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Sensing with Attention-Guided Feature Fusion
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L. Minh Dang, Hyoung-Kyu Song, and Hyeonjoon Moon*

Abstract: Small object detection in remote sensing imagery is a challenging task due to the small size of
targets, complex background, and low contrast, which makes achieving high precision difficult. To enhance the
accuracy of detection, this study proposes a novel oriented object detection model with three significant
innovations: Firstly, a lightweight feature extraction network is designed to achieve efficient feature
representation at a reduced computational cost, which is particularly effective for the recognition of small
targets in remote sensing imagery. Secondly, a Feature-Focused Channel Attention (FFCA) is introduced that
enhances the model’s ability to focus on small target areas by combining spatial and channel attention,
enhancing the model’'s capacity to capture and represent features more effectively. Lastly, an attention-guided
multi-scale feature fusion module is proposed to integrate features from different levels, which substantially
boosts the model’s ability to accurately detect small-scale objects, especially in remote sensing scenarios with
vast fields of view and complex backgrounds. The experimental outcomes validate that our model achieves the
best detection performance on two benchmark public datasets for remote sensing imagery, confirming its

effectiveness and practicality in remote small object detection tasks.
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1 Introduction the small size of targets, low image resolution, and low
contrast between targets and background, make
detection particularly difficult. Recently, as deep
presents a challenging problem, particularly in the learning technologies have progressed, a multitude of
analysis of drone or satellite imagery. Factors, such as approaches have been introduced by researchers to
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tackle this challenge. For feature
enhancement techniques!'l have been employed to
improve the detection performance of small targets,
rotation-invariant methods?l have been proposed to
solve the problem of rotating target detection, and
attention mechanisms3! and depth estimation!*! have
been the accuracy and
robustness of small target detection. Rotation target
detection algorithms in drone or satellite image
analysis hold significant research importance and
application value across multiple domains. Primarily,
in the military and defense sector, rotation target
detection can be utilized for monitoring and identifying
enemy military installations, equipment, and
activities>- ¢, Secondly, in civilian fields, this
technology can be applied to urban planning,
agricultural monitoring, environmental protection, and
disaster assessment!’-8l, For instance, by analyzing
drone or satellite images, one can detect and count
buildings in cities, crop diseases in farmlands, or the
extent of affected areas in disaster zones. Furthermore,
rotation target detection technology can also enhance
the efficiency of traffic management®), such as
monitoring traffic flow through drones and identifying
traffic accidents.

Despite the significant progress made in the field of
small target detection within computer vision, there are
still numerous challenges in ensuring detection
accuracy while enhancing the speed of algorithm
execution. Particularly in the application of remote
sensing image analysis, small targets, due to their
limited pixel occupation in the image, are often
difficult to accurately identify and are susceptible to
interference from complex background noisel%.
Moreover, to capture a broader field of view, remote
sensing images typically have high resolutions, which
means a substantial increase in the amount of data that
needs to be processed. To improve detection speed,
researchers strive to simplify the model structure and
reduce computational load. For example, methods such
as designing lightweight network architectures!!!],
applying efficient convolutional operationst'?], and
optimizing algorithmic processes!(!3] have been used to
expedite the detection process. However, such
simplifications may come at the cost of detection
accuracy, especially in the feature extraction and
classification of small targets. Therefore, the research
focus is on developing a lightweight feature extraction
network that can maintain high-precision detection

example,

introduced to enhance

capabilities  while
capabilities.

In the pursuit of enhancing small target detection
accuracy, scholars have been committed to developing
and refining various advanced feature enhancement
techniques. Among these, technologies, such as Feature
Pyramid Networks (FPNs)[14l and multi-scale feature
fusion(!3], are widely applied to strengthen the model’s
ability to recognize targets at different scales. By
constructing multi-layer feature representations, these
methods help the model capture richer and more
image features, thereby improving
detection accuracy to a certain extent. However, these
deep network structures and complex feature extraction
mechanisms also increase the computational burden of
the model, especially in real-time remote sensing
image analysis tasks. In addition, the direct fusion of
multi-scale features can sometimes lead to feature
dilution issuest®l, which is particularly prominent in
small target detection, as the features of small targets
are easily lost during the fusion process, affecting the
model’s detection precision. Therefore, this study
designs a new feature fusion strategy to ensure that the
key features of small targets are retained and efficiently
integrated with feature information from different
layers.

Additionally, the attention mechanism, as a low-cost
feature enhancement technique, has been widely
applied in computer vision tasks. It emulates the
focusing characteristics of human vision, enabling the
model to concentrate more on key areas within the
image, thereby enhancing feature expressiveness and
the model’s recognition accuracy. However, despite the
significant performance improvements brought by the
attention mechanism, it also has certain limitations. For
instance, when dealing with large-scale data or high-
dimensional features, the attention mechanism may
cause the model to overly rely on certain local features,
thus neglecting global contextual information!!7],
Moreover, within attention models, the computation of
attention weights is a crucial process that determines
the extent to which the model focuses on key areas in
the image. However, some models use simplified
dimensionality reduction techniques in the computation
process, which may inappropriately lose spatial
information of the features!!8l. This unreasonable
dimensionality reduction approach may lead to the
model’s inability to accurately capture the spatial
details of targets, affecting the accuracy of detection.

sustaining rapid  processing

discriminative
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Based on these issues, a multidimensional feature
hybrid attention module has been introduced to further
enhance the model’s precision.

Considering the above limitations, the key
contributions of this research can be summarized as
follows.

(1) A high-precision, light weight feature extraction
network is designed to address the balance between the
model’s speed and accuracy.

(2) The development of an efficient attention module
that enhances the capability of feature expression,
ensuring that the model can more accurately identify
and focus on relevant information within the image
data.

(3) The introduction of an innovative feature fusion
strategy aimed at mitigating the issue of feature
dilution during the fusion of multi-scale features.

The structure of the ensuing sections in this paper is
outlined below. Section 2 delivers an extensive
overview of the literature, focusing on the detection of
oriented dense objects. Section 3 outlines the proposed
system’s flowchart and details the methodology
employed. Section 4 details the data information and
annotation formats utilized in the study. Section 5 then
showcases a series of experiments aimed at
highlighting the contributions made in this research.
Finally, Section 6 concludes the paper by discussing
the current performance and potential avenues for
future investigation.

2 Related Work

Deep object detection models are becoming
increasingly important in remote sensing data
processing, especially in the research fields of

computer vision. Due to the high resolution, extensive
coverage, and the presence of multi-scale targets
typically found in remote sensing imagery, object
detection in remote sensing imagery through deep
learning encounters numerous difficulties. These
include significant variations in target size, complex
background environments, and limited computational
resources. To address these challenges, researchers
have developed a series of deep learning architectures
and technologies. For example, complex feature
extraction networks, multi-specification feature fusion
modules, and flexible attention mechanisms.

Within the object detection models, the backbone
network for feature extraction is a crucial component,
responsible for extracting key information from raw

pixel data. Currently, various lightweight network
structures, such as MobileNets!!9l, ShuffleNets[20],
GhostNet2ll, Vision Transformers (ViTs)22, and
MultiLayer Perceptron (MLP) architecturest?3], have
been utilized as feature extractors. These structures not
only maintain a fast-processing speed but also achieve
considerable recognition accuracy. However, compared
to some more complex network structures, these
lightweight models may sacrifice some accuracy. Some
researchers have attempted to reduce computational
costs using methods, such as separable spatial
convolution?  and  knowledge  distillation!23],
However, these approaches often rely on specific data
distributions and may struggle to maintain stable
performance when faced with significant variations in
data. To better adapt to the characteristics of remote
sensing 1imagery, researchers have also designed
various network structures with different depths and
widths, such as ResNetl26], Inception!27],
EfficientNet28], YDHNet!?°], and ConvNeXt!30!, to
capture multi-scale and multi-level features within the
images. While these network structures can provide
more accurate feature representation, they also come
with higher computational costs. Therefore, designing
a deep feature extraction network that balances model
accuracy and speed is essential. This requires us to
maintain detection accuracy while also considering the
computational efficiency and practical applicability of
the model.

Multi-scale feature fusion is a pivotal strategy for
enhancing the performance of target detection in
remote sensing imagery. Given the variability in target
sizes within this type of imagery, features from a single
scale often struggle to comprehensively represent all
targets. To address this, researchers have introduced
various feature fusion networks and strategies, such as
FPN[3, Multi-scale Feature Fusion (MFF)[32], and
Adaptive Scale Feature Fusion (ASFF)[33. These
approaches amalgamate feature maps from different
levels and scales, bolstering the model’s ability to
detect both small and large targets. Additionally, to
further boost the detection performance of rotating
small targets in remote sensing imagery, researchers
have proposed several variants of the FPN structure.
For instance, the Bidirectional FPN (BiFPN)I34! and
Path Aggregation Network (PANet)B3] facilitate
bidirectional exchange of feature information, allowing
for the transfer of information from higher to lower
layers and vice versa, enabling a more profound level
of feature integration. The Graph FPN (GraphFPN)[30]
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leverages graph-based structures to effectively
construct feature pyramids, enhancing the efficacy of
object detection algorithms for multi-scale targets in
various imaging contexts.

Furthermore, the High Resolution FPN (HRFPN)[37]
focuses on preserving high-resolution information
during the feature fusion process, which is particularly
critical for small target detection. Despite the
advancements of FPN and its derivatives in multi-scale
feature fusion, challenges remain regarding the loss of
valuable spatial information during the feature transfer
and fusion processes. This is especially problematic for
the identification of minute targets in satellite imagery,
where spatial context is crucial for the precise detection
and positioning of targets.

Attention modules play a crucial role in remote
sensing image target Highly flexible
attention mechanisms allow models to adaptively focus

detection.

on the most informative parts of the image, thereby
improving detection accuracy. In the detection of
targets within satellite imagery, attention mechanisms
are divided into three main types. Spatial attention
models enhance detection performance by highlighting
key areas of the image, such as Receptive-Field
Attention (RFA)[38] and non-local neural networks391,
Channel attention models strengthen feature expression
capabilities, with Squeeze-and-Excitation Networks
(SENet)*0] and Efficient Channel Attention (ECA)4!]
being typical examples. Channel-spatial attention
models combine the advantages of the former two,

such as the Convolutional Block Attention Module
(CBAM)#2l and the Coordinate Attention (CA)M3],
These models significantly improve the precision and
reliability of identifying small targets in remote sensing
images by guiding the network to focus on the most
relevant information in different dimensions. However,
they still face some challenges and limitations in
practical applications. For example, spatial attention
models may neglect the global dependency of image
features, while channel attention models may not be
sufficient to deal with complex spatial context
information. In addition, although channel-spatial
attention models integrate channel and spatial
information, their computational costs are often high,
and they may require a large number of parameters to
capture subtle feature relationships. Therefore,
attention modules need a simple and effective design to
reduce computational overhead and capture key
channel and spatial features.

3 Methodology

Figure 1 comprehensively illustrates the research
framework we have developed for the detection of
rotating targets in remote sensing imagery. This
framework  processes a  large-scale
encompassing a variety of scenarios, and we have
customized the format of the annotated data to suit the
needs of our proposed algorithm. Our Faster You Only
Look Once (F-YOLO) model, which is based on the
YOLOVS8M4  architecture, integrates three key

dataset
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Fig. 1 Diagram of the novel oriented object detection framework (OBB: oriented bounding box dection).
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innovations: firstly, a lightweight yet high-precision
feature extraction network (as detailed in Section 3.1),
designed to maintain detection accuracy while reducing
computational load through an elegant
architecture; secondly, a computationally efficient
attention module (also detailed in Section 3.1), which
enhances the model’s feature representation by
focusing on critical areas of the image; and finally, an
attention-guided feature enhancement module (as
detailed in Section 3.2), designed to act as the “neck”
of the model, bolstering its ability to detect targets
across various scales. In addition, we have made fine-
tuned adjustments to the model’s loss function (as
detailed in Section 3.3) to optimize detection
performance. The synergy of these technologies
provides an efficient and accurate solution for the
detection of rotating targets in remote sensing imagery.

network

3.1 Feature extraction network

YOLO occupies a pivotal position in the field of object
detection, with its unique advantage of being able to
directly predict the position and category of objects in
an image during a single forward propagation. This
characteristic allows YOLO to surpass other object
detection methods in terms of processing speed and
accuracy. YOLOVS’s capabilities are largely attributed
to its efficient and robust feature extraction network,
C2f-CSPDarkNet*Y, which combines Cross Stage
Partial (CSP) technology with DenseNet’s skip
connections, significantly enhancing the network’s
expression While C2f-
CSPDarkNet excels in feature extraction, it has some
limitations. Its extensive use of DenseNet-like skip

feature and utilization.

connections,  although  beneficial for feature
propagation, also increases the model’s memory
footprint, affecting inference speed and overall

efficiency. To tackle these challenges, this study
conducted an in-depth exploration and innovative
redesign of the feature extraction module for the
YOLOV8 model, focusing on precision and speed.

In the research process, we conducted a detailed
analysis of the lightweight model FasterNet’s[43]
structure and  operation. FasterNet maintains
satisfactory accuracy in detection while diminishing
the model’s intricacy and parameter volume with its
simple and efficient network structure, providing
valuable insights for the design of YOLOVS’s feature
extraction network. Based on a comprehensive
consideration of C2f-CSPDarkNet and FasterNet, this

study proposes a new feature extraction network
architecture. This architecture aims to inherit the
powerful feature extraction capabilities of C2f-
CSPDarkNet and incorporates the lightweight design
philosophy of FasterNet to achieve more -efficient
memory usage and faster inference speed. Below is a
concise introduction to C2f-CSPDarkNet, FasterNet,
and the proposed feature extraction network.

3.1.1 C2f-CSPDarkNet

The earlier generations of the YOLO series adopted
CSPDarkNet as the backbone network, with the core of
this network lying in the CSP structure. This innovative
network design aims to optimize the flow of features
and the propagation of gradients. The CSP structure
splits the input feature map into two parts, one of
which is directly passed to the next layer, while the
other part undergoes a series of convolutional layers
for processing. The processed feature map is then
merged with the unprocessed part, a design that helps
reduce the vanishing gradient problem and enhances
the feature expression capability. Although the
backbone network of YOLOVS also refers to the
structure of CSPDarkNet (as shown in Fig. 2), it does
not directly adopt the network structure of
CSPDarkNet. Instead, YOLOvV8 uses the C2f
(CSPLayer_2Conv) module to replace some of the
cumbersome modules in CSPDarkNet (as marked in
the yellow box in Fig. 2).

The C2f structure reduces the count of input channels
in each bottleneck, thereby lowering the model’s
parameter quantity and computational intricacy. This
design allows YOLOVS to maintain high performance
while achieving a more lightweight structure. It is
worth noting that the C2f module places greater
emphasis on preserving spatial information, which is
particularly important for object detection tasks that
involve handling smaller objects or scenarios with high
spatial detail requirements. In comparison, the original
module focuses more on capturing contextual
information, suitable for dealing with larger objects
and complex backgrounds. This architectural
refinement is designed to balance the performance and
lightweight needs of the model, enabling YOLOVS to
achieve good detection results in various application
scenarios.

3.1.2 FasterNet and CFNet (proposed)

FasterNet is an innovative neural network that
concentrates on enhancing the operational speed and
efficiency of models while maintaining or enhancing
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Fig. 2 Structure of C2f-DarkNet. M and R refer to the width multiple and ratio, respectively. C_in and C_out are the input
and output channels, respectively.

performance. Its core innovation lies in the

introduction of Partial Convolution (PConv), a novel Patch embedding
convolutional operation that significantly reduces |
computational volume and memory access by only
performing convolution on a subset of the input
channels, thereby improving overall computational
efficiency (as shown in green dotted box in Fig. 3). The FasterBlock = Patch merging

FasterBlock =k Patch merging

Xl
Stage 1

network structure of FasterNet consists of multiple 3 Stage 2 |

levels (as shown in Fig. 3a), each -containing

embedding layers or merge layers for spatial down- FasterBlock | 4 Patch merging
sampling and channel expansion, as well as a series of XlaStage 3]

FasterBlocks that include PConv and Point-Wise
Convolution (PWConv, Conv 1 x 1). These blocks
utilize an inverted residual block design, effectively
reusing input features through shortcut connections to

FasterBlock 4 BatchNorm2d

X1y

Stage 41
(a) FasterNet

optimize feature propagation. To further . reduce Patch embedding = &(3&1115\;12654’ -+ BatchNorm2d
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activation layers after each mternlqedl.ate PW(?OI’IV, and Patch merging = agr(n)??:ifzidz’ . BatchNorm2d
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(b) Patch embedding and merging

______________
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on the size variant of the model. FasterNet offers a
range of model size variants (adjusted by the depth
parameter /), including tiny, small, medium, and big, to
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| P |
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Although FasterNet has achieved significant results : *RTLU P ]ﬁ !
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operation, it still has some potential drawbacks and E E ' PConv ;
room for improvement. Due to the design of FasterNet Nt SN . o

focusing on reducing computational complexity, this (¢) FasterBlock

can affect the model’s transferability on some complex Fig. 3 Architecture of FasterNet. It consists of three

tasks. Additionally, the computational complexity of modules: patch embedding, patch merging, and FasterBlock
FasterNet still needs to be further reduced as its (I,_4 are depth coefficients).
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inference speed is much slower compared to C2f-
CSPDarkNet. To address the mentioned challenges and
improve the backbone’s ability to learn multi-scale
features, we propose a new architecture called CFNet,
which integrates C2f-CSPDarkNet and FasterNet. Its
structure is illustrated in Fig. 4. CFNet introduces a
novel residual module, CFBlock, which leverages the
T-shaped convolution strategies of PConv and
PWConv from FasterNet while incorporating an
optimized feature splitting and fusion mechanism.
Additionally, the Feature-Focused Channel Attention
(FFCA) module is designed to enhance CFBlock’s
multidimensional feature extraction capabilities, further
improving the model’s efficiency and representational
power.

Figure 4 illustrates the specific structure of FFCA
(the red dotted box). Initially, the input feature map
U € REHXW s processed through two methods: Local
Average Pooling (LAP) and Global Average Pooling
(GAP), where C denotes the channel count, and H and
W denote the height and width, respectively. LAP and
GAP can be expressed as follows:

1
LAP(U) = NZU(i) )

i€Q

1 H W
GAP(LAP(V)) = WZZLAP(U)(}:, w)  (2)
h=1w=

w=1

where Q represents the local receptive field, with N
denoting the count of elements it encompasses. The

___________________________________________

1
1640x640%3 160x160x128x 80x80x256x
1

\— Conv — Conv
1

term LAP(U)(h, w) refers to the local pooling outcome
at the specific coordinate (h, w). By integrating both
local and global pooling operations, the model
effectively captures a comprehensive range of features,
from intricate local details to broad global patterns,
thereby establishing a robust basis for further feature
manipulation and analysis. Subsequently, the features
extracted through local and global pooling are
subjected to a transformation via a 1D-convolutional
layer. This step is instrumental in not only diminishing
the complexity of the feature set by reducing its
dimensionality but also in distilling the most salient
information from the data. Following this
transformation, the features derived from the 1D
convolution are rearranged through a reshaping
process. This reshaping is a pivotal step that ensures
the features are appropriately configured to meet the
demands of the subsequent stages in the model’s
architecture and operation.

The feature maps output from the local and global
attention branches are combined and added together to
compute the attention matrix. FFCA determines the
importance of each channel by calculating its attention
score,

Att = 0(ConvID(GAP(LAP(U))) + ConvID(LAP(U)))
3)
where Att represents the attention score for channels,
and o(-) is the activation function that confines the
scores within the range of 0 and 1. Ultimately, by

40x40x512x 20x20x512x% /%

A\l
1
|
I
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Fig. 4 Architecture of the proposed CFNet.
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integrating both local and global attention scores, the
original feature maps are weighted and merged. This
can be achieved in the following equation:

FFCA(U) = Att@ U (4)

FFCA adaptively highlights informative channels
while suppressing irrelevant ones, enabling more
efficient use of network capacity. By jointly leveraging
local and global cues, it balances fine-grained details

with global context, thus enhancing feature
discrimination.
3.2 Semantic augmentation feature pyramid

network

The feature fusion mechanism plays an essential role in
enhancing the performance of detectors. In the feature
maps extracted by the backbone network, low-level
features excel at capturing precise target location
information but are relatively lacking in semantic
context; on the other hand, high-level features are rich
in semantic information but are not as precise in
detailing localization. YOLOvVS8 effectively integrates
these multi-scale features through the Path Aggregation
Pyramid Network (PAFPN)[3,  thereby
strengthening the network’s feature representation and
descriptive capabilities. As shown in Fig. S5a, the
PAFPN structure employs a dual-path design that goes
from top-down (indicated by blue arrows) and bottom-
up (indicated by orange arrows) to achieve
bidirectional feature enhancement. The top-down path
utilizes upsampling to leverage the abundant semantic
information from higher levels, while the bottom-up
path extracts low-level features that contain detailed

Feature

fi
A

-

ﬂﬂ FFCA
—+ Upsample

—— Downsample

— Identity map
- -»Shortcut

(b) SAFPN

(a) PAFPN

Fig.5 Architecture of PAFPN and our proposed SAFPN.
The SAFPN integrates the proposed FFCA, a multi-
dimensional feature attention module, along with strategic
shortcuts into its architecture. This enhancement endows the
model with an augmented feature representation capability,
particularly excelling in the detection of small targets. f;
denotes the feature map, i=1, 2, 3, 4.

target information. The target contour information
contained in these low-level features is crucial for the
model’s accurate target localization. PAFPN achieves
an effective complement between high-level semantic
information and low-level detailed information in this
manner. However, during the fusion of features at
different scales, there may be a dilution of semantic
information, and the direct merging of features at
different scales may lead to a blending effect!!>],

To address the aforementioned challenges, a novel
feature fusion network named as the Semantic
Augmentation Feature Pyramid Network (SAFPN) is
introduced. As shown in Fig. 5b, four different scale
features extracted by backbone are input into FFCA.
The attention module computes spatial attention and
channel attention for the features separately, focusing
on specific regions within the feature maps for spatial
attention, while evaluating the importance of each
channel for channel attention. The feature maps, after
being weighted by attention, undergo a series of
convolutional operations and non-linear activations to
further refine and enhance the features. During the
construction of the feature pyramid, as the size of the
feature maps decreases, higher-level features, while
possessing stronger semantic information, often lose
spatial details. Through shortcut connections, the high-
resolution features from lower levels can be combined
with the semantic features from higher levels, reducing
the loss of information. Therefore, the output feature
maps of the SAFPN structure are fused with the
original input features through a shortcut structure
(indicated by the red dashed line in Fig. 5). This
process not only retains the rich semantic information
from higher levels but also incorporates the precise
detail information from lower levels, which is
particularly helpful for the detection of small objects.
The fusion of multi-level features provides a more
abundant and useful feature representation for
subsequent detection tasks.

3.3 Loss function

In the design of object detection models, classification
loss and bounding box regression loss are two core
components. The classification loss is primarily
responsible for measuring the discrepancy between the
predicted categories and the ground truth, thereby
adjusting network parameters to enhance the model’s
recognition capabilities. However, when dealing with
specific datasets captured by drones, there is a large
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number of easy-to-classify negative samples. These
samples may cause the model to focus excessively on
easily identifiable negative samples, neglecting the
learning of more challenging samples.

To counter the impact of a substantial quantity of
simple negative instances, the VariFocal Loss (VFL)[40]
is employed in this study to calculate the classification
loss. VFL is an advanced loss function utilized within
the field of object detection to enhance the model’s
capability in identifying dense objects. It is an
improvement based on focal loss and incorporates
Intersection over Union (IoU)-Aware Classification
Scores (IACS), a scoring mechanism that combines the
likelihood of object existence and localization
accuracy. VFL allows the model to perform more
precise sorting when dealing with a large number of
candidate detection boxes. VFL reduces the influence
of negative samples and enhances the importance of
positive samples by unequally weighting the positive
and negative samples, especially for those hard-to-
classify positive samples. This calculation method
helps the model to concentrate on learning more
critical instances. The computation of VFL for positive
and negative samples is represented by Egs. (5) and
(6), respectively,

VFL(p, @positive = —q(qlog(p) + (1 —g)log(1—p)) (5)

VFL(p, negative = —ap’log(1 - p) (6)
where p represents the classification probability
predicted by the model, ¢ denotes the IoU score of the
object, hyperparameter « is used to balance the weight
of negative instances, and the adjustment factor vy is
employed to regulate the shape of the loss function,
focusing on hard-to-classify positive samples.

In rotated object detection, the design of the
bounding box loss function is crucial for model
performance. However, when collecting data using
drones, low-quality training samples are
generated due to altitude issues. Traditional IoU loss
has some problems when dealing with low-quality
training samples, as these samples can negatively
impact the model’s learning because they typically
have low IoU scores, leading to overfitting to these
samples during training. This study addresses the class
imbalance issue by adopting an advanced bounding
box regression loss function, Wise-IoU (WIoU)“7l,
WIoU introduces the concept of outlier degree (od) to
evaluate the quality of anchor boxes. The od is

often

calculated based on the IoU quality metric. High-
quality anchor boxes have smaller od values. The core
of WIoU lies in the dynamic non-monotonic gradient
gain assignment strategy, where the gradient gain g can
be calculated based on the o (od) of the anchor box,

1

80)=———o (7
where ¢ is a hyperparameter that controls the rate of
change of the gradient gain, and 7 is a threshold used
to determine the dynamic classification standard for
anchor box quality. The WIoU loss function combines
the IoU loss with the gradient gain, and its formula is
as follows:

WloU = —p-g(0) - Loy ®)

where p is a hyperparameter used to adjust the impact
of the gradient gain, and L,y represents the loss value
based on IoU.

4 Oriented Object Detection Dataset

In this study, we utilize two public datasets:
DroneVehicle dataset(*8! and DOTA dataset!*°], each
comprising a training set, a validation set, and a test set
for training and validating the performance of oriented
object detection models. These datasets contain a
diverse range of object categories, including vehicles,
ships, planes, and storage tanks, with objects appearing
at various scales and orientations. Notably, they
include a large number of small object instances,
making them well-suited for evaluating the model’s
ability to detect small targets in complex aerial
imagery.

The DroneVehicle dataset is crafted to cater to the
unique challenges of object detection in aerial imagery,
focusing on 5 vehicles (car, truck, bus, van, and
freight_car). Comprising 17 990 images designated for
the training set and 8980 images for the test set, along
with a validation set of 1469 images, it presents a
comprehensive range of vehicle types across diverse
environmental settings. The dataset enables models to
refine their detection capabilities under various real-
world conditions, including fluctuating light exposure
and instances of occlusion. The training set facilitates
the learning and fine-tuning processes of the model, the
validation set serves to refine and regulate the learning
parameters, and the test set is crucial for assessing the
model’s ability to generalize from previously unseen
data.
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The DOTA dataset is a large-scale collection for
object detection in aerial imagery, created to train and
test models for detecting targets in high-resolution
aerial images. Spanning 15 square kilometers, this
dataset comprises more than 188 000 labeled instances
within 15 object categories, with their abbreviations
detailed in Table 1. It is segmented into three subsets: a
training subset with around 1411 images, a validation
subset containing 458 images, and a test subset with
approximately 938 images. The image resolutions vary
from 800 pixel x 800 pixel up to 4000 pixel x 4000
pixel. For convenience in data annotation reading and
subsequent processing, the dataset annotations are
offered in both textual and XML formats. Figure 6
displays a selection of example images from both
datasets.

S Experimental Result

5.1 Experimental environment

In this research, we have configured a high-
performance computing environment, centered around
two NVIDIA GeForce RTX 4090 GPUs that provide
substantial parallel processing power for deep learning
and computer vision tasks. The system is equipped

with the latest Intel Core i9 processor for efficiently
handling complex computations and coordinating GPU
operations. We have also installed high-speed memory
and Solid State Drives (SSDs) to accelerate data
read/write speeds. On the software front, we are using
an optimized 64-bit operating system, CUDA Toolkit
11.8, and the cuDNN library to enhance GPU
computations. Development and model training are
conducted using Python 3.9 and PyTorch 2.1, while
numerical computations are handled by NumPy and
SciPy. Data visualization is facilitated by Matplotlib
and Seaborn. This combination of hardware and
software provides a robust and efficient platform for
our research.

5.2 Feature extraction

The first experiment is conducted to stress the excellent
performance of the proposed backbone model by
making a scientific comparison with other related
backbones. Table 2 lists the detailed results of these
models based on the YOLOvV8 framework and PAFPN
neck part. In this section, the performance is evaluated
in terms of both efficiency and effectiveness. As for the
model’s efficiency, the proposed CFNet (n) is the
lightest model with the minimum network parameter

Table 1 Abbreviations for 15 categories in DOTA dataset.

Category Abbreviation Category Abbreviation Category Abbreviation
Bridge BR Small vehicle NY% Basketball court BC
Harbor HA Large vehicle LV Soccer-ball field SB

Ship SH Baseball diamond BD Roundabout RA
Plane PL Ground track field TF Swimming pool SP
Helicopter HC Tennis court TC Storage tank ST

" (b) DOTA

Fig. 6 Examples of two public datasets.
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Table 2 Performance comparison of rotational object detection on the DroneVehicle dataset using different backbone models
baset on the YOLOvS8 framework and PAFPN net part. Note: Metrics include parameter scale (Param.), floating point
operations (FLOPs), mean Average Precision (mAP and mAP;,), and inference speed per image. The bold style represents the

best performing data.

Backbone Param. FLOPs mAP (%) mAPsg (%) Inference (ms)
C2f-CSPDarkNet (n) 3.08 x 100 8.4x10° 53.3 74.6 0.32
C2f-CSPDarkNet (s) 1.141 % 107 2.94x% 1010 57.8 79.3 0.64

FasterNet (T2) 1.526 x 107 3.73 % 1010 55.9 71.5 0.80
CFNet (n) (proposed) 2.38 x10° 6.7 x10° 54.8 76.2 0.29
CFNet (s) (proposed) 8.61x10° 2.26x% 1010 58.6 80.5 0.58

CFNet (s)+ FFCA (proposed) 8.63 x 10° 2.34% 1010 59.5 81.2 0.60

scale (2.38 x 10°) and computations (6.7 x 10°). Owing
to its light character, CFNet (n) achieves fast inference
speed of 0.29 ms per image, which is 0.51 ms faster
than the FasterNet (T2). For the model’s effectiveness,
the presented another CFNet (s) with FFCA obtained
the highest mAP of 59.5% and mAPsy of 81.2%. That
may be because the advantages of FFCA, which
enhances feature selection and context awareness.
Compared with the initial C2f-CSPDarkNet (n), our
model is considerably improved by the mAP of 6.2%
and the mAPsy of 6.6%. This experiment reflects that
the proposed model achieves a 25% reduction in
parameter count and a 23% decrease in FLOPs
compared to the original model, and the designed
backbone has leading feature extraction ability for the
drone vehicle data.

Figure 7 shows the corresponding confusion matrix
and F1-confidence curves for 5 classes (car, truck, bus,
van, and feright_car). According to the comparison
results, the CFNet with FFCA can detect each class
with higher precision, especially for the van class.
Also, the under F1-confidence curves hve a smoother
trend than the upper curve, which indicates the
proposed model is more stable in the process of feature
extraction.

In addition, the visualized feature extraction results
of C2f-CSPDarkNet and CFNet+FFCA are compared
to show the advantages of FFCA. Figure 8 illustrates
the results of two models in both daytime and night
scenes. This experiment suggests the designed model
can capture more discriminative features from the input
images compared to another experimental model.

5.3 Feature fusion

During the feature fusion process, different neck
models are configured with different structural settings.
Table 3 presents the object detection performances of
the four experimental neck models based on the

uniform backbone. The main modified components are
listed from the second column to the fourth column,
and various evaluation results are shown in the last six
columns. Even though the SAFPN with FFCA has the
fewest parameters (8.55 x 10 and computations
(2.24 x 10!9), its detection effectiveness does not
achieve satisfactory expected results. However, the
SAFPN with both modifications performs the first
place among all the experimental models, which
obtains the precision of 0.831, the recall of 0.779, the
F1-score of 0.804, and the mAPs, of 0.823.

Figure 9 presents a comparative experimental
analysis of two models engaged in an object detection
task, with a particular focus on their architectural
differences in the neck structure. The first model
utilizes PAFPN as the neck component, designed to
achieve multi-scale feature fusion, while the second
model incorporates the proposed SAFPN structure.
Figure 9 illustrates the detection outcomes for each
model across including
captured under both nocturnal and diurnal lighting
conditions. A closer examination reveals that Fig. 9a
displays the detection results for F-YOLO with
PAFPN, while Fig. 9b corresponds to those of F-
YOLO with SAFPN. It is observable that within
identical testing environments, the SAFPN model
delivers more precise detection in certain instances.
For example, in the top set of images, the SAFPN
model more accurately identifies the vehicles within
the areas encircled by black frames, whereas the
PAFPN model exhibits several missed detections and
false positives. In the middle set, the SAFPN model
also demonstrates enhanced stability in detecting
grayscale images. The bottom set of images further
illustrates that the SAFPN model’s detection accuracy
for the vehicles marked with yellow circles surpasses
that of the PAFPN model.

various scenarios, those
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Fig.7 Comprehensive performance evaluation of YOLOvV8 with two feature extraction models on DroneVehicle dataset:

Analysis via confusion matrix and F1-confidence curve.

These comparisons underscore the
performance and robustness of the SAFPN structure in
handling multi-scale feature fusion, providing higher
detection accuracy across diverse settings. This
suggests that SAFPN possesses distinct advantages in
feature selection and preservation of spatial
information, contributing to the overall enhancement of
the model’s detection capabilities.

To demonstrate the strengths of F-YOLO in small
object detection, comparative tests are conducted on
another public dataset, DOTA. The experimental
outcomes are presented in Fig. 10, which displays a bar
chart comparing the performance of the proposed F-
YOLO with YOLOVSs, specifically focusing on the

superior

Average Precision for each category. In the chart, the
blue bars represent the performance of YOLOVSs,
while the orange bars denote the performance of
F-YOLO. The horizontal axis of the chart is labeled
with abbreviations for various categories. The vertical
axis indicates the average precision, ranging from 0 to
1. A visual analysis of the chart reveals that F-YOLO
exhibits higher average precision in the majority of
categories. For instance, in categories like PL, BD, TF,
and SV, F-YOLO demonstrates a significantly superior
detection accuracy over YOLOv8s. Moreover, in
certain categories where the two models show similar
F-YOLO maintains a slight edge.
shows a detection

performance,

F-YOLO higher accuracy,
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(a) Input

(b) YOLOV8s (C2f-CSPDarkNet)

(c) YOLOv8s (CFNet + FFCA)

Fig. 8 Comparing feature visualization results: YOLOvVS8s (C2f-CSPDarkNet) vs. proposed YOLOv8s (CFNet + FFCA).

Table 3 Object detection performance of models with different pyramid structures using the CFNet(s) backbone. o
represents the use of corresponding module, “x” represents the absence of the module. The bold style represents the best

performing data.

SAFPN Param. FLOPs . mAPs9

PAFPNI35] FFCA CBAM Shorteut (x 109) (x 1019) Precision Recall F1-score %)
x x x v v 0.810 0.756 0.782 81.2

x y x X 8.55 2.24 0.827 0.763 0.794 81.8

x x v x 8.58 2.26 0.823 0.76 0.79 81.4

x x % v 8.56 2.26 0.822 0.762 0.791 81.5

x x x v 8.59 2.29 0.831 0.779 0.804 82.3

suggesting that the proposed enhancements have
effectively improved the model’s detection capabilities
and robustness. The comparative data illustrate that F-
YOLO possesses greater adaptability and precision
when dealing with a variety of complex targets.

5.4 Model optimization and comparison

Figure 11 presents an in-depth comparative analysis of
the performance between YOLOV8s and the proposed
F-YOLO model under various loss functions. In Fig.
11a, F-YOLO demonstrates a consistently higher mAP
at an IoU threshold of 0.5, stabilizing towards the end
of training and outperforming YOLOvS8s. Figure 11b
refines this trend, illustrating F-YOLO’s superior
convergence and ultimate precision across the full
range of IoU from 0.50 to 0.95. Figures 11c and 11d
break down the training process losses, with Fig. 11c
focusing on the box loss. F-YOLO not only shows a
rapid decrease in loss but also maintains a lower level
in the later stages of training, indicating an advantage

in precise bounding box regression. Figure 11d, which
concentrates on the classification loss, also shows
F-YOLO achieving a quick reduction in loss and
sustaining a low loss value in the later training phase,
highlighting its high efficiency in object classification.
Figures 11e and 11f focus on performance during the
validation phase. Figure 1le indicates that F-YOLO
maintains a lower box loss during validation, reflecting
its  excellent generalization capabilities. = The
classification loss chart on Fig. 11f corroborates this,
demonstrating F-YOLO’s stability and accuracy
throughout the validation set. Synthesizing the data
from Fig. 11, F-YOLO shows an advantage over
YOLOVS8s on both mAP and loss performance metrics.
Figure 12 demonstrates the capability of the
F-YOLO model in detecting small targets within the
DOTA test set. The image displays eight satellite
photographs, each highlighting small targets with
distinct colored bounding boxes. Upon inspection, it is
clear that F-YOLO can accurately identify a variety of
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(a) F-YOLO (PAFPN) ‘ (b) F-YOLO (SAFPN)

Fig. 9 Object detection performance of two models in complex environments on DroneVehicle test set. Black circles indicate
some missed detections and misidentifications.
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Fig. 10 Precision comparison of models (YOLOVS8s and F-YOLO) on the DOTA test dataset.
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Fig. 11 Comparative analysis of mAP and loss for
YOLOVS8s and the proposed F-YOLO model utilizing diverse
loss functions.

small targets, such as airplanes, ships, and vehicles.
Each type of object is marked with a bounding box in a

unique color. A color legend at the bottom of the image

clearly matches each color to its respective target class.
These results underscore F-YOLO’s high precision in
detecting small targets against complex backdrops,
affirming its efficiency and stability in handling high-
resolution remote sensing imagery.

To demonstrate the accuracy and efficiency of our
proposed model, we conduct an impartial comparison
on the DOTA test set, including F-YOLO and several
contemporary state-of-the-art models across metrics of
inference speed and precision. This evaluation ensured
that all models are subjected to identical training
configurations, such as model input dimensions, the
number of training epochs, and initial learning rates.
The results are shown in Table 4, detailing the
precision for 15 distinct categories, mAPsy, and the
Frames processed Per Second (FPS) for inference. The
superior results for each category are distinguished in
boldface to facilitate easy recognition. The data reveal
that F-YOLO obtains the most top rankings, with a
pronounced advantage in inference speed. Specifically,
F-YOLO attains an ultimate mAPsy of 81.73% on the
DOTA test set, coupled with a striking processing
speed of 364.2 FPS.

6 Conclusion

In this research, we propose a novel small object
detection framework designed for efficient oriented
object detection in Unmanned Aerial Vehicle (UAV)
environments. Unlike conventional approaches, we
introduce CFNet, a backbone that redesigns feature
extraction by integrating a novel CFBlock, which

I BR I HA SH 0 pL M sv

Lv Bl sB M sT I tr Il sp B TC WM BC

© 5 (J

Fig. 12 Small object detection performance of F-YOLO model on DOTA testing set.
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Table 4 Performance evaluation of our method against leading techniques on the DOTA test set. The best performance is

highlighted in bold.

Method PL BD BR TF SV LV SH TC BC ST SB RA HA SP HC mAP (%) FPS

Mask OBBIS0! 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86 -
ReDetl51] 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25 -
Oriented RepPoints®2! 87.02 83.17 54.13 71.16 80.18 78.40 87.28 90.90 85.97 86.25 59.90 70.49 73.53 72.27 58.97 75.97 -
Oriented RCNNIS3I 89,46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87 15.0
ORCNN-X 34 90.58 88.2 62.72 80 80.31 83.11 88.06 91.87 87.48 87.74 72.97 74.43 80.77 80.81 75.12 81.61 16.1
YOLOV8s44 893 829 67.2 808 813 804 886 843 829 792 715 719 776 712 739 79.26 350.7
YOLOv11s/] 90.8 876 66 805 809 79.7 864 847 865 787 721 706 775 80.6 7T1.7 79.62 362.7
YOLOv12sl50] 90 854 668 793 826 81.6 8.1 8 842 805 707 71.6 769 80.8 743 79.85 358.9
F-YOLO 913 842 657 829 836 832 881 898 874 837 725 747 803 814 771 81.73 364.2

leverages the T-shaped convolution strategies of
PConv and PWConv from FasterNet, while
incorporating an optimized feature splitting and fusion
mechanism. This design enhances computational
efficiency and feature representation, making it
particularly suitable for small object detection. To
further refine feature selection, we develop the FFCA
module, which combines local and global feature
aggregation to improve multi-scale feature learning.
Additionally, we propose the SAFPN, which
reformulates feature fusion by integrating FFCA-based
attention  mechanisms and  strategic  shortcut
connections, ensuring better semantic retention and
mitigating feature dilution. These innovations
collectively optimize small object detection by
improving both accuracy and computational efficiency.
Experimental results validate that F-YOLO surpasses
traditional models in balancing precision and speed,
demonstrating state-of-the-art performance in UAV-
based object detection.

In the future, the focus should intensify on refining
the model’s feature extraction techniques, with the aim
of developing a learning approach that more closely
mirrors biological visual systems to achieve more
efficient recognition capabilities.
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