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Abstract: Small  object  detection  in  remote  sensing  imagery  is  a  challenging  task  due  to  the  small  size  of

targets, complex background, and low contrast, which makes achieving high precision difficult. To enhance the

accuracy  of  detection,  this  study  proposes  a  novel  oriented  object  detection  model  with  three  significant

innovations:  Firstly,  a  lightweight  feature  extraction  network  is  designed  to  achieve  efficient  feature

representation  at  a  reduced  computational  cost,  which  is  particularly  effective  for  the  recognition  of  small

targets in remote sensing imagery. Secondly, a Feature-Focused Channel Attention (FFCA) is introduced that

enhances  the  model’s  ability  to  focus  on  small  target  areas  by  combining  spatial  and  channel  attention,

enhancing the model’s capacity to capture and represent features more effectively. Lastly, an attention-guided

multi-scale  feature  fusion  module  is  proposed  to  integrate  features  from  different  levels,  which  substantially

boosts the model’s ability to accurately detect small-scale objects, especially in remote sensing scenarios with

vast fields of view and complex backgrounds. The experimental outcomes validate that our model achieves the

best  detection  performance  on  two  benchmark  public  datasets  for  remote  sensing  imagery,  confirming  its

effectiveness and practicality in remote small object detection tasks.
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1　Introduction

Small  target  detection  in  the  field  of  computer  vision
presents  a  challenging  problem,  particularly  in  the
analysis of drone or satellite imagery. Factors, such as

the small size of targets, low image resolution, and low
contrast  between  targets  and  background,  make
detection  particularly  difficult.  Recently,  as  deep
learning  technologies  have  progressed,  a  multitude  of
approaches  have  been  introduced  by  researchers  to 
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tackle  this  challenge.  For  example,  feature
enhancement  techniques[1] have  been  employed  to
improve  the  detection  performance  of  small  targets,
rotation-invariant  methods[2] have  been  proposed  to
solve  the  problem  of  rotating  target  detection,  and
attention  mechanisms[3] and  depth  estimation[4] have
been  introduced  to  enhance  the  accuracy  and
robustness  of  small  target  detection.  Rotation  target
detection  algorithms  in  drone  or  satellite  image
analysis  hold  significant  research  importance  and
application  value  across  multiple  domains.  Primarily,
in  the  military  and  defense  sector,  rotation  target
detection can be utilized for monitoring and identifying
enemy  military  installations,  equipment,  and
activities[5, 6].  Secondly,  in  civilian  fields,  this
technology  can  be  applied  to  urban  planning,
agricultural  monitoring,  environmental  protection,  and
disaster  assessment[7, 8].  For  instance,  by  analyzing
drone  or  satellite  images,  one  can  detect  and  count
buildings  in  cities,  crop  diseases  in  farmlands,  or  the
extent of affected areas in disaster zones. Furthermore,
rotation  target  detection  technology  can  also  enhance
the  efficiency  of  traffic  management[9],  such  as
monitoring traffic flow through drones and identifying
traffic accidents.

Despite the significant  progress made in the field of
small target detection within computer vision, there are
still  numerous  challenges  in  ensuring  detection
accuracy  while  enhancing  the  speed  of  algorithm
execution.  Particularly  in  the  application  of  remote
sensing  image  analysis,  small  targets,  due  to  their
limited  pixel  occupation  in  the  image,  are  often
difficult  to  accurately  identify  and  are  susceptible  to
interference  from  complex  background  noise[10].
Moreover,  to  capture  a  broader  field  of  view,  remote
sensing  images  typically  have  high  resolutions,  which
means a substantial increase in the amount of data that
needs  to  be  processed.  To  improve  detection  speed,
researchers  strive  to  simplify  the  model  structure  and
reduce computational load. For example, methods such
as  designing  lightweight  network  architectures[11],
applying  efficient  convolutional  operations[12],  and
optimizing algorithmic processes[13] have been used to
expedite  the  detection  process.  However,  such
simplifications  may  come  at  the  cost  of  detection
accuracy,  especially  in  the  feature  extraction  and
classification  of  small  targets.  Therefore,  the  research
focus is on developing a lightweight feature extraction
network  that  can  maintain  high-precision  detection

capabilities  while  sustaining  rapid  processing
capabilities.

In  the  pursuit  of  enhancing  small  target  detection
accuracy, scholars have been committed to developing
and  refining  various  advanced  feature  enhancement
techniques. Among these, technologies, such as Feature
Pyramid  Networks  (FPNs)[14] and  multi-scale  feature
fusion[15], are widely applied to strengthen the model’s
ability  to  recognize  targets  at  different  scales.  By
constructing  multi-layer  feature  representations,  these
methods  help  the  model  capture  richer  and  more
discriminative  image  features,  thereby  improving
detection  accuracy to  a  certain  extent.  However,  these
deep network structures and complex feature extraction
mechanisms also increase the computational burden of
the  model,  especially  in  real-time  remote  sensing
image  analysis  tasks.  In  addition,  the  direct  fusion  of
multi-scale  features  can  sometimes  lead  to  feature
dilution  issues[16],  which  is  particularly  prominent  in
small  target  detection,  as  the  features  of  small  targets
are  easily  lost  during  the  fusion  process,  affecting  the
model’s  detection  precision.  Therefore,  this  study
designs a new feature fusion strategy to ensure that the
key features of small targets are retained and efficiently
integrated  with  feature  information  from  different
layers.

Additionally, the attention mechanism, as a low-cost
feature  enhancement  technique,  has  been  widely
applied  in  computer  vision  tasks.  It  emulates  the
focusing  characteristics  of  human  vision,  enabling  the
model  to  concentrate  more  on  key  areas  within  the
image,  thereby  enhancing  feature  expressiveness  and
the model’s recognition accuracy. However, despite the
significant  performance  improvements  brought  by  the
attention mechanism, it also has certain limitations. For
instance,  when  dealing  with  large-scale  data  or  high-
dimensional  features,  the  attention  mechanism  may
cause the model to overly rely on certain local features,
thus  neglecting  global  contextual  information[17].
Moreover, within attention models, the computation of
attention  weights  is  a  crucial  process  that  determines
the extent  to which the model focuses on key areas in
the  image.  However,  some  models  use  simplified
dimensionality reduction techniques in the computation
process,  which  may  inappropriately  lose  spatial
information  of  the  features[18].  This  unreasonable
dimensionality  reduction  approach  may  lead  to  the
model’s  inability  to  accurately  capture  the  spatial
details  of  targets,  affecting  the  accuracy  of  detection.
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Based  on  these  issues,  a  multidimensional  feature
hybrid attention module has been introduced to further
enhance the model’s precision.

Considering  the  above  limitations,  the  key
contributions  of  this  research  can  be  summarized  as
follows.

(1)  A  high-precision,  light  weight  feature  extraction
network is designed to address the balance between the
model’s speed and accuracy.

(2) The development of an efficient attention module
that  enhances  the  capability  of  feature  expression,
ensuring  that  the  model  can  more  accurately  identify
and  focus  on  relevant  information  within  the  image
data.

(3)  The  introduction  of  an  innovative  feature  fusion
strategy  aimed  at  mitigating  the  issue  of  feature
dilution during the fusion of multi-scale features.

The structure of the ensuing sections in this paper is
outlined  below.  Section  2  delivers  an  extensive
overview of the literature, focusing on the detection of
oriented dense objects. Section 3 outlines the proposed
system’s  flowchart  and  details  the  methodology
employed.  Section  4  details  the  data  information  and
annotation formats utilized in the study. Section 5 then
showcases  a  series  of  experiments  aimed  at
highlighting  the  contributions  made  in  this  research.
Finally,  Section  6  concludes  the  paper  by  discussing
the  current  performance  and  potential  avenues  for
future investigation.

2　Related Work

Deep  object  detection  models  are  becoming
increasingly  important  in  remote  sensing  data
processing,  especially  in  the  research  fields  of
computer vision.  Due to the high resolution,  extensive
coverage,  and  the  presence  of  multi-scale  targets
typically  found  in  remote  sensing  imagery,  object
detection  in  remote  sensing  imagery  through  deep
learning  encounters  numerous  difficulties.  These
include  significant  variations  in  target  size,  complex
background  environments,  and  limited  computational
resources.  To  address  these  challenges,  researchers
have  developed a  series  of  deep learning  architectures
and  technologies.  For  example,  complex  feature
extraction  networks,  multi-specification  feature  fusion
modules, and flexible attention mechanisms.

Within  the  object  detection  models,  the  backbone
network  for  feature  extraction  is  a  crucial  component,
responsible  for  extracting  key  information  from  raw

pixel  data.  Currently,  various  lightweight  network
structures,  such  as  MobileNets[19],  ShuffleNets[20],
GhostNet[21],  Vision  Transformers  (ViTs)[22],  and
MultiLayer  Perceptron  (MLP)  architectures[23],  have
been utilized as feature extractors. These structures not
only maintain a fast-processing speed but also achieve
considerable recognition accuracy. However, compared
to  some  more  complex  network  structures,  these
lightweight models may sacrifice some accuracy. Some
researchers  have  attempted  to  reduce  computational
costs  using  methods,  such  as  separable  spatial
convolution[24] and  knowledge  distillation[25].
However,  these  approaches  often rely  on specific  data
distributions  and  may  struggle  to  maintain  stable
performance  when  faced  with  significant  variations  in
data.  To  better  adapt  to  the  characteristics  of  remote
sensing  imagery,  researchers  have  also  designed
various  network  structures  with  different  depths  and
widths,  such  as  ResNet[26],  Inception[27],
EfficientNet[28],  YDHNet[29],  and  ConvNeXt[30],  to
capture  multi-scale  and  multi-level  features  within  the
images.  While  these  network  structures  can  provide
more  accurate  feature  representation,  they  also  come
with  higher  computational  costs.  Therefore,  designing
a  deep feature  extraction  network  that  balances  model
accuracy  and  speed  is  essential.  This  requires  us  to
maintain detection accuracy while also considering the
computational  efficiency  and  practical  applicability  of
the model.

Multi-scale  feature  fusion  is  a  pivotal  strategy  for
enhancing  the  performance  of  target  detection  in
remote sensing imagery. Given the variability in target
sizes within this type of imagery, features from a single
scale  often  struggle  to  comprehensively  represent  all
targets.  To  address  this,  researchers  have  introduced
various feature fusion networks and strategies, such as
FPN[31],  Multi-scale  Feature  Fusion  (MFF)[32],  and
Adaptive  Scale  Feature  Fusion  (ASFF)[33].  These
approaches  amalgamate  feature  maps  from  different
levels  and  scales,  bolstering  the  model’s  ability  to
detect  both  small  and  large  targets.  Additionally,  to
further  boost  the  detection  performance  of  rotating
small  targets  in  remote  sensing  imagery,  researchers
have  proposed  several  variants  of  the  FPN  structure.
For  instance,  the  Bidirectional  FPN  (BiFPN)[34] and
Path  Aggregation  Network  (PANet)[35] facilitate
bidirectional exchange of feature information, allowing
for  the  transfer  of  information  from  higher  to  lower
layers  and  vice  versa,  enabling  a  more  profound  level
of  feature integration.  The Graph FPN (GraphFPN)[36]
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leverages  graph-based  structures  to  effectively
construct  feature  pyramids,  enhancing  the  efficacy  of
object  detection  algorithms  for  multi-scale  targets  in
various imaging contexts.

Furthermore,  the  High Resolution  FPN (HRFPN)[37]

focuses  on  preserving  high-resolution  information
during the feature fusion process, which is particularly
critical  for  small  target  detection.  Despite  the
advancements of FPN and its derivatives in multi-scale
feature fusion, challenges remain regarding the loss of
valuable spatial information during the feature transfer
and fusion processes. This is especially problematic for
the identification of minute targets in satellite imagery,
where spatial context is crucial for the precise detection
and positioning of targets.

Attention  modules  play  a  crucial  role  in  remote
sensing  image  target  detection.  Highly  flexible
attention mechanisms allow models to adaptively focus
on  the  most  informative  parts  of  the  image,  thereby
improving  detection  accuracy.  In  the  detection  of
targets  within  satellite  imagery,  attention  mechanisms
are  divided  into  three  main  types.  Spatial  attention
models enhance detection performance by highlighting
key  areas  of  the  image,  such  as  Receptive-Field
Attention  (RFA)[38] and  non-local  neural  networks[39].
Channel attention models strengthen feature expression
capabilities,  with  Squeeze-and-Excitation  Networks
(SENet)[40] and  Efficient  Channel  Attention  (ECA)[41]

being  typical  examples.  Channel-spatial  attention
models  combine  the  advantages  of  the  former  two,

such  as  the  Convolutional  Block  Attention  Module
(CBAM)[42] and  the  Coordinate  Attention  (CA)[43].
These  models  significantly  improve  the  precision  and
reliability of identifying small targets in remote sensing
images  by  guiding  the  network  to  focus  on  the  most
relevant information in different dimensions. However,
they  still  face  some  challenges  and  limitations  in
practical  applications.  For  example,  spatial  attention
models  may  neglect  the  global  dependency  of  image
features,  while  channel  attention  models  may  not  be
sufficient  to  deal  with  complex  spatial  context
information.  In  addition,  although  channel-spatial
attention  models  integrate  channel  and  spatial
information,  their  computational  costs  are  often  high,
and they may require a  large number of  parameters  to
capture  subtle  feature  relationships.  Therefore,
attention modules need a simple and effective design to
reduce  computational  overhead  and  capture  key
channel and spatial features.

3　Methodology

Figure  1 comprehensively  illustrates  the  research
framework  we  have  developed  for  the  detection  of
rotating  targets  in  remote  sensing  imagery.  This
framework  processes  a  large-scale  dataset
encompassing  a  variety  of  scenarios,  and  we  have
customized the format of the annotated data to suit the
needs of our proposed algorithm. Our Faster You Only
Look  Once  (F-YOLO)  model,  which  is  based  on  the
YOLOv8[44] architecture,  integrates  three  key

 

 
Fig. 1    Diagram of the novel oriented object detection framework (OBB: oriented bounding box dection).
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innovations:  firstly,  a  lightweight  yet  high-precision
feature extraction network (as detailed in Section 3.1),
designed to maintain detection accuracy while reducing
computational  load  through  an  elegant  network
architecture;  secondly,  a  computationally  efficient
attention  module  (also  detailed  in  Section  3.1),  which
enhances  the  model’s  feature  representation  by
focusing on critical areas of the image; and finally, an
attention-guided  feature  enhancement  module  (as
detailed  in  Section  3.2),  designed  to  act  as  the “neck”
of  the  model,  bolstering  its  ability  to  detect  targets
across various scales.  In addition,  we have made fine-
tuned  adjustments  to  the  model’s  loss  function  (as
detailed  in  Section  3.3)  to  optimize  detection
performance.  The  synergy  of  these  technologies
provides  an  efficient  and  accurate  solution  for  the
detection of rotating targets in remote sensing imagery.

3.1　Feature extraction network

YOLO occupies a pivotal position in the field of object
detection,  with  its  unique  advantage  of  being  able  to
directly predict  the position and category of objects in
an  image  during  a  single  forward  propagation.  This
characteristic  allows  YOLO  to  surpass  other  object
detection  methods  in  terms  of  processing  speed  and
accuracy. YOLOv8’s capabilities are largely attributed
to  its  efficient  and  robust  feature  extraction  network,
C2f-CSPDarkNet[44],  which  combines  Cross  Stage
Partial  (CSP)  technology  with  DenseNet’s  skip
connections,  significantly  enhancing  the  network’s
feature  expression  and  utilization.  While  C2f-
CSPDarkNet  excels  in  feature  extraction,  it  has  some
limitations.  Its  extensive  use  of  DenseNet-like  skip
connections,  although  beneficial  for  feature
propagation,  also  increases  the  model’s  memory
footprint,  affecting  inference  speed  and  overall
efficiency.  To  tackle  these  challenges,  this  study
conducted  an  in-depth  exploration  and  innovative
redesign  of  the  feature  extraction  module  for  the
YOLOv8 model, focusing on precision and speed.

In  the  research  process,  we  conducted  a  detailed
analysis  of  the  lightweight  model  FasterNet’s[45]

structure  and  operation.  FasterNet  maintains
satisfactory  accuracy  in  detection  while  diminishing
the  model’s  intricacy  and  parameter  volume  with  its
simple  and  efficient  network  structure,  providing
valuable  insights  for  the  design  of  YOLOv8’s  feature
extraction  network.  Based  on  a  comprehensive
consideration  of  C2f-CSPDarkNet  and  FasterNet,  this

study  proposes  a  new  feature  extraction  network
architecture.  This  architecture  aims  to  inherit  the
powerful  feature  extraction  capabilities  of  C2f-
CSPDarkNet  and  incorporates  the  lightweight  design
philosophy  of  FasterNet  to  achieve  more  efficient
memory  usage  and  faster  inference  speed.  Below  is  a
concise  introduction  to  C2f-CSPDarkNet,  FasterNet,
and the proposed feature extraction network.
3.1.1　C2f-CSPDarkNet
The  earlier  generations  of  the  YOLO  series  adopted
CSPDarkNet as the backbone network, with the core of
this network lying in the CSP structure. This innovative
network  design  aims  to  optimize  the  flow  of  features
and  the  propagation  of  gradients.  The  CSP  structure
splits  the  input  feature  map  into  two  parts,  one  of
which  is  directly  passed  to  the  next  layer,  while  the
other  part  undergoes  a  series  of  convolutional  layers
for  processing.  The  processed  feature  map  is  then
merged  with  the  unprocessed  part,  a  design  that  helps
reduce  the  vanishing  gradient  problem  and  enhances
the  feature  expression  capability.  Although  the
backbone  network  of  YOLOv8  also  refers  to  the
structure  of  CSPDarkNet  (as  shown in Fig.  2),  it  does
not  directly  adopt  the  network  structure  of
CSPDarkNet.  Instead,  YOLOv8  uses  the  C2f
(CSPLayer_2Conv)  module  to  replace  some  of  the
cumbersome  modules  in  CSPDarkNet  (as  marked  in
the yellow box in Fig. 2).

The C2f structure reduces the count of input channels
in  each  bottleneck,  thereby  lowering  the  model’s
parameter  quantity  and  computational  intricacy.  This
design  allows  YOLOv8  to  maintain  high  performance
while  achieving  a  more  lightweight  structure.  It  is
worth  noting  that  the  C2f  module  places  greater
emphasis  on  preserving  spatial  information,  which  is
particularly  important  for  object  detection  tasks  that
involve handling smaller objects or scenarios with high
spatial detail requirements. In comparison, the original
module  focuses  more  on  capturing  contextual
information,  suitable  for  dealing  with  larger  objects
and  complex  backgrounds.  This  architectural
refinement is designed to balance the performance and
lightweight  needs  of  the  model,  enabling  YOLOv8  to
achieve  good  detection  results  in  various  application
scenarios.
3.1.2　FasterNet and CFNet (proposed)
FasterNet  is  an  innovative  neural  network  that
concentrates  on  enhancing  the  operational  speed  and
efficiency  of  models  while  maintaining  or  enhancing
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performance.  Its  core  innovation  lies  in  the
introduction  of  Partial  Convolution  (PConv),  a  novel
convolutional  operation  that  significantly  reduces
computational  volume  and  memory  access  by  only
performing  convolution  on  a  subset  of  the  input
channels,  thereby  improving  overall  computational
efficiency (as shown in green dotted box in Fig. 3). The
network  structure  of  FasterNet  consists  of  multiple
levels  (as  shown  in Fig.  3a),  each  containing
embedding  layers  or  merge  layers  for  spatial  down-
sampling and channel expansion, as well as a series of
FasterBlocks  that  include  PConv  and  Point-Wise
Convolution  (PWConv,  Conv  1  ×  1).  These  blocks
utilize  an  inverted  residual  block  design,  effectively
reusing  input  features  through  shortcut  connections  to
optimize  feature  propagation.  To  further  reduce
latency,  FasterNet  employs  only  normalization  and
activation layers after each intermediate PWConv, and
selects GELU or ReLU as the activation function based
on  the  size  variant  of  the  model.  FasterNet  offers  a
range  of  model  size  variants  (adjusted  by  the  depth
parameter ), including tiny, small, medium, and big, to
accommodate  different  computational  needs  and
application  scenarios,  demonstrating  its  potential  for
high-speed  operation  and  efficient  performance  across
various devices.

Although  FasterNet  has  achieved  significant  results
in  improving  the  speed  and  efficiency  of  model
operation,  it  still  has  some  potential  drawbacks  and
room for improvement. Due to the design of FasterNet
focusing  on  reducing  computational  complexity,  this
can affect the model’s transferability on some complex
tasks.  Additionally,  the  computational  complexity  of
FasterNet  still  needs  to  be  further  reduced  as  its

 

 
Fig. 2    Structure of C2f-DarkNet. M and R refer to the width multiple and ratio, respectively. C_in and C_out are the input
and output channels, respectively.

 

 
Fig. 3    Architecture  of  FasterNet.  It  consists  of  three
modules: patch embedding, patch merging, and FasterBlock
(l1−4 are depth coefficients).
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inference  speed  is  much  slower  compared  to  C2f-
CSPDarkNet. To address the mentioned challenges and
improve  the  backbone’s  ability  to  learn  multi-scale
features,  we propose a  new architecture  called CFNet,
which  integrates  C2f-CSPDarkNet  and  FasterNet.  Its
structure  is  illustrated  in Fig.  4.  CFNet  introduces  a
novel  residual  module,  CFBlock,  which  leverages  the
T-shaped  convolution  strategies  of  PConv  and
PWConv  from  FasterNet  while  incorporating  an
optimized  feature  splitting  and  fusion  mechanism.
Additionally,  the  Feature-Focused  Channel  Attention
(FFCA)  module  is  designed  to  enhance  CFBlock’s
multidimensional feature extraction capabilities, further
improving  the  model’s  efficiency  and  representational
power.

U ∈ RC×H×W

C H
W

Figure  4 illustrates  the  specific  structure  of  FFCA
(the  red  dotted  box).  Initially,  the  input  feature  map

 is  processed through two methods:  Local
Average  Pooling  (LAP)  and  Global  Average  Pooling
(GAP), where  denotes the channel count, and  and

 denote the height and width, respectively. LAP and
GAP can be expressed as follows: 

LAP(U) =
1
N

∑
i∈Ω

U(i) (1)
 

GAP(LAP(U)) =
1

H×W

H∑
h=1

W∑
w=1

LAP(U)(h, w) (2)

Ωwhere  represents  the  local  receptive  field,  with N
denoting  the  count  of  elements  it  encompasses.  The

(U)(h, w)
(h, w)

term LAP  refers to the local pooling outcome
at  the  specific  coordinate .  By  integrating  both
local  and  global  pooling  operations,  the  model
effectively captures a comprehensive range of features,
from  intricate  local  details  to  broad  global  patterns,
thereby  establishing  a  robust  basis  for  further  feature
manipulation  and  analysis.  Subsequently,  the  features
extracted  through  local  and  global  pooling  are
subjected  to  a  transformation  via  a  1D-convolutional
layer. This step is instrumental in not only diminishing
the  complexity  of  the  feature  set  by  reducing  its
dimensionality  but  also  in  distilling  the  most  salient
information  from  the  data.  Following  this
transformation,  the  features  derived  from  the  1D
convolution  are  rearranged  through  a  reshaping
process.  This  reshaping  is  a  pivotal  step  that  ensures
the  features  are  appropriately  configured  to  meet  the
demands  of  the  subsequent  stages  in  the  model’s
architecture and operation.

The  feature  maps  output  from  the  local  and  global
attention branches are combined and added together to
compute  the  attention  matrix.  FFCA  determines  the
importance of each channel by calculating its attention
score, 

Att = σ(Conv1D(GAP(LAP(U)))+Conv1D(LAP(U)))
(3)

σ(·)
where  Att  represents  the  attention  score  for  channels,
and  is  the  activation  function  that  confines  the
scores  within  the  range  of  0  and  1.  Ultimately,  by

 

 
Fig. 4    Architecture of the proposed CFNet.
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integrating  both  local  and  global  attention  scores,  the
original  feature  maps  are  weighted  and  merged.  This
can be achieved in the following equation: 

FFCA(U) = Att⊗U (4)

FFCA  adaptively  highlights  informative  channels
while  suppressing  irrelevant  ones,  enabling  more
efficient use of network capacity. By jointly leveraging
local  and  global  cues,  it  balances  fine-grained  details
with  global  context,  thus  enhancing  feature
discrimination.

3.2　Semantic  augmentation  feature  pyramid
network

The feature fusion mechanism plays an essential role in
enhancing the performance of  detectors.  In the feature
maps  extracted  by  the  backbone  network,  low-level
features  excel  at  capturing  precise  target  location
information  but  are  relatively  lacking  in  semantic
context; on the other hand, high-level features are rich
in  semantic  information  but  are  not  as  precise  in
detailing  localization.  YOLOv8  effectively  integrates
these multi-scale features through the Path Aggregation
Feature  Pyramid  Network  (PAFPN)[35],  thereby
strengthening the  network’s  feature  representation and
descriptive  capabilities.  As  shown  in Fig.  5a,  the
PAFPN structure employs a dual-path design that goes
from top-down (indicated by blue arrows) and bottom-
up  (indicated  by  orange  arrows)  to  achieve
bidirectional  feature  enhancement.  The  top-down  path
utilizes  upsampling  to  leverage  the  abundant  semantic
information  from  higher  levels,  while  the  bottom-up
path  extracts  low-level  features  that  contain  detailed

target  information.  The  target  contour  information
contained  in  these  low-level  features  is  crucial  for  the
model’s  accurate  target  localization.  PAFPN  achieves
an  effective  complement  between  high-level  semantic
information  and  low-level  detailed  information  in  this
manner.  However,  during  the  fusion  of  features  at
different  scales,  there  may  be  a  dilution  of  semantic
information,  and  the  direct  merging  of  features  at
different scales may lead to a blending effect[15].

To  address  the  aforementioned  challenges,  a  novel
feature  fusion  network  named  as  the  Semantic
Augmentation  Feature  Pyramid  Network  (SAFPN)  is
introduced.  As  shown  in Fig.  5b,  four  different  scale
features  extracted  by  backbone  are  input  into  FFCA.
The  attention  module  computes  spatial  attention  and
channel  attention  for  the  features  separately,  focusing
on specific  regions  within  the  feature  maps for  spatial
attention,  while  evaluating  the  importance  of  each
channel  for  channel  attention.  The  feature  maps,  after
being  weighted  by  attention,  undergo  a  series  of
convolutional  operations  and  non-linear  activations  to
further  refine  and  enhance  the  features.  During  the
construction  of  the  feature  pyramid,  as  the  size  of  the
feature  maps  decreases,  higher-level  features,  while
possessing  stronger  semantic  information,  often  lose
spatial details. Through shortcut connections, the high-
resolution features from lower levels can be combined
with the semantic features from higher levels, reducing
the  loss  of  information.  Therefore,  the  output  feature
maps  of  the  SAFPN  structure  are  fused  with  the
original  input  features  through  a  shortcut  structure
(indicated  by  the  red  dashed  line  in Fig.  5).  This
process  not  only  retains  the  rich  semantic  information
from  higher  levels  but  also  incorporates  the  precise
detail  information  from  lower  levels,  which  is
particularly  helpful  for  the  detection  of  small  objects.
The  fusion  of  multi-level  features  provides  a  more
abundant  and  useful  feature  representation  for
subsequent detection tasks.

3.3　Loss function

In the design of object detection models, classification
loss  and  bounding  box  regression  loss  are  two  core
components.  The  classification  loss  is  primarily
responsible for measuring the discrepancy between the
predicted  categories  and  the  ground  truth,  thereby
adjusting  network  parameters  to  enhance  the  model’s
recognition  capabilities.  However,  when  dealing  with
specific  datasets  captured  by  drones,  there  is  a  large

 

 
Fig. 5    Architecture  of  PAFPN  and  our  proposed  SAFPN.
The  SAFPN  integrates  the  proposed  FFCA,  a  multi-
dimensional  feature  attention  module,  along  with  strategic
shortcuts into its architecture. This enhancement endows the
model with an augmented feature representation capability,
particularly  excelling  in  the  detection  of  small  targets. fi
denotes the feature map, i = 1, 2, 3, 4.
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number  of  easy-to-classify  negative  samples.  These
samples  may cause  the  model  to  focus  excessively  on
easily  identifiable  negative  samples,  neglecting  the
learning of more challenging samples.

To  counter  the  impact  of  a  substantial  quantity  of
simple negative instances, the VariFocal Loss (VFL)[46]

is employed in this study to calculate the classification
loss.  VFL is  an advanced loss  function utilized within
the  field  of  object  detection  to  enhance  the  model’s
capability  in  identifying  dense  objects.  It  is  an
improvement  based  on  focal  loss  and  incorporates
Intersection  over  Union  (IoU)-Aware  Classification
Scores (IACS), a scoring mechanism that combines the
likelihood  of  object  existence  and  localization
accuracy.  VFL  allows  the  model  to  perform  more
precise  sorting  when  dealing  with  a  large  number  of
candidate  detection  boxes.  VFL  reduces  the  influence
of  negative  samples  and  enhances  the  importance  of
positive  samples  by  unequally  weighting  the  positive
and  negative  samples,  especially  for  those  hard-to-
classify  positive  samples.  This  calculation  method
helps  the  model  to  concentrate  on  learning  more
critical instances. The computation of VFL for positive
and  negative  samples  is  represented  by  Eqs.  (5)  and
(6), respectively, 

VFL(p,q)positive = −q(q log(p)+ (1−q) log(1− p)) (5)
 

VFL(p,q)negative = −αpγ log(1− p) (6)

p
q
α

γ

where  represents  the  classification  probability
predicted by the model,  denotes the IoU score of the
object, hyperparameter  is used to balance the weight
of  negative  instances,  and  the  adjustment  factor  is
employed  to  regulate  the  shape  of  the  loss  function,
focusing on hard-to-classify positive samples.

In  rotated  object  detection,  the  design  of  the
bounding  box  loss  function  is  crucial  for  model
performance.  However,  when  collecting  data  using
drones,  low-quality  training  samples  are  often
generated  due  to  altitude  issues.  Traditional  IoU  loss
has  some  problems  when  dealing  with  low-quality
training  samples,  as  these  samples  can  negatively
impact  the  model’s  learning  because  they  typically
have  low  IoU  scores,  leading  to  overfitting  to  these
samples during training. This study addresses the class
imbalance  issue  by  adopting  an  advanced  bounding
box  regression  loss  function,  Wise-IoU  (WIoU)[47].
WIoU introduces the concept  of  outlier  degree (od)  to
evaluate  the  quality  of  anchor  boxes.  The  od  is

g
o

calculated  based  on  the  IoU  quality  metric.  High-
quality anchor boxes have smaller od values. The core
of  WIoU  lies  in  the  dynamic  non-monotonic  gradient
gain assignment strategy, where the gradient gain  can
be calculated based on the  (od) of the anchor box, 

g(o) =
1

a+ e−δ·(o−T )
(7)

δ

T
where  is  a  hyperparameter  that  controls  the  rate  of
change of the gradient gain, and  is a threshold used
to  determine  the  dynamic  classification  standard  for
anchor box quality. The WIoU loss function combines
the IoU loss  with  the  gradient  gain,  and its  formula  is
as follows: 

WIoU = −ρ ·g(o) ·LIoU (8)

ρ

LIoU

where  is a hyperparameter used to adjust the impact
of the gradient gain, and  represents the loss value
based on IoU.

4　Oriented Object Detection Dataset

In  this  study,  we  utilize  two  public  datasets:
DroneVehicle  dataset[48] and  DOTA  dataset[49],  each
comprising a training set, a validation set, and a test set
for training and validating the performance of oriented
object  detection  models.  These  datasets  contain  a
diverse  range  of  object  categories,  including  vehicles,
ships, planes, and storage tanks, with objects appearing
at  various  scales  and  orientations.  Notably,  they
include  a  large  number  of  small  object  instances,
making  them  well-suited  for  evaluating  the  model’s
ability  to  detect  small  targets  in  complex  aerial
imagery.

The  DroneVehicle  dataset  is  crafted  to  cater  to  the
unique challenges of object detection in aerial imagery,
focusing  on  5  vehicles  (car,  truck,  bus,  van,  and
freight_car). Comprising 17 990 images designated for
the training set and 8980 images for the test set, along
with  a  validation  set  of  1469  images,  it  presents  a
comprehensive  range  of  vehicle  types  across  diverse
environmental  settings.  The  dataset  enables  models  to
refine  their  detection  capabilities  under  various  real-
world  conditions,  including  fluctuating  light  exposure
and  instances  of  occlusion.  The  training  set  facilitates
the learning and fine-tuning processes of the model, the
validation set serves to refine and regulate the learning
parameters,  and the test set is crucial for assessing the
model’s  ability  to  generalize  from  previously  unseen
data.
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The  DOTA  dataset  is  a  large-scale  collection  for
object  detection in aerial  imagery,  created to train and
test  models  for  detecting  targets  in  high-resolution
aerial  images.  Spanning  15  square  kilometers,  this
dataset comprises more than 188 000 labeled instances
within  15  object  categories,  with  their  abbreviations
detailed in Table 1. It is segmented into three subsets: a
training  subset  with  around  1411  images,  a  validation
subset  containing  458  images,  and  a  test  subset  with
approximately 938 images. The image resolutions vary
from  800  pixel  ×  800  pixel  up  to  4000  pixel  ×  4000
pixel.  For  convenience  in  data  annotation  reading  and
subsequent  processing,  the  dataset  annotations  are
offered  in  both  textual  and  XML  formats. Figure  6
displays  a  selection  of  example  images  from  both
datasets.

5　Experimental Result

5.1　Experimental environment

In  this  research,  we  have  configured  a  high-
performance  computing  environment,  centered  around
two  NVIDIA  GeForce  RTX  4090  GPUs  that  provide
substantial parallel processing power for deep learning
and  computer  vision  tasks.  The  system  is  equipped

with  the  latest  Intel  Core  i9  processor  for  efficiently
handling complex computations and coordinating GPU
operations. We have also installed high-speed memory
and  Solid  State  Drives  (SSDs)  to  accelerate  data
read/write speeds.  On the software front,  we are using
an  optimized  64-bit  operating  system,  CUDA  Toolkit
11.8,  and  the  cuDNN  library  to  enhance  GPU
computations.  Development  and  model  training  are
conducted  using  Python  3.9  and  PyTorch  2.1,  while
numerical  computations  are  handled  by  NumPy  and
SciPy.  Data  visualization  is  facilitated  by  Matplotlib
and  Seaborn.  This  combination  of  hardware  and
software  provides  a  robust  and  efficient  platform  for
our research.

5.2　Feature extraction

The first experiment is conducted to stress the excellent
performance  of  the  proposed  backbone  model  by
making  a  scientific  comparison  with  other  related
backbones. Table  2 lists  the  detailed  results  of  these
models based on the YOLOv8 framework and PAFPN
neck part. In this section, the performance is evaluated
in terms of both efficiency and effectiveness. As for the
model’s  efficiency,  the  proposed  CFNet  (n)  is  the
lightest  model  with  the  minimum  network  parameter

 

Table 1    Abbreviations for 15 categories in DOTA dataset.
Category Abbreviation Category Abbreviation Category Abbreviation
Bridge BR Small vehicle SV Basketball court BC
Harbor HA Large vehicle LV Soccer-ball field SB
Ship SH Baseball diamond BD Roundabout RA
Plane PL Ground track field TF Swimming pool SP

Helicopter HC Tennis court TC Storage tank ST

 

 
Fig. 6    Examples of two public datasets.
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mAP50

mAP50

scale (2.38 × 106) and computations (6.7 × 109). Owing
to its light character, CFNet (n) achieves fast inference
speed  of  0.29  ms  per  image,  which  is  0.51  ms  faster
than the FasterNet (T2). For the model’s effectiveness,
the  presented  another  CFNet  (s)  with  FFCA  obtained
the highest mAP of 59.5% and  of 81.2%.  That
may  be  because  the  advantages  of  FFCA,  which
enhances  feature  selection  and  context  awareness.
Compared  with  the  initial  C2f-CSPDarkNet  (n),  our
model  is  considerably  improved  by  the  mAP  of  6.2%
and  the  of  6.6%.  This  experiment  reflects  that
the  proposed  model  achieves  a  25% reduction  in
parameter  count  and  a  23% decrease  in  FLOPs
compared  to  the  original  model,  and  the  designed
backbone has  leading feature  extraction  ability  for  the
drone vehicle data.

Figure  7 shows  the  corresponding  confusion  matrix
and F1-confidence curves for 5 classes (car, truck, bus,
van,  and  feright_car).  According  to  the  comparison
results,  the  CFNet  with  FFCA  can  detect  each  class
with  higher  precision,  especially  for  the  van  class.
Also,  the  under  F1-confidence  curves  hve  a  smoother
trend  than  the  upper  curve,  which  indicates  the
proposed model is more stable in the process of feature
extraction.

In  addition,  the  visualized  feature  extraction  results
of  C2f-CSPDarkNet  and  CFNet+FFCA  are  compared
to  show  the  advantages  of  FFCA. Figure  8 illustrates
the  results  of  two  models  in  both  daytime  and  night
scenes.  This  experiment  suggests  the  designed  model
can capture more discriminative features from the input
images compared to another experimental model.

5.3　Feature fusion

During  the  feature  fusion  process,  different  neck
models are configured with different structural settings.
Table  3 presents  the  object  detection  performances  of
the  four  experimental  neck  models  based  on  the

mAP50

uniform backbone. The main modified components are
listed  from  the  second  column  to  the  fourth  column,
and various evaluation results are shown in the last six
columns. Even though the SAFPN with FFCA has the
fewest  parameters  (8.55  ×  106)  and  computations
(2.24  ×  1010),  its  detection  effectiveness  does  not
achieve  satisfactory  expected  results.  However,  the
SAFPN  with  both  modifications  performs  the  first
place  among  all  the  experimental  models,  which
obtains  the  precision  of  0.831,  the  recall  of  0.779,  the
F1-score of 0.804, and the  of 0.823.

Figure  9 presents  a  comparative  experimental
analysis of two models engaged in an object detection
task,  with  a  particular  focus  on  their  architectural
differences  in  the  neck  structure.  The  first  model
utilizes  PAFPN  as  the  neck  component,  designed  to
achieve  multi-scale  feature  fusion,  while  the  second
model  incorporates  the  proposed  SAFPN  structure.
Figure  9 illustrates  the  detection  outcomes  for  each
model  across  various  scenarios,  including  those
captured  under  both  nocturnal  and  diurnal  lighting
conditions.  A  closer  examination  reveals  that Fig.  9a
displays  the  detection  results  for  F-YOLO  with
PAFPN,  while Fig.  9b  corresponds  to  those  of  F-
YOLO  with  SAFPN.  It  is  observable  that  within
identical  testing  environments,  the  SAFPN  model
delivers  more  precise  detection  in  certain  instances.
For  example,  in  the  top  set  of  images,  the  SAFPN
model  more  accurately  identifies  the  vehicles  within
the  areas  encircled  by  black  frames,  whereas  the
PAFPN  model  exhibits  several  missed  detections  and
false  positives.  In  the  middle  set,  the  SAFPN  model
also  demonstrates  enhanced  stability  in  detecting
grayscale  images.  The  bottom  set  of  images  further
illustrates  that  the  SAFPN model’s  detection  accuracy
for  the  vehicles  marked  with  yellow  circles  surpasses
that of the PAFPN model.

 

Table 2    Performance comparison of rotational object detection on the DroneVehicle dataset using different backbone models
baset  on  the  YOLOv8  framework  and  PAFPN  net  part.  Note:  Metrics  include  parameter  scale  (Param.),  floating  point
operations (FLOPs), mean Average Precision (mAP and mAP50), and inference speed per image. The bold style represents the
best performing data.

Backbone Param. FLOPs mAP (%) mAP50  (%) Inference (ms)
C2f-CSPDarkNet (n) 3.08×106 8.4×109 53.3 74.6 0.32
C2f-CSPDarkNet (s) 1.141×107 2.94×1010 57.8 79.3 0.64

FasterNet (T2) 1.526×107 3.73×1010 55.9 77.5 0.80
CFNet (n) (proposed) 2.38×106 6.7×109 54.8 76.2 0.29
CFNet (s) (proposed) 8.61×106 2.26×1010 58.6 80.5 0.58

CFNet (s)+ FFCA (proposed) 8.63×106 2.34×1010 59.5 81.2 0.60
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These  comparisons  underscore  the  superior
performance and robustness of the SAFPN structure in
handling  multi-scale  feature  fusion,  providing  higher
detection  accuracy  across  diverse  settings.  This
suggests  that  SAFPN  possesses  distinct  advantages  in
feature  selection  and  preservation  of  spatial
information, contributing to the overall enhancement of
the model’s detection capabilities.

To  demonstrate  the  strengths  of  F-YOLO  in  small
object  detection,  comparative  tests  are  conducted  on
another  public  dataset,  DOTA.  The  experimental
outcomes are presented in Fig. 10, which displays a bar
chart  comparing  the  performance  of  the  proposed  F-
YOLO  with  YOLOv8s,  specifically  focusing  on  the

Average  Precision  for  each  category.  In  the  chart,  the
blue  bars  represent  the  performance  of  YOLOv8s,
while  the  orange  bars  denote  the  performance  of
F-YOLO.  The  horizontal  axis  of  the  chart  is  labeled
with  abbreviations  for  various  categories.  The  vertical
axis indicates the average precision, ranging from 0 to
1.  A visual  analysis  of  the  chart  reveals  that  F-YOLO
exhibits  higher  average  precision  in  the  majority  of
categories. For instance, in categories like PL, BD, TF,
and SV, F-YOLO demonstrates a significantly superior
detection  accuracy  over  YOLOv8s.  Moreover,  in
certain  categories  where  the  two  models  show similar
performance,  F-YOLO  maintains  a  slight  edge.
F-YOLO  shows  a  higher  detection  accuracy,

 

 
Fig. 7    Comprehensive  performance  evaluation  of  YOLOv8  with  two  feature  extraction  models  on  DroneVehicle  dataset:
Analysis via confusion matrix and F1-confidence curve.
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suggesting  that  the  proposed  enhancements  have
effectively improved the model’s detection capabilities
and robustness.  The comparative data illustrate that F-
YOLO  possesses  greater  adaptability  and  precision
when dealing with a variety of complex targets.

5.4　Model optimization and comparison

Figure 11 presents an in-depth comparative analysis of
the  performance  between  YOLOv8s  and  the  proposed
F-YOLO  model  under  various  loss  functions.  In Fig.
11a, F-YOLO demonstrates a consistently higher mAP
at an IoU threshold of 0.5,  stabilizing towards the end
of  training  and  outperforming  YOLOv8s. Figure  11b
refines  this  trend,  illustrating  F-YOLO’s  superior
convergence  and  ultimate  precision  across  the  full
range  of  IoU  from  0.50  to  0.95. Figures  11c  and 11d
break  down  the  training  process  losses,  with  Fig.  11c
focusing  on  the  box  loss.  F-YOLO  not  only  shows  a
rapid decrease in loss but also maintains a lower level
in  the  later  stages  of  training,  indicating  an  advantage

in precise bounding box regression. Figure 11d, which
concentrates  on  the  classification  loss,  also  shows
F-YOLO  achieving  a  quick  reduction  in  loss  and
sustaining a  low loss  value  in  the  later  training phase,
highlighting its high efficiency in object classification.

Figures 11e and 11f focus on performance during the
validation  phase. Figure  11e  indicates  that  F-YOLO
maintains a lower box loss during validation, reflecting
its  excellent  generalization  capabilities.  The
classification  loss  chart  on Fig.  11f  corroborates  this,
demonstrating  F-YOLO’s  stability  and  accuracy
throughout  the  validation  set.  Synthesizing  the  data
from Fig.  11,  F-YOLO  shows  an  advantage  over
YOLOv8s on both mAP and loss performance metrics.

Figure  12 demonstrates  the  capability  of  the
F-YOLO  model  in  detecting  small  targets  within  the
DOTA  test  set.  The  image  displays  eight  satellite
photographs,  each  highlighting  small  targets  with
distinct colored bounding boxes. Upon inspection, it is
clear that F-YOLO can accurately identify a variety of

 

 
Fig. 8    Comparing feature visualization results: YOLOv8s (C2f-CSPDarkNet) vs. proposed YOLOv8s (CFNet + FFCA).

 

Table 3    Object  detection  performance  of  models  with  different  pyramid  structures  using  the  CFNet(s)  backbone. “√”
represents  the  use  of  corresponding  module, “×” represents  the  absence  of  the  module.  The  bold  style  represents  the  best
performing data.

PAFPN[35] SAFPN Param.
( × 106)

FLOPs
( × 1010) Precision Recall F1-score

mAP50
(%)FFCA CBAM[42] Shortcut

√ × × × √ √ 0.810 0.756 0.782 81.2
× √ × × 8.55 2.24 0.827 0.763 0.794 81.8
× × √ × 8.58 2.26 0.823 0.76 0.79 81.4
× × × √ 8.56 2.26 0.822 0.762 0.791 81.5
× × × √ 8.59 2.29 0.831 0.779 0.804 82.3
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(a) F-YOLO (PAFPN) (b) F-YOLO (SAFPN) 
Fig. 9    Object detection performance of two models in complex environments on DroneVehicle test set. Black circles indicate
some missed detections and misidentifications.

 

 
Fig. 10    Precision comparison of models (YOLOv8s and F-YOLO) on the DOTA test dataset.
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small  targets,  such  as  airplanes,  ships,  and  vehicles.
Each type of object is marked with a bounding box in a
unique color. A color legend at the bottom of the image

clearly matches each color to its respective target class.
These  results  underscore  F-YOLO’s  high  precision  in
detecting  small  targets  against  complex  backdrops,
affirming  its  efficiency  and  stability  in  handling  high-
resolution remote sensing imagery.

mAP50

mAP50

To  demonstrate  the  accuracy  and  efficiency  of  our
proposed  model,  we  conduct  an  impartial  comparison
on the  DOTA test  set,  including F-YOLO and several
contemporary state-of-the-art models across metrics of
inference speed and precision. This evaluation ensured
that  all  models  are  subjected  to  identical  training
configurations,  such  as  model  input  dimensions,  the
number  of  training  epochs,  and  initial  learning  rates.
The  results  are  shown  in Table  4,  detailing  the
precision  for  15  distinct  categories, ,  and  the
Frames processed Per Second (FPS) for inference. The
superior  results  for  each  category  are  distinguished  in
boldface to facilitate easy recognition. The data reveal
that  F-YOLO  obtains  the  most  top  rankings,  with  a
pronounced advantage in inference speed. Specifically,
F-YOLO attains  an  ultimate  of  81.73% on  the
DOTA  test  set,  coupled  with  a  striking  processing
speed of 364.2 FPS.

6　Conclusion

In  this  research,  we  propose  a  novel  small  object
detection  framework  designed  for  efficient  oriented
object  detection  in  Unmanned  Aerial  Vehicle  (UAV)
environments.  Unlike  conventional  approaches,  we
introduce  CFNet,  a  backbone  that  redesigns  feature
extraction  by  integrating  a  novel  CFBlock,  which

 

 
Fig. 11    Comparative  analysis  of  mAP  and  loss  for
YOLOv8s and the proposed F-YOLO model utilizing diverse
loss functions.

 

 
Fig. 12    Small object detection performance of F-YOLO model on DOTA testing set.
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leverages  the  T-shaped  convolution  strategies  of
PConv  and  PWConv  from  FasterNet,  while
incorporating an optimized feature splitting and fusion
mechanism.  This  design  enhances  computational
efficiency  and  feature  representation,  making  it
particularly  suitable  for  small  object  detection.  To
further  refine  feature  selection,  we  develop  the  FFCA
module,  which  combines  local  and  global  feature
aggregation  to  improve  multi-scale  feature  learning.
Additionally,  we  propose  the  SAFPN,  which
reformulates feature fusion by integrating FFCA-based
attention  mechanisms  and  strategic  shortcut
connections,  ensuring  better  semantic  retention  and
mitigating  feature  dilution.  These  innovations
collectively  optimize  small  object  detection  by
improving both accuracy and computational efficiency.
Experimental  results  validate  that  F-YOLO  surpasses
traditional  models  in  balancing  precision  and  speed,
demonstrating  state-of-the-art  performance  in  UAV-
based object detection.

In  the  future,  the  focus  should  intensify  on  refining
the model’s feature extraction techniques, with the aim
of  developing  a  learning  approach  that  more  closely
mirrors  biological  visual  systems  to  achieve  more
efficient recognition capabilities.
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