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A B S T R A C T   

A tunnel is an imperative underground passageway that supports fast and uninterrupted transportation. Over 
time, various factors, such as ageing, topographical changes, and excessive force, slowly affect the tunnel’s in-
ternal structure, which causes tunnel defects that can reduce the structure’s stability and eventually lead to 
enormous damage. Therefore, the tunnels need to be checked regularly to detect and fix the cracks promptly. 
Earlier inspection approaches mainly relied on the operators who directly observed videos to detect the cracks 
and determine their seriousness, which is laborious, error-prone, and tedious. This research suggests a deep 
learning-based tunnel lining crack segmentation framework for tunnel images taken by high-resolution cameras. 
The primary contributions are (1) a lining crack segmentation framework, which is motivated by U-Net archi-
tecture, where the encoder is replaced by a ResNet-152 model, (2) the automated measurement of the segmented 
cracks, which include length, thickness, and type, and (3) a huge lining crack segmentation database. The 
experimental results showed that the framework obtained comparable performance compared to existing crack 
segmentation models and supported the automated measurement of the segmented cracks.   

1. Introduction 

Tunnels are a fundamental public infrastructure that ensures essen-
tial civilian or military services and stimulates the economic growth of 
every community (Huang et al., 2021). Their status has gradually 
changed from the newly built structure to mainly maintenance in many 
developed countries. A delay in tunnel maintenance can cause sudden 
structural and functional failure, which demands a huge maintenance 
budget and potentially causes unwanted accidents (Attard et al., 2018). 
As a result, extensive and timely tunnel inspection is required to ensure 
the tunnel’s structural stability and fundamental functionality through 
the operational time. 

Current crack evaluation systems primarily focused on human visual 
inspection to ensure the tunnel’s structural and functional requirements. 
However, those approaches hold severe shortcomings (Xu & Yang, 
2020), such as prejudice in the inspector’s decision, high labor cost, high 
time-consumption, and shortened operational uptime of the tunnel. To 
overcome such challenges, other non-destructive approaches, including 

visual imaging (Kaise et al., 2020), ultrasound tomography (Zhan et al., 
2020), acoustic emission (Wang et al., 2020), and ground-penetrating 
radar (Liu et al., 2021), have been increasingly implemented for the 
tunnel inspection. These approaches usually demonstrate low perfor-
mance and still mainly rely on human resources. 

Recently, a new generation of scanning systems and robots equipped 
with high-resolution image acquisition devices and vision-sensing 
technologies has been increasingly used in order to provide a high- 
quality inspection (Loupos et al., 2018). The huge volume of multi-
media data motivates the development of automatic inspection systems 
that aid the tunnel investigation and deliver a reliable structural eval-
uation (Y. Liu et al., 2019; Menendez et al., 2018). For example, a self- 
developed moving tunnel inspection robot equipped with multiple line- 
scan cameras to synchronously obtain raw data of the tunnel surface 
(Zhao et al., 2021; Zhao et al., 2020). An advanced multi-degree-of- 
freedom (multi-DOF) robot includes a moving vehicle, an extending 
crane, and a high-accuracy robot arm was made recently (Menendez 
et al., 2018). In addition, many ultrasonic sensors and a 3D vision system 
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are put on the front of the robot to identify various defect features 
efficiently. 

Lining cracks have a major role in tunnel safety because they are an 
early indicator that reveals the structure load conditions (Lei et al., 
2021; N. Zhang et al., 2019). They can expose the concrete’s inner 
material to environmental factors, such as water and air, which lead to 
further degradation and corrosion of the structure (Dang et al., 2022). 
Moreover, harsh noise and uneven lighting that frequently happens 
during the data collection process can also significantly influence the 
performance of automatic tunnel inspection systems (Attard et al., 
2018). 

Most traditional tunnel crack detection methods are based on edge 
detection, which identifies major local intensity shifts on the boundary 
of two distinct regions in an image. Standard edge detection algorithms 
are Canny edge detector and Laplacian of the Gaussian (Wang et al., 
2018). Another common approach is the threshold segmentation 
method, which is well-known for its simplicity (Kamaliardakani et al., 
2016). For instance, a tunnel-lining crack segmentation framework, 
which utilized edge detection, adaptive partitioning, and the OTSU 
thresholding to obtain a more reliable segmentation performance, was 
proposed recently (Attard et al., 2018). The introduction of a customized 
denoising method allowed the model to achieve superior segmentation 
results with low error rates. However, the conventional methods can 
only recognize a series of unconnected crack edges that are required to 
be linked together using some post-processing techniques to extract the 
complete crack edges and often struggle to find the cracks in the high- 
clutter and low-contrast images. 

In the past few years, deep learning has offered remarkable perfor-
mances on crack segmentation applications, which can automatically 
learn distinctive features from the training data (Minh et al., 2021). 
Through the suggestion of the fully convolutional networks (FCN) (Long 
et al., 2015) and the U-Net architecture (Ronneberger et al., 2015), it 
becomes feasible to obtain the spatial features using the transposed 
convolution operation, which is the core concept in image segmentation 
models. For example, a defect segmentation of shield tunneling based on 
the fully convolutional network (FCN) was trained for a huge number of 
iterations to perform the forward and backward learning process effi-
ciently (Huang et al., 2018). The model demonstrated state-of-the-art 
crack segmentation performance with a low error rate. In other 
research, a real-time deep learning-based crack segmentation frame-
work (SDDNet) that efficiently dealt with challenging problems, such as 
crack-like objects and complicated backgrounds, was proposed (Choi & 
Cha, 2019). The model contained regular convolutional layers, dense 
layers, a customized atrous spatial pyramid pooling (ASPP) block, and a 
decoder block, which obtained the average mean intersection-over- 
union (mIoU) of over 0.8 on the test set. Moisture marks, formed by 
cracks inside the tunnel, are viewed as one of the most critical structural 
issues for the tunnel. As a result, a Mask R-CNN-based instance seg-
mentation system was proposed to recognize them automatically (Zhao 
et al., 2020). The authors revealed that the IoU, F1 score, and accuracy 
of the model were better than previous state-of-the-art structures, such 
as FCN and region growing algorithm (RGA). Finally, the path aggre-
gation network (PANet) was recently improved to perform tunnel crack 
segmentation effectively (Zhao et al., 2021). The authors integrated an 
A* algorithm into the PANet to perform crack segmentation and quan-
tification in a single step. The experimental results proved that the 
proposed model was superior at reducing crack disjoint issues and 
skeletonization error. The listed approaches each have particular 
strengths and weaknesses. The main advantage is that the features are 
extracted automatically as part of the learning process without any 
handcrafted parameters. However, those models demand a massive 
dataset and a tedious labeling process that limits adaptation in existing 
systems. In addition, they wrongly segment a complete lining crack as a 
series of disconnected cracks during the testing process, which is 
referred to as the disjoint problem (Xu & Yang, 2020). 

Some previous studies have tried to compute the segmented crack’s 

length and thickness in order to offer the engineers with more useful 
statistics (Wang et al., 2021). For example, an efficient approach was 
introduced to measure the cracks to get the width and thickness prop-
erties (Yang et al., 2018). The experimental results showed that the 
outputs are correct for simple cracks, but the crack length was wrongly 
miscalculated when the segmented crack had the disjoint problem. Still, 
other important crack properties, such as thickness, type, and area, were 
ignored. 

By pointing out the weakness of previous related work, there is a 
pressing need to develop a robust lining crack segmentation framework 
that can segment the tunnel crack with high accuracy as well as support 
the analysis of the crack’s essential features, such as length, thickness, 
and type. Motivated by recent successes of deep learning on various 
applications (Dang et al., 2018; Hassan et al., 2019), this study offers a 
customized encoder-decoder-based structure based on the U-Net struc-
ture to effectively segment tunnel cracks using the crack’s abstract 
features. After that, various post-processing methods are introduced to 
significantly reduce the noise in the segmented images. Finally, addi-
tional information about the segmented crack, such as crack length, 
thickness, and crack type, is extracted. The main objectives of this paper 
include:. 

1. An introduction of a huge tunnel lining crack segmentation dataset 
with about 170,000 crack images and 170,000 mask images. 

2. The proposed model replaces the U-Net encoder with a ResNet 
model, which significantly improved its performance compared to the 
U-Net in reducing noise. 

3. Several post-processing methods were introduced to reduce noise 
generated during the segmentation process. 

4. The extraction of crucial knowledge related to the segmented 
cracks, such as crack length and thickness. 

5. A method to determine the lining crack type based on the crack 
intersection. 

The work is divided as follows. Section 2 explain the creation of the 
lining crack segmentation dataset. Next, the crack segmentation 
framework based on the U-Net structure is introduced in Section 3. 
Moreover, the post-processing process and crack measurements are also 
described. In Section 4, various experiments are performed to assess the 
proposed framework’s performance and robustness on both the crack 
segmentation and the crack measurements. Section 6 then summarizes 
the research by discussing the proposed model’s strengths and weak-
nesses and finally showing the future work. 

2. Tunnel lining crack dataset 

2.1. Dataset collection 

Initially, a Tunnel Deep Scanner truck was controlled to collect im-
ages of 5 different tunnels across Korea, which include Hwasan, Deug-
seong, Gamcheon, Banggyo, and Bongsan from January 11th, 2020, to 
August 27th, 2020. After the data collection process, 6810 high- 
resolution images were collected. 

The inspection speed of the truck is kept stable at approximately 3–5 
km/h to keep a high inspection precision. The truck was equipped with 
night 4 K line-scan cameras (4000× 3000) that use the charge-coupled 
device (CCD) sensors to ensure that high-quality images are captured 
with low noise (Song et al., 2019). The settings of the line-scan cameras 
guarantees that all images are collected orthogonal to the lining surface. 
In addition, fifteen LED lights (100 W ~ 300 W) are equipped to offer 
enough lighting to ensure the coherency of images (Nguyen et al.). The 
truck’s inspection range is about 180 degrees excluding the bottom, and 
the filming distance is kept stable at approximately 2 m from the tunnel 
surface. 

2.2. Data stitching and data labeling 

After the data collection step, an image stitching algorithm was 
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implemented to thoroughly inspect the tunnel lining cracks. The image 
stitching process involves some basic steps. Firstly, keypoints were 
detected using keypoint detectors, such as Difference-of-Gaussian (DoG) 
or Harris. Local invariant descriptors, such as scale-invariant feature 
transform (SIFT) or speeded-up robust features (SURF), were then 
computed from the input images. Secondly, the descriptors between the 
images were matched. Next, a homography estimation method was 
applied using the matched keypoints to estimate a homography matrix. 
Finally, a warping transformation algorithm was applied to process the 
obtained homography matrix to create the final stitched image. 

In this study, a mosaic algorithm proposed by (Brown & Lowe, 2007) 
was utilized to stitch the collected tunnel images. It addressed the main 
weaknesses of the previous image stitching approaches and produced 
high-quality stitched images by using the invariant local features that 
were insensitive to image order, orientation, and illumination changes. 
The SIFT algorithm was first implemented to extract the invariant local 
features according to the description from the paper. The feature 
matching phase was followed, which detected and extracted a set of 
images with over 6 matches between them. A random sample consensus 
(RANSAC) was then performed to compute the homography, and finally, 
gain compensation and image blending were implemented. After the 
image stitching process, a total of 663 stitched images were generated, 
with the image sizes vary from 10441 × 2910 to50739× 3140, as 
described in Table 1. 

A total of 5 experts from a deep inspection company (“Deep in-
spection, https://www.deepinspection.ai/,” 2021) were assigned a one- 
month labeling task, and averagely, 5 images were labeled individually 
per day. The labeling tool is a computer vision-aided crack annotation 
tool developed using Python and PyQt5, which implemented edge 
detection and morphological techniques to identify the cracks auto-
matically. The experts then manually evaluated and corrected the pre-
dictions with all the lining cracks highlighted in red. At the end of this 
process, the original dataset includes 663 original images (Fig. 1(a)) and 
663 corresponding labeled images (Fig. 1(b)) were created. 

2.3. Segmentation dataset description 

Fig. 1 visualizes the process of creating the segmentation dataset 
from the stitched database. The original stitched image and the corre-
sponding labeled image with the lining cracks highlighted in red are 
displayed in Fig. 1(a) and Fig. 1(b), respectively. After that, a color- 
based thresholding approach was applied to Fig. 1(b) to produce a bi-
nary image, as displayed in Fig. 1(c), where the crack’s regions were 

assigned the pixel value of 255, and the background areas were assigned 
the pixel value of 0 in order to minimize the influence of the color 
channel during the training process. The generated binary images were 
huge, with the image size ranging from 10441 × 2910 to50739× 3140. 
Therefore, a sliding window with the window size of 448 × 448 and a 
stride ratio of 0.3 was used to slide over the original stitched image 
(Fig. 1(a)) to obtain a list of original images and the generated binary 
image (Fig. 1(c)) to extract the corresponding mask images. The win-
dows that contained only the background pixel were removed 
automatically. 

After completing the operation as mentioned above, a collection of 
170,339 original images and 170,339 corresponding mask images were 
obtained. The number of images for each tunnel is described in Table 1. 
The holdout approach used to divide the dataset into training/testing 
data is as follows. 80% of the data (136,271 images) were randomly 
picked as the training set, whereas 20% of the data (34,068 images) 
were used as the testing set to assess the model’s robustness. The 
training dataset was further divided into the training set (100,204 im-
ages) to train the model and the validation set (34,067 images) to fine- 
tune the hyper-parameters. 

3. Methodology 

Fig. 2 describes the main processes of the tunnel crack segmentation 
framework, which includes three main steps. 1) Initially, a Tunnel Deep 
Scanner truck is controlled to take pictures of different tunnels across 
South Korea. After that, the stitched images are generated using the 
collected images. Next, the cracks in the stitched images are manually 
highlighted by experts. A lining crack segmentation dataset for the 
tunnel is produced at the end of the dataset preparation phase. 2) A 
customized deep learning model, which is based on the U-Net and 
ResNet architecture, is then proposed to perform the lining crack seg-
mentation. 3) Several post-processing methods are implemented to 
reduce potential noise from the predicted images. Finally, a skeletoni-
zation operation is applied to facilitate the analysis of the crack length, 
the crack thickness, and the crack type. 

The crack segmentation model is discussed in Section 3.1. The post- 
processing process is then analyzed in Section 3.2. Finally, Section 3.3 
introduces the crack measurements process. 

3.1. Deep learning-based crack segmentation 

Inspired by the remarkable performances of the U-Net architecture 
(Ronneberger et al., 2015) and the ResNet model (He et al., 2016), this 
work introduces a novel TunnelURes model in order to recognize the 
tunnel cracks with high performance and efficiency. The U-Net model 
was introduced to segment the cells, so the transfer learning process did 
not work well on the tunnel crack segmentation topic. Moreover, it was 
undiscovered whether using such a deep segmentation architecture 
effectively recognizes the lining cracks at a pixel level. As a result, it was 
trained from scratch using the collected lining crack segmentation 
dataset. In addition, the encoder of the original U-Net model was 
replaced by the pre-trained ResNet-152 model on the ImageNet dataset 
with the two layers at the head removed (pooling layer and softmax 
classifier) in order to enrich the feature extraction process. 

A series of RGB images with the image size of 448 × 448 is fed into 
the TunnelURes model. They then go through a series of layers, and the 
decoded output is the 448 × 448 binary images, where each pixel cor-
relates with a two-dimensional vector showing the likelihood that a 
pixel is a crack or a background. The vertical rectangles depict various 
intermediate layers, whereas the arrows indicate common deep learning 
operations, such as max-pooling and copy. The main role of each layer is 
described below.  

• Conv# symbolizes the convolutional layer.  
• Max-pooling means the Max-pooling layer. 

Table 1 
Description of the proposed tunnel crack segmentation dataset including orig-
inal dataset (original images labeled images) and segmentation dataset (crack 
images, mask images).  

Location Date Original dataset Segmentation dataset 

Original Labeled Crack Mask 

Hwasan January 11st, 2020 8 8 1529 1529 
January 17th, 2020 50 50 7763 7763 
March 04th, 2020 26 26 7124 7124 

Deugseong March 10th, 2020 50 50 7182 7182 
March 27th, 2020 37 37 6151 6151 
April 10th, 2020 33 33 3895 3895 
April 30th, 2020 30 30 3241 3241 

Gamcheon May 01st, 2020 40 40 6792 6792 
May 08th, 2020 72 72 10,763 10,763 

Bongsan May 16th, 2020 56 56 6234 6234 
June 20th, 2020 79 79 21,193 21,193 
June 25th, 2020 40 40 16,934 16,934 

Banggyo July 12th, 2020 23 23 16,545 16,545 
July 18th, 2020 20 20 12,349 12,349 
July 26th, 2020 36 36 7954 7954 
August 23rd, 2020 30 30 6770 6770 
August 27th, 2020 33 33 27,920 27,920 

Total 663 663 170,339 170,339  
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• Concatenate indicates that two layers are combined at the channel 
level as one layer. 

The ResNet-152 encoder starts with a convolutional layer, which has 
the 7 × 7 kernel size and stride of 2. The first layer was then followed by 
a batch normalization (BN) layer (Santurkar et al., 2018), a rectified 
linear unit (ReLU) layer, and a max-pooling layer. Next, the output 
features go through a series of 3, 8, 36, and 3 repeated residual blocks, as 
indicated by the blue arrow in Fig. 3. Each residual block includes 
convolutional layers, BN layers, and ReLU activations (Schmidt-Hieber, 
2020). 

The convolutional layer is a vital component of deep learning, which 

contains a collection of adjustable convolution kernels. In this work, the 
padding of zero is applied to all the convolutional operations to manage 
the image’s output size and keep the boundary data. From the mathe-
matical viewpoint, the convolutional layer reduces the number of CNN 
parameters and gains weight sharing and weight sparseness better than 
the fully connected layer. Although the output feature maps of the 
convolutional layer demand to be processed further, it is challenging to 
process all extracted features, because the number of parameters ex-
plodes when the model becomes deeper and the possibility of overfitting 
rises significantly. As a result, the pooling layer is used to decrease the 
computational complexity and the overfitting problem. The most used 
pooling operation is the max-pooling, which picks the highest value of a 
2 × 2 distinct area in each image channel to shrink the output 
(w × h × ch becomes w

2 ×
h
2 × ch after applying the max-pooling 

operation). 
Different from the encoder side, the deconvolution layer, or trans-

posed convolutional layer, is the main component of the decoder side. It 
serves as the opposite of the convolutional layer. The decoder uses 
several upsampling blocks, which are indicated in the green arrow 
(Fig. 3), in order to reconstruct the original input size by enlarging the 
spatial dimension of the output twice and decreasing the number of 
feature maps by half. Each upsampling block includes a BN layer, a ReLU 
layer, and a transpose convolution layer (kernel size 2 × 2 and a stride of 
2). In addition, a skip connection is used at every block of the decoder to 
obtain precise positional features. It first merges the output feature maps 
from the transposed convolution layers and the output layer from the 
encoder at the same level, followed by a 1 × 1 convolution for every 
downsampling block. The mentioned skip connection operation can be 
seen from Fig. 3 as the grey horizontal arrows that join the output 
feature maps at each level. 

The batch normalization layer (Santurkar et al., 2018) normalizes 
each mini-batch input layer by narrowing each layer’s output to a fixed 
distribution to dramatically lower the number of training epochs and 
stabilize the network. The batch normalization process for a collection of 
training batches with n images B[x1, x1,⋯xn] is described as follows. 

μB =
1
m
∑m

i=1
xi  

Fig. 1. Step-by-step explanation of the dataset creation process. Note: There are three main components: (a) stitched RGB images, (b) labeled images, containing 
cracks highlighted in red, and (c) binary images, which show the cracks in white pixels and the background in black pixels. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Overall architecture of the tunnel lining crack segmentation framework. 
Note: There are three main modules, including data preparation, training pro-
cess, and post-processing & crack measurements. 
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σ2
B =

1
m
∑m

i=1
(xi − μB)2  

x̂i =
xi − μB̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
B + ∊

√

yi = γx̂i + β (1) 

where μB depicts the mean and σ2
B represents the variance of the 

current training batch. x̂i is the normalized output of deducting the 
mean μB and varianceσ2

B. yi is the scaling and translation result, where 
the scale factor γ and the translation coefficient β are learnable 
parameters. 

Activation functions are a group of functions, which have monotonic 
and nonlinear properties, applied to map the input to the output and 
help the deep learning model adapt to the nonlinear functions and learn 
the complex relationships and patterns in the training data. ReLU 
(Schmidt-Hieber, 2020) is a standard activation function described as 
follows. 

h = max(0, a),wherea = Wx+ b (2) 

The most significant advantage of ReLU is that it lowers the possi-
bility of the vanishing gradient, which occurs whena > 0, because the 
gradients are always kept at a stable value leading to a faster learning 
process. On the contrary, the gradients of the sigmoid function get 
smaller as the modulus of x increases. One more advantage of the ReLU 
activation is sparsity, which happens ifa ≤ 0, because many of these 
units appear in a layer lead to a sparser representation. Sigmoid function 
likely generates various non-zero values, which leads to dense 
representations. 

The last layer in the deep learning model is the output layer that 
yields the actual probability scores for each class label. For example, the 
output of any classification CNN model can be represented by an n- 
dimensional vector z→, where the probability that each element zj 

belonging to z→ corresponds to the j-th class. The most common function 
is the Softmax activation (Ronneberger et al., 2015), which gives at least 
a minimal amount of probability to all elements in the output vector, 
normalizes the classification prediction output range between 0 and 1, 
and forces their sum as 1. When an input is negative or small, the soft-
max function converts it into a small probability. In contrast, the soft-
max function turns the input into a large probability if it is large. The 
equation of the softmax activation is described as follows. 

softmax
(
zj
)
=

ezj

∑c
k=0ezk

(3) 

The model’s current error must be estimated repeatedly as part of the 
deep learning model’s optimization process, which is based on the 
choice of an error function (loss function). The loss function’s primary 
objective is to calculate the current loss so that the learnable parameters 
can be updated to decrease the loss on the next run. The loss function of 
the original U-Net model is the cross-entropy loss, which converts the 
segmentation problem into a multiclass classification. The main task of 
the model is to classify each pixel into one of the classes. The author 
proved that the cross-entropy loss performed very well compared to the 
traditional loss functions (Ronneberger et al., 2015). The lining crack 
segmentation involves two main classesC = 2, which are the crack and 
the background. Thus, the binary cross-entropy loss is applied to the 
TunnelURes. Moreover, a sigmoid layer is added before the binary cross- 
entropy loss (BCE) to ensure more numerical stability because it took 

Fig. 3. Detailed structure of the proposed TunnelURes model.Note: Original U-Net’s down-sampling path is replaced by the ResNet-152 model.  
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advantage of the log-sum-exponential trick (Ge et al., 2019). The BCE 
with the sigmoid function added is calculated as follows. 

BCE = −
∑C=2

i=1
tilog

(
1

1 + e− si

)

(3) 

where si and ti are the score and the ground truth label for the 
classCi.. 

3.2. Post-processing image heuristics 

3.2.1. Post-processing process 
After the segmentation process, there can be some discontinued 

cracks or noise in the output binary image. In this study, several post- 
processing methods are implemented to refine the segmented cracks, 
which include 1) filling small holes and 2) reducing noise. These post- 
processing methods were done mainly based on the opening and clos-
ing morphological operations, as described in Fig. 4. First of all, the 
small holes were filled using a closing operation that is expressed as 
follows. 

closing = ((f ⊕ φ) ⊖ φ) (4) 

where ⊖ represents the erosion operation, which is a mathematical 
morphology that shrinks the pixels of the object boundaries, whereas the 
dilation operation, which is depicted as⊕, adds the pixels to the object 
boundaries. The erosion calculates a local minimum, whereas the dila-
tion computes a local maximum over the area of a given kernel. 

After the first pre-processing process, the noise from the segmented 
images was eliminated using the morph opening operation as explained 
in Equation 5, which is an opposite process of the morph closing oper-
ation, where the erosion operation was followed by the dilation opera-
tion. 

opening = ((f ⊖ φ) ⊕ φ) (5) 

Assuming that the noise was outside the segmented crack, the 
opening morphological operation omitted noise by first performing the 
erosion operation with a particular structural kernel, followed by the 
dilation operation to recover the pixels to their correct shape. On the 

other hand, if the noisy pixels were inside the crack, the dilation oper-
ation was applied to warp out the noisy pixel and remove them. Ac-
cording to the initial prediction outputs of tunnel crack segmentation, 
the number of noisy pixels was limited. Therefore, to prevent possible 
negative influences, this study implements the closing operation and the 
opening operation using a cross-shaped kernel to eliminate noise from 
the pixel-level crack segmentation and extract raw crack pixels. A cross- 
shaped kernel was used because most of the cracks were lining cracks, so 
it captured the cracks (especially transverse and longitudinal cracks) 
well and reduced noise significantly. 

3.2.2. Skeletonization process 
The primary purpose of skeletonization is to transform a crack into 

one-pixel wide visualization or crack skeleton, which precisely repre-
sents the crack’s topology. The crack skeletons can be used to measure 
different aspects of a crack. There have been many algorithms intro-
duced to obtain the skeleton image from a binary segmented image, such 
as medial axis (Marie et al., 2016), morphological thinning (Changxian 
& Yulong, 1998), digital patterns thinning (Zhang & Suen, 1984), and 3- 
D medial surface thinning (Lee et al., 1994). 

As displayed in Fig. 5(b), the skeletons generated by the morpho-
logical thinning algorithm (Changxian & Yulong, 1998) were blurry, 
whereas the outputs produced by the other algorithms were almost 
similar for a simple crack with a large thickness value. The created 
skeletons of the crack with multiple branches (the second row of Fig. 5) 
are similar to the simple case (the first row of Fig. 5), because all the 
skeletons were adequately created, except for the morphological thin-
ning that wrongly created many additional branches of the crack. 

Zhang (Zhang & Suen, 1984) and Lee’s algorithms (Lee et al., 1994) 
required a huge computation time if the cracks were complicated 
because they involved several iterative processes. Each algorithm has its 
advantages and disadvantages, so the experts can evaluate them sepa-
rately and decide the most appropriate one for a specific dataset. For 
example, Zhang’s skeletonization method is prioritized for applications 
that require accurate extraction with an acceptable delay. This study 
chose the median-axis skeletonization method (Marie et al., 2016) as the 
skeletonization algorithm, because it showed a good performance on the 

Fig. 4. Explanation for the morph closing and morph opening operations.  
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tunnel crack dataset, performed well on the cracks with fewer branches, 
and can be executed in real-time. 

3.2.3. Crack measurements 
According to the previous research (Qiu et al., 2017; Yang et al., 

2018), after the crack skeletons were obtained, the length of the crack L 
can be computed as follows. 

L =

∫

c
Gdl ≅

∑
Gdl (6) 

where G represents the geometric calibration. dl is the finite-length 
ofL. Originally, G is proposed as a calibration parameter for the pixel 
displacements in the segmented images. The dataset proposed in this 
work is assumed to contain images that do not have the geometric 
distortion. Therefore, G is set to 1 to enable L to be calculated by sum-
ming up the total pixels of the skeletons directly. After that, the average 
thickness of the cracks can be calculated. 

D =

∫

sG
2dS

L
≅

∑
G2dS

∑
Gdl

(7) 

where L represents the previously computed crack length and dS is 
the finite-area of the skeleton. 

When the camera calibration parameters, image scale, or resolution 
are provided, the pixel-based thickness and length of the crack can be 
converted into real-world length and thickness measurements (Yang 
et al., 2018). Moreover, the crack’s coverage rate is evaluated quanti-
tatively by calculating the portion of the crack pixels to the total pixels in 
an image. Such measurements give the experts the analytical references 
to determine the tunnel’s condition. 

According to (Roy & Sarkar, 2017; N. Zhang et al., 2019), the lining 
crack is the primary tunnel defect that can cause various problems, such 
as 1) reducing the endurance capacity of the structure to the sur-
rounding rocks, 2) leading to leaking, which easily causes corrosion of 
steel bars and facilities in the tunnel, and 3) excessive deformation of the 
cracks can reduce the spatial clearance and affect the safety of various 
types of traffic. Three main types of tunnel lining cracks are longitudinal, 
transverse, and inclined cracks, as displayed in Fig. 6. The detailed in-
formation for each type is described as follows.  

• A longitudinal crack refers to the lining cracks that appear along the 
arch shoulder in the tunnel’s longitudinal axis. This crack can lead to 
the stress intensity at the arch and the sidewall junction.  

• A transverse crack refers to the lining cracks that occur along the 
tunnel axis’s vertical direction due to the compressional seismic P- 
wave propagation.  

• An inclined crack refers to the lining slant cracks along the tunnel 
axis of 40–70 degrees, around the angle arch and sidewall due to the 
tensile forces. 

The crack type can be determined by calculating the rotation angle r 
in degrees of the segmented crack based on the property of each type of 
crack, as discussed in (Zhang et al., 2018). 

Type =

⎧
⎨

⎩

Transversecrackifr = [80, 100]
Longitudinalcrackifr = [140, 180]

Inclinedcrackifr = [40, 70]
(8)  

4. Experimental results 

In this study, all experiments are conducted on an Ubuntu 16.04 
Linux machine equipped with four Titan X 12 GB GPUs and 64 GB of 
DDR4 RAM. Section 4.1 explains various evaluation metrics applied to 
check the model’s performance. Section 4.2 then illustrates the effec-
tiveness of the proposed automatic lining crack segmentation compared 

Fig. 5. Performance comparison of four different skeletonization algorithms for both simple and complex cracks.  

Fig. 6. Three main patterns of the lining crack, including transverse crack, 
longitudinal crack, and inclined crack. 
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to the other well-known methods. After that, the proposed model’s 
robustness is tested under various challenging scenarios in Section 4.3. 
Finally, the skeletonization approach and crack measurement using the 
generated skeletons are described in Section 4.4. 

4.1. Evaluation metrics 

Tunnel crack segmentation can be considered a binary classification 
problem because the output image contains crack pixels and background 
pixels. Therefore, three primary components of the confusion matrix, 
including the true positive (TP), false negative (FN), and false positive 
(FP), can be extracted to allow the calculation of PA and IoU (Li et al., 
2022), which are the two standard evaluation metrics for the crack 
segmentation. A high PA value may lead to a false evaluation when the 
crack pixels (positive class) are minor compared to the background 
pixels (negative class), because it is biased toward assessing how well 
the model identified the negative samples. Therefore, the IoU is 
computed as an additional measurement. 

PA measures the proportion of accurately segmented pixels to the 
total pixels, whereas the IoU metric quantifies the overlap percentage 
between the ground truth and the prediction. PA and IoU can be 
formulated as follows. 

PA =
TP + TN

TP + TN + FP + FN
(9)  

IoU =
TP

TP + FN + FP
(10) 

As an additional evaluation metric for the binary problem, a receiver 
operating characteristic (ROC) curve can be plotted in order to show the 
binary segmentation’s performance at different thresholds. The ROC 
curve involves two primary parameters, which are the true-positive rate 
(TPR) and the false-positive rate (FPR). 

TPR =
TP

TP + FN
(11)  

FPR =
FP

TN + FP
(12)  

4.2. Tunnel crack segmentation 

75% of the data were randomly chosen and fed into the TunnelURes 
model, whereas the remaining 25% of the data was used to evaluate the 

proposed model using the created training dataset (Section 2.3). The 
learning rate is a crucial hyperparameter that is computed to optimize 
and minimize the neural network’s loss by controlling how quickly 
weights or the coefficients get updated. The model achieves varying 
performances under different learning rates, so selecting the right 
learning rate has a critical role in the convergence of loss function (He 
et al., 2016). In this study, two learning rates (10− 3 and 10− 4) were 
selected to train the CNN model through 50 epochs. 

The model’s validation losses at different learning rates are repre-
sented in Fig. 7, where the solid orange line and the solid blue line 
indicate the validation loss for the learning rate 10− 3 and10− 4, respec-
tively. When the learning rate equals10− 3, the validation losses fluctu-
ated widely, and the validation loss was at 0.065 after 50 epochs. On the 
other hand, the validation loss was stable as the validation loss steadily 
decreased and reached 0.061 at epoch 50th for the learning rate of10− 4. 
The result is in line with the findings from (Smith, 2017), which stated 
that the loss decreases slowly with a small learning rate, whereas the 
training process diverges when the learning rate gets too big. 

In this part, the model’s robustness is examined and compared with 
the existing state-of-the-art models using the collected test dataset that 
contains about 34,068 images. There are a total of six models imple-
mented for comparison. We evaluate two extensions of the proposed 
model before (TunnelURes) and after applying the post-processing 
process (TunnelURes_PO). In addition, four previously proposed 
models, which include U-Net (Ronneberger et al., 2015), DeepCrack (Y. 
Liu et al., 2019), Fully Convolutional Network (Long et al., 2015), and 
CrackNet (A. Zhang et al., 2019), are selected for comparison. They were 
implemented based on the descriptions from the original papers, with 
the hyper-parameters configured the same as those described in the 
reference papers. 

Fig. 7. Corresponding validation losses of the proposed model for two different learning rates.  

Table 2 
Crack segmentation performance of the proposed models (TunnelURes, Tun-
nelURes_PO) compared to previous approaches using the collected testing 
dataset.  

Approach PA IoU 

U-Net (Z. Liu et al., 2019)  0.849  0.643 
DeepCrack (Y. Liu et al., 2019)  0.923  0.853 
FCN (Yang et al., 2018)  0.824  0.836 
CrackNet (A. Zhang et al., 2019)  0.817  0.735 
TunnelURes  0.848  0.726 
TunnelURes_PO  0.928  0.847  
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PA and IoU, as mentioned previously in Section 4.1, are computed to 
compare the model’s performance. Table 2 shows the performances of 
various crack segmentation models. In general, all models obtained high 
PA values of over 0.8. The proposed TunnelURes_PO model and the 
DeepCrack model achieved the highest PA value of 0.92. The U-Net, 
CrackNet, and TunnelURes models got relatively low IoU values of 
0.643, 0.735, and 0.726. By contrast, the proposed TunnelURes_PO and 
DeepCracks model obtain significantly higher IoU scores at 0.84 and 
0.85, respectively. The statistics indicate that the proposed TunnelUR-
es_PO outperformed most of the previous approaches in terms of the 
lining crack segmentation. 

Fig. 8 shows the AUC values for different models on the collected 
dataset. The highest goodness-of-fit based on the testing dataset (AUC =
0.97) was recorded on the proposed TunnelURes_PO. The DeepCrack 
model also achieved comparable results with the AUC value of 0.96, 
which implies that, at the current setup, these two models could prop-
erly distinguish between the crack pixels and the background pixels. The 
two models were followed by the U-Net (AUC = 0.94), TunnelURes 
(AUC = 0.89), FCN (AUC = 0.84), and CrackNet (AUC = 0.82) models. 
This means that the ability of the proposed TunnelURes to segment the 
lining crack on the proposed dataset was better than the previous 
models. 

In addition, it is noticeable that the original TunnelURes without the 
post-processing process obtained lower performance (AUC = 0.89) than 
the DeepCrack model (AUC = 0.97). The main reason is that the Tun-
nelURes created various noises, which lowered the AUC value. There-
fore, the post-processing step significantly improved the performances 
of the TunnelURes (PA was improved by 0.11, IoU was improved by 
0.12, and AUC value was improved by 0.08). 

Some normal testing images are presented in Fig. 9 in order to check 
the proposed model’s outputs. The first row of Fig. 9 shows the sub- 
images cropped from the original images that contain cracks. The sec-
ond row represents the corresponding ground truth masks that were 
labeled by humans. The segmentation performances of the TunnelURes 
model are listed in the third row. In general, the proposed model 
accurately localized the cracks. In addition, even though the ground 
truth images contain several disjoint cracks, the proposed model 
significantly reduced them due to the post-processing process. 

4.3. Model’s robustness on challenging cases 

Although the cracks inside the tunnel are the main goal of this 
research, the inner surface of the tunnel usually contains challenging 
elements that resemble the crack or affect the crack segmentation per-
formance, such as tunnel lighting, joints, wires, and patchworks. As a 
result, this section is dedicated to checking whether the proposed model 
can segment the lining cracks for the challenging images with various 
types of noise. 

Fig. 10 shows four different models’ performances on four types of 
noises, which include dark & writing, light & wire, spots on the wall, and 
wall joint. From the first column to the last column are the original 
image, the corresponding ground truth, crack segmentation results of 
the U-Net model (Z. Liu et al., 2019), DeepCrack model (Y. Liu et al., 
2019), TunnelURes model, and TunnelURes_PO model. The image is 
challenging for the dark image and handwriting case because the image 
is dark, and the writing itself resembles the crack. The U-Net model 
incorrectly segmented the handwriting as cracks, which proved that the 
model was sensitive to noise. By contrast, the cracks were correctly 
differentiated from the handwriting using the TunnelURes and the 
DeepCrack models. The proposed TunnelURes identified more lining 
cracks compared to the DeepCrack model. Moreover, the TunnelUR-
es_PO showed the effectiveness of the post-processing process, which 
significantly reduced the noise. 

The crack is difficult to be segmented in the second case, because the 
wires are similar to the cracks (shape and color). Moreover, the lighting 
can also affect the performance of the models. The U-Net model barely 
recognized the cracks, the wire pixels were segmented as crack pixels, 
and many noises were also misclassified as cracks. On the other hand, 
the TunnelURes and DeepCrack models segmented the cracks correctly 
and were robust against the noise. 

Spots on the wall, described in the third row, are also a common type 
of noise that usually appears on the tunnel surface that affects the 
model’s performance if the cracks appear inside these spots. The U-Net 
and the DeepCrack model missed most of the crack regions that 
appeared inside the spots, whereas the TunnelURes and TunnelURes_PO 
models successfully segmented the cracks, even they were inside the 
spots. 

The wall joint is also a common noise in the form of a straight line 
that is identical to the lining crack. The DeepCrack and TunnelURes 
models categorized it as background with some noise. After the post- 
processing process, the TunnelURes_PO model reduced the noise 
significantly. The preliminary experimental results proved that the 
TunnelURes model performed robustly for the lining crack 
segmentation. 

The experiments proved that the TunnelURes model was robust 
against various types of noises, because the pre-trained ResNet-152 
encoder helped the model obtain richer features that presented a good 
distinction between noises, cracks, and background. Therefore, it can be 
integrated into the existing crack segmentation applications efficiently. 

However, it is worth noting that the models could not recognize the 
cracks in specific scenarios. The failed predictions of the proposed model 
can be classified into two main types, which include crack discontinuity 
and false alarm. The first error is illustrated in Fig. 11(a), where the 
model missed some parts of the tunnel crack. The continuous crack from 
the ground truth mask was predicted as two separated cracks in the 
output image. The error usually occurs during the prediction process 
when the model misclassifies some crack pixels as background pixels. As 
a result, it could be solved by performing various post-processing 
techniques. 

For the second case (Fig. 11(b)), the red circles show two false alarms 
that were misrecognized as the crack skeletons. According to the seg-
mentation output, although the proposed model achieved adequate 
validation performance, the medial-axis skeletonization algorithm 
created many errors because it was susceptible to the crack intersection 
and the image edges where the crack’s representation changed. In order 

Fig. 8. AUC values of our model compared to other approaches using the 
testing dataset. 
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to completely solve the mentioned issue and create a more accurate 
skeleton, the conventional skeletonization algorithm needs to be 
improved, or a novel algorithm is required. 

4.4. Crack measurement 

After the segmented images were generated, it is crucial to investi-
gate the crack length, thickness, and crack type in order to offer addi-
tional statistics regarding the cracks to the moderators. The 
measurements can be computed by first extracting the crack skeleton, 
which converts pixel-level crack into the thickness of the single-pixel 
level skeleton to show the crack’s structure. As explained earlier, the 

median-axis skeletonization algorithm was implemented to extract the 
skeleton for each segmented crack. For comparison, we also imple-
mented the skeletonization method on the ground truth image and 
considered it the ground truth skeleton. 

Fig. 12 shows the segmentation results for three different types of 
lining cracks. The first column indicates the original RGB images, the 
next column is the corresponding ground truth images, the third column 
displays the generated crack skeletons for the ground truth, the outputs 
of the TunnelURes are displayed in the fourth column, and finally, the 
crack skeletons of the predicted images are presented in the fifth col-
umn. Fig. 10 shows that the TunnelURes model segmented different 
types of lining cracks robustly, even for the complex inclined crack. It 

Fig. 9. Outputs of the proposed TunnelURes model compared to the ground truth on various crack types.  

Fig. 10. Performance comparison between the U-Net, DeepCrack, TunnelURes, and TunnelURes_PO models on challenging scenarios, including dark & writing, light 
& wire, spots on the wall, and wall joint. 
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can be seen that the skeletons of the predicted segmented images are 
identical to the ground truth skeletons by inspecting the generated 
skeletons. As a result, the proposed algorithm has shown that it effec-
tively segmented different kinds of cracks, and the medical-axis skel-
etonization algorithm also efficiently created the crack skeletons. 

In order to check the crack measurement performance, a total of 400 
sub-images were randomly picked from the testing dataset. Next, the 
medial-axis skeletonization was conducted on both the ground truth and 
the predicted images. Finally, the crack information, such as length, 
thickness, and areas, were computed based on the generated skeletons. 

Fig. 13 represents three regression graphs for the three correspond-
ing features (length, area, and thickness) to demonstrate the relationship 
of the ground truth crack and the predicted crack created by the Tun-
nelURes model. The x-axis indicates the ground truth and the prediction 
measurement values in pixels. After the corresponding points are drawn, 

the linear regression is applied to evaluate the slope of the measure-
ments. The dashed lines show the correct prediction (the predicted value 
is equal to the ground-truth value), whereas the solid lines depict the 
linear fitting results. The slope of crack length was 1.1, and its standard 
error was 0.01. The slope of the area and thickness were 0.85 and 1.16, 
respectively, and the standard errors were 0.01 and 0.03. The statistics 
indicate that the computed measurements of the segmented cracks were 
slightly smaller than those of the ground truth measurements. The main 
reason is that the crack edge pixels contained features identical to the 
background pixels, so they were ignored. 

In practice, the crack thickness usually varies due to the positions 
and structural causes. However, it is interesting to note that most of the 
cracks were in the same thickness range. This is the primary limitation of 
the dataset used in this research, because it contains the images, which 
are mostly collected from the three tunnels (Banggyo, Bongsan, and 
Deugsong) with similar structural status and conditions. 

In addition, p-value, R2 statistic, and the F-statistic are computed to 
evaluate the linear regression effectiveness, as displayed in Table 3. 

The R2 statistic and the p-value demonstrate the fitting degree of the 
linear regression. The fitting degree becomes higher when the R2 value 
is larger, and the p-value <0.001, which means that the linear fitting is 
efficient. 

5. Conclusion 

This paper introduces a novel deep learning-based tunnel crack 
segmentation framework to segment the lining cracks that usually 
appear on the tunnel surface. The proposed framework, which is called 
TunnelURes, utilizes the ResNet-152 model as the encoder, and the 
decoder mainly contains deconvolutional layers. Such a hybrid structure 
enabled the proposed model to segment cracks efficiently and robustly 
against noise. We also introduced a huge lining crack segmentation 
dataset containing 170,339 crack images and 170,339 mask images, 
which were labeled manually by the experts. 

The experimental results on various learning rates showed that the 
learning rate of 0.001 significantly reduced the validation loss to<0.06. 
The post-processing step improved the PA and IoU of the original model 
to 0.848 and 0.928, respectively. The proposed model outperformed the 
previous state-of-the-art models, such as CrackNet, FCN, and U-Net, and 
was comparable to the state-of-the-art DeepCrack model. Moreover, the 
model produced accurate and robust results on challenging cases, such 
as noises, which had confused the previous models. Finally, crucial 

Fig. 11. Two types of false alarms appear in the output image.Note. Ground 
truth (GT), Predicted skeleton (PS)). The yellow circles indicate the wrong part. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 12. Skeletonization results for three types of the lining cracks.Note: GT stands for Ground truth and TU represents the TunnelURes model output.  
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information about the crack, such as crack length, thickness, and crack 
type, was automatically calculated with the standard error between 0.01 
and 0.03, demonstrating the proposed method’s robustness. 

The experimental results proved that the proposed lining crack seg-
mentation framework was convenient and efficient. It receives the input 
image and produces the segmented crack with all the necessary mea-
surements for each crack. The model’s performance can be further 
improved when more challenging images (noise, unbalanced lighting 
condition) are provided in future research. In addition, a customized 
medial-axis skeletonization algorithm can be introduced for the tunnel 
crack segmentation to enhance the crack measurement process. 
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