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ABSTRACT 

Sanitary sewer systems are major infrastructures in every modern city, which are 

essential in protecting water pollution and preventing urban waterlogging. Since 

the conditions of sewer systems continuously deteriorate over time due to various 

defects and extrinsic factors, early intervention on the defects is necessary to 

prolong the service life of the pipelines. However, prior works for defect 

inspection are limited by accuracy, efficiency, and economic cost. In addition, the 

current loss functions in object detection approaches are unable to handle the 

imbalanced data well. To address the above drawbacks, this paper proposes an 

automatic defect detection framework that accurately identifies and localizes 

eight types of defects in closed-circuit television (CCTV) videos based on a deep 

neural network. First, an effective attention module is introduced and used in the 

backbone of the detector for better feature extraction. Then, a novel feature fusion 

mechanism is presented in the neck to alleviate the problem of feature dilution. 

After that, an efficient loss function that can reasonably adjust the weight of 

training samples is proposed to tackle the imbalanced data problem (IDP). Also, a 

publicly available dataset is provided for defect detection tasks. The proposed 

detection framework is robust against the imbalanced data and achieves a state-

of-the-art mAP of 73.4%, which is potentially applied in realistic sewer defect 

inspections.

 

1 INTRODUCTION 

Underground sewer systems that are utilized to congregate 

and convey household or industrial wastewater to the 

treatment facilities have become increasingly critical 

components in the public infrastructures of modern cities. A 

well-functional sewer system is capable of ensuring the 

cleanliness of the human living environment and reducing the 

spread of epidemics. On the other hand, it plays an important 

role in drainage and avoiding urban waterlogging in the flood 

season. Nevertheless, the sewer pipelines with a long service 

history are inevitably affected by various defects, which 

seriously restrict their lifespan. Therefore, early detection and 

intervention of defective regions can effectively prevent the 

further deterioration of sewer conditions and then save 

considerable economic costs in the long term. According to 

the estimation by Bluefield Research in 2020, nationwide 

expenditures on sewer repair and replacement cost more than 

$3 billion, addressing over 4,600 miles of pipeline ('2021 

Report Card for America’s Infrastructure - Wastewater'  

2021). With the wide popularization of closed-circuit 

television (CCTV) in the sewer system, automated defect 

detection via CCTV cameras has attracted the attention of 

many researchers from industry and academia in recent years. 

Compared to the methods with other data acquisition 

techniques (Khan and Patil 2018; Lepot, Stanić, and Clemens 

2017), CCTV inspection approaches are safe, portable, and 

economical (Mostafa and Hegazy 2021; Czimmermann et al. 

2020). 

     Although the defect detection methods based on computer 

vision (CV) have gained approved performance (Li et al. 

2022; Zhou, Zhang, and Gong 2022), there are still several 

issues to be resolved. For instance, an excellent CV-based 
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approach depends on a feature extractor that can effectively 

extract deep and semantically strong features. But it is 

challenging for the existing extractors to precisely obtain 

complete target areas, especially when processing the images 

with complex backgrounds. To make the model pay more 

attention to the objective region, a great effort has been put 

into acquiring more valuable features by deepening and 

broadening feature extractors in previous studies (Xie et al. 

2019; Dang et al. 2021; Wang et al. 2020). However, this 

strategy which produces more computational burdens, may 

bring the gradient instability problem, and degrade the 

model’s shallow learning ability (Lu et al. 2017). Recently, 

different attention modules were designed to focus on object 

areas and extract sufficient features. Nevertheless, some 

attentions cannot dynamically calculate the weight for each 

branch and selectively enhance features in multi-branch 

models. In addition, some attentions fail to obtain accurate 

location information from feature maps. As a result, an 

effective attention is proposed in this study to address the 

above issues simultaneously.   

     In addition, the images collected in underground sewer 

conditions contain many small objects. During the feature 

extraction process, the feature information of the tiny objects 

is easy to be mixed with background information when the 

feature map passes successive convolution and pooling 

operations (Li, Xie, et al. 2021). The feature pyramid 

networks (FPN) (Liu et al. 2018; Wu et al. 2020), which 

directly fuse multi-scales features, are added into object 

detection models to retain these features. But their fusion 

methods dilute the semantic information of the features (Luo 

et al. 2021). The semantic information refers to the 

discriminative information of the target, such as texture, edge 

contour and color. After the input image passes through 

several convolution operations, the position and edge contour 

information of small objects becomes weaker due to the 

larger receptive field of the feature map mapped to the 

original image. Based on prior work, an efficient feature 

fusion mechanism was proposed to mitigate the problem of 

feature information decay. 

     The imbalanced data problem (IDP) mainly covers the 

uneven distribution of negative (background) and positive 

(foreground) samples as well as the imbalance between hard 

and easy samples. Hard / easy samples mean the samples that 

are hard or easy to be learned and detected by the network. 

The difficulty of learning a sample is associated with many 

factors, such as the imbalanced distribution between classes, 

backgrounds, and sample sizes. The IDP causes the detector 

to be overwhelmed by dominant samples and influences the 

model’s convergence speed and accuracy (Li, Li, et al. 2021). 

As for this issue, several loss functions such as focal loss (Lin 

et al. 2017), generalized focal loss (Li et al. 2020), automated 

focal loss (Weber, Fürst, and Zöllner 2020), and varifocal 

loss (Zhang et al. 2021) were carried out to adjust loss values 

for different samples by hyperparameters. Although the latest 

varifocal loss can deal with the IDP effectively, it still has the 

issues of slow convergence speed and overfitting. Because 

varifocal loss cannot assign proper loss values to different 

samples. On this basis, the loss equation for the defect 

detection model is further optimized in this paper. 

     In view of above limitations, the main contributions of this 

work are summarized as follows. 

• Design an effective attention module to improve the 

feature extraction ability. 

• Introduce an innovative feature fusion mechanism to 

alleviate the problem of feature dilution in the multi-

scales feature fusion. 

• Propose an efficient loss function to solve the 

imbalance of training samples. 

• Provide a manually validated and annotated dataset for 

defect detection tasks. 

     The rest of this article is arranged as follows. Section 2 

provides a review of the literature associated with defect 

detection. The overall flowchart of the proposed system and 

the corresponding methodology is explained in Section 3. 

Section 4 describes the data acquisition and annotation 

processes. After that, several experiments are conducted in 

Section 5 to demonstrate the contributions of this study. In 

the end, a conclusion was drawn by indicating current 

weaknesses and future research directions in Section 6. 

2 RELATED WORK 

Currently, research involving vision-based defect detection 

has conveniently been assisting sewer inspectors in 

evaluating conditions (Zhang and Lin 2022). Many 

researchers have utilized deep learning (DL) algorithms to 

facilitate defect inspection due to their automatic feature 

extraction and subsampling. For example, a faster region-

based convolutional neural network (faster R-CNN) was 

applied to identify the specific type and gain the exact 

location, and it achieved a mean Average Precision (mAP) of 

83% for 4 classes by adjusting different impact factors 

(Cheng and Wang 2018). Chen et al. put forward a cost-

sensitive defect detection network that can minimize the 

misclassification costs during the learning process (Chen et 

al. 2019). More recently, Yin et al. employed YOLOv3 for 

real-time detection and obtained a mAP of 85.37% for six 

classes of defects. Also, the detector developed in (Yin et al. 

2020) was used as an automated labeling tool in a sewer 

video interpretation system (Yin et al. 2021). A detector-

focused architecture is presented to learn sewer pipe defects 

and properties, which showed excellent performance on 

multiple tasks (Haurum et al. 2022). Wang et al. devote 

efforts to evaluate defect severity by detecting and 

segmenting defects in CCTV images. Faster R-CNN was 

superior to the other models in the detection agent, but it was 

confused to the defects with similar shapes or colors (Wang, 

Luo, and Cheng 2021). Since it is easy for the above methods 

to ignore information of the small defects, a strengthened 

region proposal network (SPRN) for defect localization and 
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fine-grained recognition are introduced to focus on the small 

objects by fusing local and global features (Li, Xie, et al. 

2021). Even though their proposed model was capable of 

obtaining more contextual information, this feature fusion 

scheme led to a weak detection performance due to the 

dilution of semantic information. 

    Considering that the existing detectors cannot extract 

adequate features at precise target areas, some researchers 

deepen and broaden network structures to improve the 

efficiency of feature extraction (Xie et al. 2019; Dang et al. 

2021; Wang et al. 2020). In the latest works, the idea that 

combines attention modules with detectors shows superior 

performance due to the strengths of fewer computing 

resources and better overall learning capacity. For instance, 

Ban et al. integrated an attention module in a detector to pay 

attention to the crucial pixels (Ban, Tian, and Zhao 2020). 

Similarly, Zhu et al. employed a cascade attention module to 

refine objective regions, and their developed network showed 

excellent learning ability on salient areas (Zhu et al. 2018). 

Inspired by those successful approaches, this research attempt 

to design a customized attention module for the proposed 

defect detection framework. 

     Despite rapid advances in DL-based defect detection, the 

overall detection accuracy has not been considerably 

improved because of the imbalanced data. As for the IDP, a 

direct and effective solution is to propose a robust loss 

function that reasonably adjusts the training weight of 

different samples. Lin et al. proposed focal loss (FL) to 

address both foreground-background imbalance and hard-

easy imbalance (Lin et al. 2017). According to the evaluation 

results, a one-stage detector (RetinaNet) with FL 

outperformed two-stage detectors on detection accuracy and 

speed. Afterward, several improved versions of FL were 

proposed. For example, the generalized focal loss (GFL) was 

presented to optimize the representations of the original FL 

(Li et al. 2020). Besides, an automated focal loss (AFL) was 

used to resolve the IDP in object detection tasks by 

controlling the model’s focuses automatically (Weber, Fürst, 

and Zöllner 2020). Also, the latest Varifocal loss (VFL) 

added the intersection over union (IoU) into the calculation of 

loss values to enhance learning signals of positive samples 

and remain the original calculation equation of FL for 

negative samples (Zhang et al. 2021). Since the VFL does not 

involve the probabilities of predicted positive samples, the 

probabilities and IoU are integrated to redefine a new loss 

equation in this paper. 

3 METHODOLOGY 

The overall flowchart of the introduced defect detection 

framework is presented in Figure 1 (a). Firstly, the CCTV 

crawler is utilized to collect pipe videos in the groundwater 

pipeline, and then all frames containing defects are extracted 

from the acquired videos. The extracted images and the 

annotation files labelled by LabelMe are divided into training 

and testing sets. The training images are fed into the proposed 

Pipe-VarifocalNet (Pipe-VFNet), and the test images are used 

to evaluate the model’s performance. As illustrated in Figure 

1 (b), Pipe-VFNet is proposed by improving the VFNet 

network, which consists of the backbone, neck, and head 

sections. In this paper, an attention module (CSA) is designed 

to create a new backbone network (E-ResNeSt) for better 

feature extraction (Section 3.1). And then, a novel feature 

fusion mechanism is introduced to be used for the neck 

(Section 3.2). In addition, an efficient loss function (EFL) is 

presented in the head (Section 3.3) to handle the IDP. 

 

FIGURE 1. (a) Overall flowchart of the presented defect detection 

framework. (b) The proposed Pipe-VFNet architecture. 

3.1 Feature extraction module 

The feature extraction module is the most critical part of the 

deep neural network, which directly affects the model's 

accuracy and training speed. Recently, the residual networks 

have shown strong stability in different tasks such as 

classification (Lu et al. 2020), detection (Cai and 

Vasconcelos 2019), and segmentation (Wang et al. 2021). In 

this study, the performances of four excellent residual 

modules (ResNet, ResNeXt, Res2Net, and ResNeSt) are 

compared, and the most suitable module with the best 

performance is then selected as the feature extractor 

(backbone section) to construct the defect detection network. 

Also, the depths of these models are uniformly set to 101 for 

an impartial comparison based on the same dataset. The 

following section gives a concise and clear introduction to 

these four residual modules and a proposed residual module. 

3.1.1 ResNet 

ResNet is the first residual network proposed in (He et al. 

2016) and outperformed other networks in the ILSVRC2015 

competition. The architecture of ResNet is composed of 

several consecutive residual blocks. As shown in Figure 2 (a), 

each residual block contains two 1x1 convolution layers, a 

3x3 convolution layer, and a shortcut structure. Residual 

blocks can protect the integrity of information during the 

transmission process to avoid gradient disappearance or 

explosion, and it is capable of reducing the over-fitting 

probability and accelerating the model’s convergence in the 

training process. Moreover, the design of shortcut structure 

makes the network only focus on the differences between 

input and output in the whole learning process, which reduces 

the learning difficulty of the model. Based on the above 

advantages, ResNet is increasingly used in recent object 
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detection research (Cai and Vasconcelos 2019; Cao, 

Cholakkal, et al. 2020; Lin et al. 2017). 

3.1.2 ResNeXt and Res2Net 

ResNeXt (Xie et al. 2017) and Res2Net (Gao et al. 2019) are 

proposed to optimize ResNet by adopting the idea of stacking 

layers and the structure of grouped convolutions. As shown in 

Figure 2 (b), ResNeXt uses the split-transform-merge strategy 

to extract and fuse features. Feature maps are divided into 32 

groups in each residual structure, and then, the features 

generated from each group are merged and sent to a 1x1 

convolution layer. This method can improve the model’s 

learning ability while ensuring that the complexity of the 

model is basically unchanged. 

     Unlike ResNeXt, Res2Net improves the model’s receptive 

field by adding small residual units in the basic residual 

block. Figure 2 (c) shows that the features extracted from the 

first 1x1 convolution layer are divided into four parts (X1, 

X2, X3, and X4) in the residual block of Res2Net. Except for 

the X1 part, the feature maps in other parts pass a 3x3 

convolution operation. Prior to the convolution operation, X3 

and X4 combine with Y2 and Y3, respectively. After that, 

four outputs (Y1, Y2, Y3, and Y4) containing different 

receptive fields are fused and sent to the second 1x1 

convolution layer. In this way, the model learns the feature 

information comprehensively by fusing the feature maps with 

multiple receptive fields. 

 

FIGURE 2. The structures of three different feature extraction modules. 

(a) ResNet module, (b) ResNeXt module, (c) Res2Net module. 

3.1.3 ResNeSt and Enhanced ResNeSt (E-ResNeSt) 

Based on the original structure of ResNet, the ResNeSt 

(Zhang, Wu, et al. 2020) network uses a multi-branch 

structure to enhance the model’s diversified expression 

ability and adopt the attention module to concentrate on the 

objective region. As shown in Figure 3 (a), two 

hyperparameters (cardinality (K) and radius (R)) are used in 

ResNeSt to embody the multi-branch idea. ResNeSt first 

divides all the input features into K groups, and then each 

group of features is divided into R sub-groups. In this study, 

K and R are set to 16 and 4, respectively. After that, feature 

maps of each sub-group are successively input to a 1x1 

convolution layer and a 3x3 convolution layer. The output 

features of all sub-groups (R sub-groups) in each group are 

fused together and sent to the split attention module. In the 

end, the output features of all groups (K groups) are also 

fused and input into the 1x1 convolution layer. The split 

attention module can redistribute the weight between feature 

channels by obtaining relevant features in channels. As 

illustrated in Figure 3 (b), the output features of all sub-

groups are fused and input to the global average pooling layer 

for squeezing information in the channel direction. Equation 

(1) represents the calculation process in the global average 

pooling layer, it calculates the output features 𝐹𝑛 of the 𝑛𝑡ℎ 

channel after squeezing the input features 𝑋. 𝑛 is the channel 

index, and the range of the 𝑛 depends on the channel number 

of the input feature tensor. 𝐻 and 𝑊 are the height and width 

of the input feature. x and y represent coordinate positions. 

After a convolution layer, a batch normalization (BN) layer, 

and a ReLU activation function, feature maps are divided into 

R groups and input into a 1x1 convolution layer. The softmax 

function is used to compute the attention weight coefficient 

of each sub-group. The input features from different sub-

groups are multiplied by the corresponding attention weight 

coefficients and then merged to generate new feature maps. 

𝐹𝑛 =
1

𝐻×𝑊
∑ ∑ 𝑋𝑛(𝑥, 𝑦)𝑊

𝑦=1
𝐻
𝑥=1                                              (1) 

 

FIGURE 3. (a) The architecture of ResNeSt module, (b) the structure of 

the split attention, and (c) the structure of the proposed coordinate split 

attention. 

     The design of the split attention module is similar to that 

of the SE attention module (Hu, Shen, and Sun 2018), which 

uses two-dimensional global pooling to calculate channel 

attention. Although this method reduces the computational 

burden of the network, it only concentrates on the channel 

information and loses the location details in the calculation 

process (Hou, Zhou, and Feng 2021). To address the 

problem, an improved attention module called coordinate 

split attention (CSA) is introduced in the proposed Enhanced 

ResNeSt module (E-ResNeSt) to replace the split attention 

module in ResNeSt, as shown in Figure 3 (c). The novelty of 

the presented CSA module is to dynamically acquire the 

adequate objective location information from multiple inputs 

by integrating a grouped sigmoid function with the one-

dimensional global pooling operation proposed in (Hou, 

Zhou, and Feng 2021). Instead of using single two-

dimensional global pooling to extract all features, two 

parallel one-dimensional global pooling operations 

respectively generate the features containing spatial data in 

vertical and horizontal directions. The two global pooling 

kernels are (𝐻,1) and (1, 𝑊). Equation (2) and (3) represent 

the output features 𝐹𝑛
ℎ  and 𝐹𝑛

𝑤  of the 𝑛𝑡ℎ  channel after the 

squeeze of the input features 𝑋 with height 𝐻 and width 𝑊, 

respectively. This squeeze approach enables the attention 

module to capture the location information of the region of 

interest accurately. After that, the feature tensors from two 

directions are concated and fed into the block that includes 

the convolution, BN, and ReLU operations. Then, the 
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concatenated feature tensor containing the spatial information 

is sent to the following convolutional layers for feature 

selection. The selected features are represented in attention 

map groups corresponding to input tensors. Finally, the 

grouped sigmoid function is used to calculate the attention 

weight coefficients in the horizontal and vertical directions by 

the generated attention maps for each input. The process of 

attention module is shown in Equation (4). After fusing all 

groups of feature vectors, a channel shuffle algorithm is 

added into the residual block to facilitate the information 

flow between groups. Channel shuffle further improves the 

model’s feature representation and generalization abilities.      

𝐹𝑛
ℎ =

1

𝑊
∑ 𝑋𝑛(ℎ, 𝑖)𝑊

𝑖=1                                                             (2) 

𝐹𝑛
𝑤 =

1

𝐻
∑ 𝑋𝑛(𝑗, 𝑤)𝐻

𝑖=1                                                            (3) 

3.2 Feature fusion mechanism 

An efficient feature fusion mechanism is of great significance 

for the detectors to strengthen learning ability. In the feature 

maps extracted from the backbone network, the low-level 

features contain accurate target location and less semantic 

feature information. On the contrary, the high-level features 

contain rich semantic features and rough target location 

information. Path Aggregation Network (PAFPN) (Liu et al. 

2018) is capable of enhancing the feature expression ability 

of the backbone section by extracting and fusing these feature 

maps with different scales. As shown in Figure 4 (a), the 

PAFPN structure includes a top-down path and a bottom-up 

path for feature reinforcement. The top-down path shown by 

blue arrows performs up sampling on the feature maps to 

make full use of the semantic information in the high-level 

features. The bottom-up path represented by orange arrows 

aims to acquire the network’s low-level feature information. 

Because the shallow features contain lots of object contour 

information, this information is more conducive to the model 

to locate the object position. The PAFPN realizes the 

information complementarity between high-level features and 

low-level features, but some semantic features are diluted in 

the process of feature fusion at different scale levels. 

Moreover, the direct fusion of semantic features with multi-

scales may lead to aliasing effects (Luo et al. 2021). 

     To alleviate the above problems, a feature pyramid 

structure (Att-PAFPN) that adopts a new feature fusion 

mechanism is proposed by combining it with an attention 

module. As shown in Figure 4 (b), four different scale 

features {C2, C3, C4, C5} extracted by backbone are input into 

Att-PAFPN. The features {P2, P3, P4, P5} are generated after 

1x1 convolution operation and the top-down path of Att-

PAFPN. All features are fused together and input into the 

proposed CSA module, which can fully utilize rich semantic 

information and alleviate aliasing effects. Then the CSA 

calculates the attention weight coefficient from the fused 

feature map (M). After that, each output feature is corrected 

by multiplying the attention weight coefficient. Equation (4) 

shows the calculation of the attention weight coefficient in 

the CSA module, and Equation (5) represents the correction 

process of output features. 

𝐶𝑆𝐴(𝑥) = 𝜎(𝑓([𝐻𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥), 𝑊𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥)]))            (4) 

𝑦𝑖 = 𝐶𝑆𝐴(𝑀) × 𝑁𝑖                                                               (5) 

where 𝑥 is the input feature, 𝐻𝐴𝑣𝑔𝑃𝑜𝑜𝑙 and 𝑊𝐴𝑣𝑔𝑃𝑜𝑜𝑙 are 

the global pooling operation in vertical and horizontal 

directions respectively. 𝑓 indicates the convolution operation, 

and 𝜎 means the grouped sigmoid function. 𝑁𝑖 are the output 

features {N2, N3, N4, N5, N6} generated from the bottom-up 

path and 𝑃𝑖. For example, N2 is directly obtained from P2, N3 

is from P3 and N2. The 𝑦𝑖 are the final output features after 

the correction process. 

     The BN layer in PAFPN normalizes the data with batch 

size as the dimension, and the value of batch size affects the 

model’s performance during training. In this study, a small 

batch size (2) is set to adapt the limited computing memory. 

Nevertheless, the model’s gradient values may become 

unreliable and fluctuate seriously when the batch size is set to 

a small value. Therefore, group normalization (GN) is used to 

prevent the Att-PAFPN section from the effect caused by 

batch size (Wu and He 2018). In addition, another 

modification is implemented by increasing the output 

channels of the PAFPN for further improvement.  

 

FIGURE 4. (a) The architecture of PAFPN, and (b) the architecture of 

the proposed Att-PAFPN. 

3.3 Loss function 

There are two loss functions in the existing object detection 

models, including the classification loss and the location 

regression loss. The classification loss is utilized to calculate 

the error between the predicted class and the Ground Truth 

(GT) class so as to update the network parameters. In sewer 

defect datasets, a great quantity of easy negative samples 

inevitably overwhelm detection networks. That makes the 

model pay much attention to the easy negative samples and 

ignore the learning of hard samples. Focal loss (FL) (Lin et 

al. 2017) adds two hyperparameters (𝛼 and 𝛾) into the cross-

entropy loss to adjust the weights of positive-negative 

samples and hard-easy samples, which reduces the influence 

of easy negative samples on the detector. As shown in 

Equation (6), 𝑝 represents the probability value that the object 

in the anchor box is predicted to be a positive sample, and 𝑞 

is used to judge whether the prediction is consistent with the 

GT. However, the FL function should not use the 

hyperparameter 𝛾 to down-weight both negative and positive 

samples because positive samples are more important and 

rarer than negative samples.  
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𝐹𝐿(𝑝, 𝑞) = {
−𝛼(1 − 𝑝)𝛾 log(𝑝)             𝑖𝑓 𝑞 = 1

−(1 − 𝛼)𝑝𝛾 log(1 − 𝑝)              𝑒𝑙𝑠𝑒
                (6) 

     Equation (7) indicates the calculation of the varifocal loss 

(VFL) (Zhang et al. 2021). To retain the learning signal of 

positive samples, the VFL removes the hyperparameter 𝛾 

when it calculates the loss from positive samples and 

introduces intersection over union (IOU) values (𝑞∗ ∈ [0,1]) 
between the prediction and the GT. Compared with the FL, 

the VFL obtain higher accuracy but slow convergence speed. 

This is because the VFL pays excessive attention to easy 

samples when processing positive samples. 

𝑉𝐹𝐿(𝑝, 𝑞∗) =

{
−𝑞∗(𝑞∗log(𝑝) + (1 − 𝑞∗) log(1 − 𝑝))    𝑖𝑓 𝑞∗ > 0

−𝛼𝑝𝛾 log(1 − 𝑝)                                                   𝑒𝑙𝑠𝑒
            (7) 

     Inspired by the VFL, an efficient FL (EFL) shown in 

Equation (8) is proposed to deal with the above issues. The 

probability (𝑝) predicted as positive samples and the IOU 

values (𝑞∗ ∈ [0,1]) are considered in the calculation of the 

EFL. When a positive sample obtains the high probability, 

the loss calculated by FL is reduced to a value close to 0, 

which means the model almost ignores the learning for easy 

positive samples. In some cases, VFL gives a large loss value 

to the easy positive sample and assigns a small loss value to 

the hard positive sample. The instable calculation of VFL 

leads to inferior convergence speed and accuracy of the 

model. In contrast, EFL allows the model to keep learning 

these easy positive samples without excessive effort because 

it can appropriately decrease the loss values via a smooth 

calculation method. Let’s suppose that the values of 𝑝 and 𝑞∗ 

are 0.8, the loss values calculated by FL, VFL and EFL are 

0.002, 0.40 and 0.01, respectively. It is obvious that EFL can 

provide a more proper loss value than the others. 

 

𝐸𝐹𝐿(𝑝, 𝑞∗) = {
−(1 − 𝑝)(1 − 𝑞∗) log(𝑝)      𝑖𝑓 𝑞∗ > 0

−𝛼𝑝𝛾 log(1 − 𝑝)                              𝑒𝑙𝑠𝑒
        (8) 

     Different from the classification loss, the location 

regression loss is calculated by comparing the coordinate 

information of the predicted bounding box (BB) and the 

actual BB. The location regression loss used in this work is 

defined in Equation (9). 

𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 1 − 𝐼𝑜𝑈 +
𝑑2(𝐴,𝐵)

𝑙𝐶
2 +  𝜌𝜎                                (9) 

where 𝐴 and 𝐵 indicate the predicted BB and the actual BB, 

respectively. 𝐶 is the minimum enclosing rectangle of 𝐴 and 

𝐵.  

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐴)∩𝑎𝑟𝑒𝑎(𝐵)

𝑎𝑟𝑒𝑎(𝐴)∪𝑎𝑟𝑒𝑎(𝐵)
                                                         (10) 

     𝐼𝑜𝑈 is shown in Equation (10). 𝑑(𝐴, 𝐵) is the Euclidean 

distance between the center points of 𝐴  and 𝐵 . 𝑙𝑐  is the 

diagonal length of 𝐶. 𝜎 is used to reflect the similarity of the 

aspect ratio of 𝐴  and 𝐵 , and its calculation method is 

expressed in Equation (11).  

𝜎 =
4

𝜋2 (𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝐵

ℎ𝐵 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝐴

ℎ𝐴 )2                                    (11) 

     𝑤 and ℎ are width and height of the BB. 𝜌 is the weight 

coefficient used to balance the loss function, as shown in 

Equation (12). 

𝜌 =  
𝜎

(1−𝐼𝑜𝑈)+𝜎
                                                                     (12) 

     Algorithm 1 is proposed to calculate the loss in the entire 

defect detection network. Each iteration of the model 

generates the prediction and target. The prediction stores the 

predicted BB and the classification score (𝑝) of the anchor 

box. And the target stores the IoU score (𝑞∗) and actual BB. 

The BB is in a form of (𝑥1, 𝑦1, 𝑥2, 𝑦2). Firstly,  𝑝, 𝑞∗, 𝐴, 𝐵 are 

obtained from the prediction and target tensor. 𝐴  and 𝐵 

indicate the predicted BB and actual BB, respectively Then, 

the classification loss and location regression loss are 

calculated with the pre-defined hyperparameters for the 

prediction result. Finally, the two values ( 𝐿𝑐𝑙𝑎𝑠𝑠  and 

𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) are combined by a weight coefficient 𝜆. 

Algorithm 1: Loss Function of the proposed Network 

Input: prediction, target. 

Output: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐿𝑜𝑠𝑠 

1.   Initialize: 𝛼 = 0.75, 𝛾 = 1.5, 𝜆 = 2, 𝐿𝑐𝑙𝑎𝑠𝑠 =

0, 𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 0, 𝐿𝑜𝑠𝑠 = 0 

2.   Obtain  𝑝, 𝑞∗, 𝐴, 𝐵 from prediction and target 

3.   If 𝑞∗ > 0 then 

4.            𝐿𝑐𝑙𝑎𝑠𝑠 = −(1 − p)(1 − 𝑞∗) log(𝑝) 

5.   Else 

6.            𝐿𝑐𝑙𝑎𝑠𝑠 = −α𝑝𝛾log (1 − 𝑝) 

7.   End If 

 

8.   Finding the smallest box C containing A and B. 

9.   𝐼𝑜𝑈 =
Intersection of area A and B 

𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 area 𝐴 𝑎𝑛𝑑 𝐵
 

10.   Calculating the overlap between box A and box B: 

             Overlap =
𝑑2(𝐴,𝐵)

𝑙𝐶
2  

11.   Calculating the similarity of the aspect ratio between A 

and B using Equation (12). 

12.   Calculating the regression loss 𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  using 

Equation (9). 

13.   𝐿𝑜𝑠𝑠 =  𝐿𝑐𝑙𝑎𝑠𝑠 +  𝜆𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  

4 SEWER DEFECT DATASET 

The CCTV inspection videos were acquired in Seoul, Korea, 

by the Civil Engineering and Building Technology institute. 

In the original sewer defect dataset, a total of 4,383 images 

with 5,385 distinct defects are extracted and validated from 

the sewer videos in a manual manner. Therefore, each frame 

is independent and distinct in the collected data. Eight classes 
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of common defects are considered as the detection targets in 

this research, which include debris silty, horizontal crack, 

vertical crack, joint faulty, joint open, lateral protruding, pipe 

broken, and surface damage. Figure 5 shows eight types of 

example images from the proposed dataset. The entire data is 

first randomly separated into training and testing sets 

according to the ratio of 8:2. And then the original training 

set is expanded by different data augmentation methods, such 

as cutout, gaussian blur, and channel shuffle. The detailed 

information of eight classes before and after data 

augmentation is displayed in Table 1. 

FIGURE 5. Examples of eight types of defects. (a) debris silty, (b) horizontal crack, (c) vertical crack, (d) joint faulty, (e) joint open, (f) lat eral 

protruding, (g) pipe broken, and (h) surface damage. 

 

TABLE 1. The sample numbers in the proposed sewer defect 

dataset before and after data augmentation. 

Defect Before data 

augmentation 

After data 

augmentation 

Debris silty 395 1,031 

Horizontal crack 711 1,843 

Vertical crack 709 1,852 

Joint faulty 770 1,999 

Joint open 652 1,698 

Lateral protruding 1,020 2,652 

Pipe broken 657 1,711 

Surface damage 471 1,224 

Total 5,385 14,010 

5 EXPERIMENTAL RESULTS 

5.1 Feature extraction 

In this section, a comparison with some state-of-the-art 

(STOA) backbones was conducted to demonstrate the 

significance of the proposed feature extraction model 

(backbone section) on the collected dataset. Table 2 lists the 

performances of different backbone models on the base of the 

original VFNet framework and the PAFPN neck section from 

the aspects of network parameters (Param.), computations 

(FLOPs), and detection precision (mAP). The floating point 

operations per second (FLOPs) is a widely used indicator to 

measure the computational complexity of the model. The 

entire number of network operations that can be summed up 

into a single floating-point hardware operation is the 

definition of FLOPs (Molchanov et al. 2016; Langerman et 

al. 2020). The original ResNeSt is much lighter than Res2Net 

due to fewer parameters (37.28M) and computations 

(211.15G). Compared with ResNeSt, E-ResNeSt has 0.14M 

more parameters and 0.24G more FLOPs because it was 

improved based on ResNeSt by adding a novel attention 

module. On the other hand, the proposed E-ResNeSt module 

achieved the highest mAP of 69.1%, which is 1.4% higher 

than the original ResNeSt. It reflects that the designed 

backbone model has superior feature extraction capability for 

sewer defect images. 
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TABLE 2. Defect detection performances of different backbone models. Note: Param. indicates the network parameters, 

floating-point operations (FLOPs) represent the computations, and mAP is the mean Average Precision of detection.

Backbones Neck Framework Param. FLOPs mAP mAP50 mAP75 

ResNet 

PAFPN VFNet 

56.93M 281.77G 64.2 86.4 72.5 

ResNeXt 56.56M 285.69G 65.5 88.7 74.8 

Res2Net 57.59M 292.78G 66.1 90.3 75.6 

ResNeSt 37.28M 211.15G 66.7 91.5 77.2 

E-ResNeSt (Proposed) 37.42M 211.39G 69.1 92.3 78.9 

      

     

     Moreover, the feature extraction processes of ResNeSt and 

E-ResNeSt are visualized and compared to highlight the 

improvement of E-ResNeSt. There are four stages in these 

two backbone models, which are used to generate feature 

maps {C2, C3, C4, C5} and input them into the neck section. 

The features (C3) extracted from the second stage contain 

more information regarding objective regions than other 

stages, and it could better reflect the model’s extraction 

ability. As a result, the feature maps from the second stage of 

both backbone models are illustrated in Figure 6. According 

to the comparison between two experimental models, it is 

clear that the extracted features of E-ResNeSt are visually 

diversified and valid owing to a satisfying representation 

ability. For example, the feature map (line 3 column 3) 

obtained from the E-ResNeSt provides discriminant details, 

such as the contour and shape of the protruding pipe. 

FIGURE 6. The visualized feature extraction processes for ResNeSt and E-ResNeSt. 

5.2 Feature fusion 
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The objective of this experiment is to prove the effectiveness 

of several modifications to the original PAFPN. Table 3 

shows the detection performances of the neck models with 

distinct configuration settings. The third row contains the 

main structural components of the raw PAFPN model, and 

the last row has the main structural components of the Att-

PAFPN model. It can be effortlessly realized that the model’s 

mAP considerably increased from 0.691 to 0.704 after adding 

the proposed attention module. This means the presented 

attention module is helpful for learning the target areas. Apart 

from that, the original BN is replaced by GN in the proposed 

neck models to prevent excessive gradient fluctuation. 

Besides, the output channels are adjusted from 256 to 384 in 

order to represent more feature information. After a series of 

optimization, the neck model achieved the best performances 

(Precision: 0.92, Recall: 0.935, F1: 0.927, mAP: 0.712). 

TABLE 3. Defect detection performances of different neck models with different structure configurations. Note: The 

performances are evaluated by different metrics (precision, recall, F1, and mAP). 

Backbone 
Neck Output channels 

Precision Recall F1 mAP 
PAFPN Attention GN 256 384 

EResNeSt 

√   √  0.903 0.907 0.905 0.691 

√ √  √  0.912 0.921 0.916 0.704 

√ √ √ √  0.915 0.926 0.920 0.708 

√ √ √  √ 0.92 0.935 0.927 0.712 

     In addition, the effect of the introduced feature fusion 

approach in the neck section is explored. As mentioned 

above, the Att-PAFPN is presented by modifying the 

structure of the original PAFPN in this research. The 

visualization results from these two approaches are contrasted 

and shown in Figure 7 to emphasize the improvement of the 

proposed feature fusion mechanism. The first row is the input 

image, the middle rows represent the feature maps from five 

different output layers (PAFPN: {N2, N3, N4, N5, N6}, Att-

PAFPN: {y2, y3, y4, y5, y6}), and the last row is the final 

output image. By comparing the feature maps of two 

networks, Att-FAFPN obtains more features and learns the 

defective regions more specific than PAFPN. For the 

predicted result of PAFPN at the first column, the defect in 

the yellow circle is not detected, and the defect in the green 

circle is not fully located. Also, the PAFPN detected two 

bounding boxes on the same defect (row 7 column 3). 

Compared with the original PAFPN, the proposed Att-

PAFPN precisely localizes and classifies all defects. 
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FIGURE 7. Visualization results after the feature fusion process using the original PAFPN and proposed Att-PAFPN. 

 

     Since the case of connecting attention and pyramid has 

been reported for object detection in a recent literature (Cao, 

Chen, et al. 2020), the performance of the proposed feature 

fusion mechanism is compared with their presented network. 

As shown in Table 4, the proposed Att-PAFPN structure is 

superior to the AC-FPN in terms of the mAP metrics. That 

implies our Att-PAFPN has a strong feature improvement 

ability.  

TABLE 4. Performances of different neck models connecting 

attention and pyramid.  

Method Backbone Neck mAP mAP50 mAP75 

VFNet 
E-

ResNeSt 

AC-FPN (Cao, 

Chen, et al. 2020) 

0.688 0.919 0.790 

Att-PAFPN 0.712 0.936 0.797 

5.3 Loss function 
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Based on the calculations of the FL and VFL functions, an 

efficient loss function named EFL was introduced to lighten 

the IDP and improve the overall detection precision. This 

experiment aims to testify the impact of the proposed EFL 

function on the final detection performance. Figure 8 

illustrates the Average Precision (AP) for eight classes of 

defects using three different loss functions. Compared with 

the vertical crack class, the horizontal crack class that 

obtained the lower AP value is consider as hard samples. For 

the horizontal crack class, the AP of the detector with EFL is 

16% higher than the AP of the detector with FL. In contrast, 

the AP of the model with EFL for the vertical crack class 

decreased 2% compared to that of the model with FL. Similar 

with the cases of horizontal and vertical cracks, the AP of the 

model with EFL for the joint open class (hard samples) was 

improved than the others, while the AP of the model with 

EFL for the joint faulty class (easy samples) was slightly 

lower than that of the model with VFL. That means the EFL 

makes the detector focus more on the harder samples with a 

lower AP to balance the AP values between hard and easy 

samples. Taken overall, the model with EFL obtains better 

AP for most of the classes than other experimental loss 

functions. In terms of the mAP, the proposed Pipe-VFNet 

with EFL achieves the highest detection accuracy of 73.4%, 

which is 4.5% and 2.2% better than the results of FL and 

VFL.   

     The data used in above experiment is separated into 

training and testing sets according to the ratio of 8:2. To 

investigate how other split ratios between the training set and 

testing set affect the model’s overall performance, the mAP 

values of the proposed model with different loss functions are 

computed in Figure 9. It can be observed that the optimal 

division ratio of training and testing sets is 8:2. Although the 

training and testing are divided with different ratios, the 

model with the EFL always outperforms the model with the 

other experimental loss functions (FL and VFL).   

 

FIGURE 9. mAP values of the proposed model with different loss 

functions according to different division ratios of training and testing 

sets.

 

FIGURE 8. Average Precision for each class under different loss functions (FL, VFL, and EFL).

     Correspondingly, the mAP and loss values are computed 

and recorded to reflect the training situation in different 

epochs / iterations. As shown in Figure 10, the blue, orange, 

and green curves plot the performances of the proposed Pipe-

VFNet with FL, VFL, and EFL, respectively. The Pipe-

VFNet with EFL has the highest and smoothest curve, which 

reveals the best detection accuracy (mAP: 73.4%) and the 

most stable training. By observing the loss curves, the loss 

values are decreasing continuously with the increase of the 

iterations. Although the loss of the EFL function decreases 

slowly in the first 20,000 iterations compared to the loss of 

the FL, it achieves the smallest loss of 0.13 among the three 

loss functions. In addition, the models with different loss 

functions train the same number of iterations at different 

training speeds. The model with FL obtained the fastest 

training speed, and its total time for training is 15.4 hours. 

Since VFL and EFL involve more calculations, the models 

with these two loss functions require longer training time. 

The training time of the model with EFL is 16.6 hours, which 

is similar to that of the model with VFL (16.7 hours). 
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FIGURE 10. The mAP and loss curves of the proposed Pipe-VFNet model using different loss functions. 

In order to select the best loss function hyperparameters, the 

mAP values of the model with different settings are obtained 

and compared. Three hyperparameters ( 𝛼 , 𝛾 , and 𝜆 ) are 

included in the proposed loss function. 𝛼  and 𝛾  are 

determined according to the conducted nine groups of 

experimental results. For the weight coefficient 𝜆, it was set 

the same value as the VFNet to balance the classification loss 

and the regression loss. As shown in Figure 11, the model 

achieved the highest mAP when 𝛼 and 𝛾are set to 0.75 and 

1.5, respectively. 

 

    

FIGURE 11. The mAP of the proposed Pipe-VFNet model with 

different hyperparameter settings. 

Moreover, the effect of the proposed loss function on our data 

with different imbalance ratios is tested and reported in Table 

5. Two types of sewer images are randomly selected from the 

acquired data, and different ratios are set for these two classes 

by adjusting the image number of each class. It can be 

observed that the Pipe-VFNet model with the proposed loss 

function is not evidently affected by the IDP when the 

balancing ratio varies considerably in terms of mAP and loss. 

For example, the mAP and loss values of Pipe-VFNet 

declines 3.3% and 0.14 when the balancing ratio changes 

from 1:1 to 1:10. 

TABLE 5. mAP and loss values of the proposed Pipe-VFNet 

model using the proposed loss function on different balancing 

ratios. LP refers to lateral protruding, and SD means surface 

damage.  

LP:SD 1:1 1:3 1:5 1:7 1:10 

mAP (%) 89.37 89.41 88.79 87.62 86.07 

Loss 0.17 0.17 0.19 0.24 0.31 

5.4 Model performance 

To measure the model’s performance comprehensively, the 

defect classification results in the form of a confusion matrix, 

and the visualized defect detection results under various 

conditions are calculated and discussed in this section. Figure 

12 shows some instances of defect detection under diverse 

sewer pipeline conditions. The usual case is that there is only 

one defect in the same frame extracted from the recorded 

CCTV videos. Nevertheless, the proposed detector also 

performs well for the image with multiple defects. As shown 

in Figure 12 (e), the pipe broken class and the surface damage 

class are precisely localized and identified with high 

confidence scores. Even though the confidence scores for 

both defects in Figure 12 (c) are not high, the model can 

correctly detect and recognize these defects. Furthermore, the 

model has satisfactory performances for the defect images 

with complex backgrounds or bad conditions. For example, 

Figure 12 (d) adds some additional manual noises, and Figure 

12 (f) exists the overexposure problem. The generated 

promising results demonstrate the constructed detection 

model is robust against challenging cases. 

     A confusion matrix is presented in Table 6, and the 

precision, recall, and F1 score are computed for each type of 

defect. The proposed defect detection model is performed on 

the testing set containing 1077 images for eight categories. 

The bold numbers on the diagonal are close to the total 

numbers, which indicates the excellent performance of the 

framework. The model obtains the highest precision of 1.000 

on the debris silty class, while the highest recall of 0.977 is 

obtained for the joint open class. Besides, the F1 score is 

measured by computing the harmonic average of precision 

and recall. The proposed model has the best F1 score of 0.987 

towards the debris silty class, while the other seven types of 

defects have an F1 score between 0.859 to 0.966. 

68%

70%

72%

74%

mAP
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TABLE 6. Confusion matrix and F1 score of the testing set. Note: Debris silty (DS), Horizontal crack (HC), Vertical crack 

(VC), Joint faulty (JF), Joint open (JO), Lateral protruding (LP), Pipe broken (PB), Surface damage (SD). 

 DS HC VC JF JO LP PB SD Miss Total Precision Recall F1 

DS 77 0 0 0 0 0 0 0 2 79 1.000 0.975  0.987  

HC 0 116 7 2 3 0 0 3 6 137 0.967  0.847  0.903  

VC 0 3 136 0 1 0 0 1 5 146 0.944  0.932  0.938  

JF 0 0 0 150 2 0 1 1 1 155 0.955  0.968  0.962  

JO 0 1 0 1 126 0 0 0 1 129 0.955  0.977  0.966  

LP 0 0 0 0 0 194 3 4 3 204 0.980  0.951  0.965  

PB 0 0 0 2 0 3 115 9 3 132 0.950  0.871  0.909  

SD 0 0 1 2 0 1 2 85 4 95 0.825  0.895  0.859  

 

  

FIGURE 12. Defect detection examples with single defect or multiple defects under different backgrounds. 
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5.5 Comparison with previous work 

In this section, a performance comparison of several recent 

studies about defect detection is investigated in Table 7. 

Herein, the proposed Pipe-VFNet model involves a new 

backbone model (E-ResNeSt), a novel neck model, and a 

customized loss function. The defect dataset introduced in 

this study contains the most defect types among the 

experimental datasets, enabling more exhaustive research. 

Moreover, the proposed method achieved a detection 

accuracy of 95.7% in terms of mAP50. Another noteworthy 

point is that the detection speed of the presented Pipe-VFNet 

is slower than the YOLOv3 model. That is caused by 

different computer performances and input sizes. For 

example, the input size of the YOLOv3 model (Yin et al. 

2020) is 416x416, whereas the input size of the constructed 

model is 1,333x800. 

     It is challenging to compare different approaches based on 

different datasets and evaluation metrics. As a result, several 

advanced algorithms in recent object detection studies are 

tested in order to provide a fair comparison by implementing 

on the same dataset (proposed defect dataset) and metrics 

(AP and mAP). The Faster R-CNN with the SPRN method is 

not included in this comparison because their implementation 

details are not available. As shown in Table 8, the AP value 

for each class and the mAP that represents the mean value of 

the AP within the scope of 0.5-0.95 IoU thresholds are 

calculated to evaluate the performances of six different 

detectors. It can be observed that the proposed model did not 

achieve the fastest inference speed due to the limited 

computational resources and input sizes. Yet, it obtained the 

best AP values for five classes and the highest mAP value.  

 

TABLE 7. Performances of different defect detection approaches in recent research. 

ID 
Defect dataset 

Method 
Performance 

Year Ref 
Defect type Sample size mAP50 mAP70 mAP75 mAP Recall Speed  

1 4  3,000 Faster R-CNN -- 83% -- -- -- 9 FPS 2018 
(Cheng and 

Wang 2018) 

2 7  4,056 YOLOv3 85.37% -- -- -- -- 33 FPS 2020 
(Yin et al. 

2020) 

3 5  10,000 
Faster R-CNN 

with SRPN 
-- 72.5% -- -- 89.5% 6 FPS 2021 

(Li, Xie, et al. 

2021) 

4 3  3,600 Faster R-CNN 77% -- -- -- -- 9 FPS 2021 

(Wang, 

Kumar, and 

Cheng 2021) 

5 8  14,010 
Pipe-VFNet 

(proposed) 
95.7% -- 80.4% 73.4% -- 12 FPS 2022 This study 

 

TABLE 8. Performances of different object detection approaches based on the proposed dataset. 

Method DS HC VC JF JO LP PB SD All (mAP) Speed (FPS) 

Faster R-CNN (Ren et al. 

2015) 
0.823 0.476 0.638 0.787 0.718 0.779 0.548 0.521 0.661 10.2 

YOLOv3 (Redmon and 

Farhadi 2018) 
0.818 0.326 0.613 0.708 0.648 0.789 0.513 0.457 0.609 24.1 

RetinaNet (Lin et al. 2017) 0.826 0.386 0.625 0.754 0.603 0.793 0.496 0.580 0.633 11.9 

ATSS (Zhang, Chi, et al. 

2020) 
0.812 0.284 0.620 0.800 0.650 0.770 0.447 0.746 0.641 13.3 

VFNet (Zhang et al. 2021) 0.821 0.449 0.735 0.867 0.739 0.726 0.532 0.563 0.679 12.9 

Pipe-VFNet (proposed) 0.881 0.569 0.704 0.850 0.768 0.794 0.542 0.766 0.734 12.4 

6 CONCLUSION 

In this study, an automatic defect detection framework is 

proposed to classify and localize eight types of defects that 

are frequently encountered in underground sewer pipelines. 

An attention module is first introduced and adopted to 

improve the feature extraction ability in the detector’s 

backbone. Next, a new feature fusion mechanism that can 

lighten the feature dilution problem is used in the neck. 

Finally, a loss function is presented and used in the proposed 
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framework for solving the IDP. Experimental results proved 

that the detection framework deal with the imbalanced 

training samples well due to the effective loss function. In 

addition, the proposed network could detect defects under 

varying conditions with the highest mAP of 73.4% on the 

dataset. However, the processing speed of this defect 

detection framework is about 12 FPS on a Tesla GPU, which 

cannot fulfill the requirement of real-time detection. 

     In the future, more concern should be paid to the 

development of the proposed framework on various portable 

devices that facilitate realistic defect inspections. Besides, the 

processing speed of the defect detection network should be 

boosted for real-time applications. Furthermore, more 

powerful and effective algorithms, such as dynamic 

classification (Rafiei and Adeli 2017), fast learning (Pereira 

et al. 2020), and dynamic ensemble learning (Alam, Siddique, 

and Adeli 2020), should be investigated in the subsequent 

research. 
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