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asked Autoencoder-Based Vision Framework for Robust Fire Detection in Complex
Environments

ract

n-based fire detection has become an increasingly important focus in computer vision, driven by the growing need for early
ing systems and public safety in surveillance environments. While conventional models have primarily relied on color-based
res to distinguish fire from background, maintaining high detection accuracy while ensuring computational efficiency remains
sistent challenge, particularly in real-time surveillance systems. To address this, we introduce a novel fire detection framework
nded in masked autoencoding and Vision Transformers (ViT), designed to balance detection performance with scalable deploy-
. Our architecture leverages self-supervised learning to reconstruct masked visual regions, enhancing the encoder’s ability to
re fine-grained fire cues in complex scenarios. The integration of global attention and hierarchical context modeling enables

ystem to distinguish between fire and visually similar non-fire patterns, such as reflections and artificial lighting, under diverse
onmental conditions. Unlike prior models that are sensitive to background noise or rely heavily on channel saliency, our ap-
ch learns robust representations through reconstruction objectives, eliminating the need for hand-crafted modules. Extensive
riments conducted on five benchmark datasets: BWF, DQFF, LSFD, DSFD, FG and DFAN demonstrate consistent improve-
s over existing methods, with notable gains of 2.5% on BWF, 2.2% on DQFF, 1.42% on LSFD, 1.8% on DSFD, 1.14% on FG
.10% on DFAN. The proposed model also maintains computational efficiency and generalizes effectively across a wide range
e conditions, supporting its deployment in practical, real-time systems.

ords: Fire Detection, Masked Autoencoder, Vision Transformer, Self-Supervised Learning, Feature Reconstruction,
tion Mechanism.

troduction

res represent a severe threat to human life and property
to their rapid and often uncontrollable spread, especially
nsely populated regions such as urban residential areas,
portation hubs, and forested environments [1]. Ensuring
pt detection of fire outbreaks is crucial to mitigate damage

improve public safety in various domains, including resi-
al, commercial, and industrial settings.
nventional fire detection (FD) systems typically employ
onmental sensors like smoke, temperature, and particle
tors [2]. These sensors are cost-effective and relatively
to deploy, particularly in confined indoor environments.
ever, their effectiveness diminishes significantly in open or
-scale outdoor scenarios. Moreover, these systems often
ate only when they directly detect fire by-products such as
or smoke, potentially delaying the response time and re-
g the chances of early intervention [3, 4].
overcome these limitations, there has been a growing in-

t in vision-based FD technologies which utilize cameras as
rs to monitor large areas in real-time [5, 6]. These sys-
offer broader coverage, quicker response, and better adapt-

ty to various environmental conditions[7]. Consequently,
erous vision-based methods have been proposed, mainly
orized as traditional machine learning (TML) and deep
ing (DL) approaches[8].

L-based approaches are based on traditional feature ex-
ion techniques, such as flame texture, color, and motion

patterns [6]. The success of these methods depends heavily
on the quality and relevance of the features designed manually.
However, it is challenging to design a robust global feature ex-
traction due to the diverse and dynamic nature of fire. Varia-
tions in flame color caused by different combustible materials,
lighting conditions, and environmental influences such as wind
or temperature fluctuations contribute to the unpredictability of
flame behavior. These factors can hinder consistent FD and in-
crease the likelihood of false positives. To effectively harness
TML-based methods, it is essential to master the challenge of
attaining a high true positive rate while minimizing the false
alarm rate.

In response to these challenges, deep learning has emerged as
a powerful alternative, offering end-to-end learning capabilities
and superior performance across a variety of computer vision
tasks [9, 10]. DL-based models automatically learn discrimi-
native features from large datasets, enabling them to generalize
effectively to new and unseen fire scenarios. This capacity to
extract complex patterns has led to substantial improvements
in detection accuracy and robustness. Notably, several DL-
based techniques have demonstrated enhanced reliability over
TML approaches, especially under variable and uncertain con-
ditions [11].

Despite these advancements, DL-based FD systems are not
without limitations. Their performance can degrade in visually
complex scenes, such as when fire-colored objects are present
or when the fire source is distant and small in the frame, as il-

int submitted to Elsevier October 8, 2025



Journal Pre-proof

Figure
bound
highli
or sun
ing re
and li

lustr
the l
tion
olog

1.1.

De
chall
and
Trad
ple t
layed
tings
heat,
stage
more
enco

Tr
heav
ture,
tal va
and fi
siste

W
supe
tiven
mod
jects
locat
Addi
ously
limit

Th
work
bust
tion

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

1: Sample images illustrating challenging scenarios for FD. The red
ing boxes indicate actual fire regions, while the blue bounding boxes
ght visually similar non-fire regions such as lighting artifacts, reflections,
light patches. These examples demonstrate the difficulty in distinguish-
al fires from fire-like patterns, particularly under varying environmental
ghting conditions.

ated in Figure . These challenges highlight ongoing gaps in
iterature and motivate the development of improved detec-
techniques, which are addressed in the proposed method-
y section.

Research Gap

spite notable progress in FD technologies, significant
enges remain unresolved, particularly in achieving timely
reliable detection in complex and dynamic environments.
itional sensor-based systems, while cost-effective and sim-
o deploy, are constrained by their limited range and de-

responsiveness, especially in outdoor or large-scale set-
. These systems often rely on direct detection of smoke or
which restricts their ability to identify fires in their early
s. On the other hand, vision-based approaches, although
promising in terms of coverage and responsiveness, also

unter limitations.
aditional Machine Learning (TML) techniques depend
ily on manually crafted features such as flame color, tex-
and motion, which are highly susceptible to environmen-
riations including lighting conditions, background clutter,
re appearance diversity. This dependence leads to incon-

nt detection performance and a high rate of false alarms.
hile Deep Learning (DL)-based models have demonstrated
rior accuracy and generalization in FD tasks, their effec-
ess declines in certain complex scenarios. Specifically, DL
els struggle with false detections when visually similar ob-
(e.g., fire-colored materials) are present, or when fire is

ed at long distances, making it less visible in the frame.
tionally, many existing DL methods have not been rigor-

evaluated across a wide range of real-world conditions,
ing their practical applicability.
erefore, there is a clear need for an advanced FD frame-
that combines the strengths of deep learning with ro-

feature representation, capable of handling real-time detec-
in diverse and challenging environments while minimizing

false positives and improving detection accuracy across varying
scales and contexts.

1.2. Main Contributions
To address the challenges and research gaps in vision-based

FD, this study introduces a novel FD framework based on
masked autoencoding and transformer architectures. The pro-
posed method aims to improve early FD accuracy and robust-
ness in complex environments by leveraging advanced feature
learning and contextual reasoning. The main contributions of
this work are as follows:

• We propose an Image Masked Autoencoder (ImageMAE)
based FD framework that efficiently learns rich and dis-
criminative fire-related features through a self-supervised
reconstruction task. The framework uses an asymmet-
ric encoder-decoder design, where the encoder processes
only visible image patches, significantly reducing compu-
tational overhead.

• A Vision Transformer (ViT)-based encoder is utilized for
feature extraction, capturing long-range dependencies and
complex fire patterns such as varying flame shapes, colors,
and textures. This enhances the model’s ability to distin-
guish between real fires and fire-like objects in challenging
visual conditions.

• The reconstruction module incorporates a novel pixel-
level reconstruction loss with optional normalized pixel
targets, improving feature invariance to environmental fac-
tors such as lighting changes and smoke occlusion. This
leads to more robust representations suitable for early-
stage FD.

• We conduct comprehensive experiments on a diverse fire
dataset, demonstrating that the proposed method achieves
superior FD accuracy compared to baseline approaches.
Additionally, the model’s lightweight decoder and efficient
masking strategy enable scalability and real-time applica-
bility in surveillance systems.

1.3. Study Outline
The remainder of this paper is organized as follows: Section

II reviews recent literature on FD methods, highlighting exist-
ing challenges and advances. Section III details the proposed
ImageMAE-based FD framework, including architecture and
training strategies. Section IV presents the datasets used, ex-
perimental results, and a comprehensive analysis of the model’s
performance. The conclusion and future direction are presented
in Section V.

2. Related Work

The development of early and accurate FD technology us-
ing vision sensors has been an active research area and can be
broadly categorized into Traditional Machine Learning (TML)
methods and Deep Learning (DL) methods. This section pro-
vides a detailed overview of both approaches.

2
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Traditional Machine Learning Methods

aditional machine learning (TML) approaches primarily
s on handcrafted features based on fire characteristics such
lor, shape, motion, and texture [12]. Early color-based
ethods were proposed by [13, 14]; however, these meth-

suffered from high false positive rates and limited accu-
restricting their practical application. [15] introduced an
adaptive edge detection technique to identify fire regions,

e [16] applied methods like K-means clustering, optical
logistic regression, and temporal smoothing for FD. [17]
oyed multiple classification algorithms and combined their
uts for accurate real-time fire scene classification. [18] used
riance features with Support Vector Machines (SVM) for
cene classification. Teng et al. [19] applied hidden Markov
els to detect moving fire pixels extracted from pixel clus-

[20] developed BoWFire, a novel approach that fused
features with super-pixel texture discrimination to im-

e FD. While traditional machine learning methods have
ibuted to fire detection, they rely heavily on handcrafted
res and standard classifiers, which are error-prone and
-intensive. They often confuse fire with fire-like objects
perform poorly under varying lighting, smoke, or occlu-

These challenges highlight the need for approaches that
utomatically learn robust features. Our ImageMAE-ViT

ework addresses this by combining self-supervised learn-
ith global context modeling, enabling accurate and effi-
fire detection across diverse conditions.

Deep Learning Methods

ep learning (DL) techniques automatically learn features
raw image data and have demonstrated superior perfor-
e over traditional methods in FD. Sharma et al. (2017) in-
ced a challenging fire dataset and evaluated models such

esNet50 [21] and VGG16 [22], with ResNet50 achieving
ising results. [23] designed a convolutional neural net-
(CNN) for fire scene classification. [24] combined lo-

inary patterns with AdaBoost to isolate fire regions, which
then input to a CNN for feature extraction and classifica-
[25] utilized pretrained GoogLeNet weights to balance

ency and accuracy for FD. In another study, they fine-
AlexNet for indoor and outdoor fire scenarios, employ-

daptive camera prioritization strategies. [26] used a mod-
InceptionV1 architecture for efficient FD. [27] compared
us classifiers, including MLP, AdaBoost, AdaBoost-LBP,
CNN for FD. Zhang et al. [28] proposed a novel CNN
el with three convolutional and three fully connected layers
d at efficient FD. More recently, [29] modified VGG16 to
ce model size and training parameters while significantly
oving accuracy. [5] presented a CNN architecture con-
d with an autoencoder for fire scene classification. Altaf

. [1] proposed an optimized deep learning model with an
tion module to improve detection efficiency, while Khan et
0] developed a multi-attention network with a new bench-
dataset for real-time fire detection. Wang et al. [31] intro-

d FFD-YOLO, a modified YOLOv8 architecture tailored
orest fire scenarios, and Lv et al. [32] enhanced YOLOv8

with CARAFE and context-guided modules for robust perfor-
mance. Complementing these works, Wang et al. [2] presented
a multi-source data fusion framework using deep learning to
improve detection accuracy across diverse conditions. Beyond
deep learning, Maity et al. [6] proposed MLSFDD, a smart
fire detection device for precision agriculture, demonstrating
the growing interest in domain-specific fire detection applica-
tions.

However, current deep learning models for FD often rely
on relatively plain architectures, limiting their ability to ex-
tract fine-grained details and accurately localize fire regions.
To overcome these shortcomings, many researchers have in-
corporated attention mechanisms into their models, utilizing
various backbones such as attention-squeeze networks, deep
CNNs with channel attention [33], spatial and channel atten-
tion modules [34], InceptionV3 with CBAM [35], Vision Trans-
former (ViT) with self-attention [36], non-local attention net-
works [37], EfficientNetB0 with attention [38], and other self-
attention frameworks [39, 40]. While these attention-based
methods generally outperform plain CNN architectures by en-
hancing the focus on salient features, they often process feature
maps within a single receptive field, which may not fully cap-
ture the complex spatial and contextual variations required for
accurate FD.

Existing attention-based fire detection models employ a va-
riety of mechanisms to improve feature learning. Common
approaches include channel attention, which emphasizes im-
portant feature maps, and spatial attention, which highlights
relevant image regions. Beyond these, more advanced strate-
gies such as combined channel-spatial attention modules (e.g.,
CBAM), non-local attention networks, and transformer-based
self-attention have been applied to capture long-range depen-
dencies and contextual information. Despite their effective-
ness, these methods still face challenges in complex scenar-
ios with fire-like objects, reflections, smoke, or varied back-
grounds, often resulting in higher false-positive rates. Many
also struggle to robustly detect fires across varying scales, dis-
tances, and environmental conditions such as occlusions and
lighting changes, partly due to limited multiscale feature mod-
eling.

To address the limitations of current deep learning models for
fire detection, our method leverages a masked autoencoder [41]
(ImageMAE) framework that inherently captures multi-scale
and contextual information through self-supervised reconstruc-
tion of masked image patches. Unlike conventional attention
modules, which often operate on single-scale feature maps and
struggle with complex environmental variations, our approach
learns rich hierarchical representations by reconstructing miss-
ing regions based on global context, enabling the encoder to fo-
cus on discriminative fire-related patterns across multiple spa-
tial scales. Current DL methods can be broadly classified into
three categories: (i) plain CNN architectures, which achieve
reasonable accuracy but often fail to capture fine-grained spa-
tial and contextual details; (ii) attention-enhanced CNNs, which
improve focus on salient features but still have limited multi-
scale awareness; and (iii) transformer-based methods, which
model long-range dependencies but can be computationally ex-

3
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ive and often struggle to distinguish fire from fire-like ob-
under challenging conditions. By integrating masked au-
oding with Vision Transformer-based feature extraction,
ramework addresses these challenges, reducing false pos-
, improving robustness to lighting changes, occlusions,
e, and varying scales, and enabling accurate, efficient, and

ralizable fire detection across diverse real-world scenarios.

roposed Methodology

this work, we propose a vision-based FD framework
nded on the Masked Autoencoder (MAE) architecture [42],
nally introduced for general image representation learning.
adaptation takes advantage of the strengths of MAE for
cting discriminative and robust features from surveillance
ery, which often includes challenges such as variable light-
occlusions caused by smoke or objects, and visually con-
g fire-like patterns. By reconstructing missing parts of the
t images, the model inherently learns the global context and
grained fire-specific visual cues necessary for early and ac-
e FD. The general flow of the proposed method is illus-
d in Figure 2.

Overall Architecture and Motivation
e core idea behind our approach is to employ a self-

rvised learning scheme in which the model learns mean-
l representations by reconstructing masked portions of the

t image. This paradigm forces the network to reason about
verall scene and infer the presence of fire even when only
al information is visible. Given that early-stage fires are

small and visually subtle, such contextual reasoning is
al. Our MAE-based architecture is composed of two main
onents: an encoder that transforms visible parts of the in-

nto latent representations and a decoder that attempts to
struct the original image from these latent codes supple-
ed by learned mask tokens.
e asymmetric nature of the design, a relatively large en-
r paired with a lightweight decoder, allows us to efficiently
deep models with reduced computational requirements

e preserving or enhancing performance. This is especially
rtant for FD systems deployed on edge devices or real-time

itoring setups, where computational resources and latency
traints are significant factors.

. Patch Tokenization and Masking Strategy
ven an input image I ∈ RH×W×C , where H and W denote
al dimensions and C the number of color channels (usually
RGB), we divide the image into fixed-size, nonoverlap-

patches of dimension P × P pixels. This process converts
nput into a sequence of discrete tokens, formalized as:

N =
H ×W

P2 (1)

ere N is the total number of patches. Each patch pi ∈
is flattened and projected into a latent embedding vector

RD via a learnable linear transformation:

zi =We · Flatten(pi) + ei (2)

Here, We ∈ RD×(P2·C) is the projection matrix, and ei ∈ RD

is the positional embedding that encodes spatial location infor-
mation, vital for preserving the structure of the scene.

To promote the model’s ability to infer global context and
avoid relying on local neighboring information, we adopt a ran-
dom masking procedure. A large fraction (commonly 75%) of
the patch tokens is randomly removed from the input sequence.
This is implemented by uniform random sampling without re-
placement, yielding a visible subsetV and a masked subsetM:

V,M = RandomMasking({z1, ..., zN}) (3)

The removal of such a significant portion of the input forces
the encoder to rely on partial observations to learn holistic and
discriminative features, a property that is particularly advanta-
geous for identifying subtle fire cues obscured by environmen-
tal factors such as smoke or lighting variation.

3.1.2. Encoder Design: Feature Extraction via Vision Trans-
former

Our encoder is based on the Vision Transformer (ViT) archi-
tecture [43], modified to operate exclusively on the visible patch
embeddings V. Unlike traditional ViT models which process
all tokens including special mask tokens, our encoder discards
masked tokens entirely, thus saving computational and memory
resources. This approach enables scaling to deeper architec-
tures without prohibitive cost.

The ViT encoder consists of multiple stacked Transformer
blocks, each containing a Multi-Head Self-Attention (MHSA)
mechanism and a Feedforward Network (FFN). The self-
attention mechanism enables the model to dynamically focus
on different parts of the visible image, capturing both local and
long-range dependencies crucial for recognizing complex fire
patterns.

The self-attention operation for a single head is mathemati-
cally represented as:

Attention(Q,K,V) = softmax


QK⊤√
dk

V (4)

In this mechanism, the input embeddings are transformed
into three distinct matrices: queries (Q), keys (K), and values
(V). Attention computation involves comparing queries with
keys to produce attention scores, which are then used to weight
the corresponding values. A scaling factor, typically the inverse
square root of the key dimension (

√
dk), is applied to stabilize

the output of the dot product. To enhance the model’s ability to
learn a variety of contextual features, multiple attention opera-
tions - known as heads - are performed in parallel. The results
of these heads are concatenated to form a richer, more expres-
sive representation.

The encoder outputs a sequence of latent representations Zenc
corresponding to the visible patches:

4
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Figure 2: Fire recognition framework using ImageMAE.

Zenc = Encoder(V) (5)

ese latent codes encode rich semantic and structural infor-
on about the scene, including the presence, shape, color,
ynamics of fire regions.

. Decoder Design: Reconstructing Fire-Related Visual
Patterns

e decoder is designed to reconstruct the original input im-
y predicting the pixel content of masked patches, leverag-

he encoded visible tokens Zenc and a set of learned mask
s M ∈ R|M|×D. These mask tokens serve as placeholders
issing patches and are shared across all masked positions

e combined sequence Zfull is formed by concatenating en-
d visible tokens with mask tokens, and then unshuffling to
re the original spatial order of patches:

Zfull = Unshuffle(Zenc ∪M) (6)

e decoder consists of a smaller stack of Transformer
s compared to the encoder, striking a balance be-

n reconstruction capability and computational efficiency.
asymmetry of the architecture, a large encoder with a
weight decoder, allows efficient pre-training without sac-
ng representational power.

3.1.4. Reconstruction Loss and Optimization Objective
The primary training aim is to reduce the reconstruction er-

ror between the true pixels and predicted values of the masked
patches. After processing by the decoder, each patch prediction
p̂i is projected back to pixel space and reshaped to P × P × C.
The mean squared error (MSE) loss is computed only over the
masked patches:

Lrec =
1
|M|
∑

i∈M
∥p̂i − pi∥22 (7)

To further enhance robustness to variations in illumination
and smoke density factors that can drastically change pixel in-
tensities we explore a normalized reconstruction loss where
pixel values of each patch are normalized by their mean and
standard deviation:

pnorm
i =

pi − µi

σi
, µi = mean(pi), σi = std(pi) (8)

This normalised target increases the model’s capacity to learn
features that are unaffected by illumination variations, which is
an important attribute in FD circumstances.

3.1.5. Fire Classification via Fine-tuning
Upon completion of the self-supervised pretraining phase,

the decoder is discarded and the encoder is retained as a pow-
erful feature extractor. For FD, we attach a classification head,

5



Journal Pre-proof

typic
code
pool

Th
ing t

wh
the g
ity.
task
diver

3.1.6
Ou

Mask
remo
simu
enco
shuffl
can r
tably
oper

3.1.7
Th

for v

•

•

•

•

In
ficien
featu
in re

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

ally a Multi-Layer Perceptron (MLP), on top of the en-
r output corresponding to a special classification token or
ed features:

ŷ = Softmax(MLP(Z[CLS ]
enc )) (9)

e model is fine-tuned on labeled fire datasets by minimiz-
he cross-entropy loss:

Lcls = −
C∑

c=1

yc log(ŷc) (10)

ere C is the number of classes (fire vs. no fire), yc is
round truth label, and ŷc is the predicted class probabil-
Fine-tuning adapts the pretrained features to the specific
of FD, enabling robust and accurate classification across
se scenes.

. Implementation and Computational Efficiency
r implementation emphasizes efficiency and simplicity.
ing is performed by randomly shuffling patch tokens and
ving a proportion based on the masking ratio, effectively
lating random patch sampling without replacement. After
ding, mask tokens are appended and the sequence is un-
ed to maintain spatial consistency, ensuring the decoder
econstruct masked patches in their original positions. No-
, this design does not require any specialized sparse tensor
ations, making it practical for real-world deployment.

. Benefits for Fire Detection
is ImageMAE-based approach offers several advantages
ision-based FD systems:

Robust Feature Learning: Self-supervised reconstruc-
tion encourages learning of generalized features that cap-
ture essential fire characteristics under challenging con-
ditions such as smoke, lighting variations, and complex
backgrounds.

Computational Efficiency: The asymmetric encoder-
decoder design reduces training and inference costs, fa-
cilitating real-time deployment.

Early Fire Recognition: Contextual reasoning enabled by
masking allows detection of fires in early, subtle stages
when visual cues are partial or obscured.

Scalability: The method is scalable to high-resolution im-
ages and can be integrated with existing surveillance in-
frastructure.

summary, our ImageMAE-based FD method combines ef-
t masked autoencoding with powerful transformer-based
re extraction to deliver accurate, timely, and scalable FD
al-world environments.

3.2. Architecture Design

The proposed FD framework is constructed on a masked au-
toencoder backbone and follows a carefully designed three-
stage pipeline: (i) input preprocessing and patch embedding,
(ii) masked autoencoder pretraining, and (iii) supervised fine-
tuning for fire classification. Initially, images from surveillance
streams are standardized in size and pixel values. Each image is
partitioned into fixed-size non-overlapping patches, which are
then flattened and projected into patch embeddings through a
learnable linear mapping. Positional embeddings are added to
preserve the spatial structure, ensuring that the model retains
an understanding of the image layout. This transformation con-
verts the 2D visual data into a 1D sequence of tokens, mak-
ing it compatible with transformer-based processing. The cen-
tral component of the system employs the masked autoencoder
(MAE) strategy in a self-supervised manner. In this stage, a
large proportion of image patches (around 75%) are randomly
masked and excluded from the encoder input. This masking
encourages the encoder to infer discriminative features from
incomplete visual cues rather than relying on low-level pixel
continuity. A Vision Transformer (ViT) serves as the encoder,
processing the remaining visible patches and producing latent
feature representations. These representations capture critical
fire-related characteristics, such as the irregularity of flames,
variations in color intensity, and the texture of smoke.

Subsequently, the decoder is provided with both the encoder
outputs and a set of learned tokens representing the missing
patches. Its role is to reconstruct the masked regions by pre-
dicting the pixel values of the absent patches, guided by the
contextual information derived from the visible ones. This re-
construction objective drives the network to develop richer and
more generalizable representations, particularly under adverse
conditions such as fluctuating lighting, reflections, and partial
occlusions. After pretraining, the decoder is discarded, and the
pretrained encoder is retained as a feature extractor for fire de-
tection. A lightweight classification head is then attached to
the encoder’s output, operating on the class token or pooled
global features. During supervised fine-tuning, the combined
encoder–classifier is trained on labeled fire datasets using cross-
entropy loss, enabling precise discrimination between fire and
non-fire categories. In deployment, the system bypasses mask-
ing and processes complete images, ensuring efficient infer-
ence. The encoder extracts high-level features, and the classifier
outputs probability scores for fire presence.

The architectural choices are not arbitrary but motivated by
the need for both robustness and efficiency. The MAE-based
pretraining allows the encoder to learn from partially observed
data, strengthening its ability to identify subtle fire cues. The
ViT encoder contributes long-range attention, critical for dis-
tinguishing flames from visually similar distractors such as ar-
tificial lighting. Finally, the lightweight decoder ensures scal-
ability for real-time surveillance. Together, these components
form a unified and innovative framework that advances beyond
prior approaches based on handcrafted color features or shallow
CNNs, offering both interpretability and reliable performance
in real-world fire detection scenarios.
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xperimental Results

is section evaluates the performance of the proposed
eMAE-based FD model on three publicly available FD
hmarks along with a self-curated fire dataset. The exper-
tal analysis includes implementation details, dataset de-
tions, evaluation metrics, ablation studies, cross-crop eval-
ns, qualitative visualizations, and comparative results with
-of-the-art methods.

Experimental Setup and Evaluation Metrics
l experiments were carried out on a system equipped with
tel Core i9 processor 3.60GHz, with NVIDIA GEFORCE
3080 Ti GPU, and 64 GB of RAM. The model was im-

ented using the Keras deep learning API with TensorFlow
e backend. With a starting learning rate of 0.001 and a
ht-decomposition approach that progressively lowers the
ing rate to 0.0001 over the course of subsequent epochs,
odel was optimised using the AdamW optimiser. The best

ts were obtained across all data sets when the training was
ucted with a batch size of 32 for 50 epochs. The loss func-
used was sparse categorical cross-entropy.

evaluate the performance, we utilized several standard
ics widely adopted in the FD domain: Accuracy (Acc),
ision (P), Recall (R), F1-score (F), False Positive Rate
), and False Negative Rate (FNR). These metrics are com-
using the following definitions:

True Positive (TP): Number of correctly classified fire im-
ages.

True Negative (TN): Number of correctly classified non-
fire images.

False Positive (FP): Number of non-fire images incorrectly
classified as fire.

False Negative (FN): Number of fire images incorrectly
classified as non-fire.

sed on these, the evaluation metrics are calculated as:

Acc =
T P + T N

T P + FP + FN + T N
(11)

P =
T P

T P + FP
(12)

R =
T P

T P + FN
(13)

F =
2 × P × R

P + R
(14)

FPR =
FP

FP + T N
(15)

FNR =
FN

FN + T P
(16)

Accuracy reflects the ratio of correct predictions over the to-
tal number of instances. Precision measures the proportion of
predicted fire instances that were actually fire. Recall evaluates
the proportion of actual fire instances that were correctly iden-
tified. The F1-score provides a harmonic mean of precision and
recall. The FPR indicates the proportion of non-fire instances
incorrectly predicted as fire, and FNR shows the proportion of
fire instances incorrectly predicted as non-fire.

These evaluation metrics ensure a thorough and balanced as-
sessment of the model’s capability in both FD sensitivity and
false alarm resistance.

4.2. Benchmark Fire Detection Datasets

To evaluate the effectiveness and robustness of the proposed
FD framework, we employ a collection of publicly available
benchmark datasets frequently used in FD research, shown in
Table 1. These include Foggia’s (FG) dataset [17], BoWFire
(BWF) [20], DeepQuestAI Fire-Flame (DQFF) [40], the Large-
Scale Fire Detection (LSFD) dataset [35], and the Drone Satel-
lite Fire Dataset (DSFD) [50]. These datasets cover a wide
range of challenging environments and are briefly described be-
low.

Foggia (FG):The Foggia’s dataset is composed of 31 video
sequences recorded in both indoor and outdoor settings. It in-
cludes various scenes captured under different lighting and en-
vironmental conditions. The videos are converted into a total of
62, 690 frames, providing a rich source of temporal and visual
diversity for training and evaluation purposes.

BoWFire (BWF):The BoWFire dataset is comparatively
smaller in scale, containing a total of 226 still images. De-
spite its limited size, it includes visually complex scenes such as
sunsets, artificial lights, and flame-like regions, which present
challenges to FD models and often contribute to false positives.

DeepQuestAI Fire-Flame (DQFF): The DeepQuestAI Fire-
Flame dataset consists of 2, 000 images obtained from diverse
real-world environments, including urban streets, buildings,
and natural landscapes. Its diversity in terms of background
complexity and ambient lighting makes it valuable for assess-
ing the generalization performance of FD models.

Large-Scale Fire Detection (LSFD): The Large-Scale FD
dataset provides a significantly broader collection of fire-related
scenes. With 50, 000 high-resolution images, it was constructed
by combining multiple datasets, such as FG and BWF, and aug-
menting them with additional samples sourced from the inter-
net. This dataset supports large-scale training and enables deep
models to learn from a wide distribution of fire conditions.

DFAN Dataset: In the field of fire detection, most available
datasets are limited to two categories: fire and normal. Such
datasets mainly emphasize the identification of fire presence,
without considering the specific objects affected by the flames.
The DFAN dataset offers a notable advancement by incorporat-
ing greater diversity and expanding the number of categories to
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Table 1: Datasets description including number of samples, classes and environment.

Dataset Classes Samples Environment

FG 2 62,690 The dataset comprises images captured in both indoor and outdoor settings, where
red-colored objects are present near visible fire regions. .

BWF 2 226 A small-scale dataset featuring diverse and challenging indoor and outdoor environ-
ments.

DQFF 2 2,000 A medium-scale dataset containing both indoor and outdoor samples.

LSFD 2 50,000
A combined dataset consisting of the FG dataset and newly collected samples from
the internet, including both indoor and outdoor scenes captured by CCTV and remote
sensing devices.

DSFD 2 6,000 Outdoor samples from drones and satellites under varied angles, heights, times of day,
and weather conditions.

DFAN 12 12000+ A large scale dataset with diverse range of challenges and classes.

Table 2: Comparative analysis with DL-based FD methods.

set Method ACC PR RC FS
ANetFire [25] 88.1 80.0 98.0 88.0
GNetFire [45] 85.0 79.0 93.0 85.0
CNNFire [46] 89.8 83.0 97.0 90.0
EMNFire [47] 92.0 90.0 93.0 92.0

DFAN [35] 95.0 95.0 94.0 95.0
Ours 98.5 98.5 97.5 98.0

F

GNetFire [45] 89.4 84.5 96.5 90.1
EMNFire [47] 87.7 80.8 98.8 88.9
EfficientNetB0

[38] 95.4 91.8 97.6 94.8

Ours 98.5 97.2 98.3 97.6

D

EMNFire [47] 92.8 88.3 98.7 93.2
MIAPC [48] 96.0 94.9 97.3 96.1
MS-Net [49] 97.38 97.8 96.82 97.35

Ours 99.0 99.6 98.2 98.9

D

EFDNet [33] 88.0 87.5 88.0 87.75
ADFireNet [50] 90.86 90.9 90.86 90.88
M-SoftFireNet

[51] 93.50 93.57 93.51 93.53

Ours 96.20 95.11 95.25 95.19
SE-EFFNet [5] 97.2 0.04 (FPR) 0.03 (FNR) –
STN-CNN [52] 96.2 3.68 (FPR) 2.46 (FNR) –

Ours 98.80 0 (FPR) 0.02 (FNR) –

N

LW [50] 90.0 90.43 90.49 89.99
DFire [51] 91.20 90.63 91.17 90.36
DFAN [35] 89.36 86.1 94.00 89.84

Ours 92.30 91.21 92.10 91.90

nce recognition of objects in fire scenarios. Unlike conven-
l datasets that only classify fire versus non-fire, DFAN [51]
duces 12 distinct classes: fire on a boat, building, bus, car,
, electric pole, forest, non-fire, pick-up, SUV, train, and
providing a more comprehensive representation of real-

d fire events. This broader categorization is essential for
ring the complexity of fire situations and improving de-
n accuracy. The dataset is partitioned into training (70%),
ation (20%), and testing (10%) subsets.
one Satellite Fire Dataset (DSFD): The Drone Satellite
Dataset incorporates a unique perspective by combining
l views from drones and satellite images. Videos were
red using DJI drones at different heights, ranging from 10
meters, followed by a 60-frame skip mechanism to in-

ce diversity and eliminate redundancy. Images were also
ally reviewed to ensure quality and relevance. The satel-
omponent adds further variation in environmental settings
as day/night conditions and foggy weather, enhancing the

Figure 3: Results from our model visualized using Grad-CAM XAI methods to
highlight important features and regions contributing to predictions.

complexity and utility of this dataset for high-altitude surveil-
lance applications. To prepare these datasets for model training,
we resized all images to a uniform resolution compatible with
our architecture. A standard data split strategy is followed for
all datasets, , 20% and 10% of the data for training, validation,
and testing. For smaller datasets like BWF, data augmentation
techniques, including rotation, flipping, and zooming, were ap-
plied to enhance training diversity and mitigate overfitting. This
comprehensive set of benchmark datasets provides a reliable
foundation for evaluating the proposed model across multiple
real-world FD scenarios.

4.3. Quantitative Analysis
The proposed method is comprehensively evaluated against

TML and DL-based FD models across various datasets. The
comparison uses six standard metrics: Accuracy (ACC), Pre-
cision (PR), Recall (RC), F1-score (FS), False Positive Rate

8
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Table 3: Comparative analysis with TML-based FD methods.

aset Method ACC PR RC FS

F
]

FD-GCM [13] – 55.0 54.0 54.0
Bonfires[20] – 51.0 65.0 67.0
EFD-IP [53] – 75.0 15.0 25.0

Ours 98.5 98.5 97.5 98.0

D
]

FD-GCM [13] 69.6 63.9 90.0 74.7
FFD-ANN [55] 71.7 71.1 73.2 72.1

FPC [54] 53.9 52.0 99.9 98.4
Ours 99.0 99.6 98.3 97.6

]

FD-CSM [17] 93.6 – – –
FSD-YUV [35] 87.1 – – –
FSD-RGB [35] 74.2 – – –

FD-CV [35] 92.9 – – –

CM-FDM [18] 90.3 5.9
(FPR) 14.2 (FNR) –

Ours 98.80 0 (FPR) 0.02 (FNR) –

4: False Positive Rate (FPR) and False Negative Rate (FNR) across
ts showing low error rates for the proposed method.

), and False Negative Rate (FNR). The results, presented
bles 3 and 2, demonstrate the superior performance of our
od across all scenarios.

. Comparison with TML-Based Methods
ble 3 reports the performance comparison with TML-
d methods on BWF, LSFD, and FG datasets. Traditional
ods such as FD-GCM [13] and Bonfires [20] performed
ly, especially in precision and recall. For example, on
WF dataset, Bonfires achieved only 51.0% precision and

% recall, while EFD-IP [53], despite a relatively high preci-
of 75.0%, failed drastically in recall (15.0%). Our method
ved 98.5% accuracy, 98.5% precision, 97.5% recall, and

% F1-score, indicating strong performance in detecting fire
s diverse conditions. On the LSFD dataset, our model re-
d 99.0% accuracy, substantially outperforming FD-GCM
(69.6%) and FFD-ANN [55] (71.7%). On the FG [17]
et, where previous TML methods such as FD-CSM [17]
FSD-RGB [35] suffered from high FPR and FNR, our
od achieved near-perfect performance with 0% FPR and
0.02% FNR.

. Comparison with DL-Based Methods
r method consistently outperforms DL-based methods on
, DQFF, LSFD, DSFD, and FG datasets, as shown in Ta-
. On BWF, it surpassed models like DFAN (95.0% ACC)

and EMNFire (92.0%) by achieving 98.5% accuracy and the
highest scores across all other metrics. For the DQFF dataset,
our model improved upon EfficientNetB0 (95.4%) and EMN-
Fire (87.7%), reaching 97.6% accuracy and 98.5% recall. In
the LSFD dataset, our approach outperformed advanced net-
works such as MS-Net and MIAPC, achieving 99.0% across all
primary metrics. Our model also performed best on DSFD, a
dataset collected from aerial views, reaching 96.20% accuracy.
Finally, on FG, the proposed method achieved the highest accu-
racy of 98.80%, reducing FPR to 0%and FNR to 0.02%, even
outperforming SE-EFFNet and EMNFire. These results vali-
date the generalization and robustness of the proposed method
across varying environments and fire characteristics. To fur-
ther evaluate the performance of the proposed method, we used
the DFAN [35] multiclass dataset, which is one of the more
challenging datasets. The proposed method achieved the high-
est accuracy of 92.30%, with a precision of 91.21%, recall
of 92.10%, and F1-score of 91.90%. These results demon-
strate that the proposed method generalizes well to large-scale
and challenging datasets and outperforms other state-of-the-art
methods, as shown in Table 2. These results confirm that our
method achieves strong generalization performance and main-
tains a lower false alarm rate across diverse and challenging FD
scenarios. The higher performance across all metrics validates
the effectiveness of the proposed attention-based multi-scale ar-
chitecture.

4.4. Qualitative comparison

Figure 6 presents a qualitative comparison between the pro-
posed method and two recent FD approaches. The examples
include challenging fire and non-fire scenes, such as artificial
lighting, reflected glows, mountain snow caps, and dense smoke
without visible flames. The proposed method correctly iden-
tifies all scenarios, while the baseline methods from Khan et
al. and Yar et al. show multiple misclassifications, particularly
in visually ambiguous cases. These outcomes demonstrate the
effectiveness of our transformer-based model in learning nu-
anced fire features and reducing false alarms under diverse con-
ditions. The Confusion matrix of the proposed method on all
five datasets is shown in Figure 5. Figure 4 shows the error rate
of the model over all datasets, whereas the ROC curve is shown
in Figure 7. Furthermore, Figure 3 illustrates the Grad-CAM
visualizations of our model’s predictions on fire images. The
highlighted regions indicate the areas that the model considers
most important when detecting fire. As shown, the model con-
sistently focuses on the flames and smoke regions, demonstrat-
ing its ability to accurately localize key features associated with
fire. This confirms that our model not only achieves high clas-
sification performance but also provides interpretable insights
into the decision-making process, reinforcing its reliability for
practical fire detection applications.

4.5. Ablation Study

To assess the influence of the encoder backbone within our
FD framework, we performed a model-based ablation study by
replacing the original Vision Transformer (ViT) encoder with
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5: Confusion matrices for the proposed method across five datasets (BWF, DQFF, LSFD, DSFD, and FG), showing strong classification performance with
rue positive and true negative rates.

4: Ablation study on different masking ratios across five benchmark fire
ion datasets.

sking
io BWF (%) DQFF (%) LSFD (%) DSFD (%) FG (%)

91.2 89.5 88.7 90.1 87.9
92.8 91.0 90.1 91.7 89.3
98.5 98.5 99 96.20 98.80

al widely-used alternatives: Swin Transformer, ResNet50,
NeXt-Tiny, EfficientNetB0, and DenseNet121. All vari-

were embedded within the same masked autoencoder (Im-
AE) pipeline, using consistent training hyperparameters

oss design. The results, summarized in Table 5, reflect ac-
y scores across five benchmark datasets. The original ViT

der consistently outperformed all other backbones, achiev-
8.80% on FG and 99.0% on LSFD, with similar superi-
across the remaining datasets. Swin Transformer, which
s architectural similarities with ViT but incorporates local
ow attention, followed closely, showing promising perfor-
e with minimal drop in accuracy. In contrast, CNN-based

ders such as ResNet50, DenseNet121, and EfficientNetB0
nstrated lower accuracy, particularly on complex datasets
SFD and LSFD. This suggests a limitation in their ability

pture global dependencies and contextual semantics, which
ritical for accurate fire localization and classification. Con-

t, a modernized CNN incorporating transformer-like fea-
, performed better than traditional CNNs but still lagged
d transformer-based architectures. These findings affirm

transformer-based models, particularly ViT and Swin, are

more adept at modeling the complex spatial patterns necessary
for robust FD in varied real-world environments.

Moreover, we further conducted an ablation study to evalu-
ate the impact of different masking ratios on fire detection per-
formance across five benchmark datasets (BWF, DQFF, LSFD,
DSFD, and FG). As shown in Table 4, increasing the masking
ratio from 25% to 75% consistently improves FD accuracy on
all datasets. Lower masking ratios (25%) result in easier re-
construction but less robust feature learning, while a moderate
ratio (50%) provides a better balance. The 75% masking ratio
achieves the best performance across all datasets, encouraging
the encoder to focus on salient fire-related features and learn
more discriminative representations. These results justify the
use of 75% masking for all experiments reported in this work.

4.6. Complexity Analysis

The inference time, model size, and computational complex-
ity of CANet are compared with several state-of-the-art fire de-
tection methods. The processing speed of AI-based models
is largely influenced by their computational cost (FLOPS) and
model size. Table 6 presents a comparison of proposed method
with SE-EFFNet [5], EMNFE [47], EFDNet [33], GNetFire
[45], ResNetFire [22], CNNFire [46], and DFAN [35]. Among
these methods, EFDNet [33] and CNNFire [46] have the small-
est model sizes of 4.8 MB and 3 MB, respectively, but their
FLOPS are relatively higher (1130 M and 720 M), which lim-
its their inference speed on low-computation devices. In con-
trast, DFAN [35] exhibit lower FLOPS (73.05 M), resulting in
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6: Qualitative comparison between the proposed method and two state-of-the-art models: Khan et al. and Yar et al. Each row shows predictions from a
nt method across various fire and non-fire scenarios. Black text indicates correct classification, while red text denotes misclassification. The proposed method

ow) demonstrates superior robustness in distinguishing fire from challenging non-fire cases, such as sunsets, lights, and smoke-like patterns.

er FPS across all tested hardware, including Raspberry Pi
), CPU, and GPU. The proposed method achieves the low-
LOPS of 55.40 M and delivers the fastest inference speed,
9 FPS on RPI, 50 FPS on CPU, and 130 FPS on GPU, out-
rming all other methods in the comparison. This demon-
s that proposed method is highly efficient and suitable for

time deployment on edge devices.

5. Conclusion

This study presents a transformer-based FD framework that
addresses key limitations in prior deep learning methods, partic-
ularly those relying on shallow architectures or simplistic fea-
ture representations. While existing models often struggle with
fine-grained fire discrimination and are limited by binary-class
datasets, our method leverages a masked autoencoding mecha-
nism to enhance visual understanding from partial observations.
By incorporating a Vision Transformer encoder and reconstruc-
tive learning, the model learns robust, context-aware features
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5: Model-based ablation study: Performance comparison across different encoder backbones using the same ImageMAE framework. Metrics reported are
acy (Acc), Precision (PR), Recall (RC), and F1-score (F1).

coder Backbone FG BWF DQFF LSFD DSFD

in Transformer

Acc: 97.5
PR: 97.1
RC: 97.0
F1: 97.05

Acc: 96.8
PR: 96.4
RC: 96.2
F1: 96.3

Acc: 96.9
PR: 96.5
RC: 96.4
F1: 96.45

Acc: 98.1
PR: 97.8
RC: 97.7
F1: 97.75

Acc: 94.4
PR: 94.0
RC: 93.8
F1: 93.9

sNet50

Acc: 94.8
PR: 94.3
RC: 94.1
F1: 94.2

Acc: 92.5
PR: 92.0
RC: 91.8
F1: 91.9

Acc: 93.7
PR: 93.3
RC: 93.0
F1: 93.15

Acc: 94.9
PR: 94.4
RC: 94.2
F1: 94.3

Acc: 91.2
PR: 90.7
RC: 90.5
F1: 90.6

nvNeXt-Tiny

Acc: 96.3
PR: 95.9
RC: 95.7
F1: 95.8

Acc: 94.7
PR: 94.3
RC: 94.0
F1: 94.15

Acc: 95.2
PR: 94.8
RC: 94.7
F1: 94.75

Acc: 96.7
PR: 96.3
RC: 96.2
F1: 96.25

Acc: 92.6
PR: 92.2
RC: 92.0
F1: 92.1

cientNetB0

Acc: 91.7
PR: 91.2
RC: 91.0
F1: 91.1

Acc: 90.1
PR: 89.7
RC: 89.5
F1: 89.6

Acc: 92.3
PR: 91.9
RC: 91.7
F1: 91.8

Acc: 92.1
PR: 91.7
RC: 91.5
F1: 91.6

Acc: 89.3
PR: 88.9
RC: 88.7
F1: 88.8

nseNet121

Acc: 93.5
PR: 93.1
RC: 92.9
F1: 93.0

Acc: 91.3
PR: 90.8
RC: 90.6
F1: 90.7

Acc: 92.8
PR: 92.4
RC: 92.2
F1: 92.3

Acc: 93.4
PR: 93.0
RC: 92.8
F1: 92.9

Acc: 90.5
PR: 90.0
RC: 89.8
F1: 89.9

posed (ViT)

Acc: 98.80
PR: 98.1
RC: 98.0
F1: 98.05

Acc: 98.5
PR: 98.5
RC: 97.5
F1: 98.0

Acc: 98.5
PR: 97.2
RC: 98.3
F1: 97.6

Acc: 99.0
PR: 99.6
RC: 98.2
F1: 98.9

Acc: 96.2
PR: 95.11
RC: 95.25
F1: 95.19

7: ROC curves and AUC scores for the proposed method across five
ts.

6: Comparison of proposed method and baseline methods in terms of
utational cost and inference speed.

thod Size (MB) FLOPS (m) FPS
RPI CPU GPU

EFFNet [5] 47.7 1974.7 6 – 45
NFE [47] 13 300 – 2.4 61.2
Net [33] 4.8 1130 – 3 63.5

etFire [45] 43.3 1500 – 4.3 48.2
NetFire [22] 98 3800 2.4 – 57.3
NFire [46] 3 720 4 – 20

N [35] 41.09 73.05 3.21 22.73 125.33
40.2 55.40 9 50 130

generalize well across complex scenes and visually similar
fire regions.
e proposed framework demonstrates superior performance
s multiple benchmark datasets, consistently achieving

er accuracy and improved detection metrics compared to
tional CNN-based baselines. In addition, the design is

modular and compatible with various encoder backbones, al-
lowing for flexibility in deployment across systems with differ-
ent computational constraints.

Although we did not specifically target lightweight edge de-
ployment in this work, the model’s strong generalization and
scalability open potential avenues for real-time applications in
surveillance and industrial safety systems. Our results affirm
that attention-guided masked modeling is an effective strategy
for reliable FD, even in challenging real-world environments.
Future work may explore further compression techniques, or
extend the model for multi-label fire scene understanding in-
volving object status and situational awareness.

5.1. Limitations and Future Work

Despite the promising results achieved by the proposed Vi-
sion Transformer-based FD framework, several challenges re-
main that warrant further investigation. One of the primary
limitations lies in the model’s current focus on frame-level
classification rather than spatially localized FD. While the
reconstruction-based learning enables strong feature extraction,
it does not inherently provide pixel-wise fire region delineation,
which can be crucial for emergency response systems requiring
detailed scene analysis.

Another limitation involves the model’s sensitivity to fire
scenarios that lack distinct flame patterns—such as early-stage
fires, smoke-dominant scenes, or occluded fire regions. In
such cases, visual ambiguity may lead to reduced detection
confidence. Furthermore, although the model generalizes well
across several benchmark datasets, environmental and geo-
graphic variability (e.g., weather, lighting conditions, regional
fire characteristics) could impact robustness when deployed in
unseen real-world settings.

Moving forward, we intend to expand the capabilities of the
model through several research directions. A key objective is to
integrate fire region localization into the current pipeline by in-
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orating transformer-based segmentation or detection mod-
This would enable the system to highlight precise fire

s rather than merely classifying the presence of fire. Addi-
lly, attention will be given to developing modules that can
r interpret low-visibility scenarios, such as scenes domi-
by smoke, haze, or indirect fire indicators.

e also plan to enhance the scalability of the framework by
ating its performance across a broader range of datasets
senting indoor, outdoor, urban, and rural fire conditions.
is end, we will extend our dataset to include instances
e fire is partially or entirely obscured, and where only
e or glow is visible. These additions aim to improve the

el’s resilience in challenging environments.
nally, future research may explore hybrid learning strate-
that combine self-supervised reconstruction with super-
fire-type classification or region regression. By advanc-

he model’s granularity, adaptability, and interpretability,
im to bring the system closer to deployment in practical,
-stakes fire monitoring applications.
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