual hyperparameter tuning, such as
anchors, proposals, and post-processing to reduce redundant predictions
[12].

Transformers were initially developed for natural language process-
ing (NLP). Their self-attention mechanisms [13] enable global context
modeling, which addresses CNN limitations in capturing long-range
dependencies [12]. For instance, Longformer [14] introduced sliding
window attention to process long documents efficiently. Reformer [15]
reduced computational complexity using locality-sensitive hashing for
large-scale NLP tasks. Beyond NLP, the adaptability of transformers
was further enhanced by specialized variants customized to domain-
specific challenges. For example, in finance, transformer variants have
been trained to model temporal patterns and forecast price movements
[16,17], while in remote sensing and fault detection, they have enabled
precise anomaly identification in high-resolution imagery and industrial
systems [18]. In manufacturing, transformers powered quality inspec-
tion and predictive maintenance [19]. In protein sequence modeling,
Performer with kernel-based attention was introduced to effectively
model the scalable protein sequence [20]. However, their application
to fruit disease detection remains underexplored, with challenges in
convergence, data scarcity, and subtle symptom recognition in complex
agricultural environments [21].

To bridge this gap, this study introduces FD-TR, a modified
transformer-based fruit disease detection model based on Co-DETR
training scheme [22]. The key contributions of this study are:

« The proposed model was trained on a large-scale fruit disease dataset
of 81,000 high-resolution images.

« Key modules (e.g., loss, optimizer) of Co-DETR were replaced, and
hyperparameters were fine-tuned to address the unique challenges
of fruit disease detection.

« Introduction of a feature discriminability score visualization method
to enhance model interpretability for real-world deployment.

« The model demonstrated its robustness through systematic evalua-
tion across four benchmark datasets and an additional healthy fruit
subset.

The outline of the manuscript is as follows. Section 3 provides a com-
prehensive description of the fruit disease dataset used in this study.
Section 4 discusses in detail each component of the proposed fruit
disease detection framework based on DINO with a Co-DETR train-
ing scheme. The results of various experiments conducted to evaluate
the model’s performance are reported in Section 5. Section 6 dis-
cusses the main contributions and experimental results of this study.
Finally, Section 7 provides conclusions and outlines future research
directions.

2. Related work

Table 1 provides an overview of recent fruit disease detection stud-
ies. It highlights the diversity of models used, ranging from CNN models
to hybrid and transformer-based architectures, applied to various fruit
types. While most models achieved high accuracy on their respective
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datasets, the majority were limited by small sample sizes, limited
disease coverage, and lack of real-world deployment validation. These
limitations emphasize the need for a more generalized, scalable, and
interpretable solution.

2.1. Traditional machine learning approaches

Early efforts in fruit disease detection focused on ML models using
handcrafted features. For instance, SVMs trained on color and texture
features achieved moderate success in classifying diseases on fruits [6].
RFs were employed to distinguish apple fruit diseases based on color and
texture descriptors [7]. However, these methods struggled with environ-
mental variability and required extensive domain expertise for feature
design [3].

2.2. Deep learning-based approaches

The developments of CNNs revolutionized fruit disease detection.
One-stage detectors like You Only Look Once (YOLO) and Single Shot
MultiBox Detector (SSD), and two-stage frameworks such as Region-
based CNN (R-CNN), were progressively adopted for precise recognition
of fruit diseases [3]. For example, Sun et al. [11] introduced an inno-
vative method for identifying fruit diseases in natural orchard settings
using a combination of binocular cameras and DL techniques. They
implemented a Unimatch stereo-matching algorithm to generate depth
maps that focused detection on leaves and proposed a lightweight dis-
ease detection model based on YOLOv5-augmented with shuffle-channel
blocks and attention modules. The experimental results revealed that it
outperformed the YOLOVS5-s architecture with 0.93 mean average preci-
sion (mAP). Syed et al. [25] presented a two-stage CNN for citrus disease
detection. Firstly, the model employed a region proposal network to
identify potential diseased areas on citrus leaves. After that, it classified
these regions into specific disease categories using a classifier. The model
demonstrated a high detection accuracy of 94.37 % for citrus black
spot, citrus bacterial canker, and Huanglongbing. In another study, Xie
et al. [23] addressed real-time detection of common grape leaf diseases
using a customized Faster R-CNN with Inception-v1, Inception-ResNetO-
v2, and SE-block. The model achieved a mAP of 0.81 at a real-time
detection speed of 15.01 frames per second (FPS). Although these DL
models enabled early and accurate disease detection, they still required
manually fine-tuned hyperparameters like anchors and proposals during
training and additional post-processing algorithms to reduce duplicate
predictions [12].

2.3. Transformer-based approaches

Transformers have introduced paradigm shifts in object detection.
Vision Transformers (ViTs) effectively processed entire images as se-
quences of patches, which enhanced global context modeling and mo-
tivated researchers to extend their use to more complex tasks such as
object detection [31]. For example, Carion et al.[32] proposed Detection
Transformer (DETR), an end-to-end object detector that directly pre-
dicted bounding boxes (BB) and classes via learned object queries. DETR
did not require extensive manual tuning and was proven to handle vary-
ing object sizes and overlapping objects more effectively. Subsequent
extensions, such as Deformable DETR [33], DN-DETR [34], and DAB-
DETR [35], aimed to improve DETR’s convergence and performance.
While these extensions showed better detection performance, they still
performed worse than the CNN counterparts [12]. The recent introduc-
tion of a collaborative hybrid assignments training scheme for DETR
(Co-DETR) [22] addressed the issue of sparse supervision in DETR
models by utilizing multiple auxiliary heads with one-to-many label as-
signments to enhance the learning of both the encoder and decoder.
Co-DETR improved the training efficiency and discriminative feature
learning of DETR-based detectors without adding any extra computa-
tional cost or parameters during inference. The experimental results
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Table 1

Summary of recent fruit disease detection studies (2020-2025).
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Author(s) & Year

Method

Dataset

Main findings

Limitations

Xie et al. (2020) [23]
You et al. (2022) [24]

Syed et al. (2022) [25]
Huang et al. (2023) [26]

Arifin et al. (2024) [27]
Sun et al. (2024) [11]
Aksoy et al. (2025) [28]
Faye et al. (2025) [29]

He et al. (2025) [30]

Inception + SE-block
YOLO + Deep Metric Learning

Two-stage CNN
EfficientNet-Inception CNN +
U-Net

ResNet50 features + Logistic
Regression

YOLOV5 + shuffle-channel
blocks

ResNet152V2 (transfer
learning)

ResNet50 for severity grading

Sparse Attention YOLOv11

Grape leaf images (4449
images)

Strawberry dataset (7230
images)

Citrus leaf images (598 images)
Citrus dataset (800 images)

Citrus dataset (1814 images)

Natural orchard images (4252
images)

Kaggle apple fruit disease (502
images)

SenMangoFruitDDS (862
images)

Passion fruit dataset (10,000
annotated images)

0.81 mAP at 15 FPS

97.8 % overall accuracy

94.37 % accuracy

95.6 % classification accuracy;
87.7 % severity segmentation
99.69 % accuracy

0.93 mAP

92 % classification accuracy

97.8 % accuracy

90 % F1-score

Computationally intensive
architecture

Complex architecture; lab-
based dataset

Limited generalizability

Only 2 citrus diseases; small,
lab-based dataset

Small, imbalanced dataset; no
lesion localization

Manual hyperparameter tuning
and post-processing needed
Small dataset (4 classes)

Only on mango; limited
background variability
Only passion fruit; stem-
focused labels; high

computational cost

Table 2

Descriptions of several widely used plant disease datasets. Note: # stands for the number of

something.
Dataset Year Category # Species # Classes # Images
PlantVillage [37] 2015 Classification 14 38 54,305
PlantDoc [36] 2020 Classification 13 27 2598
Citrus diseases [39] 2024  Classification 1 5 759
Pomegranate fruit diseases [38] 2024  Classification 1 5 5099
Fruit disease dataset [40] 2024 Detection 8 6 81,000

demonstrated a significant performance gain on various DETR vari-
ants. The integration of Co-DETR into DINO-Deformable-DETR achieved
66.0 % AP on the Common Objects in Context (COCO) test-development
set.

3. Materials

Table 2 highlights the evolution of benchmark datasets in plant dis-
ease research. Earlier datasets, such as PlantDoc [36] and PlantVillage
[37], included diseases affecting both fruits and leaves on multiple
species but did not specifically focus on fruit diseases. In contrast,
smaller self-collected datasets, such as the Pomegranate Fruit Diseases
[38] and Citrus Diseases [39], primarily focus on diseases of single fruit
types and contain fewer than 3000 images, which limits their scalability
and generalizability.

This research stands out by training the proposed model on a large
fruit disease identification dataset containing roughly 81,000 images
that cover six different fruit disease types [40]. Provided by the National
Information Society Agency of Korea (NIA),! this extensive dataset
exceeds the scope and size of most existing datasets. The collection
of data was made possible through the collaboration of Jeju Special
Self-Governing Province,? with additional support from Flexink® and
Bgrinfo* for data acquisition, and GDS Consulting® for data refinement
and processing. The scale and diversity of this dataset significantly
contribute to the strength and practical relevance of this study.

For details on the data collection process, including camera settings
and acquisition methods, please refer to [40]. Fig. 1 presents representa-
tive images from each class of the fruit disease dataset on eight different

1 https://www.nia.or.kr/site/nia_kor/main.do
2 https://www.jeju.go.kr/index.htm

3 https://flexink.com/en/home/home-en/

4 http://www.bgrinfo.co.kr/

5 http://gdsconsulting.co.kr/

plant species, including banana, fig, lemon, mango, mandarin, olive,
passion fruit, and pitaya.

Fruits displaying signs of disease, such as spots, lesions, or other vis-
ible deformities, are visually inspected in both natural environments
like orchards and controlled settings such as research greenhouses.
Annotations are made at the lesion or affected region level. Each symp-
tom is evaluated using specific attributes, including texture, spread,
and severity, to ensure accurate labeling. Annotation guidelines follow
established diagnostic criteria specific to each disease, as outlined below.

« Anthracnose (Colletotrichum spp.): Anthracnose affects a wide variety
of plants, including pitaya, passion fruit, and olive [41]. Anthracnose
typically presents small, sunken, dark brown to black lesions on the
fruit’s skin. These lesions may extend and eventually lead to signif-
icant areas of rot. The disease can cause premature fruit drop, leaf
loss, and a significant reduction in overall fruit yield.

Bacterial fruit blotch (Acidovorax citrulli): A serious disease caused by
the bacterium Acidovorax citrulli [42]. The disease typically manifests
as dark, water-soaked lesions on the fruit’s surface. These lesions
often start small but can rapidly expand to cover large portions of
the fruit. As the disease progresses, the affected areas may crack and
release a sticky, amber-colored bacterial exudate. The lesions can
combine and lead to large, irregular blotches that severely affect the
fruit’s appearance and marketability. In severe cases, the entire fruit
may become soft and rot.

Broad mite (Polyphagotarsonemus latus): Broad mite is a tiny pest
that can cause significant damage to various plants. The mites can
infest young lemon fruits [43] and cause russeting or scars on the
fruit surface. The affected fruits may become deformed and dropped
prematurely in extreme cases.

Weevil (Curculionoidea): Weevils [44] are small beetles that can
cause significant damage to a variety of plants, including fig. Some
weevil species burrow into the fruit and cause internal damage that
may not be immediately visible from the outside. As a consequence,
weevil infestation can lead to premature fruit drop, and the affected
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(d1) Anthracnose
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(d2) BFB

Fig. 1. Depiction of the six classes of fruit diseases from the dataset used in this study, with the affected regions highlighted by red BB.

fruits may become contracted. The entry points created by wee-
vils can also serve as gateways for secondary infections by fungi or
bacteria, which can further degrade the fruit’s quality.

Thrips (Thysanoptera): Thrips feed by piercing the surface of plant
tissues and sucking out the contents of the cells [45], which leads to
a range of symptoms that can seriously affect the health and yield of
the plants. The most common symptom is surface scars, which affect
the quality of the fruits.

Fungal infection: Fungal infections can significantly impact the qual-
ity, marketability, and production of fruits such as bananas, lemon,
mango, and fig [46]. Each type of fruit can be affected by specific
fungal pathogens, which lead to distinct symptoms and potential eco-
nomic losses. For example, black mildew forms a thin, black layer
that can cover significant portions of the fruit’s surface, such as
lemon and mango. Although the fungus does not penetrate the fruit,
it can lead to an unsightly appearance on the affected fruits. Powdery
mildew can appear as a white to greyish powdery growth on the skin
of figs. This fungal layer can lead to a rough fruit’s surface and cause
the fruit to crack in severe cases.

The annotation process focused on capturing both the visual charac-
teristics of lesions and any related symptoms or traits that could improve
the disease detection performance of the models. A dedicated team of 15
experts from MKG Engineering and Construction (MKGENC) was tasked
with a five-month image annotation assignment. Each person annotated
approximately 55 images per day to ensure that various disease symp-
toms were labeled precisely. An open-source annotation tool developed
in Python was used to facilitate the entire annotation process [47]. Fig. 2
provides an overview of the dataset by showing the number of images
for each disease class. It includes a total of 81,000 labeled images, which
were split into 80 % for training, 10 % for validation, and 15 % for test-
ing. Therefore, 64,800 images were used for training, while 8100 images
were designated for both validation and testing.

4. Methods
4.1. System overview

Fig. 3 illustrates the primary steps of the fruit disease detection
framework, referred to as FD-TR. In this framework, “FD” represents
fruit disease detection, while “TR” refers to the transformer-based
model. The two core components of the framework are outlined as
follows.

HE Training
Validation
14400 mmm Testing

dé 1800

ds

Classes

d3

d2

dl

I T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Images

Fig. 2. A horizontal bar chart revealing the distribution of images per each
disease class from d1-d6.

= A (I) Data collection
T - e e

(IT) Fruit disease
detection

=R

Fig. 3. Description of the primary processes of the proposed fruit disease
detection framework (FD-TR).

« Data pre-processing: Real-world data often presents significant vari-
ability due to factors such as inconsistent lighting (e.g., shade,
overexposure, underexposure), blurriness (caused by camera motion
or low-quality optics), diverse angles (e.g., oblique views, close-
ups), and noise (introduced by sensor imperfections or compression
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Data
augmentation|
Input image

Fig. 4. Output images of applying predefined data augmentation techniques on
the original dataset.

artifacts). Therefore, data augmentation is essential to improve the
model’s robustness against these real-world challenges and its ability
to generalize to unseen data [48]. The data augmentation technique
involves artificially replicating these conditions within the dataset to
effectively increase its size and diversity.

Fruit disease detection: While existing object detection models like
Mask-RCNN [49], YOLO [50], and SSD [51] achieve strong perfor-
mance on benchmarks such as COCO [52] and Pascal VOC [53], they
rely on manual hyperparameter tuning and multi-stage training. To
address these limitations, we propose FD-TR, a transformer-based
architecture with efficient end-to-end training. FD-TR focuses on spe-
cific parts of the input image most relevant for identifying diseases.
Moreover, feature discriminability score analysis provides insights
into the model’s decision-making process for practical applications
[13].

4.2. Data augmentation

This section outlines the image augmentation process applied to
the fruit disease training dataset to improve the model’s robustness
and generalization by simulating various real-world conditions. These
augmentation methods were performed on the original training set to
better represent the variability encountered in real-world agricultural
settings. The augmentation techniques expanded the original training
set of 64,800 images fivefold to 324,000 images.

This process involved a series of transformations applied to the orig-
inal images, including random horizontal and vertical flips to replicate
different orientations of fruits on trees, and rotations at angles of 90°,
180°, and 270° to enhance the model’s invariance to fruit positioning.
In addition, color jittering, where the brightness, contrast, saturation,
and hue of input images were randomly adjusted within predefined
ranges was applied to mimic varying lighting conditions and poten-
tial color distortions caused by natural environments. To increase the
model’s robustness against the effects of camera noise and environmen-
tal factors, Gaussian noise was introduced to the images. Furthermore,
random cropping and resizing were performed to expose the model to

Transformer
decoder

r
'l
1 H
~ i Il S
- 1 @«
T '.l S I
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s N = -
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fruits at different scales and viewpoints. Fig. 4 provides a visual repre-
sentation of the sampled augmented images obtained through different
augmentation techniques.

4.3. Co-DETR framework

Co-DETR introduces a novel collaborative hybrid assignment train-
ing scheme designed to enhance the efficiency and effectiveness of
DETR-based detectors. This scheme relies on versatile label assignment
strategies to significantly boost the encoder’s learning capabilities in
end-to-end detection frameworks [22]. Co-DETR also optimizes the en-
coder’s learning process by training multiple parallel auxiliary heads
with one-to-many label assignments. In addition, Co-DETR improves the
overall detection performance by optimizing the attention learning of
the decoder through customized positive queries derived from the pos-
itive coordinates identified by the auxiliary heads. Fig. 5 illustrates the
Co-DETR model, which includes three primary modules: a backbone, a
transformer encoder, and a decoder.

According to the standard DETR protocol, the input image is fed into
the backbone and encoder to extract latent features. Several predefined
object queries subsequently interact with the decoder through cross-
attention mechanisms. Co-DETR improves this process by integrating
a collaborative hybrid assignment learning and a custom positive query
generation module, which optimizes feature learning in the encoder and
attention learning in the decoder.

4.3.1. Collaborative hybrid assignments training

To address the insufficient supervision of encoder outputs caused
by the limited positive queries in the decoder of standard DETR ar-
chitectures, Co-DETR integrates multiple label assignment strategies
(e.g., Adaptive Training Sample Selection (ATSS), Faster R-CNN) with
auxiliary supervision heads. These auxiliary heads strengthen encoder
supervision by refining discriminative learning. Specifically, after pro-
cessing the latent features F, the encoder transforms them into a feature
pyramid 7, ..., F; via a multi-scale adapter, where J denotes the num-
ber of feature maps with downsampling stride of 2>*’. Following the
ViTDet framework, Co-DETR constructs its feature pyramid using a
single-scale encoder feature map, which is upsampled using bilinear
interpolation.

For example, the feature pyramid is built by sequentially apply-
ing upsampling (stride 2 with 3 x 3 convolution) or downsampling
to the encoder’s single-scale feature. In multi-scale encoders, only the
coarsest resolution features are downsampled to generate the feature
pyramid. For each K collaborative heads, the predicted output P, is se-
quentially propagated through the feature pyramid 7, ..., F,. Within
the i-th head, module A; computes supervised targets for positive and
negative samples, PP, BP*, P'*%, using the supervised target set G, as
follows:

P.[POS), Bi(POS], Pj["ég) — Ai(Pi’ G) (l)

i

Transformer
decoder decoder
Training only
Ard L L L
U=l U—=d
3 i

Auxiliary
head K

Training only

Fig. 5. Illustration of the architecture of the Co-DETR approach.
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Table 3

Comprehensive explanation of the model fine-tuning process.
Model Auxiliary Loss Optimizer
Deformable DETR N/a Hybrid (L1 + GIoU) AdamW
DINO N/a Hybrid (L1 + GlIoU) AdamW

FD-TR (This study) BatchFormerV2 [56] Hybrid (L1 + CIoU) LAMB

where pos and neg represent the spatial coordinates classified as posi-
tive and negative by A;. The index j corresponds to the feature index
within the feature pyramid F;. B/ denotes the spatial coordinates of
the positive samples, while P’ and P/® refer to the supervised targets
associated with these coordinates, including both category labels and BB
regression offsets.

The encoder loss function can be defined as follows:

Cfnc - Ei(i)j(pm)’Pj(pOS))J’_ Ei(ﬁi("eg)’g(neg)) (2)

For negative samples, the regression loss is excluded from considera-
tion. The objective of optimization for the K auxiliary heads is therefore
defined as follows:

K
Lene — Z E?nc 3)
i=1

4.3.2. Customized positive queries generation

In the one-to-one matching paradigm, each ground-truth box is
paired with a single specific query as its supervised target. However,
when the number of positive queries is insufficient, this can lead to
inefficient cross-attention learning within the transformer decoder. To
address this issue, Co-DETR generates a diverse set of customized pos-
itive queries. Specifically, in the i-th auxiliary head, the customized
positive query Q; € RMiXC (where M, represents the number of positive
samples) is generated through the following process:

0, = Linear(PE(B'*™")) + Linear(E({F, }, {pos})) 4

Here, PE(-) represents positional encoding, which extracts the rel-
evant feature from [E(-) based on the spatial positive and negative
coordinates (j, F)).

Therefore, there are K + 1 query groups involved in the one-to-one
matching process, including those with label assignments. The auxiliary
label assignment shares weights with the standard L decoder layers.
In the auxiliary branches, all queries are conditioned on the positive
query, eliminating the need for redundant matching. The loss for the
I-th decoder layer in the i-th auxiliary head is formalized as follows:

£l = (P, PIP) ®)

where £ denotes the loss from the original one-to-one matching

branch. Finally, the global objective function of Co-DETR is defined as:
L K

global _ Z([:;iec +4 Z[/?.el:c + ﬂzﬁem) (6)
=1 i=1

Here, 4, and 4, are the coefficients that balance the different losses.

4.4. Model customization

Although Co-DETR can be applied to state-of-the-art transformer ar-
chitectures such as DETR with Improved deNoising Anchor Box (DINO)
[54] and Deformable DETR [33] for fruit disease detection, the per-
formance of these base models remains sensitive to critical factors
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Table 4
Ablation study comparing the dynamic a« and
fixed candidates {0.25,0.5,1.0}.

a Values Mean mAP
Dynamic 0.77

0.25 0.68

0.5 0.75

1 0.7

like label assignment strategies, robustness to complex backgrounds,
and adaptability under varying environmental conditions. To opti-
mize transformer-based detection for fruit disease detection, several
targeted adjustments were introduced to the original transformer mod-
els’ architecture and optimization process. These modifications were
implemented before applying the Co-DETR approach, as outlined in
Table 4.

The modifications include integrating BatchFormerV2 to enhance
feature representation through batch-based learning, adopting the LAMB
optimizer, known for its efficiency in training large-scale models [55],
and utilizing the Complete Intersection over Union (CIoU) loss function
instead of the GIoU to improve localization accuracy. These modifica-
tions are expected to improve the baseline models’ performance and
generalization capabilities in the fruit disease domain (Table 3).

« BatchFormerV2 (BF): Proposed by Hou et al. [56], BF enhances trans-
formers’ capacity to model inter-sample relationships within mini
batches. Unlike conventional transformer blocks that operate on
pixel- or patch-level feature maps, BF processes feature structured
by batch size. In FD-TR framework, BF implements a two-stream
architecture where both branches share weights and merge into
a unified transformer decoder. This design ensures efficiency and
coherence during the training process as all shared blocks are con-
sistently trained with the same weights. Moreover, the original
transformer blocks retain their full functionality without BF, which
minimizes any additional computing during inference. The appli-
cation of BatchFormerV2 into various transformer models, such as
DETR [32] and Deformable-DETR [33], consistently demonstrated a
performance improvement of over 1.3 mAP on the benchmark MS
COCO dataset.

Complete Intersection over Union (CIoU): The Generalized IoU
(GIoU) extends the standard IoU metric by measuring the overlap
between the predicted and ground truth BB while considering areas
outside their intersection [57]. CloU improves GIoU by introducing
additional terms that account for localization precision and aspect
ratio alignment. This refinement enables better convergence and im-
proved detection accuracy compared to GIoU loss. Therefore, CIoU
and L1 loss are utilized to calculate the box regression reconstruction
loss for FD-TR model in this study.

2 gt

£C10U=1—10U+%+‘1V 7)

The variable ¢ denotes the diagonal length of the smallest enclos-
ing box that covers both the predicted and ground truth BB, while d
represents the Euclidean distance between their center points. p and
p8' refer to the central points of the predicted and ground truth BB,
respectively. The variable IV measures the consistency of the aspect
ratios, and « serves as a trade-off parameter that assigns less weight
when the overlap is low and more weight when the overlap is high.
The value of « is computed dynamically as:

_ 4 " w8’ tan 2 z _ v @)
U—; arcanﬁ—arcanﬁ N a—m,
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We compared a dynamically computed « with fixed values a €

{0.25,0.5, 1.0} on the validation set (Table 4). The dynamic « showed
the highest peak validation mAP (0.77), but « = 0.5 achieved a com-
parable validation mAP (0.75). To improve reproducibility and make
cross-experiment comparisons more straightforward, we therefore
use @ = 0.5 in all subsequent experiments. Moreover, fixed a also
reduces hyperparameter tuning. If the aim is to maximize single-run
peak mAP, dynamic « remains an appropriate choice.
LAMB optimizer: While AdamW is commonly considered the de-
fault optimizer for a variety of vision transformer-based models
[12,58] have identified potential training instability, particularly
when there is an increased ratio between the L2-norm of weights
and gradients. To mitigate this issue, this study adopts the Layer-
wise Adaptive Large Batch Optimization (LAMB) optimizer as an
alternative. LAMB combines the strengths of both the Adam and
Layer-wise Adaptive Rate Scaling (LARS) optimizers [55]. In par-
ticular, the layer-wise adaptive technique from LAMB normalizes
each dimension based on the square root of the second mo-
ment, while also applying layer-wise normalization. This method
has been proved to be effective for distributed training and has
demonstrated effectiveness in transformer models on large-scale
datasets.

my =ﬁ1m§prev) +(1-5) 8
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m
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where the hyperparameters g, and p, regulate momentum and
weight decay, respectively. m, refers to the first moment estimate
at time step ¢, and v, indicates the second moment estimate. The pa-
rameter 4 manages the degree of layer-wise adaptiveness, while #,
represents the learning rate vector at time 7, and ¢ denotes the pa-
rameter vector at the same instance. A small constant ¢ is introduced
to prevent division by zero. In addition, r, represents the update ratio
used in the LAMB optimizer.

4.5. Feature discriminability scores analysis

After training, feature discriminability maps are generated by ana-
lyzing the multi-scale feature outputs from the DETR-based model [32].
They offer valuable insights into how the model distributes its focus
on different regions of the input image. The feature discriminability
scores are obtained by extracting multi-scale features from the model’s
final layers. For each feature map, the L2-norm is computed across the
channel dimension to quantify the activation strength at each spatial
location, consistent with established visualization practices for CNN ac-
tivations [59]. The resulting feature discriminability scores are then
normalized by their maximum values to ensure consistent intensity of
different scales.

To visualize the feature discriminability scores, each normalized fea-
ture map is resized to match the dimensions of the input image using
linear interpolation. The resized maps from each scale are then aggre-
gated by combining them together, followed by averaging to produce a
final feature map that integrates information from all scales. This final
map highlights the regions that the model considers most relevant dur-
ing the prediction process, with higher values indicating areas of greater
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Fig. 6. Visualization of the feature discriminability map prediction process.

focus. The output feature discriminability map is a valuable tool for eval-
uating the model’s interpretability and its ability to correctly identify
disease-affected regions in the image.

Let feats be a list of multi-scale feature maps, each with dimensions
LxBxXCxHxW. L is the number of layers or scales, B = 1 is the batch
size, C is the number of channels, and H x W are the spatial dimensions.
Based on the multi-scale feature maps, the feature discriminability map
attn_map can be mathematically represented as follows:

L )
attn_map = 1 Z resize w, Hinngs Wimg (10)
L max (||feat[i]]|; + )

i=1

where ||feat[i]||, represents the L2-norm of the feature map at the i-th
scale, calculated along the channel dimension for generating a feature
map of size HxW . The term max (||feat[i] ||2) denotes the maximum value
in the normed feature map, which is used to normalize the map. The
function resize(-, Hy,y, Win,) interpolates the normalized feature map to
match the dimensions H;,, X Wiy, of the input image. The summation
aggregates the resized feature discriminability maps from all scales, and
the division by L averages the aggregated map.

In Fig. 6, the feature discriminability map extraction of an input im-
age highlights how FD-TR effectively focuses on disease-affected regions
using multi-scale features from the encoder. The map illustrates the
DETR-based model’s ability to precisely target the main regions show-
ing disease symptoms. This demonstrates the model’s robustness and
accuracy in detecting various fruit diseases.

4.6. Implementation details

The fruit disease detection framework was developed using the
MMDetection library v2.25.3, built on PyTorch 1.11.0. To ensure consis-
tent and fair experimentation, all detection models in the study utilized
ResNet-50 and Swin backbone pre-trained on the ImageNet dataset. The
training process was conducted on an Nvidia A100 GPU with 40 GB of
memory.

We integrate our Co-DETR into existing DETR-like pipelines while
maintaining similar training settings to the baseline models. For K = 2,
we implement both ATSS and Faster-RCNN as auxiliary heads, whereas
for K = 1, we use only the ATSS head. In addition, the number of learn-
able object queries is set to 300, and the weight coefficients {4,, 4,} are
set to their default values of {1.0, 2.0}.

For all transformer-based experiments (FD-TR and DETR variants),
each model is trained for up to 15 epochs with validation process
performed at the end of each epoch. Early stopping is applied to the
validation bounding-box loss with a patience of three epochs and a min-
imum improvement threshold A = 1073, If the bounding-box loss fails
to decrease by at least A for three consecutive epochs, training halts
and the model reverts to the weights from the epoch with the lowest
validation loss.
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4.7. Evaluation protocols

In this section, we comprehensively evaluate the fruit disease recog-
nition framework using several standard metrics, including mAP, preci-
sion, and recall. These metrics are computed based on the three elements
of the confusion matrix: true positive (TP), false positive (FP), and false
negative (FN). Precision reveals the ratio of correctly predicted positive
instances out of all predicted positives, while recall captures the pro-
portion of true positives among all actual positives in the dataset. The
formulations of these metrics are as follows:

.. TP
Precision = TP—-I—FP
TP an
Recall = ———
TP + FN

To evaluate the overall detection accuracy of multiple disease classes,
a standard average precision metric was calculated. In particular, we
adopt AP@[IoU = 0.50 : 0.95], which measures the detection perfor-
mance at IoU thresholds from 0.50 to 0.95. This threshold is used to
evaluate the model’s ability to localize fruit diseases by calculating the
area under the precision-recall curve at the specified IoU threshold. The
AP for each class is determined from this curve, and the mAP is then
computed as the average of the AP values on all disease types. The mAP
is expressed as follows:

N
1
AP = — AP; 12

where N represents the number of disease types, and AP, denotes the
average precision for the i-th disease class. AP, is calculated based on
the precision-recall curve for that disease type.

5. Results
5.1. Comparison of transformer models

In this experiment, a comprehensive comparison of fruit disease
detection performance is conducted by applying Co-DETR on various
DETR-based models, including Deformable DETR [33] and DINO [54].
Moreover, two different backbones, Swin Transformer and ResNet-50,
are employed and compared, resulting in a total of four model variants.
The models include Co-DETR on the Deformable DETR with the ResNet-
50 backbone (co_deformable_detr r50), Co-DETR on the Deformable
DETR with the Swin backbone (co_deformable_detr_swin), Co-DETR on
the DINO model with the ResNet-50 backbone using 5-scale feature pro-
cessing (co_dino_5scale_r50), and Co-DETR on the DINO model with the
Swin backbone using 5-scale feature processing (co_dino_5scale_swin).
The performance comparison is shown in Fig. 7.

Overall, the co_dino_5scale_swin model demonstrates the highest per-
formance with a detection mAP starting at around 0.6 and steadily
improving to around 0.81 by the 12th epoch. This indicates that the
Swin backbone combined with 5-scale feature extraction is particu-
larly effective in detecting fruit diseases. The co_dino_5scale_detr model
also performs well, closely following co_dino_5scale_r50 while main-
taining a high performance at around 0.79 at the 12th epoch. The
co_deformable_detr_ r50 model shows relatively stable performance but
with lower performance compared to the DINO models. In contrast,
the co_deformable_detr_swin model exhibits significant fluctuations in
its performance, particularly between epochs 5 and 7, where it experi-
ences a sharp drop to around 0.25 mAP. However, the model recovers
rapidly from epoch 8th and reaches a comparable mAP of approxi-
mately 0.72 by the 12th epoch. These fluctuations suggest that while
the Deformable DETR architecture may be more sensitive to certain
training conditions, it is capable of eventually reaching a competitive
performance.

Given that Co-DETR on the DINO model with the Swin back-
bone demonstrated the highest fruit disease detection performance,
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Fig. 7. Comparison of fruit disease detection performance using Co-DETR
applied to two baseline DETR models: Deformable DETR and DINO.

Table 5
Comparison of FD-TR model performance on original and aug-
mented data.

mAP Precision Recall
Original data 0.76 0.75 0.78
Data augmentation 0.81 0.79 0.82

we selected this configuration as the default model for subsequent ex-
periments (referred to as FD-TR). This extension was chosen because
it delivered robust and stable detection accuracy during training and
validation. FD-TR was then used to evaluate the effects of additional
enhancements, such as data augmentation techniques, hyperparameter
tuning, and its deployment in real-world environments.

5.2. Preprocessing module analysis

This section examines the impact of data augmentation on the pro-
posed FD-TR model by comparing its results with the one trained on
raw data. As shown in Table 5, FD-TR trained with augmented images
outperformed the one trained on raw data. For example, the mAP in-
creased by 0.05 from 0.76 to 0.81, indicating better overall accuracy
in detection. The data augmentation approach also reduced the false
positive detection (higher precision) and increased the rate of correctly
identifying true positives (higher recall).

The observed performance improvement suggests that data augmen-
tation plays a crucial role in boosting FD-TR model’s ability to detect
fruit diseases with higher detection accuracy. By introducing variations
in the training data, augmentation not only boosts detection precision
but also significantly improves the model’s robustness.

5.3. PD-TR performance evaluation

Fig. 8 provides a detailed performance evaluation of FD-TR model,
which consists of two charts.

« The evaluation mAP performance (a) plots FD-TR’s mAP over 12
epochs of training. The mAP started at approximately 0.625 and
steadily increased. It peaked at around 0.8 by the 12th epoch.
This consistent improvement in mAP indicated that the model was
learning effectively and becoming increasingly better at detecting
diseases as training progressed. The gradual increase suggested that
the model generalized well and converged to high performance,
especially in the later epochs.
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Fig. 8. Detailed performance evaluation of FD-TR model using different evaluation metrics.

Table 6
Evaluation results of the proposed model on different fruit disease classes.
d1 d2 d3 d4 d5 dé Average
mAP 0.78 0.74 0.88 0.83 0.77 0.86 0.81
Precision 0.76 0.73 0.85 0.8 0.77 0.84 0.79
Recall 0.79 0.77 0.89 0.82 0.79 0.88 0.82

« The precision-recall curve (b) represents the trade-off between pre-
cision and recall for different thresholds. This curve can be used to
evaluate how well FD-TR performs at different confidence levels.
Overall, the model accurately detected diseases with minimal false
positives because the curve showed high precision for most recall
values. Key metrics like C75, C50, and Loc revealed precise localiza-
tion and detection capabilities, with precision values around 0.816
to 0.823, suggesting that the model performed well even under chal-
lenging IoU thresholds. The model also excelled in distinguishing
between similar diseases (Sim) and avoiding background errors (BG),
with a precision near 1.0 in both cases. The curve’s slight decline
at very high recall indicates that while the model maintained accu-
racy under most conditions, it introduced minor false positives when
recall was pushed to its limit. Finally, a good false negative (FN)
rate showed that the model had a very low rate of missing diseased
fruits.

Table 6 describes the experimental results of FD-TR framework in de-
tecting six different fruit diseases, including anthracnose (d1), bacterial
fruit blotch (d2), broad mite (d3), weevil (d4), thrips (d5), and fungal
infection (d6). In general, FD-TR framework showed consistent perfor-
mance in detecting all disease classes with an average mAP of 0.81,
precision of 0.79, and recall of 0.82. The model achieved the highest
performance for detecting d3 and d6 with the mAP scores of 0.88 and
0.86, respectively. These classes also obtained strong precision (0.85 and
0.84) and recall (0.89 and 0.88). On the other hand, the detection per-
formance for d2 and d5 was slightly lower, with mAP values of 0.74
and 0.77. The low detection performance of d2 and d5 could be due to
several factors: 1) fewer labeled instances in the training data, which
limited the framework’s ability to extract distinct features for these dis-
eases, and 2) visual similarities between d2 and d5 made it challenging
for the model to effectively differentiate between these diseases and
others.

5.4. Analysis of the feature discriminability analysis

Table 7 reports the mean and standard deviation of the normalized
L,-norm discriminability scores for each disease class over the test set.
The scores confirm that the model focuses more strongly on classes
with more distinct lesion features, such as anthracnose, broad mite, and
fungal infection.

Table 7
Mean (=+ std) of feature discriminability scores
per disease class.

Disease class Mean (« std) score

(d1) Anthracnose 0.86 +0.05
(d2) BFB 0.65 +0.10
(d3) Thrips 0.72 +£0.03
(d4) Weevil 0.68 + 0.08
(d5) Broad mite 0.80 +0.01
(d6) Fungal infection 0.83 +£0.03

Fig. 9 provides a detailed description of the proposed framework for
effectively detecting six distinct fruit diseases. Each row in the figure
serves a distinct purpose. Row (a) displays the original images of fruits
affected by diseases such as anthracnose, BFB, thrips, weevil, broad mite,
and fungal infection. The second row (b) demonstrates the model’s de-
tection results by highlighting the areas where the model has identified
disease presence with BB and predicted labels.

Overall, the model correctly predicted and localized the fruit diseases
precisely. In order to explain the model’s prediction process, the third
row (c) further shows attention-weight visualizations from FD-TR model.
The extracted attention map reveals where the model is focusing its at-
tention on the images. Warmer color areas indicate higher focus, which
is typically around spots showing visible symptoms of the disease. It can
be concluded by observing the attention maps that the model focused on
disease regions but also provided visual explanations for its predictions.
Moreover, the attention analysis also enhanced trust and understanding
in its diagnostic capabilities.

Fig. 10 demonstrates FD-TR model’s performance on some chal-
lenging fruit disease detection cases, such as lighting variations, image
blurring, and low contrast. The top row (a) displays the input images,
while the second row (b) shows the detection results, including the
predicted BB, disease name and confidence score. The attention map
visualization in the bottom row (c¢) indicates how FD-TR model focuses
on specific regions of the image for its predictions.

FD-TR model demonstrates strong disease prediction performance in
real-world conditions. This is important for practical deployment in agri-
cultural environments where image quality may vary. For instance, the
model demonstrates its robustness by accurately detecting anthracnose
(first column) and black mold (fourth column) with high confidence
scores of 0.94 and 0.77, respectively. In these cases, the model focuses
effectively on the infected areas with well-defined and concentrated
regions in the attention maps.

In contrast, for more challenging cases such as weevil (second col-
umn) and broad mite (third column), the attention maps appear more
diffuse, with less sharply defined focus areas. Factors such as image blur-
ring and uneven lighting seem to affect the model’s ability to identify
the diseased regions accurately. This results in a lower confidence score
for weevil detection (0.48), indicating the model’s difficulty in isolating
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Fig. 9. The proposed model’s outputs for each fruit disease, including (a) input images, (b) detection results, and (c) feature discriminability visualizations.

Fig. 10. The proposed model’s outputs for challenging cases, including (a) input images, (b) detection results, and (c) feature discriminability visualizations.

Table 8

Ablation analysis for evaluating the effects of different components on the performance of

FD-TR model.
Configuration CloU+L1loss  LAMB optimizer =~ BatchFormerV2  mAP
Baseline - - 0.812
+ CloU only v - - 0.847
+ LAMB only - v - 0.818
+ BatchFormerV2 only - - v 0.853
+ CIoU & LAMB v v - 0.834
+ CloU & BatchFormerV2 v - v 0.882
+ LAMB & BatchFormerV2 - v v 0.838
Full integration v v v 0.894

the specific features of the disease. Nevertheless, FD-TR model manages
to generate reasonable predictions.

5.5. Analysis of the effectiveness of customized components to the
performance of FD-TR model

This section reports the effectiveness of important components of
the proposed fruit disease detection model’s performance. Table 8
summarizes the ablation study’s results of each component of FD-TR
model.

The baseline configuration, without any of the proposed compo-
nents, achieved an mAP of 0.812. When added individually, CIoU +L1
loss improved the mAP to 0.847, which demonstrated its significant

10

contribution to the model performance. The LAMB optimizer showed
a marginal improvement to 0.818, while BatchFormerV2 alone boosted
the mAP to 0.853. Further analysis of pairwise combinations revealed
additional insights. The combination of LAMB optimizer with CloU + L1
loss or BatchFormerV2 yielded lower mAP compared to using CloU +L1
loss or BatchFormerV2 alone. However, these configurations achieved
an average of 13 % faster convergence and reduced training time.
Meanwhile, the integration of both CloU+L1 loss with BatchFormer
V2 led to a substantial increase to 0.882, which suggested a stronger
interaction between these two components. Finally, the full integra-
tion of all three components achieved the highest performance at
0.894, which highlighted their effectiveness in enhancing the model’s
capabilities.
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Table 9
Model performance evaluation between the proposed model
and five state-of-the-art DL models on the validation dataset.

Model name mAP Precision Recall
SSD [51] 0.69 0.66 0.70
YOLOVS8 [60] 0.8 0.81 0.83
DETR [32] 0.72 0.71 0.73
Deformable DETR [33] 0.74 0.74 0.77
DINO [54] 0.75 0.74 0.76
FD-TR (Ours) 0.89 0.86 0.87

5.6. Comparison with other models

Table 9 presents a performance comparison between the proposed
FD-TR model and five other state-of-the-art detection models (YOLOv8
[60], SSD [51], DETR [32], Deformable DETR [33], DINO [54]). When
evaluated on the validation dataset, FD-TR consistently outperformed
the others on all metrics. Specifically, FD-TR significantly outperformed
the next best model by 9 % with an mAP of 0.89. In addition, with high
precision and recall values, FD-TR demonstrated its ability to accurately
identify and localize objects. In contrast, SSD exhibited the lowest per-
formance, with an mAP of 0.69, and a precision and recall values of 0.66
and 0.70, respectively.

Moreover, while other transformer-based models like DETR,
Deformable DETR, and DINO demonstrated higher performance over
SSD, they were consistently outperformed by FD-TR. For example,
Deformable DETR showed an mAP of 0.74, precision of 0.74, and re-
call of 0.77, while DINO achieved slightly better precision and recall
but a comparable mAP. YOLOVS, well-known for its performance, per-
formed well with an mAP of 0.80 but was outperformed by FD-TR in all
metrics. The results highlight that FD-TR model provides the most ac-
curate and reliable predictions for fruit disease detection due to several
enhancements such as the Co-DETR scheme and effective integration of
other components.

5.7. Comparison on various benchmark datasets

Table 10 describes the performance of FD-TR on four publicly avail-
able datasets compared to the baseline model (Co-DETR). This table
includes two agricultural datasets (PlantVillage [61] and Pest-D2Det
[62]) and widely used general benchmarks (COCO [52] and VOC2012
[63]). The variation in domain complexity, class count, and dataset size
provides a comprehensive evaluation of the model’s adaptability.

In the agricultural domain, FD-TR demonstrates significant advance-
ments, particularly on PlantVillage, where it achieves an mAP of 0.594,
an 18.7 % gain over the YOLOv8 baseline (0.407). This improvement
highlights FD-TR’s effectiveness in handling high-class diversity (38
classes) and complex disease manifestations. Similarly, on Pest-D2Det,
FD-TR obtains an mAP of 0.731, a 2.7 % increase over the D2Det base-
line (0.704), which confirms its strength in pest detection tasks with
fewer classes (10). These results indicate that FD-TR performs well in
agricultural context, where precise feature learning and optimization
are critical for real-world applications like crop monitoring.

For general-domain datasets, FD-TR exhibits robust but context-
dependent performance. On VOC2012 (20 classes), it achieves an mAP
of 0.812, a modest 0.8 % improvement over the baseline CoupleNet
(0.804). However, on COCO (80 classes), FD-TR records an mAP of
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0.589, approximately 7.0 % below Co-DETR’s reported 0.659. This
gap does not undermine FD-TR’s efficiency but rather reflects key
architectural and training differences. Co-DETR leverages a large ViT-
Large backbone and extensive pre-training on Objects365 (optimized
for large-scale benchmarks like COCO). In contrast, FD-TR prioritizes
lightweight efficiency using Swin as backbone, and targets agricul-
tural specialization without targeted pre-training. FD-TR’s modifications
(BatchFormerV2 for enhanced feature representation, CloU for im-
proved box learning, and LAMB for training stabilization) emphasize
domain-specific adaptability over maximizing COCO accuracy. Despite
the lower score, FD-TR remains competitive with many transformer-
based detectors and aligns with its goal of balancing performance,
efficiency, and specialization. Overall, these results confirm FD-TR’s
contributions, particularly in agricultural contexts, while maintaining
versatility across domains.

5.8. Real-world robustness analysis

To evaluate the model’s ability to distinguish healthy fruits, which
is a critical requirement for real-world agricultural applications, an in-
dependent test dataset comprising 500 images of healthy fruits was
collected. These images were curated from a publicly available agricul-
tural image repository and verified by domain experts to confirm the
absence of disease symptoms. This dataset was excluded from training
and reserved solely for evaluating the model’s performance in real-world
scenarios. An image was classified as “healthy” if no disease-related BB
were predicted. The model correctly identified 431 out of 500 healthy
images, leading to a false positive rate of 13.8 %. This demonstrates that
FD-TR can effectively differentiate healthy fruits from unhealthy ones
in most cases. Fig. 11 highlights three failure modes where natural fruit
features were mistakenly classified as disease symptoms. In these cases,
the model misinterpreted natural variations in fruit appearance, such
as blemishes, color gradients, or developmental traits, as pathological
indicators:

« Case (A): A healed scar on a citrus fruit (red arrow) was misclassified
as a fungal infection (confidence: 0.47). The model failed to dis-
tinguish the scar’s shallow, textured appearance from active fungal
lesions.

Case (B): A young dragon fruit exhibiting natural tip browning (red
arrow) was incorrectly flagged as infected with BFB, despite lacking
characteristic water-soaked lesions.

Case (C): A faint reddish patch on a young fig (red arrow) was pre-
dicted as a fungal spot, even though the coloration was uniform and
confined to healthy epidermal tissue.

These examples revealed that the model’s false positives occurred not
from complex background clutter or extreme lighting artifacts, but from
everyday morphological and variations traits of healthy fruits that were
not included in the training set. Such improvements would enhance the
model’s robustness to real-world variability and reduce overfitting to
disease-centric features.

6. Discussion

FD-TR model improves fruit disease detection by combining the Co-
DETR training scheme with the DINO transformer model, multi-scale
feature extraction, and attention mechanisms. Key model customization,

Table 10

FD-TR performance and gains compared to baseline methods. Note: pp stands for absolute gain in percentage points.
Dataset Domain # Classes # Images Baseline mAP FD-TR mAP pp (%)
PlantVillage Agriculture 38 54,308 0.407 (YOLOVS [64]) 0.594 18.7
Pest-D2Det Agriculture 10 9472 0.704 (D2Det [65]) 0.731 2.7
COCO General 80 118,287 0.659 (Co-DETR [22]) 0.589 -7
VOC2012 General 20 11,540 0.804 (CoupleNet [66]) 0.812 0.8

11
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Fig. 11. Samples of false positive prediction by the model for healthy fruit
images.

including CIoU loss for precise BB, the LAMB optimizer for faster con-
vergence, and BatchFormerV2 for scalable training, enhanced detection
performance and efficiency for six fruit disease classes. FD-TR’s end-
to-end design and integrated data augmentation improved robustness
under diverse real-world scenarios, such as lighting and angles.

The experimental results showed that targeted customization im-
proved detection mAP from 0.81 to 0.89. FD-TR also outperformed
YOLOVS (0.80) and Deformable DETR (0.74). With precision and recall
rates of 0.86 and 0.87, respectively, it demonstrated robust gener-
alization across diverse disease symptoms, scales, and environmental
conditions. These capabilities are crucial for real-world agricultural
settings, where early and accurate detection is crucial for effective
intervention and crop protection. Furthermore, its attention-based inter-
pretability via feature discriminability scores and deformable attention
weights provided transparent insights into decision-making. The evalua-
tion on healthy fruit images, as introduced in Section 5.8, demonstrated
the model’s potential to operate effectively in real-world settings where
both diseased and healthy fruits are present. Although, a false positive
rate of 13 % on healthy samples was promising, the misclassifica-
tions highlighted a limitation in the current training data, which lacked
explicit healthy examples.

7. Conclusions

This research introduces an enhanced end-to-end transformer-based
fruit disease recognition model that can be applied to real-life disease
management systems. The dataset used to train the model consists of
81,000 images of six different fruit diseases. The proposed FD-TR model
demonstrates high detection performance on the dataset compared to
state-of-the-art models such as YOLOv8, DINO, and Deformable DETR.
FD-TR is based on the DINO transformer model with an improved Co-
DETR training scheme and additional components like CIoU loss, the
LAMB optimizer, and BatchFormerV2. These improvements contribute
to the model’s enhanced detection capabilities and faster convergence
during training. Therefore, FD-TR model not only improves the accu-
racy of predictions but also achieves robust performance in various
experiments.

Moreover, FD-TR model’s ability to maintain high performances on
diverse testing scenarios demonstrates its generalization ability and re-
liability. Even in challenging cases, such as images affected by poor
lighting or blurring, the model provides correct and robust predictions.
The attention mechanism of the transformer allows the model to focus on
relevant disease features, which reduces false predictions. In addition,
the unique multi-scale attention map extracted from the transformer
offers experts/farmers valuable insights into how the model detects
and highlights disease-related areas. FD-TR model represents a signifi-
cant advancement in automated disease detection and offers substantial
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potential to improve agricultural productivity and disease management
in modern farming.

While FD-TR model demonstrates strong performance in detecting
fruit diseases, several limitations persist. One of the main limitations
is the reliance on a dataset with a limited number of disease classes,
which fails to capture the full diversity of fruit diseases and environ-
mental conditions. Moreover, the model’s performance could be further
optimized in challenging environmental conditions, where it occasion-
ally struggles to detect diseases accurately. In the future, the dataset can
be expanded to include more diverse conditions and disease types to
improve the model’s generalizability. In addition, techniques like multi-
modal data integration, which analyze data from sensors such as infrared
cameras or spectroscopy, can be considered for further development and
improvement. Finally, the model optimization on edge/mobile devices
is a critical future work to enable real-time, on-field disease detection,
especially in resource-constrained environments. This would involve ex-
ploring lightweight backbones and model compression techniques to
reduce computational demands for edge devices.
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