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Abstract
Nowadays, there are a lot of iterative algorithms which have been proposed for
nonlinear problems of solid mechanics. The existing biggest drawback of itera-
tive algorithms is the requirement of numerous iterations and computation to
solve these problems. This can be found clearly when the large or complex prob-
lems with thousands or millions of degrees of freedom are solved. To overcome
completely this difficulty, the novel one-iteration nonlinear solver (OINS) using
time series prediction and the modified Riks method (M-R) is proposed in this
paper. OINS is established upon the core idea as follows: (1) Firstly, we predict
the load factor increment and the displacement vector increment and the con-
vergent solution of the considering load step via the predictive networks which
are trained by using the load factor and the displacement vector increments of
the previous convergence steps and group method of data handling (GMDH);
(2) Thanks to the predicted convergence solution of the load step is very close to
or identical with the real one, the prediction phase used in any existing nonlinear
solvers is eliminated completely in OINS. Next, the correction phase of the M-R
is adopted and the OINS iteration is started at the predicted convergence point to
reach the convergent solution. The training process and the applying process of
GMDH are continuously conducted and repeated during the nonlinear analy-
sis in order to predict the convergence point at the beginning of each load step.
Through numerical investigations, we prove that OINS is powerful, highly accu-
rate and only needs about one iteration per load step. Thus, OINS significantly
saves number of iterations and a huge amount of computation compared with
the conventional methods. Especially, OINS not only can detect limit, inflection,
and other special points but also can predict exactly various types of instabilities
of structures.

K E Y W O R D S

deep learning, nonlinear, one iteration, solver

1 INTRODUCTION

For an arbitrary nonlinear analysis, an appropriate nonlinear solver should be chosen to solve the nonlinear equation
as well as to trace completely the equilibrium path. In this regards, the Riks method1,2 was proposed to trace completely
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nonlinear equilibrium paths even when they had a “snap-back” or “snap-through” but the method was not really appro-
priate to the conjunction with finite element analysis. Thereafter, the modified Riks method (M-R)3 which could be
readily implemented in any commercial finite element software was developed. As a matter of fact, M-R is powerful but
still requires numerous iterations for a nonlinear analysis as found in Reference 3. To improve the robustness and the
efficiency of the Newton method, MIP Newton method based on the relaxation of the constitutive equations at each inte-
gration point was proposed.4,5 As the outstanding advantages of MIP Newton method, it can fast converge and withstand
large increments. Especially, MIP Newton method can be well applied to high slenderness structures. Because of the
importance of nonlinear solvers with respect to computational mechanics and their wide application, many solvers have
been proposed to reduce number of iterations per load step and computation as the following: optimization-based iterative
technique6 and residual areas-based iterative technique,7 dynamic relaxation techniques,8-10 multipoint methods-based
path following techniques,11 a novel method to transform the discretized governing equations,12 a data-driven nonlin-
ear solver (DDNS),13 an improved predictor-corrector method,14 Koiter–Newton method with a superior performance
for nonlinear analyses of structures,15,16 etc. It is observed that employing time series prediction to reduce number of
iterations of nonlinear solvers is very rare except the DDNS.13 It is noted that DDNS only can save 40%–50% number of
iterations per load step of an nonlinear analysis compared with the M-R.13 This paper aims to minimize number of iter-
ations per load step by proposing the novel one-iteration nonlinear solver (OINS) which is established by the M-R and
GMDH. GMDH is a deep learning technique for time series prediction. It is noted that OINS can trace naturally and
completely arbitrary nonlinear equilibrium paths even when they have a “snap-back” or “snap-through.”

Deep learning can be considered as the most popular field at this time. Its applications are found in both academia
and industry such as: machine health monitoring,17 fault-tolerant control,18,19 natural language processing,20 material
design,21,22 bankruptcy prediction,23 structural engineering,24 computer vision and pattern recognition,25 Bayesian anal-
ysis for computational mechanics,26,27 etc. Deep learning is a subfield of machine learning and established from a lot
of algorithms.28 Machine learning is the field which provides computers a general learning ability only from data.29 In
deep learning field, time series prediction is known as a very attractive and promising technique. Time series prediction
was successfully investigated for stock market prediction, speech recognition, music recognition, etc. A comprehensive
review of time series prediction can be found in Reference 30. In attempts to develop time series prediction, various types
of networks have been proposed. Among them, long short-term memory (LSTM) network31 was proposed and investi-
gated successfully for making predictions, processing and classifying using time series data. Besides, convolutional neural
network (CNN) is a type of deep learning network which has the adaptability32-35 and group method of data handling
(GMDH) was proposed as a self-organizing deep learning model.36 GMDH is considered as a polynomial neural network
and widely used in areas: pattern recognition, forecasting optimization, data mining, etc. GMDH networks possess some
outstanding advantages such as: highly accurate prediction, self organization-based training procedure, excellent identi-
fication for nonlinear systems, etc. Especially, GMDH networks can be built and predict well upon its self-organization
principle even with using a very small amount of data.37 The applications of GMDH networks to solid mechanics can be
found in References 13,38.

This paper aims to propose the novel OINS which is established by the M-R and the advantages of GMDH. To the
best of authors knowledge, OINS is the most powerful solver which can minimize number of iterations per load step.
Through numerical investigations, we prove that OINS is powerful and highly accurate. In the case of the equilibrium
path is traced through limit or special points, the proposed solver might need two iterations per load step but number
of average iteration per step for whole analysis is about one. Thus, OINS significantly saves number of iterations and a
huge amount of computation compared with the existing solvers. The core idea as well as the numerical implementation
of OINS and the main differences between OINS, DDNS13 and the modified Riks method3 are completely presented in
Section 4.2. The paper is organized as follows: Section 2 presents analysis of shells using first-order shear deformation
theory. Nonlinear isogeometric analysis of shells is provided in Section 3. The novel OINS based on GMDH is proposed in
Section 4. Numerical results are presented and discussed in Section 5. Several notable conclusions are drawn in Section 6
to close the paper.

2 NONLINEAR ANALYSIS OF ISOTROPIC SHELLS USING FIRST- ORDER
SHEAR DEFORMATION THEORY

The aim of this paper is to verify the reliability and efficiency of the proposed solver (OINS) via geometrically nonlinear
analysis of shells. The detailed formulation of the analysis can be found in Reference 39. The nonlinearity is established
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using the von Karman assumption and the Total Lagrangian approach. Firstly, a shell in Figure 1 is investigated. The
strain vectors using first-order shear deformation shell theory (FSDT) are expressed as39,40

𝜺 =
{
𝜀xx 𝜀yy 𝛾xy

}T = 𝜺0 + z𝜿b

𝜸 =
{
𝛾xz 𝛾yz

}T = 𝜺s, (1)

with

𝜺0 = 𝜺L + 𝜺N ; 𝜺L =
⎧⎪⎨⎪⎩

u0,x +
w0
R

v0,y

u0,y + v0,x

⎫⎪⎬⎪⎭ ; 𝜺N = 1
2

⎧⎪⎨⎪⎩
w0

2
,x

w0
2
,y

2w0,xy

⎫⎪⎬⎪⎭ ;

𝜿b =
⎧⎪⎨⎪⎩
𝛽x,x

𝛽y,y

𝛽x,y + 𝛽y,x

⎫⎪⎬⎪⎭ ; 𝜺s =

{
− u0

R
+ w0,x + 𝛽x

w0,y + 𝛽y

}
, (2)

and 𝜺N is the nonlinear strain vector which can be re-expressed as

𝜺N = 1
2

A𝜽; A =
⎡⎢⎢⎢⎣
w0,x 0

0 w0,y

w0,y w0,x

⎤⎥⎥⎥⎦ ; 𝜽 =

{
w0,x

w0,y

}
. (3)

We assume that Ω is the initial configuration of the shell. According to the total Lagrangian approach, the virtual work
equation is represented as

∫
Ω

𝝈̂T
𝛿𝜺̂dΩ = ∫

Ω

𝛿uTfsdΩ, (4)

fs = {fx fy fz}T denotes the external load vector. In addition, uT = {ux uy uz} and uz = w0 with w0 is the radial
deflection. When the shell is only subjected to a radial load fz = 𝜆f0, the virtual work equation can be rewritten as follows

∫
Ω

𝝈̂T
𝛿𝜺̂dΩ = 𝜆∫

Ω

𝛿w0f0dΩ, (5)

F I G U R E 1 Geometry and load description of a panel



1844 NGUYEN et al.

𝜆 is the load factor and 𝝈̂ denotes the stress resultant vector which is computed as follows

𝝈̂ =
{
𝝈p 𝝈b 𝝈s

}T
, (6)

with the in-plane stress vector

𝝈p = {Nx Ny Nxy}T =

{
∫

h∕2

−h∕2
(𝜎x 𝜎y 𝜏xy)dz

}T

, (7)

the bending stress vector

𝝈b = {Mx My Mxy}T =

{
∫

h∕2

−h∕2
(𝜎x 𝜎y 𝜏xy)zdz

}T

, (8)

the shear stress vector

𝝈s = {Qx Qy}T =

{
∫

h∕2

−h∕2
(𝜏xz 𝜏yz)dz

}T

. (9)

The relation between the generalized strain vector 𝜺̂ and the stress resultant vector 𝝈̂ can be represented through
Hooke’s law as follows

𝝈̂ = D̂𝜺̂; D̂ =
⎡⎢⎢⎢⎣
Dp 0 0
0 Db 0
0 0 Ds

⎤⎥⎥⎥⎦ ; 𝜺̂ =
⎧⎪⎨⎪⎩
𝜺L

𝜿b

𝜺s

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩
𝜺N

0
0

⎫⎪⎬⎪⎭ , (10)

with

Dp = Eh
1 − 𝜐2 D; Db = Eh3

12(1 − 𝜐2)
D; Ds = 𝜅

Eh
2(1 + 𝜐)

I, (11)

and

D =
⎡⎢⎢⎢⎣
1 v 0
v 1 0
0 0 (1 − v)∕2

⎤⎥⎥⎥⎦ ; I =

[
1 0
0 1

]
. (12)

Note that 𝜅 = 5∕6 denotes the shear correction factor41-45 while v is Poisson’s ratio, E is Young’s modulus, and h is the
thickness of the shell.

3 NONLINEAR ISOGEOMETRIC ANALYSIS OF SHELLS

This section briefly presents geometrically nonlinear analysis of shells based on isogeometric analysis and FSDT. As
mentioned earlier, the detailed formulation of the analysis is found in Reference 39 for nonlinear analysis of a functionally
graded carbon nanotube-reinforced composite (FG-CNTRC) shell. As known, an isotropic shell can be considered as a
particular case of a FG-CNTRC shell. Thus, the present formulation for isotropic shells is identical with the formulation for
FG-CNTRC shells in References 39 except a minor difference in computing the material matrices as shown in Equations
(10)–(12). At ith iteration and mth load increment, a system of linear incremental equations is expressed as

KT(qm)Δiqm = iFext,m − iFint,m, (13)
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with

KT = ∫
Ω

⎡⎢⎢⎢⎣
⎧⎪⎨⎪⎩

BL
A

Bb
A

Bs
A

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩

BN
A

0
0

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦

T ⎡⎢⎢⎢⎣
Dp 0 0
0 Db 0
0 0 Ds

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
⎧⎪⎨⎪⎩

BL
A

Bb
A

Bs
A

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩

BN
A

0
0

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ dΩ

+ ∫
Ω

(
Bg

A
)T

[
Nx Nxy

Nxy Ny

]
Bg

AdΩ, (14)

the load vector is expressed as

iFext,m = (i𝜆m + Δi𝜆m)∫
Ω

f0

{
0 0 NA 0 0

}T
dΩ = (i𝜆m + Δi𝜆m)F0. (15)

F0 denotes the referenced load vector while NA stands for the NURBS (nonuniform rational B-spline) basic function. We
compute the internal force as follows39

iFint,m = iKm
iqm, (16)

with

iKm = ∫
Ω

⎡⎢⎢⎢⎣
⎧⎪⎨⎪⎩

BL
A

Bb
A

Bs
A

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩

BN
A

0
0

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦

T ⎡⎢⎢⎢⎣
Dp 0 0
0 Db 0
0 0 Ds

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
⎧⎪⎨⎪⎩

BL
A

Bb
A

Bs
A

⎫⎪⎬⎪⎭ + 0.5
⎧⎪⎨⎪⎩

BN
A

0
0

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ dΩ. (17)

In this study, we use the novel OINS to solve the nonlinear equation. For any load increments, an iterative process is
conducted and the iteration can be stopped when the convergence criterion is met as follows

e =
‖‖i𝜆mF0 − iFint,m‖‖‖‖(i𝜆m + Δi𝜆m)F0‖‖ < 10−3. (18)

We obtain the incremental solutions via solving Equation (13). Thereafter, the load factor 𝜆 as well as the displacement
vector q of the iteration are computed and updated as follows3

i+1𝜆m = i𝜆m + Δi𝜆m
i+1qm = iqm + Δiqm

Δiqm = ΔiqR,m + Δi𝜆mqF,m, (19)

qF,m denotes a displacement vector created by a reference force vector while ΔiqR,m stands for that caused by the residual
load vector as follows

ΔiqR,m = [KT(qm)]−1(i𝜆mF0 − iFint,m)
qF,m = [KT(qm)]−1F0. (20)

4 THE NOVEL OINS BASED ON GMDH

4.1 Group method of data handling

4.1.1 An introduction

GMDH36,46 is considered as a self-organizing deep learning method which is widely used for time series prediction
problems. Difference from other deep learning networks, during the training stage number of neurons of the GMDH
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network continually changes to improve the performance of the network. For the mathematical description of GMDH,
we investigate a nonlinear relation as

𝜙 = f (x1, x2,… , xn), (21)

with x1, x2,… , xn and 𝜙 respectively denote the input and output of the system while f is known as the nonlinear
connection function. Using the Kolmogorov–Gabor form, Equation (21) is rewritten as follows36,46

𝜙 = a0 +
m∑

i=1
aixi +

m∑
i=1

m∑
j=1

aijxixj +
m∑

i=1

m∑
j=1

m∑
k=1

aijkxixjxk +… (22)

Because of each partial description (or neuron) takes two inputs and it delivers only one output, number of neurons
in the first layer can be determined as follows36,46

m = Cn
2 = n2 − n

2
, (23)

n denotes number of inputs. In addition, outputs of these neurons are determined as follows

y11 = f11(x1, x2)
y12 = f12(x1, x3)

… ..

y1m = f1m(xn−1, xn). (24)

After training the first layer, we apply the selection criterion to eliminate the neurons that give the poorest predictions
while ones that meet the criterion are kept. It should be noted that the selected neurons are considered as a subset of the
original ones as [

ŷ11, ŷ12,… , ŷ1m̂
]
⊂ [y11, y12,… , y1m] ;[

f̂ 11, f̂ 12,… , f̂ 1m̂

]
⊂
[
f11, f12,… , f1m

]
, (25)

m̂ denotes number of the selected neurons in the first layer (m̂ < m). After selecting the best neurons in the first layer,
we add the second layer to the network with number of neurons in this new layer p = Cm̂

2 . Outputs of the second layer
are also computed similar to Equation (24) as follows

y21 = f21(ŷ11, ŷ12)
y22 = f22(ŷ11, ŷ13)
… ..

y2p = f2p(ŷ1(m̂−1), ŷ1m̂). (26)

Selecting the best neurons in a layer and adding a new layer to the network are continuously performed. When the
stop criteria provided in Section 4.1.3 are met, the training procedure finishes.

4.1.2 Calculate coefficients of partial descriptions

As mentioned earlier, each neuron receives two inputs while it produces one output. We assume that two inputs are xi
and xj, the output of that neuron is determined via the following partial description36,46

y = a0 + a1xi + a2xj + a3x2
i + a4x2

j + a5xixj, (27)
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or rewritten in the following matrix form

y = xA, (28)

with

x =
{

1 xi xj x2
i x2

j xixj

}
;

A =
{

a0 a1 a2 a3 a4 a5

}T
. (29)

As seen in Equation (27), the output can be determined via the inputs and the coefficients of partial description. In
order to compute these coefficients, we consider a time series prediction problem and assume that there are s samples
achieved from a system in Equation (21) as follows

𝜙(1) = f (x1(1), x2(1),… , xn(1))
𝜙(2) = f (x1(2), x2(2),… , xn(2))
… ..

𝜙(s) = f (x1(s), x2(s),… , xn(s)). (30)

At time t, the neuron takes two inputs xi(t), xj(t) and its output is determined as follows

y(t) = a0 + a1xi(t) + a2xj(t) + a3x2
i (t) + a4x2

j (t) + a5xi(t)xj(t), (31)

with t = 1, 2,… , s. We make y(t) = 𝜙(t) and Equation (31) is re-expressed as

𝝓 = XA, (32)

and

X =

⎡⎢⎢⎢⎢⎢⎣

1 xi(1) xj(1) x2
i (1) x2

j (1) xi(1)xj(1)
1 xi(2) xj(2) x2

i (2) x2
j (2) xi(2)xj(2)

… .

1 xi(s) xj(s) x2
i (s) x2

j (s) xi(s)xj(s)

⎤⎥⎥⎥⎥⎥⎦
. (33)

𝝓 =
{
𝜙(1) 𝜙(2) … 𝜙(s)

}T
. (34)

From Equation (32), the coefficients of partial description can be achieved via the following equation

A = (XTX)−1XT𝝓. (35)

4.1.3 Selection and stop criteria

When the neurons outputs are known, the selection criterion upon the mean squared error (MSE) is applied to select the
best neurons in each layer. According to this criterion, the neurons that give the poorest results are removed and ones
that fit the criterion are kept. To this end, all the data are separated into two subsets including the training dataset and the
testing dataset. Then, the selection process is conducted over the testing dataset. MSE of an output is determined as36,46

MSE(yln) =
1
s

s∑
t=1

(yln(t) − 𝜙(t))2, (36)
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where s denotes number of samples of a system. yln(t) expresses the neuron’s output at time t while 𝜙(t) denotes the target
of network. In addition, the neurons which provide the least error are chosen for the next step.

For stop criterion, the GMDH training process includes: (1) Add layers; (2) Compute coefficients of partial descrip-
tions and then outputs; (3) Remove neurons that give poor predictions. In the training stage, the obtained outputs
of the present layer are recognized as the inputs of the subsequent layer. The training stage can be stopped when
the considering layer only remains one neuron after applying the selection step or when the new layer which is
added and trained does not improve the performance of the network. In this case, the new layer is removed. Then,
in the previous layer the neuron that has the best prediction is kept and the rest neurons are removed. Finally,
the trimming step is conducted to obtain the final network configuration.46,47 As the illustration, the training pro-
cess of GMDH using four inputs is described in Figure 2. Note that the removed neurons are drawn in the lighter
color.

4.2 The novel OINS

In each load step, M-R begins its iterations at the conventional starting point (or the previously converged solution point).
As known, M-R requires many iterations and computation to reach the convergent solution. To overcome completely this
difficulty, the novel OINS using M-R and time series prediction is proposed in this paper. Some existing nonlinear solvers
have the predictor phase using an extrapolation of the previously evaluated equilibrium points.13,14 The key concept of
these solvers is: iterations of each load step are begun at the new starting point which is determined by machine learning
and the previously evaluated equilibrium points. However, these solvers still require many iterations and computational
efforts to reach the converged solution of each load step.13,14 To overcome this drawback in this paper, OINS begins its
iterations at the predicted convergence point which is very close to or coincides with the real convergence point of each
step. For illustrations, iterative processes of M-R and OINS are described in Figure 3. OINS is established upon the core
idea as follows: (1) Firstly, we predict the load factor and the displacement vector increments and the convergent solu-
tion of the current load step via the predictive networks which are trained by using the load factor and the displacement
vector increments of the previous convergence steps and GMDH; (2) Thanks to the predicted convergence solution of
the load step is very close to or identical with the real one, the prediction phase used in any existing nonlinear solvers

F I G U R E 2 A self-organizing deep learning network: group method of data handling
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(A)

(B)

F I G U R E 3 Iterative processes of the modified Riks method (A) and one-iteration nonlinear solver (B)
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is eliminated completely in OINS. Next, the correction phase of M-R is adopted and the iteration is started at the pre-
dicted convergence point to reach the convergent solution. The training process and the applying process of GMDH are
continuously conducted and repeated during analysis to predict the convergence point at the beginning of each load step.

Recently, the DDNS13 has been developed to reduce number of iterations of nonlinear problems. In Reference 13, it is
found that DDNS can save 40%–50% number of iterations of an analysis compared with the modified Riks method. In this
paper, numerical procedures of DDNS and the proposed method (OINS) at a typical load step are presented in Figure 4.
The main differences between DDNS and OINS are as follows: (1) OINS starts iterations at the predicted convergence point
(𝜆m+1,pre,qm+1,pre) while DDNS starts iterations at the new starting point (𝜆m,new,qm,new); (2) The prediction phase used in
any existing nonlinear solvers involving DDNS is eliminated completely in OINS. Accordingly, the flowchart of OINS is
more simple and straightforward than that of DDNS. Especially, number of iterations per load step of OINS is much lower
than that of DDNS. The solvers including M-R, DDNS, and OINS start iterations at various points as seen in Figure 5.

End the mth step and obtain 

 DDNS

     Start the mth step and know 

      OINS

  Start the mth step and know  

Prediction phase

 End the mth step and obtain  Correction phase

 Predict the new starting point   Predict the convergence point

       Correction phase

m,new ,qm,new )( m+1,pre m+1,pre )( ,q

m+1
,q )m+1

(

( m ,q )m ( m ,q )m

m+1
,q )m+1

(

F I G U R E 4 Numerical procedures of the data-driven nonlinear solver (DDNS)13 and one-iteration nonlinear solver at a typical step

q

λ

0

Converged solution

Start iterations at the

conventional starting

point (M-R)

Start iterations at the predicted

convergence point (OINS)

q

λ

m

m

q
m+1

Start iterations at the

predicted starting

point (DDNS)

λm+1

F I G U R E 5 Modified Riks (M-R), data-driven nonlinear solver, and one-iteration nonlinear solver start iterations at various points
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Equation (13)

Equation (18)

Eight

F I G U R E 6 Detailed flowchart of one-iteration nonlinear solver

As described in this figure, OINS starts iterations at the closest point to the convergence point of each load step. This is
numerically demonstrated in Section 5 via OINS only needs about one iteration to reach the convergent solution of each
load step. In addition, OINS significantly saves number of iterations (about 77%–80%) and a huge amount of computation
compared with the modified Riks method. Finally, Figure 6 shows the detailed flowchart of OINS corresponding to the
core idea as mentioned earlier.

5 NUMERICAL RESULTS

In this section, the reliability and efficiency of the proposed method (OINS) is verified via solving nonlinear problems
which have different types of equilibrium paths. Abilities of OINS to detect limit points and to predict various types of
instabilities are investigated. All the GMDH networks in this paper are trained using the following parameters: five hidden
layers, two input data groups, the highest number of neurons in each layer is 25 and eight datasets generated from eight
previous increments. 95% of the datasets are used as the training set while 5% of these sets are used as the testing set. With
these parameters, we demonstrate numerically that the trained networks give good and stable predictions in the below
problems. It should be emphasized that OINS bases on networks and all networks of deep learning need the available
data for training. Accordingly, the first eight load steps of an arbitrary analysis in this study are conducted using the M-R
solver for generating data. Then, networks are built based on the generated data and OINS is begun from the ninth load
step to the end of the analysis. Therefore, the comparisons of computational efficiency between M-R and OINS in the
below tables are conducted from the ninth load step. Some below typical problems are solved to prove the high reliability,
efficiency and ability of OINS. It is noted that OINS can be used for any problems relating to the nonlinearity. All the
below problems are solved using 14 × 14 cubic elements and 4×4 Gauss points for each element. The material properties
are given as follows: Poisson’s ratio v = 0.3 and Young’s modulus E = 3.103 kN/mm2. Hinged and clamped boundaries
in numerical models are simply described as

• Hinged

u0 = v0 = w0 = 𝛽y = 0 at x = 0, 𝛼R. (37)
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• Clamped

u0 = v0 = w0 = 𝛽x = 𝛽y = 0. (38)

5.1 Evaluate performance of GMDH networks and accuracy of OINS

We consider a hinged panel subjected to a point load at the center as illustrated in Figure 7. The geometry of panel
is described as follows: the length L = B = 508 mm, the radius R = 2540 mm and the thickness h = 12.7 mm. Firstly,
we evaluate performance of GMDH for the proposed method via training and applying a following typical network.
For data generation, we analyze the panel with eight load steps and obtain eight load factor increments (Δ𝜆) which
are considered as eight datasets for training the network. Next, we separate the datasets into two groups: Train data
including six first data sets (1 − 6) and Test data including two next datasets (7 − 8). The training process and the apply-
ing process of the GMDH network using two input data groups (or two samples s = 2) are summarized in Figure 8. It
should be noted that: the more number of input data groups, the higher accuracy of forecasting but the higher com-
putational cost. In this paper, number of input data groups are fixed at two for all networks with the balance between
accuracy and computational efficiency. The training process and the applying process are explained briefly as follows:
The network is trained using the target data from Train data and two input data groups; The output data is obtained
via applying the trained network. Then, we compare the obtained output with the target data to evaluate the accuracy
of the prediction. For convenience in comparison, both the output data and the target data are divided into two small
groups: one group belongs to Train data, the rest one belongs to Test data as presented in Figure 8. It is interesting
that total time for training and applying of the network is extremely low (0.0019 s). This thanks to the very small data
is used and the advantages of a self-organizing deep learning network (GMDH). Especially, a very good prediction of
the trained network is obtained and presented in Figure 9. High performance of GMDH for the proposed method is
verified.

To evaluate the accuracy of the proposed method (OINS), we continue analyzing the hinged panel under a central
point load (the above problem). Eight first load steps are performed to obtain eight load factor increments (Δ𝜆0 ∼ Δ𝜆7) as
presented in Table 1. Then, eight load factor increments are considered as eight datasets for training the GMDH network.
Next, we calculate the predicted load factor increment of the ninth load step (Δ𝜆8,pre) by applying the trained network
as shown in Table 1. To evaluate the accuracy of OINS, we typically compute load factor of the ninth load step (𝜆9) from
the known eighth step using the modified Riks method and the OINS. The obtained results from these two methods are
presented in Table 2. It is seen that error of results from these two methods is 0%. Especially, the modified Riks method
requires five iterations to reach the convergence solution of the load step while OINS only needs one iteration to converge.
It is interesting that the predicted convergence solution is as same as the real convergence solution (𝜆9,pre = 𝜆9 = 0.21419).
In addition, using OINS we can save 80% number of iterations compared with M-R. High efficiency and accuracy of OINS
are confirmed.

F I G U R E 7 A cylindrical panel under a point load
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Eight datasets dl1 dl2Label dl3 dl4 dl5 dl6 dl7 dl8

Value 0.02681 0.02603 0.02527 0.02451 0.02377 0.02303 0.02230 0.02158

dl1 dl2 dl3 dl4Two input data groups

dl2 dl3 dl4 dl5 Train network

dl3 dl4 dl5 dl6Target data

dl1 dl2 dl3 dl4 dl5Two input data groups dl6

dl2 dl3 dl4 dl5 dl6 dl7

Apply network
trained network

Output data Label dl'3 dl'4 dl'5 dl'6 dl'7 dl'8

Value 0.02527 0.02451 0.02377 0.02303 0.02230 0.02158

outputs belong to Train data 

Target data dl5 dl6

outputs belong to Test data 

dl7 dl8Label dl3 dl4

Value 0.02527 0.02451 0.02377 0.02303 0.02230 0.02158

targets belong to Train data 

Train data Test data

targets belong to Test data 

F I G U R E 8 Train and apply a group method of data handling network using two input data groups, dl: delta lambda (Δ𝜆)

5.2 Predict various types of instabilities using OINS

In this section, abilities of OINS to detect limit points and to predict various types of instabilities are investigated. The
hinged panel under a central point load in Figure 7 is continued analyzing. As mentioned earlier, the geometry of the
panel is described as: L = B = 508 mm, R = 2540 mm and h = 12.7 mm. As seen in Figure 10, the obtained result agrees
well with the result of the modified Riks method combined with the present formulation, with that of Crisfield3 and
Sabir,48 respectively, using the modified Riks and Newton–Raphson methods in the framework of finite element analysis.
It is observed that OINS can detect limit points and predict exactly “snap-through type of instability.” In addition, Table 3
shows number of average iteration of M-R and OINS for analyzing panel with different arc lengths. It is interesting that
number of average iteration of OINS is only one iteration per load step while that of M-R are 4.4–4.6 iterations per load
step. It can be concluded that OINS significantly saves number of iterations (about 77%–78%) and saves a huge amount
of computation compared with M-R. Again, high efficiency and accuracy of OINS are confirmed. Figure 11 shows the
response of the panel when the thickness h = 25.4 mm. The obtained result coincides with that of M-R using the same
formulation. It is observed that OINS can detect the inflection point and predict exactly “softening-hardening type of
instability.” From Figures 10 and 11, it is confirmed that the higher thickness, the higher stiffness and bending strength
of the panel. Table 4 presents number of average iteration of M-R and OINS for analyzing panel with h = 25.4 mm and
various arc lengths. Again, it is seen that number of average iteration of OINS is only one iteration per load step while that
of M-R are 4.7–4.8 iterations per load step. It can be concluded that OINS significantly saves number of iterations (about
79%) and saves a huge amount of computation compared with the modified Riks method. Figures 12 and 13, respectively,
show the responses of the panel when L = 1.6B, h = 6.35 mm with various arc lengths. It should be noted that in the last
case h = 6.35 mm, the boundary is clamped-hinged. In both figures, the present results coincide with that of M-R. High
accuracy of OINS is confirmed. It is observed that OINS can predict exactly “snap-back type of instability” in these two
cases. In both cases, number of average iteration of OINS is about one iteration per load step as presented in Tables 5
and 6. It is concluded that the proposed method (OINS) has a high reliability and accuracy for geometrically nonlinear
problems. OINS significantly saves number of iterations and a huge amount of computation compared with the modified
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3 4 5 6

Number of data sets

0.023

0.0235

0.024

0.0245

0.025

0.0255

Targets

Outputs

(A) Train data

7 8

Number of data sets

0.0215

0.0216

0.0217

0.0218

0.0219

0.022

0.0221

0.0222

0.0223

0.0224

Targets

Outputs

(B) Test data

F I G U R E 9 High performance of the trained network with total time for training and predicting: 0.0019 s. (A) Train data; (B) test data

T A B L E 1 Predict load factor (LF) increment of the ninth step using LF increments of eight previous
steps and group method of data handling
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F I G U R E 10 Central deflection of a hinged panel with h = 12.7 mm, B = 508 mm and L = B
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F I G U R E 11 Central deflection of a hinged panel with h = 25.4 mm, B = 508 mm and L = B

T A B L E 3 Number of average iteration of the modified Riks method and one-iteration nonlinear solver (OINS) for analyzing a hinged
panel with h = 12.7 mm, B = 508 mm, L = B

Methods Arc lengths Total increments Total iterations Number of average iteration

Modified Riks 0.015 142 658 4.6

OINS 143 1.0

Modified Riks 0.012 177 816 4.6

OINS 177 1.0

Modified Riks 0.01 217 965 4.4

OINS 217 1.0
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F I G U R E 12 Central deflection of a hinged panel with h = 12.7 mm, B = 508 mm and L = 1.6B
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F I G U R E 13 Central deflection of a clamped-hinged panel with h = 6.35 mm, B = 508 mm and L = B
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T A B L E 4 Number of average iteration of the modified Riks method and one-iteration nonlinear solver (OINS) for analyzing a hinged
panel with h = 25.4 mm, B = 508 mm, L = B

Methods Arc lengths Total increments Total iterations Number of average iteration

Modified Riks 0.025 72 336 4.7

OINS 72 1.0

Modified Riks 0.03 74 355 4.8

OINS 74 1.0

Modified Riks 0.035 62 299 4.8

OINS 62 1.0

T A B L E 5 Number of average iteration of the modified Riks method and one-iteration nonlinear solver (OINS) for analyzing a hinged
panel with h = 12.7 mm, B = 508 mm, L = 1.6B

Methods Arc lengths Total increments Total iterations Number of average iteration

Modified Riks 0.015 160 735 4.6

OINS 183 1.1

Modified Riks 0.012 202 910 4.5

OINS 209 1.0

Modified Riks 0.01 244 1069 4.4

OINS 244 1.0

T A B L E 6 Number of average iteration of the modified Riks method and one-iteration nonlinear solver (OINS) for analyzing a
clamped-hinged panel with h = 6.35 mm, B = 508 mm, L = B

Methods Arc lengths Total increments Total iterations Number of average iteration

Modified Riks 0.015 157 724 4.6

OINS 188 1.2

Modified Riks 0.012 217 987 4.5

OINS 231 1.1

Modified Riks 0.01 244 1090 4.5

OINS 249 1.0

Riks method. Especially, OINS not only detects successfully limit and inflection points but also predicts exactly various
types of instabilities of structures.

6 CONCLUSIONS

In this study, the novel OINS based on time series prediction and the modified Riks method (M-R) has been proposed for
nonlinear problems of solid mechanics. Different from the existing nonlinear solvers, OINS is established based on the
following key concept:

• Firstly, we predict the load factor, displacement vector increments and the convergent solution of the present load step
through the predictive networks which are trained by using the load factor increment and the displacement vector
increment of the previous convergence steps and GMDH.

• Thanks to the predicted convergence solution of the load step is very close to or identical with the real one, the predic-
tion phase used in any existing nonlinear solvers is eliminated completely in OINS. Next, the correction phase of M-R
is adopted and the iteration is started at the predicted convergence point to reach the convergent solution.
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It is interesting that total time for training and applying of a GMDH network is extremely low. This thanks to the very
small data is used and the advantages of a self-organizing deep learning network (GMDH). The reliability and efficiency
of the proposed method (OINS) is verified via solving some geometrically nonlinear problems which have different types
of equilibrium paths. It should be noted that OINS can be used for any problems relating to the nonlinearity. From the
obtained results, it is concluded that OINS only needs about one iteration per load step. The maximum arc-length to
obtain good predictions of GMDH networks and the high efficiency of OINS is 0.015. For nonlinear problems which have
the monotonous equilibrium or the equilibrium with an inflection point on it, we can use a larger arc-length for analysis
(> 0.015) to reduce number of steps but still ensure the high efficiency of OINS. OINS is powerful and has a high accuracy
for nonlinear problems. In addition, OINS significantly saves number of iterations (about 77%–80%) and a huge amount
of computation compared with M-R. Especially, OINS not only can detect successfully limit, inflection, and other special
points but also can predict exactly various types of instabilities of structures.
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