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Abstract: Wild chrysanthemums mainly present germplasm collections such as leaf multiform,
flower color, aroma, and secondary compounds. Wild chrysanthemum leaf identification is critical
for farm owners, breeders, and researchers with or without the flowering period. However, few
chrysanthemum identification studies are related to flower color recognition. This study contributes
to the leaf classification method by rapidly recognizing the varieties of wild chrysanthemums through
a support vector machine (SVM). The principal contributions of this article are: (1) an assembled
collection method and verified chrysanthemum leaf dataset that has been achieved and improved;
(2) an adjusted SVM model that is offered to deal with the complex backgrounds presented by
smartphone pictures by using color and shape classification results to be more attractive than the
original process. As our study presents, the proposed method has a viable application in real-picture
smartphones and can help to further investigate chrysanthemum identification.

Keywords: chrysanthemum breeding; color classification; neural networks; shape classification;
support vector machine

1. Introduction

Chrysanthemum (Chrysanthemum sp.), which belongs to the Asteraceae family, is a
floricultural crop with high economic value, and is second only to roses in the floral trade
market [1]. Wild chrysanthemums are attractive because of their flower color, leaf shape
and type, and their secondary compounds, which are the main characteristics for discerning
the distinctions between floral crops for horticultural studies [1,2]. Chrysanthemum boreale,
a diploid species, displays small yellow flowers and shows a variety of morphological char-
acteristics in natural growth in Korea [2]. Wild C. boreale is present in numerous habitats,
including in Gangwon-do, Gyeonggi-do, Gyeongsangbuk-do, Gyeongsangnam-do, and
Jeollabuk-do in Korea [2]. C. indicum consists of diploid, tetraploid, or hexaploid popula-
tions, presents small yellow ray florets, and has been known to be used in treatments of
hypertension, inflammation, and respiratory disorders [2]. C. indicum, which has been stud-
ied for its flowering time, yields, and bioactive compounds, provides morphological leaf
shapes in wild habitats [2]. In Korea, the wild C. indicum is located in Incheon, Jeollabuk-do,
Gyeongsangbuk-do, Chungcheongbuk-do, and Jeju-do. C. makinoi, a diploid wild species,
has been mentioned as one of the progenitors of the cultivated hexaploid chrysanthemum
varieties that are presently produced worldwide [2]. The wild C. makinoi is raised in the
sedimentary rock region of Gangwon-do and Daegu in Korea. C. zawadskii is the major and
most popular variety of wild chrysanthemums, which has white ray florets or white-purple
flowers in Korea [2]. The chromosome level of C. zawadskii ranges from diploid to octoploid.
In Korea, C. zawadskii is found in Gangwon-do, Gyeonggi-do, Gyeongsangbuk-do, and
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Gyeongsangnam-do. Aster spathulifolius belongs to a chronic herb of the Asteraceae family,
and is grown in the wild in the seaside regions of Korea [2]. It has vivid white or light blue
ray florets and thick leaves. The chromosome A. spathulifolius is the diploid number. In
Korea, it is found in Ulleungdo, Busan, and Jeju-do.

Chrysanthemum classification systems have been organized by the International
Union for the Protection of New Varieties of Plants (UPOV). However, adjusting the
morphological characteristics is time-consuming and only a few classification systems
of chrysanthemums have been investigated. Leaf shape, which varies in different wild
chrysanthemums, is one of the main classification characteristics [3]. However, phenotype
identification with the handle method has some drawbacks: first, the common methods are
not the automatic investigation in which the floral experts or owners inspect the handle
in the wild; second, there are many leaf shapes of chrysanthemums, and the number of
individual shapes that belong to the same type is erroneous due to errors that occur when
using the human eye to identify leaf shape. Therefore, proper leaf shape identification tools
require time, investigation, and application.

Machine learning (ML) is a golden key that allows computers to learn various fea-
tures to perform a given task automatically [4,5]. Formerly, various automatic recognition
systems were conducted by applying different ML algorithms [6] using Support Vector
Machines (SVM) and spectral vegetation [7]. A framework was applied to image pro-
cessing methods and ML to classify five different plant leaf diseases [8]. All results of
automatic recognition techniques illustrated the identification with accuracy varying from
83% to 94%. Computer-based image analysis can be implemented to extract morphological
features, such as leaves, for botanical identification [9]. Our solution to the taxonomic
problems required extensively-trained specialists that used visual identification as the
primary method for this approach. The study used 40 leaves from 30 trees, as well as shrub
species from 19 different families, to compare scanners and mobile phone pictures based on
color, shape, and texture [10]. All devices were compared by three ML algorithms (adaptive
boosting-AdaBoost, random forest, support vector machine (SVM)) and an artificial neural
network model (deep-learning) [10]. Computer vision identified species efficiently (higher
than 93%), with similar results achieved for both mobile phones and scanners [10]. The
algorithms’ SVM, random forest, and deep-learning effectively accomplished more than
the AdaBoost [10]. The smartphone-assisted disease diagnosis was applied to identify
crop diseases by deep-learning methods. Based on a public dataset of 54,306 images of
plant leaves, which showed both diseased and healthy samples to collect under controlled
conditions, a deep convolutional neural network was trained to identify 14 crop species
and 26 diseases (or absence thereof). The trained model obtained an accuracy of 99.35%
on a held-out test set. The deep-learning models were useful to the increasingly large and
publicly available image datasets that present a clear path toward smartphone-assisted
crop disease diagnosis on a massive global scale [11].

In this study, we classify five chrysanthemum species to identify five leaf shapes using
an SVM tool. We hope that this tool is useful for the identification of wild chrysanthemum
species within flower recognition. We emphasize that the shape-recognition tool of chrysan-
themum leaves might be applied for chrysanthemum image identification with the rapidly
obtained predicted data of the cultivar characteristics that correspond to the cultivar image
system. Moreover, tools for input data are needed to upgrade real-time identification for
the next iteration. In addition, it could be used to recognize individual species to improve
germplasm material for chrysanthemum breeding.

2. Methodology

Figure 1 describes the five main processes of the leaf dataset, which include: (1) data
collection, (2) data partitioning, (3) feature extraction, (4) feature engineering, and (5) pre-
diction model.
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Figure 1. The architecture of the framework highlighting comprehensive guidance for our overall
study.

2.1. Plant Material and Data Collection

We collected four wild chrysanthemums, including C. borale, C. indicum, C. makinoi,
and the common C. zawadskii (Figure 2). A. spathulifolius was used as a wild type belonging
to the Asteraceae family (Figure 2). In this study, the dataset collection was performed in
greenhouse shooting using an LG Q52 smart phone with a main quad camera including:
48 MP, f/1.8, (wide), 1/2.0”, 0.8 µm, PDAF; 5 MP, f/2.2, 115◦ (ultrawide), 1/5.0”, 1.12 µm;
2 MP, f/2.4, (macro); and 2 MP, f/2.4, (depth). The dataset contains a total of 1317 images
with the same shooting condition at 9 am in a greenhouse at the Chrysanthemum Research
Institute of Sejong University, Korea.
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Figure 2. Sample images for five types of wild chrysanthemum.

2.2. Data Partitioning

A total of 1317 images for 5 types of leaves are collected at the end of the data
collection process. A detailed description of the dataset used in this study is described in
Table 1. The original dataset, which contains 1068 images that present 5 species of examined
chrysanthemums, is divided into a training set (80%) and a validation set (20%). Finally,
the testing set, with an additional 249 images, is collected to evaluate model performance.

Table 1. Detailed explanation of the dataset used in this study.

Class Training Set Validation Set Testing Set

C. boreale 192 48 52
C. indicum 201 51 59
C. makinoi 221 56 56

C. zawadskii 197 50 23
A. spathulifolius 193 49 59

Total 814 254 249

2.3. Feature Extraction

Before the feature extraction process, various preprocessing methods are implemented
to reduce noises and improve the feature extraction process. Firstly, gaussian blur is
implemented on the original datasets to smooth the image. Otsu’s method is then applied
to perform adaptive thresholding on the blurred images [12]. A morphological closing
operation is conducted in order to fill the small holes that may appear after the thresholding
process. Finally, the shape boundary is extracted using the contours.

By investigating the dataset, we conclude that it is challenging to perform leaf classifi-
cation using only the image because some types of leaves appear identical at first look to
the human eye (C. indicum and C. makinoi). Therefore, additional features, such as shape,
color, and texture, need to be extracted from the original images in order to support the
classification process. In total, there are 17 features extracted for the training process. The
detailed description for each feature is described as follows.

2.3.1. Shape Features

Shape features are an important indicator that can be used to differentiate between
different species. This section extracts various shape-related features, such as physiological
width, length, area, perimeter, aspect ratio, rectangularity, and circularity, from the extracted
contours. The description for those shape features is explained in Table 2.
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Even though leaves from two different species can have the same physical width/length,
other shape feature information, such as perimeter and area, can also be used to differentiate
them.

Table 2. Description and explanation for shape features extracted from the dataset.

Name Sample Explanation

Physiological width
(w)
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2.3.2. Color Features

Color is an important feature that can distinguish objects with very similar geometric
properties with different colors and vice versa. Therefore, this section extracts various
color features from the most common RGB color space that contains red, green, and blue
components with a range of values from 0 to 255. Initially, individual red, green, and blue
color components were separated from the original image. Each component’s mean and
standard deviation are then computed and used as the color features.

At the end of this process, a total of six color features are extracted: mean red, mean
green, mean blue, standard deviation red, standard deviation green, and standard deviation
blue.
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2.3.3. Texture Features

The Zernike and Haralick features [13] were first extracted using the Mahotasimage
processing library to compute the texture features used in this study. Texture features,
which provide surface characteristics and the appearance of an object found in an image,
are crucial for many computer vision topics. Texture features can be extracted using
various approaches, such as structural, statistical, and model-based techniques [14]. The
most common method is the Gray Level Co-occurrence Matrix (GLCM), which offers 13
statistical points of information on the spatial relationships of pixels in an image [15].
Various important textural features can be computed based on the GLCM to expose details
about the image content.

Table 3 describes four textural features that are essential for leaf classification in this
study.

Table 3. Description and explanation for texture features extracted from the dataset.

Name Sample Explanation

Contrast
N−1
∑

i, j=0
pij(i− j)2

Measures the intensity or
gray-level variations between the
reference pixel and its neighbor.

Correlation ∑i ∑j(ij)p(i,j)−µxµy

σxσy

Measures the gray-tone linear
dependencies in the image.

Inverse difference moment ∑i ∑j
1

1+(i−j)2 p(i, j)
Measures the local homogeneity
of an image.

Entropy −
N−1
∑

i, j=0
pij ln pij

The quantity of energy that is
permanently lost to heat every
time a reaction/physical
transformation appears.

2.4. Feature Engineering

Seventeen individual features were collected for each image from the dataset after
the feature extraction process. However, there was a huge different in value range of each
feature. Therefore, StandardScaler, which is a crucial feature in engineering techniques,
was implemented to standardize the range of functionality of each extracted feature by the
mean of 0 and standard deviation of 1.

2.5. Model Description

A Support vector machine (SVM) is a supervised learning algorithm mostly used
for classification, which has been proven to fit the training dataset well and to accurately
classify unseen data [16]. SVM takes training samples and produces an optimal hyperplane
that separates all training samples into different classes efficiently and can be used to
classify new data points. In two dimensions, the hyperplane is a simple line.

As explained in the previous section, 17 features are extracted for each image, which
increases the complexity and leads to a nonlinearity problem. Therefore, the kernel trick is
introduced to SVM to solve the nonlinear dataset by mapping it to a higher dimensional
space. Available kernel functions are linear, nonlinear, polynomial, radial basis function
(RBF), and sigmoid. This study implements the Radial Basis Function (RBF) kernel because
it is localized and has a finite response along the complete x-axis [17]. The equation for RBF
is supplied below.

F
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
(1)

where ‖xi − xj‖2 is the Euclidean distance between xi and xj, and γ represents the Gamma
parameter.
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3. Experimental Results and Discussion

The SVM model has some hyperparameters, which must be determined before training
because a set of optimal parameters can significantly improve the model’s performance.

In order to determine the optimal hyperparameter values, a grid search technique is
first implemented on all possible hyperparameter combinations. After that, each set of
hyperparameters is used to train the SVM model in order to find the one that helps the
model obtain the highest performance. Finally, a 5-fold cross-validation, which randomly
splits the training data into five non-overlapping subsets of equal size, is implemented
to further improve the model’s robustness. For each iteration, 4 subsets are utilized for
training and the remaining subset is applied to evaluate the model. The final output is the
mean value of the five folds.

Table 4 illustrates the value ranges for each hyperparameter and the optimized param-
eter value after performing the grid search approach.

Table 4. Default value range and optimal value for two important hyperparameters of the SVM
algorithm.

Hyperparameters Description Considered Values Optimal Value

γ
Kernel coefficient for the

RBF kernel 10−6, . . . , 10−1 10−1

C Regularization parameter 100, 101, . . . , 103 100

3.1. Training Results

Figure 3 shows the training and validation scores of the SVM model for different
values of the kernel hyperparameter γ. For low values of γ (10−6, 10−5), it can be seen that
both the training and validation scores are significantly slow at about 0.24, which indicates
that the model is underfitted. The training and validation scores increase gradually as the
γ increases and reach a peak at 0.986.
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3.2. Testing Results

In this section, the model performance is tested on a manually collected testing set
that was not used during the training process.

Figure 4 visualizes the confusion matrix between the true and predicted labels for
each leaf type. Overall, the model showed a high rate of classification accuracy of over
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80% on A. spathulifolius, C. boreale, C. indicum, and C. zawadskii. However, it displayed poor
performance for the C. makinoi class with an accuracy of 57%. It incorrectly predicted 15 C.
makinoi images as A. spathulifolius and 7 C. makinoi images as C. boreale, which may be due
to the similarities in shape and color between the C. makinoi leaf and those of the C. boreale
and A. spathulifolius leaves.

Horticulturae 2022, 8, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 3. Training and validation curves using SVM with different kernel coefficient values. Note: 
For each coefficient value, the grey field of the validation score is formed based on the lowest and 
highest scores of the 10 folds. 

3.2. Testing Results 
In this section, the model performance is tested on a manually collected testing set 

that was not used during the training process. 
Figure 4 visualizes the confusion matrix between the true and predicted labels for 

each leaf type. Overall, the model showed a high rate of classification accuracy of over 
80% on A. spathulifolius, C. boreale, C. indicum, and C. zawadskii. However, it displayed poor 
performance for the C. makinoi class with an accuracy of 57%. It incorrectly predicted 15 
C. makinoi images as A. spathulifolius and 7 C. makinoi images as C. boreale, which may be 
due to the similarities in shape and color between the C. makinoi leaf and those of the C. 
boreale and A. spathulifolius leaves. 

 
Figure 4. Confusion matrix on the testing dataset using the trained model. 

We then visualize the model performance for two different scenarios, including the 
frontside and backside of the leaves (Figure 5). The results prove that the model per-
formed well on A. spathulifolius for both scenarios, most likely because the leaf shape of A. 
spathulifolius is different from other types. Conversely, the model predicted the backside 

Figure 4. Confusion matrix on the testing dataset using the trained model.

We then visualize the model performance for two different scenarios, including the
frontside and backside of the leaves (Figure 5). The results prove that the model performed
well on A. spathulifolius for both scenarios, most likely because the leaf shape of A. spathuli-
folius is different from other types. Conversely, the model predicted the backside of the
C. zawadskii and C. boreale significantly better than the frontside with a confidence rate of
90.3% and 62.6%, respectively. For the C. makinoi, the backside shows higher confidence
than the frontside at 69%. Finally, for the C. indicum, the model showed higher confidence
of 90% on the frontside compared to 63.4% on the backside.

In roses, the use of Convolutional Neural Network (CNN) was identified and classi-
fied in the flower’s characteristics [18]. In the work of flower identification, ten species,
Anthurium, Bougainvillea, Dianthus, Euphorbia, Ixora, Jetropha, Petunia, Phlox, Perwin-
kle, and Tecoma, were classified using Faster-Recurrent Convolutional Neural Network
(Faster-RCNN) and Single Short Detector (SSD) for flower characteristics [19]. Furthermore,
the CNN application is used to classify 43 different plant flowers in smart phone pictures,
with up to 90% accuracy [20].

Chrysanthemum identification is an important technique to provide the exact rec-
ognized chrysanthemum individual species. There are some tools for chrysanthemum
identification, such as self-incompatibility [21], morphological traits [22–24], molecular
identification [1,25–28], and deep-learning identification [29–33].

The featured plant leaf extraction, such as gas analysis, uses healthy and dead leaves to
identify the plant leaves using CNN. When using the Hue, Saturation, Value (HSV) model,
the accuracy is almost 98% in the proposed model [34]. The smartphone application was
developed to identify four kinds of herbs, fruits, and vegetable plants available in Sri Lanka
using leaf features such as shape, texture, and color [35]. Five machine learning algorithms,
such as SVM, Multilayer Perceptron, Random Forest, K-Nearest Neighbors, and Decision
Tree algorithms, are 85.82%, 82.88%, 80.85%, 75.45%, and 64.39% accurate, respectively [35].
SVM and Multilayer Perceptron algorithms exhibited satisfactory performance according
to the results [35].
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However, chrysanthemum leaf identification has not received enough attention from
the research community. Based on our study, the proper tool for wild chrysanthemum
identification was applied and our results show the proper performance.
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4. Conclusions

In this study, we classify five wild chrysanthemum leaf-shape types using a handle
smartphone-collected dataset. The confidence percentage of A. spathulifolius is highest for
both scenarios. For the remaining four wild chrysanthemums, differences between the
frontside or backside are used to identify the leaves. Overall, we recognize that our model
is proper for wild chrysanthemum leaf identification. However, this is the first study of
chrysanthemum leaf identification, and we plan to extend the proposed model to identify
over 200 wild chrysanthemum individuals. In the future, we hope more concentration can
be applied to the development of leaf identification systems on smart phone devices because
these devices are useful and easily accessible to farm owners, breeders, and researchers.
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