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Masked Autoencoder-Based Vision Framework for Robust Fire Detection in Complex
Environments

Abstract

Vision-based fire detection has become an increasingly important focus in computer vision, driven by the growing need for early
warning systems and public safety in surveillance environments. While conventional models have primarily relied on color-based
features to distinguish fire from background, maintaining high detection accuracy while ensuring computational efficiency remains
a persistent challenge, particularly in real-time surveillance systems. To address this, we introduce a novel fire detection framework
grounded in masked autoencoding and Vision Transformers (ViT), designed to balance detection performance with scalable deploy-
ment. Our architecture leverages self-supervised learning to reconstruct masked visual regions, enhancing the encoder’s ability to
capture fine-grained fire cues in complex scenarios. The integration of global attention and hierarchical context modeling enables
the system to distinguish between fire and visually similar non-fire patterns, such as reflections and artificial lighting, under diverse
environmental conditions. Unlike prior models that are sensitive to background noise or rely heavily on channel saliency, our ap-
proach learns robust representations through reconstruction objectives, eliminating the need for hand-crafted modules. Extensive
experiments conducted on five benchmark datasets: BWF, DQFF, LSFD, DSFD, FG and DFAN demonstrate consistent improve-
ments over existing methods, with notable gains of 2.5% on BWEF, 2.2% on DQFF, 1.42% on LSFD, 1.8% on DSFD, 1.14% on FG
and 1.10% on DFAN. The proposed model also maintains computational efficiency and generalizes effectively across a wide range

of fire conditions, supporting its deployment in practical, real-time systems.

Keywords: Fire Detection, Masked Autoencoder, Vision Transformer, Self-Supervised Learning, Feature Reconstruction,

Attention Mechanism.

1. Introduction

Fires represent a severe threat to human life and property
due to their rapid and often uncontrollable spread, especially
in densely populated regions such as urban residential areas,
transportation hubs, and forested environments [1]. Ensuring
prompt detection of fire outbreaks is crucial to mitigate damage
and improve public safety in various domains, including resi-
dential, commercial, and industrial settings.

Conventional fire detection (FD) systems typically employ
environmental sensors like smoke, temperature, and particle
detectors [2]. These sensors are cost-effective and relatively
easy to deploy, particularly in confined indoor environments.
However, their effectiveness diminishes significantly in open or
large-scale outdoor scenarios. Moreover, these systems often
activate only when they directly detect fire by-products such as
heat or smoke, potentially delaying the response time and re-
ducing the chances of early intervention [3, 4].

To overcome these limitations, there has been a growing in-
terest in vision-based FD technologies which utilize cameras as
sensors to monitor large areas in real-time [5, 6]. These sys-
tems offer broader coverage, quicker response, and better adapt-
ability to various environmental conditions[7]. Consequently,
numerous vision-based methods have been proposed, mainly
categorized as traditional machine learning (TML) and deep
learning (DL) approaches[8].

TML-based approaches are based on traditional feature ex-
traction techniques, such as flame texture, color, and motion
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patterns [6]. The success of these methods depends heavily
on the quality and relevance of the features designed manually.
However, it is challenging to design a robust global feature ex-
traction due to the diverse and dynamic nature of fire. Varia-
tions in flame color caused by different combustible materials,
lighting conditions, and environmental influences such as wind
or temperature fluctuations contribute to the unpredictability of
flame behavior. These factors can hinder consistent FD and in-
crease the likelihood of false positives. To effectively harness
TML-based methods, it is essential to master the challenge of
attaining a high true positive rate while minimizing the false
alarm rate.

In response to these challenges, deep learning has emerged as
a powerful alternative, offering end-to-end learning capabilities
and superior performance across a variety of computer vision
tasks [9, 10]. DL-based models automatically learn discrimi-
native features from large datasets, enabling them to generalize
effectively to new and unseen fire scenarios. This capacity to
extract complex patterns has led to substantial improvements
in detection accuracy and robustness. Notably, several DL-
based techniques have demonstrated enhanced reliability over
TML approaches, especially under variable and uncertain con-
ditions [11].

Despite these advancements, DL-based FD systems are not
without limitations. Their performance can degrade in visually
complex scenes, such as when fire-colored objects are present
or when the fire source is distant and small in the frame, as il-
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Figure 1: Sample images illustrating challenging scenarios for FD. The red
bounding boxes indicate actual fire regions, while the blue bounding boxes
highlight visually similar non-fire regions such as lighting artifacts, reflections,
or sunlight patches. These examples demonstrate the difficulty in distinguish-
ing real fires from fire-like patterns, particularly under varying environmental
and lighting conditions.

lustrated in Figure . These challenges highlight ongoing gaps in
the literature and motivate the development of improved detec-
tion techniques, which are addressed in the proposed method-
ology section.

1.1. Research Gap

Despite notable progress in FD technologies, significant
challenges remain unresolved, particularly in achieving timely
and reliable detection in complex and dynamic environments.
Traditional sensor-based systems, while cost-effective and sim-
ple to deploy, are constrained by their limited range and de-
layed responsiveness, especially in outdoor or large-scale set-
tings. These systems often rely on direct detection of smoke or
heat, which restricts their ability to identify fires in their early
stages. On the other hand, vision-based approaches, although
more promising in terms of coverage and responsiveness, also
encounter limitations.

Traditional Machine Learning (TML) techniques depend
heavily on manually crafted features such as flame color, tex-
ture, and motion, which are highly susceptible to environmen-
tal variations including lighting conditions, background clutter,
and fire appearance diversity. This dependence leads to incon-
sistent detection performance and a high rate of false alarms.

While Deep Learning (DL)-based models have demonstrated
superior accuracy and generalization in FD tasks, their effec-
tiveness declines in certain complex scenarios. Specifically, DL
models struggle with false detections when visually similar ob-
jects (e.g., fire-colored materials) are present, or when fire is
located at long distances, making it less visible in the frame.
Additionally, many existing DL methods have not been rigor-
ously evaluated across a wide range of real-world conditions,
limiting their practical applicability.

Therefore, there is a clear need for an advanced FD frame-
work that combines the strengths of deep learning with ro-
bust feature representation, capable of handling real-time detec-
tion in diverse and challenging environments while minimizing

false positives and improving detection accuracy across varying
scales and contexts.

1.2. Main Contributions

To address the challenges and research gaps in vision-based
FD, this study introduces a novel FD framework based on
masked autoencoding and transformer architectures. The pro-
posed method aims to improve early FD accuracy and robust-
ness in complex environments by leveraging advanced feature
learning and contextual reasoning. The main contributions of
this work are as follows:

e We propose an Image Masked Autoencoder (ImageMAE)
based FD framework that efficiently learns rich and dis-
criminative fire-related features through a self-supervised
reconstruction task. The framework uses an asymmet-
ric encoder-decoder design, where the encoder processes
only visible image patches, significantly reducing compu-
tational overhead.

A Vision Transformer (ViT)-based encoder is utilized for
feature extraction, capturing long-range dependencies and
complex fire patterns such as varying flame shapes, colors,
and textures. This enhances the model’s ability to distin-
guish between real fires and fire-like objects in challenging
visual conditions.

e The reconstruction module incorporates a novel pixel-
level reconstruction loss with optional normalized pixel
targets, improving feature invariance to environmental fac-
tors such as lighting changes and smoke occlusion. This
leads to more robust representations suitable for early-
stage FD.

e We conduct comprehensive experiments on a diverse fire
dataset, demonstrating that the proposed method achieves
superior FD accuracy compared to baseline approaches.
Additionally, the model’s lightweight decoder and efficient
masking strategy enable scalability and real-time applica-
bility in surveillance systems.

1.3. Study Outline

The remainder of this paper is organized as follows: Section
II reviews recent literature on FD methods, highlighting exist-
ing challenges and advances. Section III details the proposed
ImageMAE-based FD framework, including architecture and
training strategies. Section IV presents the datasets used, ex-
perimental results, and a comprehensive analysis of the model’s
performance. The conclusion and future direction are presented
in Section V.

2. Related Work

The development of early and accurate FD technology us-
ing vision sensors has been an active research area and can be
broadly categorized into Traditional Machine Learning (TML)
methods and Deep Learning (DL) methods. This section pro-
vides a detailed overview of both approaches.
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2.1. Traditional Machine Learning Methods

Traditional machine learning (TML) approaches primarily
focus on handcrafted features based on fire characteristics such
as color, shape, motion, and texture [12]. Early color-based
FD methods were proposed by [13, 14]; however, these meth-
ods suffered from high false positive rates and limited accu-
racy, restricting their practical application. [15] introduced an
auto-adaptive edge detection technique to identify fire regions,
while [16] applied methods like K-means clustering, optical
flow, logistic regression, and temporal smoothing for FD. [17]
employed multiple classification algorithms and combined their
outputs for accurate real-time fire scene classification. [18] used
covariance features with Support Vector Machines (SVM) for
fire scene classification. Teng et al. [19] applied hidden Markov
models to detect moving fire pixels extracted from pixel clus-
ters. [20] developed BoWFire, a novel approach that fused
color features with super-pixel texture discrimination to im-
prove FD. While traditional machine learning methods have
contributed to fire detection, they rely heavily on handcrafted
features and standard classifiers, which are error-prone and
labor-intensive. They often confuse fire with fire-like objects
and perform poorly under varying lighting, smoke, or occlu-
sion. These challenges highlight the need for approaches that
can automatically learn robust features. Our ImageMAE-ViT
framework addresses this by combining self-supervised learn-
ing with global context modeling, enabling accurate and effi-
cient fire detection across diverse conditions.

2.2. Deep Learning Methods

Deep learning (DL) techniques automatically learn features
from raw image data and have demonstrated superior perfor-
mance over traditional methods in FD. Sharma et al. (2017) in-
troduced a challenging fire dataset and evaluated models such
as ResNet50 [21] and VGG16 [22], with ResNet50 achieving
promising results. [23] designed a convolutional neural net-
work (CNN) for fire scene classification. [24] combined lo-
cal binary patterns with AdaBoost to isolate fire regions, which
were then input to a CNN for feature extraction and classifica-
tion. [25] utilized pretrained GoogleNet weights to balance
efficiency and accuracy for FD. In another study, they fine-
tuned AlexNet for indoor and outdoor fire scenarios, employ-
ing adaptive camera prioritization strategies. [26] used a mod-
ified InceptionV 1 architecture for efficient FD. [27] compared
various classifiers, including MLP, AdaBoost, AdaBoost-LBP,
and CNN for FD. Zhang et al. [28] proposed a novel CNN
model with three convolutional and three fully connected layers
aimed at efficient FD. More recently, [29] modified VGG16 to
reduce model size and training parameters while significantly
improving accuracy. [5] presented a CNN architecture con-
nected with an autoencoder for fire scene classification. Altaf
et al. [1] proposed an optimized deep learning model with an
attention module to improve detection efficiency, while Khan et
al. [30] developed a multi-attention network with a new bench-
mark dataset for real-time fire detection. Wang et al. [31] intro-
duced FFD-YOLO, a modified YOLOvS8 architecture tailored
for forest fire scenarios, and Lv et al. [32] enhanced YOLOV8

with CARAFE and context-guided modules for robust perfor-
mance. Complementing these works, Wang et al. [2] presented
a multi-source data fusion framework using deep learning to
improve detection accuracy across diverse conditions. Beyond
deep learning, Maity et al. [6] proposed MLSFDD, a smart
fire detection device for precision agriculture, demonstrating
the growing interest in domain-specific fire detection applica-
tions.

However, current deep learning models for FD often rely
on relatively plain architectures, limiting their ability to ex-
tract fine-grained details and accurately localize fire regions.
To overcome these shortcomings, many researchers have in-
corporated attention mechanisms into their models, utilizing
various backbones such as attention-squeeze networks, deep
CNNs with channel attention [33], spatial and channel atten-
tion modules [34], InceptionV3 with CBAM [35], Vision Trans-
former (ViT) with self-attention [36], non-local attention net-
works [37], EfficientNetBO with attention [38], and other self-
attention frameworks [39, 40]. While these attention-based
methods generally outperform plain CNN architectures by en-
hancing the focus on salient features, they often process feature
maps within a single receptive field, which may not fully cap-
ture the complex spatial and contextual variations required for
accurate FD.

Existing attention-based fire detection models employ a va-
riety of mechanisms to improve feature learning. Common
approaches include channel attention, which emphasizes im-
portant feature maps, and spatial attention, which highlights
relevant image regions. Beyond these, more advanced strate-
gies such as combined channel-spatial attention modules (e.g.,
CBAM), non-local attention networks, and transformer-based
self-attention have been applied to capture long-range depen-
dencies and contextual information. Despite their effective-
ness, these methods still face challenges in complex scenar-
ios with fire-like objects, reflections, smoke, or varied back-
grounds, often resulting in higher false-positive rates. Many
also struggle to robustly detect fires across varying scales, dis-
tances, and environmental conditions such as occlusions and
lighting changes, partly due to limited multiscale feature mod-
eling.

To address the limitations of current deep learning models for
fire detection, our method leverages a masked autoencoder [41]
(ImageMAE) framework that inherently captures multi-scale
and contextual information through self-supervised reconstruc-
tion of masked image patches. Unlike conventional attention
modules, which often operate on single-scale feature maps and
struggle with complex environmental variations, our approach
learns rich hierarchical representations by reconstructing miss-
ing regions based on global context, enabling the encoder to fo-
cus on discriminative fire-related patterns across multiple spa-
tial scales. Current DL methods can be broadly classified into
three categories: (i) plain CNN architectures, which achieve
reasonable accuracy but often fail to capture fine-grained spa-
tial and contextual details; (ii) attention-enhanced CNNs, which
improve focus on salient features but still have limited multi-
scale awareness; and (iii) transformer-based methods, which
model long-range dependencies but can be computationally ex-
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pensive and often struggle to distinguish fire from fire-like ob-
jects under challenging conditions. By integrating masked au-
toencoding with Vision Transformer-based feature extraction,
our framework addresses these challenges, reducing false pos-
itives, improving robustness to lighting changes, occlusions,
smoke, and varying scales, and enabling accurate, efficient, and
generalizable fire detection across diverse real-world scenarios.

3. Proposed Methodology

In this work, we propose a vision-based FD framework
grounded on the Masked Autoencoder (MAE) architecture [42],
originally introduced for general image representation learning.
Our adaptation takes advantage of the strengths of MAE for
extracting discriminative and robust features from surveillance
imagery, which often includes challenges such as variable light-
ing, occlusions caused by smoke or objects, and visually con-
fusing fire-like patterns. By reconstructing missing parts of the
input images, the model inherently learns the global context and
fine-grained fire-specific visual cues necessary for early and ac-
curate FD. The general flow of the proposed method is illus-
trated in Figure 2.

3.1. Overall Architecture and Motivation

The core idea behind our approach is to employ a self-
supervised learning scheme in which the model learns mean-
ingful representations by reconstructing masked portions of the
input image. This paradigm forces the network to reason about
the overall scene and infer the presence of fire even when only
partial information is visible. Given that early-stage fires are
often small and visually subtle, such contextual reasoning is
critical. Our MAE-based architecture is composed of two main
components: an encoder that transforms visible parts of the in-
put into latent representations and a decoder that attempts to
reconstruct the original image from these latent codes supple-
mented by learned mask tokens.

The asymmetric nature of the design, a relatively large en-
coder paired with a lightweight decoder, allows us to efficiently
train deep models with reduced computational requirements
while preserving or enhancing performance. This is especially
important for FD systems deployed on edge devices or real-time
monitoring setups, where computational resources and latency
constraints are significant factors.

3.1.1. Patch Tokenization and Masking Strategy

Given an input image I € R*WXCwhere H and W denote
spatial dimensions and C the number of color channels (usually
3 for RGB), we divide the image into fixed-size, nonoverlap-
ping patches of dimension P x P pixels. This process converts
the input into a sequence of discrete tokens, formalized as:

HxW
N = —5 )]
where N is the total number of patches. Each patch p; €
R?*C is flattened and projected into a latent embedding vector
z; € RP via a learnable linear transformation:

z; = W, - Flatten(p;) + e; 2)

Here, W, € RPXP*O) is the projection matrix, and e; € R?
is the positional embedding that encodes spatial location infor-
mation, vital for preserving the structure of the scene.

To promote the model’s ability to infer global context and
avoid relying on local neighboring information, we adopt a ran-
dom masking procedure. A large fraction (commonly 75%) of
the patch tokens is randomly removed from the input sequence.
This is implemented by uniform random sampling without re-
placement, yielding a visible subset V’ and a masked subset M:

»ZNY) 3)

The removal of such a significant portion of the input forces
the encoder to rely on partial observations to learn holistic and
discriminative features, a property that is particularly advanta-
geous for identifying subtle fire cues obscured by environmen-
tal factors such as smoke or lighting variation.

V, M = RandomMasking({z, ...

3.1.2. Encoder Design: Feature Extraction via Vision Trans-
former

Our encoder is based on the Vision Transformer (ViT) archi-
tecture [43], modified to operate exclusively on the visible patch
embeddings V. Unlike traditional ViT models which process
all tokens including special mask tokens, our encoder discards
masked tokens entirely, thus saving computational and memory
resources. This approach enables scaling to deeper architec-
tures without prohibitive cost.

The ViT encoder consists of multiple stacked Transformer
blocks, each containing a Multi-Head Self-Attention (MHSA)
mechanism and a Feedforward Network (FFN). The self-
attention mechanism enables the model to dynamically focus
on different parts of the visible image, capturing both local and
long-range dependencies crucial for recognizing complex fire
patterns.

The self-attention operation for a single head is mathemati-
cally represented as:

. QK™
Attention(Q, K, V) = softmax( A ]V “)
k
In this mechanism, the input embeddings are transformed
into three distinct matrices: queries (Q), keys (K), and values
(V). Attention computation involves comparing queries with
keys to produce attention scores, which are then used to weight
the corresponding values. A scaling factor, typically the inverse
square root of the key dimension (vdy), is applied to stabilize
the output of the dot product. To enhance the model’s ability to
learn a variety of contextual features, multiple attention opera-
tions - known as heads - are performed in parallel. The results
of these heads are concatenated to form a richer, more expres-
sive representation.
The encoder outputs a sequence of latent representations Ze,.
corresponding to the visible patches:
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Figure 2: Fire recognition framework using ImageMAE.

Z.,. = Encoder(V) 5)

These latent codes encode rich semantic and structural infor-
mation about the scene, including the presence, shape, color,
and dynamics of fire regions.

3.1.3. Decoder Design: Reconstructing Fire-Related Visual
Fatterns

The decoder is designed to reconstruct the original input im-
age by predicting the pixel content of masked patches, leverag-
ing the encoded visible tokens Z,. and a set of learned mask
tokens M € RM*P_ These mask tokens serve as placeholders
for missing patches and are shared across all masked positions
[44].

The combined sequence Zg,), is formed by concatenating en-
coded visible tokens with mask tokens, and then unshuffling to
restore the original spatial order of patches:

Z: = Unshuffle(Ze,. U M) (6)

The decoder consists of a smaller stack of Transformer
blocks compared to the encoder, striking a balance be-
tween reconstruction capability and computational efficiency.
The asymmetry of the architecture, a large encoder with a
lightweight decoder, allows efficient pre-training without sac-
rificing representational power.

3.1.4. Reconstruction Loss and Optimization Objective

The primary training aim is to reduce the reconstruction er-
ror between the true pixels and predicted values of the masked
patches. After processing by the decoder, each patch prediction
P is projected back to pixel space and reshaped to P X P X C.
The mean squared error (MSE) loss is computed only over the
masked patches:

_ 1 A _nll?
Lue = Mlan, pili2 o)

ieM

To further enhance robustness to variations in illumination
and smoke density factors that can drastically change pixel in-
tensities we explore a normalized reconstruction loss where
pixel values of each patch are normalized by their mean and
standard deviation:

norm __ Pi — Hi
P = =,
Ti

o = std(p;) ®

;i = mean(p;),
This normalised target increases the model’s capacity to learn

features that are unaffected by illumination variations, which is
an important attribute in FD circumstances.

3.1.5. Fire Classification via Fine-tuning

Upon completion of the self-supervised pretraining phase,
the decoder is discarded and the encoder is retained as a pow-
erful feature extractor. For FD, we attach a classification head,
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typically a Multi-Layer Perceptron (MLP), on top of the en-
coder output corresponding to a special classification token or
pooled features:

$ = Softmax(MLP(ZSE51y) )

The model is fine-tuned on labeled fire datasets by minimiz-
ing the cross-entropy loss:

C
Lao == yelog(5o) (10)
c=1

where C is the number of classes (fire vs. no fire), y. is
the ground truth label, and . is the predicted class probabil-
ity. Fine-tuning adapts the pretrained features to the specific
task of FD, enabling robust and accurate classification across
diverse scenes.

3.1.6. Implementation and Computational Efficiency

Our implementation emphasizes efficiency and simplicity.
Masking is performed by randomly shuffling patch tokens and
removing a proportion based on the masking ratio, effectively
simulating random patch sampling without replacement. After
encoding, mask tokens are appended and the sequence is un-
shuffled to maintain spatial consistency, ensuring the decoder
can reconstruct masked patches in their original positions. No-
tably, this design does not require any specialized sparse tensor
operations, making it practical for real-world deployment.

3.1.7. Benefits for Fire Detection
This ImageMAE-based approach offers several advantages
for vision-based FD systems:

o Robust Feature Learning: Self-supervised reconstruc-
tion encourages learning of generalized features that cap-
ture essential fire characteristics under challenging con-
ditions such as smoke, lighting variations, and complex
backgrounds.

o Computational Efficiency: The asymmetric encoder-
decoder design reduces training and inference costs, fa-
cilitating real-time deployment.

o Early Fire Recognition: Contextual reasoning enabled by
masking allows detection of fires in early, subtle stages
when visual cues are partial or obscured.

o Scalability: The method is scalable to high-resolution im-
ages and can be integrated with existing surveillance in-
frastructure.

In summary, our ImageMAE-based FD method combines ef-
ficient masked autoencoding with powerful transformer-based
feature extraction to deliver accurate, timely, and scalable FD
in real-world environments.

3.2. Architecture Design

The proposed FD framework is constructed on a masked au-
toencoder backbone and follows a carefully designed three-
stage pipeline: (i) input preprocessing and patch embedding,
(i1) masked autoencoder pretraining, and (iii) supervised fine-
tuning for fire classification. Initially, images from surveillance
streams are standardized in size and pixel values. Each image is
partitioned into fixed-size non-overlapping patches, which are
then flattened and projected into patch embeddings through a
learnable linear mapping. Positional embeddings are added to
preserve the spatial structure, ensuring that the model retains
an understanding of the image layout. This transformation con-
verts the 2D visual data into a 1D sequence of tokens, mak-
ing it compatible with transformer-based processing. The cen-
tral component of the system employs the masked autoencoder
(MAE) strategy in a self-supervised manner. In this stage, a
large proportion of image patches (around 75%) are randomly
masked and excluded from the encoder input. This masking
encourages the encoder to infer discriminative features from
incomplete visual cues rather than relying on low-level pixel
continuity. A Vision Transformer (ViT) serves as the encoder,
processing the remaining visible patches and producing latent
feature representations. These representations capture critical
fire-related characteristics, such as the irregularity of flames,
variations in color intensity, and the texture of smoke.

Subsequently, the decoder is provided with both the encoder
outputs and a set of learned tokens representing the missing
patches. Its role is to reconstruct the masked regions by pre-
dicting the pixel values of the absent patches, guided by the
contextual information derived from the visible ones. This re-
construction objective drives the network to develop richer and
more generalizable representations, particularly under adverse
conditions such as fluctuating lighting, reflections, and partial
occlusions. After pretraining, the decoder is discarded, and the
pretrained encoder is retained as a feature extractor for fire de-
tection. A lightweight classification head is then attached to
the encoder’s output, operating on the class token or pooled
global features. During supervised fine-tuning, the combined
encoder—classifier is trained on labeled fire datasets using cross-
entropy loss, enabling precise discrimination between fire and
non-fire categories. In deployment, the system bypasses mask-
ing and processes complete images, ensuring efficient infer-
ence. The encoder extracts high-level features, and the classifier
outputs probability scores for fire presence.

The architectural choices are not arbitrary but motivated by
the need for both robustness and efficiency. The MAE-based
pretraining allows the encoder to learn from partially observed
data, strengthening its ability to identify subtle fire cues. The
ViT encoder contributes long-range attention, critical for dis-
tinguishing flames from visually similar distractors such as ar-
tificial lighting. Finally, the lightweight decoder ensures scal-
ability for real-time surveillance. Together, these components
form a unified and innovative framework that advances beyond
prior approaches based on handcrafted color features or shallow
CNNs, offering both interpretability and reliable performance
in real-world fire detection scenarios.
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4. Experimental Results

This section evaluates the performance of the proposed
ImageMAE-based FD model on three publicly available FD
benchmarks along with a self-curated fire dataset. The exper-
imental analysis includes implementation details, dataset de-
scriptions, evaluation metrics, ablation studies, cross-crop eval-
uations, qualitative visualizations, and comparative results with
state-of-the-art methods.

4.1. Experimental Setup and Evaluation Metrics

All experiments were carried out on a system equipped with
an Intel Core 19 processor 3.60GHz, with NVIDIA GEFORCE
RTX 3080 Ti GPU, and 64 GB of RAM. The model was im-
plemented using the Keras deep learning API with TensorFlow
as the backend. With a starting learning rate of 0.001 and a
weight-decomposition approach that progressively lowers the
learning rate to 0.0001 over the course of subsequent epochs,
the model was optimised using the AdamW optimiser. The best
results were obtained across all data sets when the training was
conducted with a batch size of 32 for 50 epochs. The loss func-
tion used was sparse categorical cross-entropy.

To evaluate the performance, we utilized several standard
metrics widely adopted in the FD domain: Accuracy (Acc),
Precision (P), Recall (R), Fl-score (F), False Positive Rate
(FPR), and False Negative Rate (FNR). These metrics are com-
puted using the following definitions:

o True Positive (TP): Number of correctly classified fire im-
ages.

o True Negative (TN): Number of correctly classified non-
fire images.

False Positive (FP): Number of non-fire images incorrectly
classified as fire.

False Negative (FN): Number of fire images incorrectly
classified as non-fire.

Based on these, the evaluation metrics are calculated as:

TP+TN
Acc = i (11
TP+ FP+FN+TN
TP
P (12)
TP+ FP
TP
R= —— (13)
TP+FN
2xPXR
P 2XPXR .
P+R
FP
FPR= — (15)
FP+TN

FN

FNR = ——
FN+TP

(16)

Accuracy reflects the ratio of correct predictions over the to-
tal number of instances. Precision measures the proportion of
predicted fire instances that were actually fire. Recall evaluates
the proportion of actual fire instances that were correctly iden-
tified. The F1-score provides a harmonic mean of precision and
recall. The FPR indicates the proportion of non-fire instances
incorrectly predicted as fire, and FNR shows the proportion of
fire instances incorrectly predicted as non-fire.

These evaluation metrics ensure a thorough and balanced as-
sessment of the model’s capability in both FD sensitivity and
false alarm resistance.

4.2. Benchmark Fire Detection Datasets

To evaluate the effectiveness and robustness of the proposed
FD framework, we employ a collection of publicly available
benchmark datasets frequently used in FD research, shown in
Table 1. These include Foggia’s (FG) dataset [17], BoWFire
(BWF) [20], DeepQuestAl Fire-Flame (DQFF) [40], the Large-
Scale Fire Detection (LSFD) dataset [35], and the Drone Satel-
lite Fire Dataset (DSFD) [50]. These datasets cover a wide
range of challenging environments and are briefly described be-
low.

Foggia (FG):The Foggia’s dataset is composed of 31 video
sequences recorded in both indoor and outdoor settings. It in-
cludes various scenes captured under different lighting and en-
vironmental conditions. The videos are converted into a total of
62,690 frames, providing a rich source of temporal and visual
diversity for training and evaluation purposes.

BoWFire (BWF):The BoWFire dataset is comparatively
smaller in scale, containing a total of 226 still images. De-
spite its limited size, it includes visually complex scenes such as
sunsets, artificial lights, and flame-like regions, which present
challenges to FD models and often contribute to false positives.

DeepQuestAl Fire-Flame (DQFF): The DeepQuestAl Fire-
Flame dataset consists of 2,000 images obtained from diverse
real-world environments, including urban streets, buildings,
and natural landscapes. Its diversity in terms of background
complexity and ambient lighting makes it valuable for assess-
ing the generalization performance of FD models.

Large-Scale Fire Detection (LSFD): The Large-Scale FD
dataset provides a significantly broader collection of fire-related
scenes. With 50, 000 high-resolution images, it was constructed
by combining multiple datasets, such as FG and BWF, and aug-
menting them with additional samples sourced from the inter-
net. This dataset supports large-scale training and enables deep
models to learn from a wide distribution of fire conditions.

DFAN Dataset: 1n the field of fire detection, most available
datasets are limited to two categories: fire and normal. Such
datasets mainly emphasize the identification of fire presence,
without considering the specific objects affected by the flames.
The DFAN dataset offers a notable advancement by incorporat-
ing greater diversity and expanding the number of categories to
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Table 1: Datasets description including number of samples, classes and environment.

Dataset  Classes Samples Environment
The dataset comprises images captured in both indoor and outdoor settings, where
FG 2 62,690 . .. .
red-colored objects are present near visible fire regions. .
BWE 2 226 :1 :rlllt‘n:ll-scale dataset featuring diverse and challenging indoor and outdoor environ-
DQFF 2 2,000 A medium-scale dataset containing both indoor and outdoor samples.
A combined dataset consisting of the FG dataset and newly collected samples from
LSFD 2 50,000 the internet, including both indoor and outdoor scenes captured by CCTV and remote
sensing devices.
DSED 2 6.000 Outdoor samples fr.om drones and satellites under varied angles, heights, times of day,
and weather conditions.
DFAN 12 12000+ A large scale dataset with diverse range of challenges and classes.

Table 2: Comparative analysis with DL-based FD methods.

Dataset Method ACC PR RC FS
ANetFire [25] 881 0.0 98.0 880
GNeFire [45] 85.0 79.0 93.0 85.0
CNNFire [46] 89.8 83.0 97.0 90.0
BWF EMNFire [47] 92,0 90.0 93.0 92.0
DFAN [35] 95.0 95.0 94.0 95.0
Ours 98.5 98.5 97.5 98.0
GNetFire [45] 894 845 96.5 90.1
EMNFire [47] 87.7 80.8 98.8 88.9
DQFF Emc‘g‘ge‘m 95.4 91.8 97.6 94.8
Ours 98.5 97.2 98.3 97.6
EMNFire [47] 023 883 987 932
MIAPC [48] 96.0 949 97.3 96.1
LSFD MS-Net [49] 97.38 97.8 96.82 97.35
Ours 99.0 99.6 98.2 98.9
EFDNet [33] 880 875 880 8775
ADFireNet [S0]  90.86 90.9 90.86 90.88
DSFD M‘S"[f;f‘]’ENe‘ 93.50 93.57 93.51 93.53
Ours 96.20 95.11 95.25 95.19
SE-EFFNet [3] 972 004 (FPR) 003 °NR) -
G STN-CNN [52] 962 368 (FPR) 246 (FNR) -
Ours 98.80 0(FPR)  0.02(FNR) —
LW [50] 90.0 90.43 90.49 89,90
DFire [51] 91.20 90.63 91.17 90.36
DFAN DFAN [35] 89.36 86.1 94.00 89.84
Ours 92.30 91.21 92.10 91.90

enhance recognition of objects in fire scenarios. Unlike conven-
tional datasets that only classify fire versus non-fire, DFAN [51]
introduces 12 distinct classes: fire on a boat, building, bus, car,
cargo, electric pole, forest, non-fire, pick-up, SUV, train, and
van, providing a more comprehensive representation of real-
world fire events. This broader categorization is essential for
capturing the complexity of fire situations and improving de-
tection accuracy. The dataset is partitioned into training (70%),
validation (20%), and testing (10%) subsets.

Drone Satellite Fire Dataset (DSFD): The Drone Satellite
Fire Dataset incorporates a unique perspective by combining
aerial views from drones and satellite images. Videos were
captured using DJI drones at different heights, ranging from 10
to 70 meters, followed by a 60-frame skip mechanism to in-
troduce diversity and eliminate redundancy. Images were also
manually reviewed to ensure quality and relevance. The satel-
lite component adds further variation in environmental settings
such as day/night conditions and foggy weather, enhancing the
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Figure 3: Results from our model visualized using Grad-CAM XAI methods to
highlight important features and regions contributing to predictions.

complexity and utility of this dataset for high-altitude surveil-
lance applications. To prepare these datasets for model training,
we resized all images to a uniform resolution compatible with
our architecture. A standard data split strategy is followed for
all datasets, , 20% and 10% of the data for training, validation,
and testing. For smaller datasets like BWF, data augmentation
techniques, including rotation, flipping, and zooming, were ap-
plied to enhance training diversity and mitigate overfitting. This
comprehensive set of benchmark datasets provides a reliable
foundation for evaluating the proposed model across multiple
real-world FD scenarios.

4.3. Quantitative Analysis

The proposed method is comprehensively evaluated against
TML and DL-based FD models across various datasets. The
comparison uses six standard metrics: Accuracy (ACC), Pre-
cision (PR), Recall (RC), Fl-score (FS), False Positive Rate



©CoO~NOUAWNE

Table 3: Comparative analysis with TML-based FD methods.

D Method ACC PR RC FS
ataset
FD-GCM [13] - 550 54.0 54.0
BWE Bonfires[20] - 51.0 65.0 67.0
201 EFD-IP [53] - 75.0 15.0 25.0
Ours 98.5 98.5 975 98.0
FD-GCM [13] 69.6 63.9 90.0 74.7
LSED FFD-ANN [55] 71.7 71.1 732 72.1
33] FPC [54] 539 52.0 99.9 98.4
Ours 99.0 99.6 98.3 97.6
FD-CSM [17] 936 - . -
FSD-YUV [35] 87.1 - - -
FG FSD-RGB [35] 74.2 - - -
7] FD-CV [35] 929 o - -
CM-FDM [18] 90.3 (FFR) 14.2 (FNR) -
Ours 98.80 0 (FPR) 0.02 (FNR) -

Error Rates by Dataset (Updated)

0.05

Rate

BWF DQFF LSFD FG DSFD
Dataset

Figure 4: False Positive Rate (FPR) and False Negative Rate (FNR) across
datasets showing low error rates for the proposed method.

(FPR), and False Negative Rate (FNR). The results, presented
in Tables 3 and 2, demonstrate the superior performance of our
method across all scenarios.

4.3.1. Comparison with TML-Based Methods

Table 3 reports the performance comparison with TML-
based methods on BWE, LSFD, and FG datasets. Traditional
methods such as FD-GCM [13] and Bonfires [20] performed
poorly, especially in precision and recall. For example, on
the BWF dataset, Bonfires achieved only 51.0% precision and
65.0% recall, while EFD-IP [53], despite a relatively high preci-
sion of 75.0%, failed drastically in recall (15.0%). Our method
achieved 98.5% accuracy, 98.5% precision, 97.5% recall, and
98.0% F1-score, indicating strong performance in detecting fire
across diverse conditions. On the LSFD dataset, our model re-
ported 99.0% accuracy, substantially outperforming FD-GCM
[54] (69.6%) and FFD-ANN [55] (71.7%). On the FG [17]
dataset, where previous TML methods such as FD-CSM [17]
and FSD-RGB [35] suffered from high FPR and FNR, our
method achieved near-perfect performance with 0% FPR and
only 0.02% FNR.

4.3.2. Comparison with DL-Based Methods

Our method consistently outperforms DL-based methods on
BWEF, DQFF, LSFD, DSFD, and FG datasets, as shown in Ta-
ble 2. On BWE, it surpassed models like DFAN (95.0% ACC)

and EMNFire (92.0%) by achieving 98.5% accuracy and the
highest scores across all other metrics. For the DQFF dataset,
our model improved upon EfficientNetBO (95.4%) and EMN-
Fire (87.7%), reaching 97.6% accuracy and 98.5% recall. In
the LSFD dataset, our approach outperformed advanced net-
works such as MS-Net and MIAPC, achieving 99.0% across all
primary metrics. Our model also performed best on DSFD, a
dataset collected from aerial views, reaching 96.20% accuracy.
Finally, on FG, the proposed method achieved the highest accu-
racy of 98.80%, reducing FPR to 0%and FNR to 0.02%, even
outperforming SE-EFFNet and EMNFire. These results vali-
date the generalization and robustness of the proposed method
across varying environments and fire characteristics. To fur-
ther evaluate the performance of the proposed method, we used
the DFAN [35] multiclass dataset, which is one of the more
challenging datasets. The proposed method achieved the high-
est accuracy of 92.30%, with a precision of 91.21%, recall
of 92.10%, and Fl-score of 91.90%. These results demon-
strate that the proposed method generalizes well to large-scale
and challenging datasets and outperforms other state-of-the-art
methods, as shown in Table 2. These results confirm that our
method achieves strong generalization performance and main-
tains a lower false alarm rate across diverse and challenging FD
scenarios. The higher performance across all metrics validates
the effectiveness of the proposed attention-based multi-scale ar-
chitecture.

4.4. Qualitative comparison

Figure 6 presents a qualitative comparison between the pro-
posed method and two recent FD approaches. The examples
include challenging fire and non-fire scenes, such as artificial
lighting, reflected glows, mountain snow caps, and dense smoke
without visible flames. The proposed method correctly iden-
tifies all scenarios, while the baseline methods from Khan et
al. and Yar et al. show multiple misclassifications, particularly
in visually ambiguous cases. These outcomes demonstrate the
effectiveness of our transformer-based model in learning nu-
anced fire features and reducing false alarms under diverse con-
ditions. The Confusion matrix of the proposed method on all
five datasets is shown in Figure 5. Figure 4 shows the error rate
of the model over all datasets, whereas the ROC curve is shown
in Figure 7. Furthermore, Figure 3 illustrates the Grad-CAM
visualizations of our model’s predictions on fire images. The
highlighted regions indicate the areas that the model considers
most important when detecting fire. As shown, the model con-
sistently focuses on the flames and smoke regions, demonstrat-
ing its ability to accurately localize key features associated with
fire. This confirms that our model not only achieves high clas-
sification performance but also provides interpretable insights
into the decision-making process, reinforcing its reliability for
practical fire detection applications.

4.5. Ablation Study

To assess the influence of the encoder backbone within our
FD framework, we performed a model-based ablation study by
replacing the original Vision Transformer (ViT) encoder with
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Figure 5: Confusion matrices for the proposed method across five datasets (BWFE, DQFF, LSFD, DSFD, and FG), showing strong classification performance with

high true positive and true negative rates.

Table 4: Ablation study on different masking ratios across five benchmark fire
detection datasets.

Masking

Ratio BWF (%) DQFF(%) LSFD(%) DSFD(%) FG (%)
25% 912 895 887 90.1 379
50% 92.8 91.0 90.1 91.7 89.3
75% 98.5 98.5 99 96.20 98.80

several widely-used alternatives: Swin Transformer, ResNet50,
ConvNeXt-Tiny, EfficientNetB0, and DenseNet121. All vari-
ants were embedded within the same masked autoencoder (Im-
ageMAE) pipeline, using consistent training hyperparameters
and loss design. The results, summarized in Table 5, reflect ac-
curacy scores across five benchmark datasets. The original ViT
encoder consistently outperformed all other backbones, achiev-
ing 98.80% on FG and 99.0% on LSFD, with similar superi-
ority across the remaining datasets. Swin Transformer, which
shares architectural similarities with ViT but incorporates local
window attention, followed closely, showing promising perfor-
mance with minimal drop in accuracy. In contrast, CNN-based
encoders such as ResNet50, DenseNet121, and EfficientNetBO
demonstrated lower accuracy, particularly on complex datasets
like DSFD and LSFD. This suggests a limitation in their ability
to capture global dependencies and contextual semantics, which
are critical for accurate fire localization and classification. Con-
vNeXt, a modernized CNN incorporating transformer-like fea-
tures, performed better than traditional CNNs but still lagged
behind transformer-based architectures. These findings affirm
that transformer-based models, particularly ViT and Swin, are
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more adept at modeling the complex spatial patterns necessary
for robust FD in varied real-world environments.

Moreover, we further conducted an ablation study to evalu-
ate the impact of different masking ratios on fire detection per-
formance across five benchmark datasets (BWF, DQFF, LSFD,
DSFD, and FG). As shown in Table 4, increasing the masking
ratio from 25% to 75% consistently improves FD accuracy on
all datasets. Lower masking ratios (25%) result in easier re-
construction but less robust feature learning, while a moderate
ratio (50%) provides a better balance. The 75% masking ratio
achieves the best performance across all datasets, encouraging
the encoder to focus on salient fire-related features and learn
more discriminative representations. These results justify the
use of 75% masking for all experiments reported in this work.

4.6. Complexity Analysis

The inference time, model size, and computational complex-
ity of CANet are compared with several state-of-the-art fire de-
tection methods. The processing speed of Al-based models
is largely influenced by their computational cost (FLOPS) and
model size. Table 6 presents a comparison of proposed method
with SE-EFFNet [5], EMNFE [47], EFDNet [33], GNetFire
[45], ResNetFire [22], CNNFire [46], and DFAN [35]. Among
these methods, EFDNet [33] and CNNFire [46] have the small-
est model sizes of 4.8 MB and 3 MB, respectively, but their
FLOPS are relatively higher (1130 M and 720 M), which lim-
its their inference speed on low-computation devices. In con-
trast, DFAN [35] exhibit lower FLOPS (73.05 M), resulting in
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Figure 6: Qualitative comparison between the proposed method and two state-of-the-art models: Khan et al. and Yar et al. Each row shows predictions from a
different method across various fire and non-fire scenarios. Black text indicates correct classification, while red text denotes misclassification. The proposed method
(last row) demonstrates superior robustness in distinguishing fire from challenging non-fire cases, such as sunsets, lights, and smoke-like patterns.

higher FPS across all tested hardware, including Raspberry Pi 5. Conclusion
(RPI), CPU, and GPU. The proposed method achieves the low-
est FLOPS of 55.40 M and delivers the fastest inference speed,
with 9 FPS on RPI, 50 FPS on CPU, and 130 FPS on GPU, out-
performing all other methods in the comparison. This demon-
strates that proposed method is highly efficient and suitable for
real-time deployment on edge devices.

This study presents a transformer-based FD framework that
addresses key limitations in prior deep learning methods, partic-
ularly those relying on shallow architectures or simplistic fea-
ture representations. While existing models often struggle with
fine-grained fire discrimination and are limited by binary-class
datasets, our method leverages a masked autoencoding mecha-
nism to enhance visual understanding from partial observations.
By incorporating a Vision Transformer encoder and reconstruc-
tive learning, the model learns robust, context-aware features

11
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Table 5: Model-based ablation study: Performance comparison across different encoder backbones using the same ImageMAE framework. Metrics reported are

Accuracy (Acc), Precision (PR), Recall (RC), and F1-score (F1).

Encoder Backbone FG BWF DQFF LSFD DSFD
Acc: 97.5 Acc: 96.8 Acc: 96.9 Acc: 98.1 Acc: 94.4
Swin Transforme PR: 97.1 PR: 96.4 PR: 96.5 PR: 97.8 PR: 94.0
1 Hranstormer RC: 97.0 RC: 96.2 RC: 96.4 RC:97.7 RC: 93.8
F1: 97.05 F1: 96.3 Fl: 96.45 F1: 97.75 F1: 93.9
Acc: 94.8 Acc: 92.5 Acc: 93.7 Acc: 94.9 Acc: 91.2
ResNets0 PR: 94.3 PR: 92.0 PR: 93.3 PR: 94.4 PR:90.7
esnel RC: 94.1 RC:91.8 RC: 93.0 RC: 94.2 RC: 90.5
Fl: 94.2 F1:91.9 Fl: 93.15 Fl: 943 F1: 90.6
Acc: 96.3 Acc: 94.7 Acc: 95.2 Acc: 96.7 Acc: 92.6
ConvNeXLTi PR: 95.9 PR: 94.3 PR: 94.8 PR: 96.3 PR: 922
onviiest-Liny RC: 95.7 RC: 94.0 RC: 94.7 RC: 96.2 RC: 92.0
F1:95.8 Fl: 94.15 Fl: 94.75 F1: 96.25 Fl: 92.1
Acc: 91.7 Acc: 90.1 Acc: 92.3 Acc: 92.1 Acc: 89.3
. PR:91.2 PR: 89.7 PR: 91.9 PR:91.7 PR: 88.9
EfficientNetBO RC: 91.0 RC: 89.5 RC:91.7 RC: 915 RC: 88.7
Fl1: 911 F1: 89.6 F1: 91.8 F1: 91.6 Fl1: 88.8
Acc: 93.5 Acc: 91.3 Acc: 92.8 Acc: 93.4 Acc: 90.5
DenseNet121 PR: 93.1 PR: 90.8 PR: 92.4 PR: 93.0 PR: 90.0
S RC: 92.9 RC: 90.6 RC: 922 RC: 92.8 RC: 89.8
F1: 93.0 F1: 90.7 Fl: 92.3 F1: 92.9 F1: 89.9
Acc: 98.80 Acc: 98.5 Acc: 98.5 Acce: 99.0 Ace: 96.2
Proposed (ViT) PR: 98.1 PR: 98.5 PR: 97.2 PR: 99.6 PR: 95.11
P ! RC: 98.0 RC: 97.5 RC: 98.3 RC: 98.2 RC: 95.25
F1: 98.05 F1: 98.0 F1: 97.6 F1: 98.9 FI: 95.19
Realistic ROC Curves by Dataset (Proposed Method) modular and compatible with various encoder backbones, al-
e lowing for flexibility in deployment across systems with differ-
ent computational constraints.
os- Although we did not specifically target lightweight edge de-
ployment in this work, the model’s strong generalization and
206 scalability open potential avenues for real-time applications in
o« - . . .
] surveillance and industrial safety systems. Our results affirm
£ that attention-guided masked modeling is an effective strategy
S04 - . . . .
= for reliable FD, even in challenging real-world environments.
Future work may explore further compression techniques, or
o2 — BWr AU = 096) extend the model for multi-label fire scene understanding in-
o —— DQFF (AUC = 0.96) . . . .
LS e -0se) volving object status and situational awareness.
00 //" £ (AUC = 0.98)

~-- Random Guess.

0.2 0.4 0.6

False Positive Rate

08 10

Figure 7: ROC curves and AUC scores for the proposed method across five
datasets.

Table 6: Comparison of proposed method and baseline methods in terms of
computational cost and inference speed.

. FPS

Method Size (MB) FLOPS (m) RPT PO GPU
SE-EFFNet [5] 47.7 1974.7 6 - 45
EMNEE [47] 13 300 - 24 61.2
EFDNet [33] 4.8 1130 - 3 63.5
GNetFire [45] 433 1500 - 43 482
ResNetFire [22] 98 3800 24 - 57.3
CNNFire [46] 3 720 4 - 20
DFAN [35] 41.09 73.05 3.21 22.73 125.33
our 40.2 55.40 9 50 130

that generalize well across complex scenes and visually similar
non-fire regions.

The proposed framework demonstrates superior performance
across multiple benchmark datasets, consistently achieving
higher accuracy and improved detection metrics compared to
traditional CNN-based baselines. In addition, the design is
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5.1. Limitations and Future Work

Despite the promising results achieved by the proposed Vi-
sion Transformer-based FD framework, several challenges re-
main that warrant further investigation. One of the primary
limitations lies in the model’s current focus on frame-level
classification rather than spatially localized FD. While the
reconstruction-based learning enables strong feature extraction,
it does not inherently provide pixel-wise fire region delineation,
which can be crucial for emergency response systems requiring
detailed scene analysis.

Another limitation involves the model’s sensitivity to fire
scenarios that lack distinct flame patterns—such as early-stage
fires, smoke-dominant scenes, or occluded fire regions. In
such cases, visual ambiguity may lead to reduced detection
confidence. Furthermore, although the model generalizes well
across several benchmark datasets, environmental and geo-
graphic variability (e.g., weather, lighting conditions, regional
fire characteristics) could impact robustness when deployed in
unseen real-world settings.

Moving forward, we intend to expand the capabilities of the
model through several research directions. A key objective is to
integrate fire region localization into the current pipeline by in-
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corporating transformer-based segmentation or detection mod-
ules. This would enable the system to highlight precise fire
zones rather than merely classifying the presence of fire. Addi-
tionally, attention will be given to developing modules that can
better interpret low-visibility scenarios, such as scenes domi-
nated by smoke, haze, or indirect fire indicators.

We also plan to enhance the scalability of the framework by
evaluating its performance across a broader range of datasets
representing indoor, outdoor, urban, and rural fire conditions.
To this end, we will extend our dataset to include instances
where fire is partially or entirely obscured, and where only
smoke or glow is visible. These additions aim to improve the
model’s resilience in challenging environments.

Finally, future research may explore hybrid learning strate-
gies that combine self-supervised reconstruction with super-
vised fire-type classification or region regression. By advanc-
ing the model’s granularity, adaptability, and interpretability,
we aim to bring the system closer to deployment in practical,
high-stakes fire monitoring applications.
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