
Citation: Zhang, W.; Dang, L.M.;

Nguyen, L.Q.; Alam, N.; Bui, N.D.;

Park, H.Y.; Moon, H. Adapting the

Segment Anything Model for Plant

Recognition and Automated

Phenotypic Parameter Measurement.

Horticulturae 2024, 10, 398. https://

doi.org/10.3390/horticulturae10040398

Academic Editor: Jérôme Grimplet

Received: 7 March 2024

Revised: 5 April 2024

Accepted: 12 April 2024

Published: 13 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Adapting the Segment Anything Model for Plant Recognition
and Automated Phenotypic Parameter Measurement
Wenqi Zhang 1, L. Minh Dang 2, Le Quan Nguyen 1, Nur Alam 1, Ngoc Dung Bui 3 , Han Yong Park 4

and Hyeonjoon Moon 1,∗

1 Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea;
zwqzpq@sju.ac.kr (W.Z.); quannl71290@sju.ac.kr (L.Q.N.); nur0756@sju.ac.kr (N.A.)

2 Department of Information and Communication Engineering and Convergence Engineering for Intelligent
Drone, Sejong University, Seoul 05006, Republic of Korea; minhdl@sejong.ac.kr

3 Faculty of Information Technology, University of Transport and Communications, Hanoi 100000, Vietnam;
dnbui@utc.edu.vn

4 Department of Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea;
hypark@sejong.ac.kr

* Correspondence: hmoon@sejong.ac.kr

Abstract: Traditional phenotyping relies on experts visually examining plants for physical traits
like size, color, or disease presence. Measurements are taken manually using rulers, scales, or color
charts, with all data recorded by hand. This labor-intensive and time-consuming process poses a
significant obstacle to the efficient breeding of new cultivars. Recent innovations in computer vision
and machine learning offer potential solutions for accelerating the development of robust and highly
effective plant phenotyping. This study introduces an efficient plant recognition framework that
leverages the power of the Segment Anything Model (SAM) guided by Explainable Contrastive
Language—Image Pretraining (ECLIP). This approach can be applied to a variety of plant types,
eliminating the need for labor-intensive manual phenotyping. To enhance the accuracy of plant
phenotype measurements, a B-spline curve is incorporated during the plant component skeleton
extraction process. The effectiveness of our approach is demonstrated through experimental results,
which show that the proposed framework achieves a mean absolute error (MAE) of less than 0.05 for
the majority of test samples. Remarkably, this performance is achieved without the need for model
training or labeled data, highlighting the practicality and efficiency of the framework.

Keywords: plant recognition; zero-shot; measurement; segmentation; phenotypic parameters

1. Introduction

Plant phenotyping is an increasingly crucial aspect of agricultural research that help
to effectively address global challenges related to food security, climate change, and sus-
tainable agriculture [1]. It involves the detailed observation and precise measurement of
plant traits, including growth patterns, crop yield, and resistance to various biological and
environmental stresses like drought, pests, and diseases [2]. These traits are often complex
and can be affected by the interplay between genetic factors and environmental conditions.
Phenotyping data collection offers crucial understanding into how plants perform and
adapt under varying environmental conditions. This information is essential for plant
breeders, who use it to select plants with desirable characteristics for breeding programs [3].
The ultimate goal is to cultivate novel crop varieties that are resistant to diseases and
capable of growing in challenging weather conditions, and more productive. Therefore,
plant phenotyping plays an important role in food security and sustainable agriculture [3].

Previous studies have mainly relied on image-oriented measurement techniques to
analyze phenotypic traits [4]. This process typically requires experts to physically examine
the plants and record data on various traits like plant height, leaf area, and color [5]. The
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data are then used to determine the plant’s health, growth, and productivity [6]. Despite
being time-consuming and prone to error, this manual process is accessible and cost-
effective. It is therefore suitable for small-scale studies or field research where advanced
phenotyping platforms are unavailable [7].

Recent advancements in plant phenotyping have involved the integration of com-
puter vision (CV) and deep learning (DL), which holds great promise for accelerating
crop improvement and ensuring global food security [8,9]. Such methods use advanced
imaging techniques to capture images of plants, which are then analyzed using DL al-
gorithms [10,11]. These algorithms allow accurate prediction of various plant traits, en-
abling high-throughput and non-destructive phenotyping. This approach significantly
improves the speed and accuracy of data collection, allowing for the analysis of larger plant
populations and more complex traits [12]. Furthermore, it reduces the need for manual
intervention, thus minimizing potential errors and inconsistencies.

For example, Dang et al. presented a novel method for monitoring the growth of white
radish, a globally consumed vegetable, using high-resolution images and a mathematical
model [13]. The study utilized a mask region-based convolutional neural network (Mask-
RCNN) model to recognize various radish components and automatically measure their
biophysical properties, with an emphasis on minimizing the impact of light conditions.
The automated method achieved an average accuracy of 96.2% compared to the manual
method, indicating its effectiveness in quantifying phenotypic traits. In another study,
Zhou et al. proposed Maize-IAS, a DL-based maize phenotyping analysis framework [14].
The system processes RGB images of maize and offers a user-friendly interface and swift
computation of numerous phenotypic traits. It facilitates automated processes of logging,
measuring, and quantitatively analyzing maize growth attributes on extensive datasets,
revealing the potential of DL in the field of agriculture and plant science. Despite these
advancements, the supervised plant recognition approach still has limitations. Models
trained on a finite set of classes often exhibit restricted performance when encountering
new classes [15]. This limitation is due to the dependency on labeled data. Acquiring such
data can be challenging and resource-intensive, especially considering the wide variety
of plant species. The process involves not only finding a diverse range of specimens but
also the laborious task of accurately labeling each one, which requires considerable time
and expertise.

Zero-shot learning (ZSL) is a transformative machine learning (ML) paradigm that
enables models to recognize or categorize objects, even those not present in a training
dataset [16]. This is achieved by modeling a semantic representation of each class during
the training phase, often through attributes or descriptions of the classes. At the testing
phase, the model is capable of applying its learned knowledge to classify categories that
it was not exposed to during the training phase. The model can then generalize this
knowledge to unseen classes at test time. The Segment Anything Model (SAM) [17]
developed by Meta AI demonstrates a pioneering method in image segmentation. This
approach allows the model to identify and segment objects or features in an image that it has
not been explicitly trained to recognize. This flexibility enables the model to handle a wide
variety of segmentation tasks, even when dealing with novel or unexpected elements in
images. A recent development in ZSL, Contrastive Language–Image Pretraining (CLIP) [18],
offers promising potential for plant phenotyping. CLIP is a powerful pretrained model
trained on a massive dataset of text-image pairs. It learns to associate these modalities by
maximizing the similarity between correct text-image pairs and minimizing the similarity
of the incorrect pairs. This is achieved through a contrastive loss function. The zero-shot
learning capability of CLIP enables it to handle new tasks, eliminating the need for further
training. This approach is particularly beneficial for plant phenotyping, given the extensive
variety of plant species and the significant time associated with gathering labeled data for
each one.
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Therefore, an efficient and accurate system for segmenting various plant types is
crucial for plant phenotyping measurement. This study proposes a zero-shot pipeline
for DL-based plant segmentation and phenotypic trait measurement that overcomes the
challenges of limited labeled data and complex outdoor environments. Our contributions
include the following: (1) a preprocessing module to improve dataset image quality;
(2) a zero-shot segmentation approach based on SAM guided by Explainable Contrastive
Language–Image Pretraining (ECLIP) algorithms, eliminating the need for manual data
annotation; (3) the utilization of a B-spline curve as the basis for measuring plant length
and width, enhancing accuracy; and (4) a demonstration showing that our framework
achieves comparable segmentation performance and inference speed compared to the
supervised approach.

2. Plant Phenotypic Dataset

To validate the effectiveness of the zero-shot plant recognition approach against
supervised methods, this study introduces a sample phenotype database. This dataset
comprises images of three plant varieties: radish, cucumber, and pumpkin. These images
were taken using a Samsung Galaxy S22 ultra. This smartphone was chosen over a digital
camera for several reasons. Firstly, the phone comes equipped with a high spatial resolution
50-megapixel rear camera, an f/1.8 aperture, and precise autofocus capabilities, which are
more than sufficient for capturing high-resolution images (https://www.gsmarena.com/
samsung_galaxy_s22_5g-11253.php, accessed on 7 January 2024). Secondly, the use of a
smartphone allows greater flexibility and portability, as it is easier to handle and maneuver
in various environments compared to a digital camera. Lastly, the widespread availability
and usage of smartphones make them a more accessible tool for similar studies in the
future, potentially promoting larger-scale data collection and collaboration.

The data collection was conducted in a controlled greenhouse facility in Kyonggi-do,
Korea, from August 2022 to June 2023. A constant temperature of 22 ◦C ± 2 ◦C and a stable
humidity of 70% ± 5% were maintained in the greenhouse. Plants were drip-irrigated three
times daily with a nutrient solution enriched with potassium, phosphorus, nitrogen, and
other essential elements to minimize abiotic stresses like nutrient deficiencies and drought.
Daily inspections by experienced farmers/experts prevented disease and pest outbreaks,
resulting in less than 5% of plants affected throughout the experiment.

To maintain uniform lighting conditions and reduce variations between collected
images, the data collection was carried out within a ninety-minute window around solar
noon (11:00 a.m.–12:30 p.m.). Additionally, periods of partial cloud cover were actively
avoided during this time. For accurate color representation and cross-dataset calibration,
an X-Rite ColorChecker Classic (https://www.xrite.com/categories/calibration-profiling/
colorchecker-classic, accessed on 7 January 2024) was attached to the imaging platform,
allowing for consistent calibration and color representation throughout the dataset.

Figure 1 demonstrates the standardized procedure adopted for capturing images with
a smartphone. A tripod was employed to fix the smartphone camera at a uniform distance
and angle relative to the imaging platform. The tripod was placed at the bottom side of
the platform. A standing stick served as a constant reference for maintaining the correct
positioning throughout the image acquisition process. This setup ensured that each image
was taken with consistent alignment, thus reducing variations and increasing the reliability
of the subsequent processes.

Figure 2 shows the distribution of 1600 annotated plant images across training, val-
idation, and testing sets. We allocated 80% of the data, equivalent to 1280 images, for
training and validation. Out of these, 1024 images were used for training and the remaining
256 images for validation. The rest of the dataset, comprising 20% or 320 images, was
reserved for testing.

https://www.gsmarena.com/samsung_galaxy_s22_5g-11253.php
https://www.gsmarena.com/samsung_galaxy_s22_5g-11253.php
https://www.xrite.com/categories/calibration-profiling/colorchecker-classic
https://www.xrite.com/categories/calibration-profiling/colorchecker-classic
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Figure 1. Demonstration of the sample phenotypic trait data collection procedure.
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Figure 2. A bar chart showing the number of training, validation, and testing images for each type
of plant.

3. System Overview

The main phases of the zero-shot plant component recognition and phenotypic trait
measurement framework are outlined in Figure 3.

• Preprocessing: Preprocessing plays a crucial role in ensuring accurate plant trait
identification. In this study, two preprocessing methods, namely, color calibration and
image alignment, were carried out. Color calibration corrects inconsistencies in color
reproduction caused by camera settings, lighting variations, or sensor specifications.
On the other hand, image alignment addresses misalignment arising from camera
movement, wind-blown plants, or uneven terrain. After the preprocessing step, a
scale factor is calculated to facilitate the conversion of measurements from an image
space system into an object space system.

• Label-free segmentation: The zero-shot segmentation method bypasses the require-
ment for conventionally labeled datasets by utilizing the capabilities of pretrained
large models. ECLIP, a pretrained image-text model, processes textual descriptions
of plant parts and directly generates keypoint locations on the image. These points
serve as guiding signals for SAM, a powerful segmentation model, allowing it to
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identify and segment the plant components. Finally, a postprocessing step refines the
segmentation mask, eliminating wrongly segmented regions and ensuring a clean,
accurate representation of the plant for further analysis.

• Phenotypic trait measurement: By utilizing the segmented masks created by the
label-free segmentation module and the calculated scale factor (converting the image
space system into the object space system), we can accurately measure various plant
phenotypic traits, such as width and length, in real-world units.

Color calibration

Image alignment

(1) Preprocessing Point-prompt 

generation

(2) Label-free 

segmentation

Skeleton 

extraction

(3) Phenotypic trait 

measurement

Phenotypic trait 

measurement

Input images

Mask post-

processing

A photo of a 

{plant}

Zero-shot 

segmentation

Plant masks

Real-life 

measurement 

conversionReal-life scale 

factor 

calculation

Figure 3. Comprehensive overview of the proposed zero-shot framework for measuring phenotypic
traits using images captured with smartphones.

4. Methodology
4.1. Preprocessing

Given that the dataset was collected under real-world conditions, it could be affected
by various factors leading to inconsistencies in the images. To ensure the quality of the
dataset, we performed color calibration. After that, an additional geometric transformation
module was implemented. This module realigns all the captured images to a standardized
angle and distance to ensure accurate phenotypic trait measurement across different images.
Figure 4 explains the main processes in each preprocessing method, including (i) color
calibration and (ii) geometric transformation.

Reference image

Calibrated image

Color checker 

mask

Mask 

detection

Preprocessed 

image

Color 

calibration

Direct linear 

transformation

Perspective 

transformation

Input image

𝐻

(i) Color calibration

(ii) Geometric transformation

Figure 4. Outline of the preprocessing steps applied to images captured via smartphones.



Horticulturae 2024, 10, 398 6 of 17

4.1.1. Color Calibration

Color calibration is crucial for ensuring consistent and accurate colors in images
captured under varying lighting conditions. In this process, a reference chart with known
color values, is attached to an imaging platform during image capture [19]. The captured
images are then processed, and the colors are adjusted to match the color values of the
checker under the same lighting conditions. This method ensures that the images reflect
the actual colors of the subjects, regardless of changes in lighting or camera settings. This
is particularly important in studies like ours, where accurate color representation can
significantly affect the accuracy of extracting phenotypic traits [20].

Under ideal circumstances, there should be a direct linear relationship between the
corresponding RGB values of color patches in the target image (controlled conditions) and
source image (outdoor conditions). However, target images are prone to variable lighting
conditions, which can cause deviations from the presumed linear relationship. Figure 5
compares color check matrices from the source and reference images. These matrices show
the average red, green, and blue (R, G, and B) values for each color patch in both images. It
is evident that across all color channels, some patches in the source image deviate from the
expected linear trend line. This deviation highlights the crucial role of color calibration for
precise and reliable results.

blue green red 

200-

100-

0-

I I I I I I I I I 

0 100 200 0 100 200 0 100 200 

target target 

so
u

rc
e

Figure 5. Analysis of the differences in the R, G, and B color channels between the source and target
images. Note: the numbers indicate the color patch index for each color channel.

4.1.2. Image Alignment

Within the framework of the pinhole camera model, a homography matrix, denoted
as H, establishes a fundamental link between two images of the same scene captured
from distinct viewpoints, assuming that camera motion preserves scene geometry [21].
H takes the form of a 3 × 3 matrix with 8 degrees of freedom (DoF) and represents a
planar projective transformation capable of mapping points from a source image to their
corresponding counterparts in a target template (captured from a different viewpoint) [22].

In this study, we used a flat-surface imaging platform. To align the input images
with the perspective of the imaging platform template, we applied a technique called
homography transformation, also known as perspective transformation [23]. Homography
matrix estimation has long been a well-established task in CV.

Recently, Sarlin et al. [24] unveiled SuperGlue, a graph neural network trained on top
of SuperPoint keypoints and descriptors, facilitating robust feature matching. SuperGlue
excels at modeling relationships between various elements within a graph structure. The
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graph nodes represent individual keypoints detected in images, while the edges symbolize
potential matches between these keypoints. We chose SuperGlue for homography estima-
tion due to the availability of its pretrained model, which exhibits real-time performance
across diverse settings.

Figure 4(ii) illustrates the main steps in the image alignment module. This module
begins by pairing an input image containing a plant sample with an imaging platform
reference template. The pretrained SuperGlue model is utilized to accurately identify
matching point pairs across the two images. These matched pairs serve as the foundation
for calculating the homography matrix H, which encapsulates the relationship between
the two perspectives. Finally, the perspective transformation with H serving as a crucial
parameter is carried out to warp the input image.

4.2. Label-Free Segmentation

Recent advancements in zero-shot vision models, like ECLIP [18] and SAM [17], have
enabled the direct application of powerful pretrained DL models for plant recognition. This
development obviates the need for data annotation and model training for specific plants.
As illustrated in Figure 6, we employ these models to achieve precise segmentation of key
plant components (e.g., leaves, fruits) without time-consuming manual labeling. However,
the resulting plant masks can contain multiple overlapping masks and background noise.
To address this, a postprocessing phase is implemented to eliminate excessively small
or large masks, and highly overlapping ones are merged based on predefined threshold
parameters (Section 4.2.3).

A photo of a {plant}

radish … pumpkin

Text 

encoder

Image 

encoder

Ft

∅𝑡

∅𝑡
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𝑀 Intermediate 

similarity matrix

Image 
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Mask 
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(iii) Mask post-

processing

Input image

A
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M ITSM Predicted mask
norm 

resize 
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(ii) Zero-shot segmentation (SAM)

(i) Point prompt generation (ECLIP model)

Contrastive loss

points

Max-pooling

Fi

Figure 6. Full architecture of the zero-shot plant recognition framework based on SAM and ECLIP.

4.2.1. Point Prompt Generation

Contrastive Language–Image Pretraining (CLIP) [25] is an ML approach that learns
to understand and generate meaningful representations of images and text in a shared
embedding space. In CLIP, contrastive learning is employed to train the model. This
technique involves presenting the model with pairs of images and text, where the task
is to determine whether each pair represents a matching image–text combination or not.
All these pairs are drawn from the same dataset. This allows it to learn diverse visual
concepts described in natural language and apply this understanding to both images and
text. As a result, CLIP can perform various tasks like zero-shot classification and object
detection without needing task-specific training data. Despite improving the performance
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of numerous CV tasks, the visual explainability of these models, including in their raw
feature maps, has been rarely studied.

ECLIP, an enhanced version of the CLIP model by Li et al. [18], allows visual explana-
tions of its predictions through an Image–Text Similarity Map (ITSM). This map measures
the similarity between each image’s feature map and the embedding of its corresponding
text description. An ITSM can be employed to recognize image regions most relevant to the
text description. Li et al. also discovered a semantic shift issue, where CLIP prioritizes back-
ground regions over foregrounds, leading to visualization that contradicts human perception.
To address this limitation, the original attention pooling is replaced with max pooling guided
by free attention during training. This prioritizes informative foreground features, resulting
in visualizations that align better with human understanding.

Given a self-supervised image encoder fi and text encoder ft along with their corre-
sponding linear projections ϕi and ϕt (a function that learns a 2D parameter matrix), the
image features Fi ∈ RNi×C and text features Ft ∈ RNt×C from image input xi and text input
xt can be extracted as follows:

{Fc, Fi} = fi(xi), Ft = ft(xt) (1)

The feature Fc ∈ R1×C serves as the class token used for classification purposes. The
remaining image tokens, denoted as Fi ∈ RNi×C, are the raw feature map. In this context, Ni
and Nt represent the number of image tokens and text tokens, respectively, and C denotes
the dimensionality of the embeddings. Subsequently, the intermediate similarity matrix
M̂ ∈ RNi×Nt is computed as follows:

M̂ =

(
Fi · ϕi

∥Fi · ϕi∥2

)
·
(

Ft · ϕi
∥Ft · ϕi∥2

)⊤

The ITSM feature map M ∈ RH,W,Nt is then reconstructed by reshaping and resizing
using bicubic interpolation to match the input image’s dimensions (width W and height
H). Additionally, min-max normalization, denoted as Norm is applied to the H and
W dimensions to improve visual interpretability. The resulting ITSM can be expressed
as follows:

M = Norm(Resize(Reshape(M̂))) (2)

In the context of label-free plant segmentation, foreground points from ECLIP with
similarity scores exceeding 0.8 are used as point prompt input to guide SAM [18]. Con-
currently, an equal number of points with the lowest ranks are designated as background
points. This approach helps to avoid the poor performance experienced with SAM when
solely reliant on text prompts [26].

4.2.2. Zero-Shot Segmentation

SAM is a novel artificial intelligence (AI) model from Meta AI that introduces a novel
paradigm for image segmentation [18]. Unlike traditional models that need specific training
for each object, SAM can handle objects it has never seen before using only prompts. This
makes it adaptable for a range of segmentation tasks. The core lies in a joint embedding
space, where both text and image representations are learned through contrastive learning
techniques. This shared space facilitates seamless alignment between user prompts and
visual features, enabling SAM to interpret nuanced textual instructions and reflect them
accurately in the segmented output. SAM was trained on 11 million images and 1.1 billion
segmentation masks, making it the largest dataset for segmentation to date.

As depicted in Figure 6(ii), the architecture of SAM is made up of three main modules:
an image encoder, a prompt encoder, and a mask decoder. The image encoder is responsible
for processing the input image and extracting essential visual features that can be applied
universally across various object classes in zero-shot segmentation. It employs Vision
Transformers (ViTs) to divide the image into patches and extract features from each patch,
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capturing both specific object details and background information. The prompt encoder can
accommodate two types of prompts: sparse (points, boxes, and texts) and dense (masks).

Given the unknown location of the plant in the input image, we use the point prompt
proposed by the ECLIP model (Section 4.2.1) as input to the prompt encoder. This encoder then
transforms the point prompt into a latent representation. Finally, the output from the prompt
encoder is concatenated with the output from the image encoder. This combined output is
then fed into the mask decoder, which predicts a segmentation mask for the input image.

4.2.3. Mask Postprocessing

When using points as input prompts for segmentation, the resulting segmented masks
often contain many highly overlapping masks and noise blobs from the background. To
tackle this issue, we implemented a mask postprocessing algorithm. The algorithm removes
excessively large or small masks and merges masks that are duplicated or substantially
overlapped based on two thresholds: intersection over union (IoU) and overlap ratio. Masks
exceeding predefined thresholds for IoU or overlap ratio are merged into a single mask.

• Initialize an empty list selected_masks to store the masks that meet the area criteria.
• For each mask in the output masks from SAM:

– Find the largest contour in the mask and calculate its area.
– If the area of the largest contour is within the range of min_area and max_area,

add the mask to selected_masks.

• Initialize an empty list f inal_results to store the final selected masks.
• While selected_masks is not empty:

– Remove one mask from selected_masks and assign it to pivot_mask.
– For each remaining mask in selected_masks:

* Calculate the IoU and the overlap ratio between the pivot_mask and the
current mask.

* If the IoU is greater than a threshold iou_threshold or the overlap ratio is
greater than a threshold overlap_threshold, merge the current mask with the
pivot_mask.

– Add the pivot_mask to f inal_results.

Given the varying sizes of the three plant types in our dataset, only masks with the area
that fall within the range of 5% to 50% of the total image area were reserved. This decision
was based on the inherent characteristics of the plant sizes. When it came to merging
duplicate masks, an overlap threshold and an IoU threshold at 0.88 were established. This
value was chosen in line with the default threshold set for SAM [17].

4.3. Phenotypic Trait Measurement

The segmented plant masks extracted from the label-free segmentation module can be
used to precisely measure the phenotypic traits, such as width and length. The length is
defined as the longest segment of the central line through the organ, excluding the stem.
However, it is challenging to determine the width of a plant because there are countless
lines that can be drawn perpendicular to the plant’s central axis. As a result, the measured
width can vary depending on the specific line chosen for measurement.

Therefore, the width trait was measured at various points along the medial axis to
create a collection of width measurements represented as w = (w1, . . . , wn). If a single
width value is required, the median of the width profile can be computed as w̃ = med(w).
The measurement pipeline is illustrated in Figure 7.

To capture the general structure of the input mask, skeletonization was first applied
to obtain a coarse representation of its medial axis. However, the resulting coarse medial
axis may have multiple branches and may not intersect with the mask’s boundary due
to the complex shape of some plants. To address these issues and improve measurement
accuracy, a basic spline (B-spline) curve [27] is fitted to the coarse medial axis of the skeleton.
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A B-spline is a polynomial function defined piece-wise that is widely utilized across various
fields to represent curves and surfaces. A B-spline curve, denoted as P(t), is defined
as follows:

P(t) =
n

∑
i=0

Qi Ni,d(t) (3)

where Ni,d are the B-spline basis function of degree j and {Qi}n
i=0 are the control points. The

basis function of a B-spline are defined recursively and depend on the knot vector, which is a
non-decreasing sequence of real numbers. The knot vector is denoted as T = {t0, t1, . . . , tm},
where T is a non-decreasing sequence and each ti is within the interval [0, 1]. The control
points are defined as P0, . . . , Pn. The degree is given by p = m − n − 1. The “knots”
tp+1, . . . , tm−p−1 are referred to as internal knots.

Ni,0(t) =

{
1, if ti ≤ t ≤ ti+1andti ≤ ti ≤ ti+1

0, otherwise
(4)

For j = 1, 2, . . . , p, the basis function is defined by the recursion:

Ni,j =
t − ti

ti+j − ti
Ni,j−1(t) +

ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t) (5)

Mask Skeleton

(red curve)

B-spine 

(green curve)

Input image

Width collection 

(cyan lines)

Stem detection

(red dot)

Phenotypic 

trait 

measurement

Figure 7. Width and length measurement pipeline.

4.3.1. Implementation Descriptions

The framework for label-free plant recognition and phenotypic trait measurement was
built using PyTorch, a popular machine learning library for Python. This system was run on
a Linux system, equipped with two Nvidia Tesla V100 graphics processing units, each with
32 gigabytes of memory. We implemented all DL models and hyper-parameters, with the
exception of the zero-shot segmentation model, using open-source code from the original
papers. To ensure reliable experiments, a pretrained Vision Transformer (ViT) model on
ImageNet was utilized as the backbone for all segmentation models.
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4.3.2. Evaluation Metrics

In this research, the primary metric used to evaluate the performance of the segmen-
tation model is the IoU. This metric calculates the ratio of the number of pixels shared
between the target and prediction masks to the total number of pixels in both masks. The
formula for IoU is given below:

IoU =
TP

TP + FP + FN
(6)

The model’s accuracy in predicting phenotypic traits is evaluated using the Mean Abso-
lute Error (MAE). The MAE is a statistical measure that quantifies the average magnitude of
errors between paired predicted and actual values. A lower MAE indicates that the model’s
predictions are generally closer to the true values, which signifies better performance.

MAE =
1
n

n

∑
t=1

∣∣∣Ai − Âi

∣∣∣ (7)

where n denotes the total number of fitted points. Ai indicates the actual value, while Âi
represents the predicted value. The absolute value operator |.| guarantees that all errors are
expressed as positive values, making it easier to compare the discrepancies.

5. Experimental Results
5.1. Preprocessing

Figure 8 demonstrates the crucial role of preprocessing, including image alignment and
color calibration, on three different plant species: pumpkin, cucumber, and radish. Notably,
the image alignment module effectively realigns the input images to a precise bird’s-eye
view of the imaging platform, discarding irrelevant regions and simplifying downstream
processing tasks. Subsequently, the realigned images are fed into the color calibration,
which leverages a reference template to rectify inconsistencies in color reproduction.

Original 

image

Image 

alignment

Color 

calibration

Figure 8. Visualization of the output images after applying the preprocessing module.
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The resulting output images exhibit remarkably improved visual fidelity, matching
more closely with their real-life counterparts. The results underscore the importance
of preprocessing in enabling accurate and reliable segmentation and phenotypic trait
measurement outcomes.

5.2. Zero-Shot Plant Component Segmentation Performance Analysis

Table 1 presents the performance of the proposed zero-shot plant component recogni-
tion model for each of the three plant types in the dataset, which include radish, cucumber,
and pumpkin. The table reports the IoU, precision, and recall scores.

Table 1. Performance of the proposed zero-shot segmentation for the three plant types on the
testing set.

Metrics Pumpkin Radish Cucumber

mIoU 70.2 73.7 68.4
Precision 69.1 72.1 70.2
Recall 71.5 70.8 70.7

Despite the challenges of real-world data (e.g., varying lighting and occlusions), our
zero-shot plant component segmentation framework achieves good performance (average
IoU: 70.7%) on all three plant types. This suggests that our model can effectively segment
various plant components without any specific training data for those types. Radish
achieves the highest IoU (73.7%), followed by pumpkin (70.2%) and cucumber (68.4%).

This indicates that the model might struggle slightly with certain aspects of cucumber
segmentation compared to the other two plant types. One possible explanation for the
relatively low segmentation performance of cucumbers is that they are relatively small
compared to the background. Additionally, up to 5 cucumbers may be placed together in
the same image, which further complicates the segmentation process.

Figure 9 shows two key representations for each of the three plant types: (1) the
original image and ECLIP attention masks highlighting relevant plant parts and (2) the
final predicted masks after applying the postprocessing process. Across all plant varieties,
the ECLIP exhibits remarkable accuracy in detecting relevant plant components within the
images through the attention masks. Finally, guided by ECLIP, SAM accurately predicts
plant masks, closely adhering to the boundaries of plant components. The zero-shot
segmentation approach also works well in challenging cases, such as when a pumpkin is
partially obscured by a leaf or when numerous tiny cucumbers appear in an image. The
model effectively identifies all of them.
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Figure 9. Visualization of the zero-shot plant segmentation results for different samples.
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Figure 10 demonstrates the predicted masks from the proposed zero-shot model
for four novel plants in real-world settings without specific backgrounds and controlled
lighting conditions. The first column shows the original images, while the second col-
umn displays the attention masks generated by iCLIP, highlighting potentially significant
components. Additionally, the figure overlays the predicted plant masks on the original
images. Overall, iCLIP’s attention masks effectively pinpoint potentially important plant
component areas in the image, even for plants with various shapes and backgrounds.
Therefore, the attention masks accurately guide SAM to generate precise segmentation of
plant components.

Figure 10. Predictions of the zero-shot plant component segmentation model that was adapted to
four novel plants that are not present in the dataset, namely, tomato, chili pepper, strawberry, and
paprika. Note: The model’s output for each prediction includes attention maps, highlighting potential
important regions of interest, and the overlay segmentation results.

Table 2 presents a comparative analysis of the proposed zero-shot segmentation ap-
proach with two supervised methods, namely, Segmenting Objects by Locations (SOLOv2) [28]
and Mask-RCNN [13], on the testing dataset.

Table 2. Performance of the zero-shot approach compared to two supervised models on the test-
ing dataset.

Model mIoU Precision Recall

SOLOv2 [28] 73.9 74.6 74.2
Mask-RCNN [13] 75.3 74.8 75.1
Ours (ECLIP+SAM) 70.7 70.4 71

In the evaluation of various models, Mask-RCNN emerged as the top performer,
achieving the highest mIoU (75.3%), precision (74.8%), and recall (75.1%). DeepLabv3
demonstrated mIoU scores comparable to SOLOv2 at 73.9%. While the proposed zero-shot
approach obtained a slightly lower mIoU (70.7%) compared to the two supervised models,
its implementation does not require a time-consuming training process. Moreover, this
zero-shot method can be easily used with new types of plants. This is a major benefit in
situations where there is little or no annotated training data available.
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5.3. Phenotypic Trait Measurement

Figure 11 visualizes the skeletonization process within the context of phenotypic trait
measurement. After obtaining the output masks from the zero-shot plant recognition
model, the subsequent steps involve skeletonization and B-spline curve enhancement.

Input image Mask Skeletonization
B-spline 

enhancement 

Figure 11. Explanation of the phenotypic trait measurement process. It involves output masks from
the zero-shot model, skeletonization, and B-spline enhancement. Note: The red dots represent the
end points of the B-spline medial axis, while the yellow dots indicate the transition point between the
stem and body parts.

The skeletonization algorithm simplifies and emphasizes the geometrical and topolog-
ical properties of the plant shape, such as length, direction, and branching. This process
is crucial for estimating phenotypic traits accurately. However, as we can observe, the
skeletons extracted from the skeletonization process often fail to fully capture the object
boundaries. This is particularly the case for the pumpkin and cucumber samples, as
highlighted by the arrows. Furthermore, these skeletons exhibit noise, which leads to
multi-branched and non-smooth structures. This is evident in the radish sample.

By integrating the B-spline curve into the skeletonization process, we can overcome the
limitations associated with using the skeletonization process alone. The resulting skeletons
offer a precise and effective solution. The enhancement of the B-spline curve further refines
the representation of the plant component structure. Figure 11 also highlights the precision
of our suggested approach in identifying the stem region of the three plants.
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To assess the accuracy of our phenotypic trait measurements, we randomly selected
300 samples from the testing dataset. For each of these samples, we manually recorded the
ground truth values of width and length traits using the ruler included in each image. After
that, we converted the predicted length and width trait measurements for each test image
from the 2D image space system into the real-world object space system using the scale
factor. The scale factor 0.1048 was calculated based on the ruler on the standard reference
image (Figure 3).

Figure 12 provides an analysis of measurement performance by plotting the error
distributions against the predicted width and length. In most cases, the MAE stays within
0.05. However, some outliers exhibit MAE errors exceeding 0.1 for both length and width,
which is alarmingly high. Upon investigating the failure cases, we found that the most
common source of error lies in accurately detecting the stem part. Accurate identification
poses a significant challenge in the case of immature samples, where the width of the stem
deceptively mirrors that of the body part.

Figure 12. Distribution of measurement error on the test set. The top histogram shows the length (blue)
and width (orange) value distributions of the samples. The right histogram shows the distribution of
the error percentages. The scatter plot shows the relationship between the size of the samples and the
error percentage.

6. Conclusions and Future Works

This research presents a simple and efficient framework for zero-shot plant identifica-
tion and the automated measurement of key plant phenotypic traits, particularly length
and width. Our framework utilizes recent advancements in DL approaches, specifically
pretrained segmentation models capable of performing precise segmentation without the
requirement for an annotated dataset or model training, setting it apart from traditional
approaches. Our research presents a significant advancement in plant phenotyping method-
ologies, offering a scalable and adaptable solution for automated plant trait measurement.
The insights gained from this study can be applied to other plant phenotyping method-
ologies, contributing to the broader goal of accelerating the development of resilient and
productive crops.
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Firstly, we propose an image alignment correction module that aligns the input images
to ensure a consistent orientation to a specific template (e.g., a correct image alignment
template). This cost-effective approach avoids the need for a complex imaging platform and
can be easily adapted to various template types. After that, a zero-shot plant recognition
model based on SAM and ECLIP is introduced. It performs well for objects that have a
consistent color and texture and are clearly distinguishable from the background, such as
plants with uniform coloration and well-defined boundaries compared to the surrounding
background. In addition, a mask postprocessing step is introduced to refine the predicted
masks by the zero-shot segmentation approach by removing noise and duplicate masks.

Finally, a B-spline curve is implemented during the skeletonization process to improve
robustness against noise from segmentation outcomes and enhance the reliability of length
measurements, which was proved to achieve more precise plant skeletons compared to
the direct use of morphological skeletons. The experimental results from 300 samples
showed that the proposed system achieved a precise measurement, as evidenced by an
MAE of around 0.06 for most samples. Moreover, an MAE of less than 0.05% error rate
was observed in 85.75% of the samples, underscoring the robustness of our methodology.
This valuable insight can be applied to other plant phenotyping methodologies that rely on
morphological skeletons for medial axis extraction.

While this study focused on measuring the phenotypic traits of three specific plants
(pumpkin, radish, and cucumber), the framework can be easily adapted to other species
with appropriate parameter adjustments. However, due to its current complexity, real-time
measurement remains unsupported. In the future, our focus will be on enhancing the
framework’s robustness and reducing its computational complexity to facilitate real-time
processing. Additionally, there are challenges in accurately detecting the stems in some
samples. The high similarity in width between the stem and the plant body introduces a
challenging case that requires further investigation. It is conceivable that a supervised ML
model can be implemented to comprehensively tackle this problem.
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