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Abstract 20 
Heat networks play a vital role in the energy sector by offering thermal energy to residents in 21 
certain countries. Effective management and optimization of heat networks require a deep 22 
understanding of users' heat usage patterns. Irregular patterns, such as peak usage periods, 23 
can exceed the design capacities of the system. However, previous work has mostly neglected 24 
the analysis of heat usage profiles or performed on a small scale. To close the gap, this study 25 
proposes a data-driven approach to analyze and predict heat load in a district heating network. 26 
The study uses data from over eight heating seasons of a cogeneration DH plant in Cheongju, 27 
Korea, to build analysis and forecast models using supervised machine learning (ML) 28 
algorithms, including support vector regression (SVR), boosting algorithms, and multilayer 29 
perceptron (MLP). The models take weather data, holiday information, and historical hourly 30 
heat load as input variables. The performance of these algorithms is compared using different 31 
training sample sizes of the dataset. The results show that boosting algorithms, particularly 32 
XGBoost, are more suitable ML algorithms with lower prediction errors than SVR and MLP. 33 
Finally, different explainable artificial intelligence approaches are applied to provide an in-34 
depth interpretation of the trained model and the importance of input variables.  35 
 36 

Introduction 37 
District heating (DH) has risen as a crucial energy supply infrastructure in order to effectively 38 
provide heat and cooling to consumers over the last few decades1. DH is superior in many 39 
aspects compared to other energy supply options, which include having a lower carbon 40 
footprint, the integration of multiple heat sources, and high energy throughput. The latest 41 
fourth and fifth generations of DH can utilize several heat sources, which include combined 42 
heat and power (CHP), gas boilers, water-source heat pumps (HPs), ground-source HPs, and 43 
solar energy-based HPs. The recent literature focused more on developing simulation 44 
frameworks and effective approaches in regards to designing and optimizing DH systems in 45 
terms of the economic and energetic factors, which is due to the fast development of DH 46 
technologies2,3. Storage technology is also a hot topic, because it helps decouple heat 47 
production and the demand to increase DH efficiency4. The following articles1,5 were reviewed 48 
in order to obtain the latest information about DH networks. 49 
 50 
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The heat usage pattern analysis has become increasingly essential as the number of end-users 51 
increases, because it greatly impacts the entire network's efficiency. Variations in the heat 52 
usage behavior from the consumers' side lead to variations in the heat usage pattern of a 53 
single substation, which is a major matter for accurate and efficient DH management and 54 
operation6. For example, the substantial temperature difference between the summer and 55 
the winter significantly influences the users' heat demand. In addition, the hourly heat 56 
demand also varies between households, which causes heat demand variation at the 57 
substation7. 58 
 59 
An accurate heat demand prediction framework is imperative in order to effectively manage 60 
DH networks8. First, it facilitates the optimization of the overall heat production, minimizes 61 
the heat loss, and optimizes the operating costs. Second, the distribution temperature is 62 
provided at an appropriate range in order to predict the real-time heat usage using the heat 63 
demand forecast model. As a result, the number of studies proposed in regards to predicting 64 
the heat demand has been increasing. A heat demand analysis can generally be divided into 65 
model-based and data correlation categories9. The data correlation approach mainly depends 66 
on building functional correlations of the DH parameters in order to develop a heat usage 67 
profile for each substation or building. The model-based technique relies on machine learning 68 
(ML) algorithms in order to effectively learn the representative patterns using the historical 69 
heat load data10. The data correlation approach offers higher accuracy than the model-based 70 
approach, but it is time-consuming and laborious due to each building/substation having a 71 
unique heat usage profile that needs to be constructed. The performance of the model-based 72 
heat usage prediction algorithm has become significantly better, which is due to the huge 73 
advancements in artificial intelligence (AI) and big data over the past few decades9,10. 74 
 75 
The heat usage prediction, heat loss estimation, and abnormality analysis based on the energy 76 
signature (ES) have been increasingly investigated in recent years, which have shown 77 
promising results11,12. However, these studies mainly used outdoor temperature as the main 78 
feature in order to discover the heat demand pattern. Other studies focused on peak usage 79 
forecasting with the ultimate objective of optimizing the energy usage and DH management13. 80 
These studies, which are similar to the ES, failed to consider the meteorological data or the 81 
end-user behaviors. Potential influencers of the heat demand patterns can be divided into 82 
three main factors, which include meteorology, behaviors, and time14. Some common 83 
meteorological data that potentially affects heat demand are humidity, solar irradiation, 84 
outdoor temperatures, and the wind flow speed15. Time factor involves all time-related 85 
parameters, which include hours, days, months, and years. The social behaviors of the end-86 
users are also a crucial influencer of the heat load variation, which can be affected by both 87 
meteorological and time factors16. These three main factors significantly influence the heat 88 
demand patterns.  89 
 90 
There has been considerable interest in the research area of heat load forecasting for DH, as 91 
indicated by numerous recent studies. Idowu et al.29 examined a range of supervised ML 92 
algorithms in order to perform heat load prediction up to 48 hours in advance. The 93 
experimental results revealed that conventional ML algorithms, such as SVM and linear 94 
regression, achieved the lowest normalized root mean square error when compared to other 95 
algorithms. In another study, Boudreau et al. found that ensemble models provided 96 
significantly better prediction accuracy than base ML models when it came to predicting peak 97 
power demand and next-day building energy usage30. 98 
 99 
Several studies have delved into specific aspects of DH systems. For example, Saloux et al. 100 
explored the application of ML algorithms for predicting the aggregated heating usage of a 101 
community. They concluded that the models' performance could be significantly enhanced by 102 
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considering other crucial factors, such as time of day, systematic variables, and temperature31. 103 
López et al. focused on the impact of specific days, such as holidays or festive periods, on the 104 
load curve, and determined that such events could considerably affect the heat usage 105 
pattern32. Moreover, a case study of a large DH network over several heating seasons revealed 106 
that the primary force of heat demand were the various operation settings during daytime 107 
(night shutdown and night temperature setback) and the outdoor temperature33. 108 
 109 
Despite the numerous issues addressed and methods discussed in existing literature on heat 110 
load prediction in DH networks, further research is needed to explore important external 111 
factors such as holiday and weather conditions, which could be utilized as input to improve 112 
the models' accuracy6. Additionally, while previous work has showed the high predictive 113 
performance of ML algorithms for heat demand, they have not provided a clear explanation 114 
of why the model achieved good performance, as well as which features are important and 115 
their correlation with the models10. 116 
 117 
This research is proposed in order to improve the heat usage prediction via an in-depth 118 
analysis of the dataset to figure out the potential factors that impact the heat demand. The 119 
main contributions include (a) performing a data analysis prior to the training process to help 120 
thoroughly understand the dataset, (b) training and comparing different ML models in order 121 
to obtain the best hourly heat load prediction model, and (c) offering detailed explanations 122 
about what features were imperative to the model prediction, which were overlooked in the 123 
previous studies. 124 
 125 
The remainder of the manuscript is outlined as follows. Section “Dataset description” gives a 126 
detailed description of the proposed heat demand dataset. After that, the Section 127 
“Methodology” outlines all processes involved in heat demand prediction. Several 128 
experiments are performed in Section “Experimental results” to comprehensively assess the 129 
proposed framework. Next, the Section “Discussion” discusses the findings and provides a 130 
detailed analysis of the study. Finally, we conclude the study and offer future work in the 131 
Section “Conclusion”. 132 
 133 

Dataset description 134 
The dataset that is described in this research was the hourly heat demand from an eco-friendly 135 
liquefied natural gas (LNG)-based cogeneration plant in the Cheongju region, Korea. The plant 136 
produces around 76.5 Gigacalories (Gcal) of local heating to the distribution grid. Gcal is a 137 
common heat load unit, which measures the heat energy in the heating plants. The LNG-138 
powered plant is more efficient and environmentally friendly for the generation of thermal 139 
energy, which has been reported to produce over 70% less emission than coal or oil sources. 140 
 141 
The dataset introduced in this study includes the hourly heat usage from January 2012 to 142 
December 2020 of the residents from a region, which spans eight heating seasons from 143 
November to April. The heat usage profile suggests the amount of heat that is transmitted 144 
from the plant to the consumers at a specific duration, which mainly involves space heating 145 
(SH) and domestic hot water (DHW). The corresponding hourly historical weather data was 146 
also collected as an additional feature in order to discover the potential connections with the 147 
heat load patterns in addition to the heat load data. A holiday feature that indicates whether 148 
the day under consideration is a holiday is also added in order to investigate the end-user 149 
behaviors. The three main features that belong to the weather data include wind flow speed, 150 
humidity, and outdoor temperature. The collected heat usage dataset is used to study the 151 
hourly heat load patterns and provides some explanations for the model's predictions. The 152 
minimum, maximum, mean and standard deviation for each variable are described in Table 1.  153 
 154 



4 
 

Table 1: Description of important observations with possible values for the variables in the 155 
proposed dataset 156 

Name Minimum|Maximum 
Mean| standard 

deviation 
Unit 

Date 01/01/2012 | 01/01/2022 - - 

Wind speed 0|8.7 1.47|0.93 m/s 

Humidity 7|100 61.32|20.02 % 

Outdoor 
temperature 

-16.5|38.1 13.75|10.83 °C 

Holiday 0 (normal day) | 1 (holiday) 0.32|0.46 - 

Heat load 0|317 65.89|52.92 Gcal 

 157 
In summary, 8760 hourly heat load profiles and their corresponding historical temperature 158 
data are obtained yearly. Therefore, a total of 87,672 entries, which include date and time, 159 
holiday, wind flow speed, humidity, and temperature, are used as the input variables, and the 160 
heat load profiles are used as the target variables. The data entries from 2012 to 2020 were 161 
used as the training set, whereas the hourly heat usage of 2021 was applied in order to test 162 
the model’s performance. 163 
  164 

Methodology 165 
Figure 1 depicts the three components of the hourly heat usage prediction system, which are 166 
(a) data preprocessing, (b) pattern analysis and data partitioning, and (c) explainable heat load 167 
forecasting. 168 

- Data preprocessing: There is a high possibility that the structured data may contain 169 
some common issues with data preprocessing, such as duplicate data, missing data, 170 
and negative data due to human errors, which can affect the system's performance. 171 
As a result, it is a prerequisite before the data analysis and training processes to fix all 172 
errors and standardize the data. 173 

- Pattern analysis and data partitioning: Heat usage patterns play an important role in 174 
regards to enabling specialists to study consumer behavior. The distinctive patterns of 175 
the dataset are discovered in this section by using various data analysis approaches in 176 
order to thoroughly analyze the dataset before the training phase. The dataset is then 177 
divided into training and testing sets. 178 

- Explainable heat load prediction: Different ML algorithms were trained in order to 179 
forecast the hourly heat usage. Some explainable artificial intelligence (XAI) 180 
approaches are finally implemented in order to interpret the model’s predictions. 181 
 182 
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 183 
Figure 1: Description of the primary components of the heat usage patterns analysis 184 
framework 185 

 186 

Data Preprocessing 187 

Data cleaning 188 

The structured data-related issues, such as missing and duplicated data are unavoidable during 189 
the data collection, and they can negatively affect the model's performance if not 190 
appropriately corrected. Data cleansing is therefore conducted in order to detect and fix error 191 
records in regards to the humidity, wind speed, outdoor temperature, and hourly heat usage 192 
data. There are various data cleaning processes, and the two main processes that were 193 
performed in this study include removing duplications and fixing the missing values. The 194 
dataset is loaded as a data frame using pandas, a famous data manipulation and analysis 195 
library. After that, data inconsistencies can be automatically detected using pandas-supported 196 
functions. 197 
 198 
Standard techniques, such as moving average (MA) and imputation, are usually employed in 199 
order to correct the missing data. This study applied the exponential weighted moving average 200 
(EWMA) technique17, which is an extension of the MA algorithm. EWMA considers the recent 201 
data points to be significantly important with a higher weight, whereas the data points in the 202 
further past receive an exponentially lower weight. Moreover, the EWMA method can be 203 
effectively applied due to the nature of the dataset, and the differences between the two 204 
consecutive data points are considered minor. The EWMA can be described as follows. 205 
 206 

𝐸𝑡 = 𝛼 × 𝑥𝑡 + (1 − 𝛼) × 𝐸𝑡−1                                      (1) 207 

 208 
where 𝐸𝑡 indicate the computed value at time t based on the EWMA technique. 𝑥𝑡 is the value 209 
of the series in the current period. 𝐸𝑡−1 is the EWMA at the previous time period. Finally, 𝛼 is 210 
the smoothing factor, which ranges between 0 and 1 and controls the influence of the current 211 
value 𝑥𝑡 on the 𝐸𝑡. A larger 𝛼 places more weight on recent observations and results in a more 212 
reactive EWMA, while a smaller 𝛼 results in a smoother EWMA. 213 
 214 

Feature engineering 215 
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Feature engineering is the process of selecting, extracting, and transforming relevant features 216 
or variables from raw data to enhance the performance of ML algorithms. The goal of feature 217 
engineering is to provide ML algorithms with informative and discriminative features that can 218 
help them better understand the underlying patterns and relationships in the data. Two main 219 
processes in the feature engineering process are standardization and feature transformation.  220 
 221 
The regression model fitting and learned function can be negatively affected by structured 222 
data, and it eventually creates a bias when numerical features with different scales are fed 223 
into the model18. The normalization/standardization techniques therefore need to be 224 
implemented in order to normalize the input features. Min-max normalization and 225 
standardization are two common feature scaling approaches19. The heat usage dataset that is 226 
applied to fit the model contains peak heat load on some specific periods, which are outliers, 227 
and it has an essential role during the training process. The min-max normalization likely 228 
lowers the impact of those outliners by transforming all features into a range between 0 and 229 
1. The standardization therefore scales the features in order to have a zero mean, and a 230 
standard deviation of 1 is implemented in this study. 231 
 232 
Feature transformation is necessary for structured data in order to convert categorical inputs 233 
into numerical inputs, because most ML models work with numerical data. The holiday 234 
variable is categorical, because it has two distinctive values, which represent whether a 235 
particular day is a regular day or a holiday. As a result, one-hot encoding, which creates a 236 
binary representation of the categorical feature, is applied in order to transform the holiday 237 
feature20. For instance, when a specific day is a holiday, the value for the holiday binary 238 
variable is set to 1, and the regular binary variable is 0. 239 
 240 

Pattern Analysis and Data Partitioning 241 

Pattern analysis 242 

Heat network during the summer season: The investigation of the heat network in the 243 
summer season, which spans from June to August, gives some exciting insights into the town's 244 
heat usage. Figure 2 illustrates the hourly heat demand distribution density for the summer 245 
months from 2012 to 2021. The average heat demand in the summer mainly involves the DHW 246 
consumption and the network heat losses. It can generally be seen that there was less heat 247 
demand in the distant past compared to the recent years. For instance, a roughly similar 248 
distribution can be observed for the following years, which include from 2012 to 2016, with 249 
the average heat demand being around 20 Gcal. However, the average heat demand increased 250 
to around 30 Gcal, which included the more recent years from 2019 to 2021, with some higher 251 
heat demands being related to particular heat usage patterns. Moreover, there has been a 252 
gradually increasing trend in the average heat usage of over 40 Gcal in recent years, and the 253 
year 2021 shows the highest density. 254 
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 255 
Figure 2: Distribution density plot of hourly heat demand during the summer season 256 
(Jun.-Aug.) 257 

 258 
Heat network during the winter season: The chart in Figure 3 illustrates the network's energy 259 
consumption on an hourly basis during the winter season spanning from November to March. 260 
The chart depicts three distinct patterns for three different time periods: daytime (06:00 to 261 
18:00), nighttime (22:00 to 05:00), and peak hours (19:00 to 21:00). The scatter plot reveals 262 
that the consumers tend to use more heat during the peak time at the same temperature level 263 
compared to the nighttime and daytime. Moreover, the lower the outside temperature, the 264 
higher the heat load that is required. 265 

 266 
Figure 3: Scatter plot of the outdoor temperature and the heat usage during the winter 267 
season (Nov.-Mar.) 268 

 269 
Some heat load patterns for each season of the year: A typical hourly heat load pattern for 270 
each season can be observed in Figure 4. The spring, fall, and winter seasons have similar 271 
variations in the hourly time scale, which is caused by the social behavior of the end-users. 272 
Reduced heat loads can be observed in the daytime, which is due to solar radiation that leads 273 
to higher daytime temperatures. The highest heat load during the daytime occurs around 8 274 
am in order to prepare the space heating in offices and commercial buildings. The heat 275 
demand usually peaks between 19:00 and 21:00 because of the low temperature at night, 276 
which requires more heat for SH and DHW. DHW is a major part of the heat demand in the 277 
summer, when a tiny difference in the heat variation can be observed. 278 
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 279 
Figure 4: Average weekly heat load patterns during the four season periods 280 

 281 

Data partitioning 282 

Data partitioning is a fundamental step required before training and evaluating the model. 283 
After preprocessing, the data is split into two sets: the training set and the testing set. The 284 
training set is utilized to train and optimize the model, while the testing set is typically 285 
employed to assess the algorithms' performance across various scenarios. This study used the 286 
heat usage profiles between 2012 and 2020 as the training set, whereas the heat load profiles 287 
from 2021 were used for the testing. Each training or testing sample consists of day, hour, 288 
outdoor temperature, humidity, windspeed, and holiday as the input variables, while the 289 
output is the hourly heat usage corresponding to that particular input. 290 
 291 

Explainable Heat Load Prediction 292 

This section presents the main concepts behind boosting, support vector regression (SVR)21, 293 
and multilayer perceptron (MLP) algorithms22 that were implemented for the heat demand 294 
forecasting. 295 
 296 
Boosting algorithms: Boosting algorithm belongs to the ensemble approach, which 297 
sequentially adds multiple weak learners. Each weak learner is added by using the learned 298 
information from its predecessor, and it tries to correct the errors that are predicted by them. 299 
A weak learner can be any learning algorithm that offers a slightly better performance than 300 
random guessing. Two standard boosting approaches are gradient boosting and adaptive 301 
boosting23. 302 

- Adaptive boosting: The adaptive boosting (AdaBoost) algorithm was proposed by 303 
sequentially adding weak learners, which involved using decision trees, and 304 
attempting in order to correct the wrongly predicted samples by applying a bigger 305 
weight to them during the training process of the latter weak learners. The AdaBoost 306 
model's final output is the weighted median. 307 

- Gradient boosting: AdaBoost assigns new instance weights whenever a new weak 308 
learner is added, but gradient boosting aims to fit the new predictor to the residual 309 
errors that are caused by the prior predictor with the primary objective of minimizing 310 
a loss function24. Some popular gradient boosting algorithms include LightGBM and 311 
XGBoost.  312 
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XGBoost leverages the feature distribution across all data points to narrow down the search 313 
space of potential feature splits. The objective of the XGBoost algorithm can be expressed as: 314 
 315 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐿 + 𝜇                                      (2) 316 

 317 
where the predictive ability of XGBoost is determined by the loss function 𝐿 , while the 318 
regularization term 𝜇  is used to manage overfitting. 𝜇  is determined by the number of 319 
observers and their prediction threshold in the ensemble model. Since the problem in 320 
question belongs to regression analysis, the root mean squared error (RMSE) is used as the 321 
loss function 𝐿. 322 
 323 
Support vector regression (SVR): Unlike typical regression algorithms that seek to minimize 324 
the sum of squared errors between actual and predicted values, SVR attempts to identify the 325 
optimal hyperplane within a user-defined threshold value. The threshold value is the distance 326 
between the boundary line and the hyperplane. Heat demand prediction is a complex non-327 
linear topic, because it has multiple input variables. To address non-linearity in the initial 328 
feature space and treat it as a linear problem in the high-dimensional feature space, SVR 329 
requires the use of a non-linear kernel. The Gaussian Radial Basis kernel (RBF) was used in this 330 
study as the default kernel for SVR. 331 
 332 
Multilayer perceptron (MLP): Multilayer perceptron (MLP) belongs to the feedforward 333 
artificial neural networks (ANN) category. MLP's fundamental structure consists of an input 334 
layer, one or more hidden layers with neurons, and an output layer that are stacked in 335 
sequence. The neuron is the primary computing component of MLP, and neurons from the 336 
current layers fully connect to neurons from the next layer. The inputs are added to the initial 337 
weights, fed into an activation function, and propagated to the next layer. 338 
 339 

Experimental results 340 

This section shows all experiments that were conducted to determine the most suitable 341 
algorithm for predicting heat usage. In addition, various XAI techniques were also conducted 342 
in order to provide an in-depth analysis of the trained models.  343 
 344 
The heat load prediction models were constructed and trained on scikit-learn28, a Python-345 
based open-source ML library. Three main explainable AI libraries for analyzing the data 346 
include partial dependence plot27 (PDP), which is a global and model-agnostic XAI algorithm, 347 
local interpretable model-agnostic explanations39 (LIME), which create a local model 348 
approximation of the model around the prediction of interest, and shapley additive 349 
explanations26 (SHAP), which employ a game-theoretic approach. 350 
 351 

Evaluation Metrics 352 

Three standard evaluation metrics were computed, which included the coefficient of 353 
determination (𝑅2), mean squared error (MSE), and mean absolute error (MAE) in order to 354 
evaluate the heat demand forecasting. MSE is computed by averaging the squared difference 355 
between the predicted values and actual values for all the training samples25. On the other 356 
hand, MAE is the average of the absolute differences between the predicted values and true 357 
values. While MSE measures the standard deviation of residuals, MAE calculates the average 358 
of the residuals in the dataset. 𝑅2  is computed by determining the proportion of the 359 
dependent variable's variance predicted by the algorithm. The lower the MSE and MAE scores, 360 
the better the model’s performance. However, a higher value of 𝑅2 is considered better. The 361 
three metrics can be formulated as follows. 362 
 363 
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𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1                                         (3) 364 

𝑅2 =  1 −
∑(𝑦𝑖−𝑦̂𝑖)2

∑(𝑦𝑖−𝑦̅)2                                         (4) 365 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑁

𝑖=1                                       (5) 366 

 367 
where 𝑁 is the total number of training samples. 𝑦𝑖  indicates the actual value, 𝑦̂𝑖  means the 368 
predicted value of the 𝑖th profile, and 𝑦̅ is the mean value of 𝑦. 369 
 370 

Hyperparameter Fine-tuning 371 

Five regression models were implemented in this study in order to perform the heat demand 372 
forecasting, which included SVR, AdaBoost, XGBoost, LightGBM, and MLP. Each model has its 373 
crucial hyperparameters that must be determined before the training. The hyperparameters 374 
control the training behavior of the learning algorithms, and they considerably influence the 375 
model's performance. 376 
 377 
Table 2 shows the hyperparameters and the value range for each hyperparameter that is 378 
required by the five models. A grid search method was conducted next on the different 379 
combinations of the hyperparameters of each algorithm in order to explore the most suitable 380 
hyperparameter combination that helps the algorithm obtain the best performance. 381 
 382 

Table 2: Initial hyperparameter value ranges and the optimal hyperparameter value for each 383 
algorithm 384 

Model 
Hyper 

parameter 
Definition Value ranges 

Optimal 
value 

AdaBoost 
𝑛 Number of estimators 50, 100, 150, 200 50 

𝜎 Learning rate 10−3, 10−2, 10−1 10−1 

XGBoost 

𝑛 Number of estimators 50, 100, 150, 200 50 
𝑑𝑡𝑟𝑒𝑒 Max depth of a tree 3, 6, 9, 12, 15 9 

γ Min loss reduction 0, 0.1, 0.2, 0.3 0 

subsample 
Subsample ratio of the 

training instances 
0.5, 1, 2 1 

LightGBM 

num_leaves 
Max number of nodes per 

tree 
21, 31, 41, 51 31 

𝜎 Learning rate 10−3, 10−2, 10−1 10−1 
𝑛 Number of estimators 50, 100, 150, 200 100 

𝑑𝑡𝑟𝑒𝑒 Max depth of a tree 2, 3, 4, 5, 6 4 

SVR 
C Regularization parameter 100, 101, 102, 103 100 
γ Kernel coefficient 10−6, 10−3,10−1 10−3 

MLP 

𝜎 Learning rate 10−3, 10−2, 10−1 10−2 

𝑛ℎ𝑖 
Number of neurons in hidden 

layer ith 
50, 100, 150, 200 150 

φ  Activation function ReLU, tanh ReLU 
B Batch size 8, 16, 32, 64 32 

 385 
 386 

Heat Usage Prediction Analysis 387 

Figure 5 depicts the performance and scalability comparison of five different learning 388 
algorithms using the learning curves in order to show the effect of adding more samples during 389 
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the training process. The experiment involved randomly selecting samples from the training 390 
dataset. A training sample include date, outdoor temperature, windspeed, humidity, holiday, 391 
and hourly heat demand as the features. 392 
 393 
It can generally be concluded that SVR and MLP were highly sensitive to the dataset size, 394 
because they widely fluctuated as more training samples were added. On the other hand, the 395 
boosting algorithms, which included AdaBoost, LightGBM, and XGBoost, showed their 396 
advantages and effectiveness with a bigger dataset. The three ensemble algorithms exhibited 397 
similar trends in variation; the error gradually decreased and eventually stabilized. Low MSE 398 
scores of less than 0.02 were obtained for the three boosting algorithms when the training 399 
dataset size was over 2000 samples. XGBoost achieved the lowest mean squared error of less 400 
than 0.01 among the three algorithms, and it showed its robustness when the number of 401 
training samples reached 7000. As a result, XGBoost was utilized as the primary model for the 402 
following experiments. 403 

 404 
Figure 5: Heat demand forecasting performance using five different algorithms 405 

 406 
Table 3 shows the heat demand forecasting performance using five ML algorithms on the test 407 
dataset. All the models generally obtained good performances on the dataset. The boosting 408 
algorithms performed better than SVR and MLP. The XGBoost algorithm achieved the highest 409 
R2, MSE, and MAE at 0.95, 0.12, and 0.15, respectively. On the other hand, MLP showed the 410 
lowest heat usage prediction performance with an MSE value of 0.25 and R2 at 0.89. 411 
 412 

Table 3: Hourly heat load prediction performance for the five ML algorithms on the testing 413 
dataset.  414 

Model MAE MSE R2 

AdaBoost 0.16 0.14 0.94 
XGBoost 0.15 0.12 0.95 
LightGBM 0.18 0.17 0.91 
SVR 0.24 0.21 0.92 
MLP 0.23 0.25 0.89 



12 
 

 415 
Figure 6 compares the actual and the predicted heat demand for 2021 using the XGBoost 416 
model. The heat usage values predicted by the model, which are illustrated by the red line, 417 
are roughly similar to the actual heat usage values, which are illustrated by the blue line. 418 
Moreover, each month's peak and bottom heat usage were accurately predicted. However, 419 
the model performance was significantly affected, which is due to some uncommon end-user's 420 
heat usage behaviors. 421 

 422 
Figure 6: Daily heat load prediction results on the testing dataset 423 

 424 

Explainable Heat Usage Prediction 425 

The previous section discussed what model achieved the highest heat usage forecasting 426 
performance. However, it is challenging to reveal what features are influential and how they 427 
affect the model predictions. As a result, some interesting XAI approaches are implemented 428 
in this section in order to attempt to explain how ML models predict the outcomes. 429 
 430 
Firstly, three different feature ranking techniques were implemented in order to evaluate each 431 
feature's importance in regards to predicting the output heat usage by the model, as displayed 432 
in Figure 7. Figure 7(a) calculates a feature's relative importance by examining the mean and 433 
standard deviation of impurity reduction across each tree. Figure 7(b) ranks the feature 434 
importance by computing the game's theoretically optimal shapley values26. The resulting 435 
shapley values provide a measure of the relative importance of each feature in the model 436 
prediction for a particular data point. It requires examining every possible feature combination 437 
and assessing the marginal impact of each feature on the prediction. Features with higher 438 
Shapley values are regarded as more significant. Ranking both approaches reveal that the 439 
temperature and month features are crucial, which is valid due to the end-users heat demand 440 
pattern being significantly affected by these two features.  441 
 442 
Finally, Figure 7(c) visualizes the feature importance assessed by LIME. Positive weights 443 
indicate that a feature promotes a positive prediction, while negative weights indicate the 444 
opposite. The magnitude of the weight represents the importance of the feature. It is 445 

noticeable that a temperature of 4°C or lower (cold season) presses the model to output a 446 
higher heat usage. 447 
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 448 
Figure 7: Feature importance analysis for the heat usage prediction model 449 

 450 
The previous experiment indicated that the temperature and month features greatly impacted 451 
the model's predictions, but it did not explain exactly how the model was affected. As a result, 452 
PDP, was implemented in order to demonstrate a feature's marginal effect on the models' 453 
prediction. 454 
 455 
Figure 8 shows how temperature and month together impact heat usage in the form of 456 
contour lines. Contour was proved to work best for analyzing the impact of continuous 457 
features in the PDP interaction plot38.  458 
 459 
The contour lines, ranging from 0.000 to 150.000, indicate how specific ranges of the two 460 
features affect heat usage. A higher value of the contour line implies a greater impact of the 461 
two features on heat usage. For example, during the summer season when the average 462 

temperature is above 22°C, the features have a negative influence on the model prediction, 463 
resulting in an average heat demand of less than 50 Gcal and a contour line value of under 464 
25.000. On the other hand, contour line values greater than 125.000, corresponding to the 465 

winter season with an average temperature of fewer than 2°C, positively impact the model 466 
prediction leading to the average heat usage of over 120 Gcal. 467 
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 468 
Figure 8: PDP interaction plot for the temperature and month features 469 

 470 
Figure 9 illustrates how the temperature feature affected the heat demand through the 471 
distribution of the actual heat demand via fixed values of the temperature variable. It was 472 
observable that the hourly heat load achieved the biggest average value, which was 473 

approximately 150 Gcal, occurred when the temperature feature was between -16.5°C to -0.6474 

°C, indicating the winter season. Moreover, the hourly heat demand gradually dropped when 475 
the temperature rose. The lowest hourly heat demand, around 21 Gcal, was recorded when 476 

the temperature ranged from 26.9°C to 38.1°C , which corresponds to the summer season. 477 
 478 

Based on the data, we can conclude that the hourly heat demand is directly proportional to 479 
the temperature. In the summer, DHW accounts for the majority of the heat demand. In 480 
contrast, both DHW and SH contribute to the heat demand during the winter. Additionally, 481 

the hourly heat demand is higher during the winter, with temperatures below 10°C, and lower 482 

during the summer, with temperatures above 26°C. 483 

 484 
Figure 9: Actual predictions plot for the temperature variable. Distribution of the actual 485 
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prediction via different variable values 486 

 487 

Comparison with Similar Studies 488 

Numerous studies have been conducted in the past to predict and analyze DH head demand. 489 
However, direct comparisons with these studies are difficult due to differences in DH network 490 
designs, input data, and architecture implementations or experimental setups. We use 491 
operational data from DHS to predict heat usage patterns and compare our results using the 492 
XGBoost model, which exhibits the best prediction performance. The recorded MAE value 493 
from this study was 15%, which is smaller than the reported MAE of 18.07% by Huang et al34. 494 
In addition, the computed evaluation metrics are also superior to the following reseach35,36. 495 
Specifically, the proposed XGBoost model outperforms the study suggested by Ivanko et al36 496 
in terms of MSE and correlation coefficient, achieving 12% and 0.95 on the testing set, 497 
respectively, compared to MSE of 45.04% and a coefficient of determination of 0.81. In terms 498 
of the correlation coefficient, the XGBoost method also shows better hourly prediction 499 
performance than the ANN model proposed by Bünning et al35, with a correlation coefficient 500 
of 0.95 for one hour compared to 0.88. 501 

Discussion 502 

This section provides a discussion based on our approach and the obtained results. 503 
Furthermore, a discussion about the interpretability of the study is also presented. 504 
 505 

Model Performance 506 

To establish the best heat demand prediction model, five different models were evaluated 507 
with varying sizes of training datasets. Then, three evaluation metrics (MSE, MAE, and  508 
R2) were calculated. Figure 5 demonstrates the learning trend of these models as the number 509 
of training samples increases. When the training dataset size is less than 2000, MLP and SVR 510 
exhibit the highest accuracy. However, these models have drawbacks such as the need for 511 
sequential data and extended training times, making them more suitable for applications that 512 
can handle longer training periods. On the other hand, for larger training datasets (over 2000 513 
samples), the accuracy of the three boosting algorithms is higher. Boosting algorithms, such 514 
as AdaBoost and XGBoost, are more appropriate for granular control and frequent updating 515 
due to their short training time, stability, and forecasting accuracy. Nonetheless, all models 516 
can generate predictions swiftly (within a second) after being trained. Hence, the time 517 
required for training and retraining the models is the primary constraint for their overall 518 
implementation. 519 
 520 
Collinearity, which refers to the correlation between predictor variables, always exists in real-521 
world data24. However, the impact of collinearity on prediction models varies due to 522 
differences in principles. Previously, several approaches have been introduced to address 523 
collinearity problems, such as pre-selection based on thresholds, clustering predictors, and 524 
regularization techniques. Regularization is a method used to reduce the complexity of the 525 
SVM model and prevent overfitting14. Similarly, boosting-based models like AdaBoost, 526 
XGBoost, and LightGBM can effectively handle multicollinearity problems by adjusting the 527 
number of variables sampled at each split23, which acts as a regularization parameter. In 528 
contrast, MLP's ability to withstand collinearity is relatively weak, which may explain its 529 
relatively low accuracy. 530 
 531 
The way in which heat is distributed varies greatly depending on the size of the DH network, 532 
and the proposed framework is appropriate for smaller networks where the behavior of 533 
customers has an impact on the load pattern. It is possible to apply the framework to other 534 
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small-scale DH networks, in order to anticipate the hourly heat demand, as long as records of 535 
the hourly heat demand and environmental factors such as wind speed, humidity and 536 
temperature are available. 537 
 538 

Interpretability 539 

Model interpretability for AI models refers to the ability to transform the training and testing 540 
processes into logical rules. The model's ability to display the significance and ranking of input 541 
variables37 allows it to exhibit interpretability. The interpretability of a predictive model is 542 
crucial in evaluating the rationality of heat demands in a DH network. A lack of conformity to 543 
accepted principles in variable importance can indicate model instability or system 544 
malfunction4. Boosting-based methods are highly interpretable as they do not require the 545 
interpretation of tree structures by ML professionals, and each decision corresponds to a 546 
logical rule14. These models can output visual results of variable importance, with the weight 547 
and rank of variables differing depending on the model's inherent principles, as displayed in 548 
Figure 7. However, temperature and month were consistently the most influential variables, 549 
with humidity and holiday having a negligible impact, indicating the limited influence of these 550 
variables on heat usage.  551 
 552 
On the other hand, SVR and MLP were less interpretable, with MLP being considered a black 553 
box method due to its difficulty in identifying the features extracted from each layer of the 554 
network. The use of a linear kernel function in SVR leads to a more interpretable model, but 555 
models with other kernels can be challenging to interpret37. 556 
 557 

Conclusion 558 

Hourly heat demand forecasting is essential for heating providers to optimize heat production 559 
and heat supply operations. This research presents an hourly heat usage prediction system 560 
that is based on standard regression algorithms, and it systematically investigates the input 561 
features' influence on the models' outcomes. 562 

 563 
First, additional weather information, which includes the outdoor temperature, wind flow 564 
speed, and humidity of the corresponding hourly historical heat demand, were extracted 565 
during the data collection process, and they were used as the input features. After that, 566 
various data preprocessing procedures were implemented in order to clean the dataset. The 567 
preprocessed dataset was utilized in order to thoroughly analyze the common heat demand 568 
patterns. Finally, the dataset was inputted into five well-known regression algorithms, namely 569 
SVR, MLP, XGBoost, AdaBoost, and LightGBM, in order to determine what model is the most 570 
suitable for the heat usage prediction task based on standard evaluation metrics. 571 

 572 
The XGBoost model achieved the lowest MSE via various experiments, which was less than 573 
0.01, and it was robust when the number of samples in the training dataset increased. Finally, 574 
various XAI methods, such as SHAP and PDP were applied in order to thoroughly analyze how 575 
the model gave a particular prediction. The results showed that temperature and time-related 576 
variables are the most critical features that contribute to the model's predictions. 577 

 578 
More attention will be directed in the future toward novel heat load prediction techniques, 579 
such as multi-step ahead prediction. In addition, collecting a larger dataset with additional 580 
variables can improve the performance and efficiency of the model. 581 
 582 
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