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Crop diseases and insect pests are major agricultural problems worldwide, because the severity and extent of
their occurrence causes significant crop losses. In addition, traditional crop pests recognition methods are

CNN limited, ineffective, and time-consuming due to the manual selection of the useful feature sets. This paper in-
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GoogLeNet
Crop

Natural scenes

troduces a crop pest recognition method that accurately recognizes ten common species of crop pests by applying
several deep convolutional neural networks (CNNs). The main contributions of this paper are (1) a manually
collected and validated crop pest dataset is described and shared; (2) a fine-tuned GoogLeNet model is proposed

to deal with the complicated backgrounds presented by farmland scenes, with pest classification results better
than the original model; and (3) the fine-tuned GoogLeNet model obtains an improvement of 6.22% compared to
the state-of-the-art method. As a result, the proposed model has the potential to be applied in real-world ap-
plications and further motivate research on crop disease identification.

1. Introduction

Crop pests cause significant losses to crops in the world, whether in
developing or developed countries. According to recent research, nearly
half of the crop yield in the world is lost to pest infestations and crop
diseases (Gandhi et al., 2018). As a result, meticulous pest control is a
crucial task to reduce losses and improve crop yields. Once pests infect
a field, they must be identified in time, so farmers can provide timely
treatment and prevent the spread of pests. However, traditional pest
identification methods have many drawbacks. Firstly, most of the
commonly used methods are manual investigation, in which the experts
or farmers manually inspect the field daily, weekly, and monthly for
any sign of pests or diseases. Secondly, there are many types of insects
and the number of individuals that belongs to the same species is en-
ormous (Lim et al., 2018). Therefore, traditional pest identification
methods are time-consuming, error-prone, and tedious.

Previously, many automatic pest recognition systems based on dif-
ferent machine learning (ML) algorithms have been proposed (Nguyen
et al., 2019a; Nguyen et al., 2019b). For example, an approach that
adopted the k-means clustering algorithm to recognize pests was pro-
posed (Faithpraise et al., 2013). The detection was implemented by
manually extracting the features and using the relative filter to identify
different types of pests, which is time-consuming when the dataset is
huge. In another research, a method was put forward for the sugar beet
diseases recognition using Support Vector Machines (SVM) and spectral
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vegetation (Rumpf et al., 2010). The precision result for the SVM multi-
class classification was about 86%. One year later, a framework that
used image processing and ML to classify five different plant leaf dis-
eases was proposed (Al-Hiary et al., 2011). Experimental results de-
monstrated that the proposed method successfully identified the target
diseases with accuracy ranging from 83% to 94%. Although traditional
ML algorithms were proved to perform well when the number of crop
pests species was small, they become inefficient when multiple features
need to be extracted manually.

Deep learning is a special kind of ML that uses multilevel neural
networks that allow computers to learn and extract deep abstract fea-
tures automatically. In recent years, several deep learning methods
have been applied to classify pests and achieved state-of-the-art results
in numerous pest detection applications. A deep learning-based pests
and diseases classification framework on the tomato leaves was im-
plemented (Shijie et al., 2017) and obtained an average classification
accuracy of 89%. However, this method can only be applied in simple
background pest classification, so it is impossible to be integrated into
practical applications. In another approach, Generative Adversarial
Networks (GAN) was applied to extend the dataset and the extended
dataset was fed into a pre-trained CNN model. This model achieved the
plant diseases classification accuracy of 92% (Gandhi et al., 2018).
Previously, data augmentation technique was also applied to extend the
dataset for classifying breast mass disease. After that, the data was
trained on GoogLeNet model and obtained a high accuracy of 93.4%
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(Lévy and Jain, 2016). A deep learning model was proposed to re-
cognize 13 kinds of diseases (Sladojevic et al., 2016). Manual image
preprocessing was adopted to highlight the target area, which was time-
consuming. Recently, a method using deep learning architecture for
fruit fly recognition was proposed and achieved an accuracy of 95.68%
(Leonardo et al., 2018). In another work, ten species of plant pests were
used to train the model and the classification accuracy was 93.84%
(Dawei et al.,, 2019). By analyzing previous work, deep learning
methods have been proved to improve the performance pests classifi-
cation significantly (Dang et al., 2018; Dang et al., 2019).

By showing the strengths and weaknesses of previous works, there is
an immediate demand to propose an intelligent expert system that can
efficiently and automatically identify crop pests images which have
background noise. Therefore, in this research, a deep learning-based
model that can automatically classify ten types of crop pests in natural
scenes is introduced. The following questions will be addressed in this
manuscript:

a. Which deep learning models are most suitable for the proposed
dataset?

b. Which data preprocessing methods improve the overall performance
of the model?

c. What is the comparison result with other work?

This paper is divided into six sections. The dataset collection process
is shown in Section 2. After that, five deep learning models and the
flowchart of the proposed system are explained in Section 3. Section 4
shows experimental results for the deep learning models on the pro-
posed dataset. Finally, the performance of the deep learning method is
discussed in Section 5, and conclusions and future work are described in
Section 6.

2. Dataset
2.1. Data preparation

In this paper, we selected 10 common species of crop pest, namely
Gryllotalpa, Leafthopper, locust, Oriental fruit fly, Pieris rapae Linnaeus,
Snail, Spodoptera litura, Stinkbug, Cydia pomonella, Weevil, as shown
in Fig. 1.

There are many studies which considered these crop pests as the
research subjects (Cheng et al., 2017; Wang et al., 2017; Leonardo et al.,
2018; Xiao et al., 2018; Dawei et al., 2019). Because these crop pests
can be found all over the world and their reproductive speed is very
fast. It is challenging to treat once they infect the field, and they can
cause enormous losses to crop yields. Therefore, these ten pests are
significant for research in order to detect them efficiently and imple-
ment timely control treatments.

The dataset collection was mainly done by downloading images
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from popular search engines (Google, Baidu, Yahoo, and Bing) and
performing outdoor shooting using the Apple 7 Plus mobile phone. The
dataset contains a total of 5629 images; most of the images were
downloaded from the Bing search engine, and 650 images were crawled
from other websites. Overall, pest type contains more than 400 images,
and the snail class has the largest number of images (over 1000). In
general, the sizes of these pests are tiny, and it is difficult to find them
quickly in natural scenes with the naked eye. After the data collection
process, data augmentation method was implemented to generate more
images from the original dataset.

2.2. Data augmentation

Data augmentation is a common technique in deep learning to
create more data (Cui et al., 2015; Montserrat et al., 2017). Data aug-
mentation includes two main categories, which are offline augmenta-
tion and online augmentation. The offline augmentation operates on
the dataset directly, which can be applied to relatively small datasets.
The main methods are rotation, translation, flipping, and other corre-
sponding changes. For large datasets, online augmentation is a more
suitable approach. In this study, the offline augmentation method is
applied because the collected dataset is small. Data augmentation has
two main advantages. (1) CNN models achieve better generalization
ability, (2) The robustness of the model is improved by adding noise
data.

As shown in Fig. 2, the main data augmentation methods applied in
this study are 90 clockwise degree rotation, mirroring, noise addition,
and zooming. By using these image processing techniques, the number
of images datasets increased to nearly four times. The total number of
images was 5629 originally. After applying the data augmentation, the
number of images increased to 14,475.

The new dataset was then divided into a training set and testing set
with a 9:1 ratio, as shown in Table 1.

3. Methodology

The flowchart that describes the main processes of the pests clas-
sification framework is shown in Fig. 3. After the data collection pro-
cess, natural background images were preprocessed by two different
background removal methods. And then, more images were generated
by applying data augmentation techniques mentioned in Section 3.2.
Next, the images were fed into five deep learning models, and the most
suitable CNN model was selected.

3.1. Image preprocessing
In previous pest identification research, image segmentation algo-

rithms were applied to segment the target object from the complicated
background and to reduce the influence of complex background on the

Stinkbug

Cydia pomonella

Fig. 1. Sample images for ten common pest classes.
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Table 1
Detailed report of the collected dataset before and after applying the aug-
mentation process. The number of train and test images for each class are also
shown.
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Fig. 2. Example of data augmentation tech-
niques (a) Original image, (b) Mirror image,
(c) Rotate 90 degrees and crop, (d) Noise-
added image, and (e) Cropped image.

(e)

overall accuracy (Boissard et al., 2008). The CNN models can be easily
affected by noises from natural images, so they miss or ignore crucial
features, which not only have a certain impact on the overall perfor-
mance, but also affect the speed of training. Therefore, data pre-

Class Name Original ~ After augmentation ~ Train  Test processing is an important technique to reduce these problems (Al-
Hiary et al., 2011). In this study, two preprocessing methods are im-
L Cydia pomonella 415 1165 1049 116 plemented to remove the complex background of the image.
2 Gryllotalpa 505 1243 1119 124
3 Leafhopper 429 1582 1424 158
4 Locust 621 1412 1271 141 . . .
5 Oriental fruit fly 461 1545 1391 154 3.1.1 M’?Ced tmage processing tec}f”lques ) )
6 Pieris rapae Linnaeus 541 1746 1572 174 The first preprocessing technique deals with the images that have
7 Snail 1074 1500 1350 150 considerable differences between the color of the pest and the back-
8 Spodoptera litura 402 1212 1091 121 ground. The main techniques include thresholding, contour detection,
9 Stinkbug 679 1511 1360 151 and watershed algorithm.
10 Weevil 502 1559 1404 155 . . .
First of all, an adaptive threshold method is implemented to convert
Total images 5629 14,475 13,031 1444 the original image into a binary image. It automatically determines the
binary threshold of a pixel according to the distribution of adjacent
pixel blocks. After that, morphological operations, including dilation
Image Preprocessing
Method I Data Augmentation
Collect dataset
1. Convert to gray scale
. Original dataset(5,629)
2. Threshold operation
Download from websites . i i .
3. Morphological operation  —> 1. Rotation
. ; - 2 Mirrori
(Baidu Yahoo Bing Google ) 4. Watershed Algorithm I\./Ilrrorn.lg_
e 3. Noise addition
atase . B
5. Find and draw contour 4. Zooming
10 classes
(5,629 6. Final result images
images) SRR e LAt Final dataset(14,475)

Outdoor shooting

Method II

[ 1. Load color image ]

with rectangular box

3.GrabCut Algorithm ] 1‘
4. Final result images ] ,:

i [2. Mark foreground ]
N
X

Vv
Model Evaluation And
Method Selection

Method: K-Fold
Cross-Validation

VGG-16
VGG-19
ResNet50
ResNet152

GoogLeNet

Training with the most
suitbale model(GoogLeNet)

[ Training set ] ( Testing set ]

: [ Fine-tuned GoogLeNet ]

Fig. 3. Overall process of the proposed model from (1) data collection to (2) image processing, and (3) the training process.
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Main processing operations

Threshold Image

e . Q@m;:ﬂd
Watershed Algorithm

Final Result

Fig. 4. Input image and main process of watershed algorithm and the final result after applying the background removal algorithm.

and erosion, are applied to remove part of the noise and connect parts
of the disconnected pixels of the pest body. A foreground and a back-
ground image are extracted after the morphological operations, and
then the watershed algorithm is used to localize the pest (Seal et al.,
2015). Finally, a contour detection method is applied to obtain the
contour of the target. The illustration of the mentioned procedures is
shown in Fig. 4.

3.1.2. GrabCut algorithm

The GrabCut algorithm is implemented to remove the background
when the foreground and background are similar (Boykov and Jolly,
2005). The foreground and the background of need to be determined
before applying the grabcut algorithm. After loading an image, the pest
is surrounded by a rectangular box, and everything outside the box is
considered as the background. Initially, the algorithm marks the
background according to the provided data, and a Gaussian mixture
model (GMM) is applied to simulate the foreground and background.
Based on the input, GMM model learns and creates new pixel dis-
tributions.

For the unspecified pixels in the rectangular box, which can be ei-
ther foreground or background. They are classified based on their re-
levance to the pixels of known classifications similar to the clustering
operation. Five Gaussian models are corresponding to foreground and
background. The equation for calculating the Gaussian mixture prob-
ability is:

K K
D(x) = Z TTigi (x; K, 2 b, Z mi=1,0<m<1
i=1 i=1 (@)

exp| -2 =W 3 r = )

1
8k 20 Toog T

In Eq. (1), xis a BGR three-channel vector; Krepresents the number
of Gaussian components corresponding to each pixel (K = 5);
mrepresents the weight of each Gaussian component. Formulas (2) are
the concrete expression of g;, it refers to the probability model formula
of the i-th Gaussian model, which contains two parameters, mean value
(Hp> My, 1,) and covariance matrix. So three parameters, which include
7;, mean value(u), and covariance need to be initialized (Rother et al.,
2011).

After classifying the pixels, a pair of pixel distribution map is ex-
tracted in which the nodes are the pixels. In addition to the pixels as
nodes, there are two other nodes (source node and sink node). All
foreground pixels are linked to the source node, and all background
pixels are connected to the sink node. Then the minimum cut algorithm
is used to segment the newly obtained image (Boykov and Jolly, 2005).
The ideal image can not be obtained after a single GrabCut operation, as
shown in Fig. 5(b). According to the practical situation, the manual
markers are used to make the computer know which areas are needed,
so after many iterations, the desired image can be obtained, as shown in
Fig. 5(c).

(2)

3.2. CNN models

CNN model contains convolution layers, pooling layers and fully
connected layers. Image features can be extracted through

convolutional operations. Then, the pooling layers are applied to reduce
the volume of data processing and retain useful features. The fully
connected layer is responsible for reconstructing previously neglected
local features into a complete image through the weight matrix.

In this study, five different CNN models were investigated, including
VGGNet (VGG-16 and VGG-19), ResNet (ResNet50 and ResNet152) and
GoogleNet (Inception-V3). These networks have achieved state-of-the-
art performance in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) (Simonyan and Zisserman, 2014; Szegedy et al.,
2016). Moreover, many studies have applied these popular deep
learning models on the pests detection (Cheng et al., 2017; Leonardo
et al., 2018). The following parts give a brief introduction for the five
CNN models.

3.2.1. VGG-16 and VGG-19

VGGNet ranked second in the ILSVRC Competition in 2014, and it
outperformed GoogLeNet in many transfer learning tasks. It consists of
three fully connected layers and five convolution layers. Compared with
the other deep learning networks, VGGNet has a concise structure, a
small pooling size, and a wider feature map, which makes the archi-
tecture deeper, wider, and at the same time decrease the computational
time. In this study, the two most famous models, VGG-16 and VGG-19,
were used, which contain 13 and 16 convolutional layers, respectively.
Fig. 6 demonstrates the differnces between the VGG-16 and VGG-19
models.

3.2.2. ResNet50 and ResNet152

ResNet won first place in the image classification task of the
ImageNet competition in 2015. Its main contribution is to solve the
degradation problem and the vanishing gradient problem of previous
models by introducing building block and Bottleneck structures (He
et al., 2016). The residual network uses a network structure that is eight
times larger than VGGNet, but it is simpler than VGGNet. In this study,
Resnet50 and ResNet152 were investigated, and they contain five
blocks of convolution layers with the input size of 224 x 224. Fig. 7
shows the structure of the two models, and the text box at the bottom
right corner explains that ResNet152 has 34 more building blocks in the
third and fourth convolution blocks than ResNet50. Moreover, each
block contains three convolution layers, so the ResNet152 model has
102 more convolution layers than the ResNet50 model.

3.2.3. GoogLeNet

GoogLeNet is a new structure of deep learning proposed in 2014. In
recent years, GoogLeNet has been proved to perform well in many
practical classification tasks. In this paper, Inception-V3 is used as the
implementation of GoogLeNet model. A significant improvement of
Inception-v3 is the factorization. The convolution of 7 X 7 is decom-
posed into two one-dimensional convolutions (1 X 7,7 X 1), and the
convolution of 3 X 3 is decomposed into (1 X 3, 3 X 1) to increase the
network depth. Inception-V3 consists of 5 convolution layers, 3 incep-
tion modules in blockl, 5 inception modules in block2, and 2 inception
modules in block3 (Szegedy et al., 2016). In the first five convolution
layers, the kernel size is 3 X 3, the first convolution layer has a stride
size of 2, and the other convolution layers have a stride size of 1. In
addition, the default input size of the data is 299 x 299.
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Fig. 5. After applying a single GrabCut operation, the entire background is removed from the raw image(a). However, the pest legs are missing after the above
process in (b), so we use the mask of the pest to ensure its body is retained after the Grabcut process, (c) is the final image.
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Fig. 6. Overall architecture of VGG model, which shows the difference between
VGG-16 (Left) and VGG-19 (Right).

4. Experimental result

All experiments were implemented on a Linux machine pre-installed
with Ubuntu 14.04. It has four Titan X 12 GB GPUs, an Intel® Core i7-
5930K processor, and 64 GB of DDR4 RAM. Firstly, the feature ex-
traction process is explained in Section 4.1. After that, Section 4.2
shows how the CNN models are trained and tested on the proposed
dataset.

4.1. Features extraction

In this section, Keras and OpenCV were used to visualize middle
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layer feature maps of the CNN model to show how the CNN model
extract the abstract features (Zeiler and Fergus, 2014). Fig. 8 explains
the details of the feature extraction process on several images.

The first column is the original crop pest image, while the second
column is the feature maps extracted by the first convolution layer
(there are many feature maps, only 9 of which are randomly selected).
Finally, the third column shows fused images of the feature maps. Some
background features marked with red circles are not necessary for the
feature extract, and they can affect the overall performance.

In order to prove the influence of complex background on the
classification performance, an experiment that uses different input data
is implemented. In this experiment, two pests with similar morphology
(Locust and Gryllotalpa) are selected as the classification subjects. 1000
complex background images and 1000 simple background images are
trained on the GoogleNet model. Table 2 shows the details of the input
data and the performance of the deep learning model. The experimental
results show that the classification accuracy on simple background
images is 5.9% higher than complex background images.

4.2. Comparison of the performance of five models

In this section, the classification performance of five deep learning
models is examined. These models were configured to use the same
optimizer (SGD), the classifier (softmax) and learning rate (0.0001),
and then 5-fold cross-validation method was implemented reduce the
over-fitting and under-fitting problems (Bergmeir et al., 2018). In the 5-
fold cross-validation approach, the training dataset is divided into five
subsets (each subset contains 2895 images). In each fold, one subset is
used as the testing set, and the remaining subsets are used as the
training sets.

Fig. 9 shows the classification results of the five models. Overall,
they achieve the accuracy of over 90%, and GoogLeNet obtains the
highest accuracy in every fold. At fold 3, GoogLeNet gets the highest
classification accuracy of 94.61%, whereas ResNet152 and VGG-19
achieve a slightly lower accuracy of 93.02% and 93.05%, respectively.
As a result, GoogLeNet is the most suitable model for the collected
dataset.

Table 3 shows the computational complexity of these models. Re-
sNet152 is the most complicated model, because it contains 58 million
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Fig. 7. Overall architecture of ResNet model, which shows the difference between ResNet50 and ResNet152 at Block[3].
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Fig. 8. CNN feature visualization of Inception-V3
(First column: Input images; Second column:
Convolutional Features from the first Convolutional
layer; Third column: Fusion Feature Map from
Maxpooling layer); unimportant background in-
formation is marked with a red circle. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)

Raw Image Conv Features Fusion Feature Map
Table 2 Table 3
Information of the input data and the performance of the Computational complexity of the five models.
deep learning model. Model Number of parameters Training time(s)
Input data Accuracy
(Locust and Gryllotalpa) (%) GoogleNet 23 million 4346
ResNet50 25 million 1239
Complex background 93 ResNet152 58 million 5520
Simple background 98.9 VGG-19 20 million 1089
VGG-16 15 million 1027

parameters in total. Followed by ResNet50, which has 25 million
parameters. The most simple network is VGG-16, which has 15 million
parameters. The table also shows the training time of VGG-16, VGG-19,
ResNet50, ResNet152, and GoogleNet on the collected dataset. The
training time required for VGG-16, VGG-19, and ResNet50 are com-
paratively similar, among which VGG-16 takes about 17 min because it
has fewer layers and fewer parameters than other architectures. Re-
sNet152 and GoogLeNet require more computational time, which takes
about 92 min and 72 min, respectively.
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4.3. Fine-tuning of GoogleNet model

Fine-tuning refers to the process of receiving weights directly from
others’ trained networks, and new dataset is used to train the model. In
this paper, the GoogleNet model was fined-tuned on the pre-trained
ImageNet model, because it helps the network converge faster (Yosinski
et al., 2014).

Some adjustments were also made on the model’s fully connected

W VGG-19

W ResNet50
GoogleNet
VGG-16

M ResNet152

98'C6
75’16
6€'76
76'16
69'C6
9T't6
vL'16
67°€6
vv'16
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Fig. 9. Comparison in terms of accuracy for five CNN models through 5-fold cross-validation on the collected dataset. GoogLeNet has the best performance.
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Fig. 10. Comparison of model performance on different parameter sets, including optimizers, momentum and learning rate.

layer and the optimizers because they have a significant impact on the
model performance. The collected dataset contains 10 kinds of insects,
so the output layer must be changed from 1000 (the pre-trained model)
to 10. Moreover, the first 17 layers of the pre-trained model were frozen
because these layers have been well trained on the ImageNet dataset.
Finally, the parameters of GoogLeNet model were modified to improve
the classification accuracy and reduce the computational complexity.
Fig. 10 shows the model performance on different sets of parameters,
the highest accuracy of 98% is achieved when the fully connected layer
size is 4096 and the optimizer is Adagrad (Hadgu et al., 2015) with the
optimal learning rate of 0.0001, which is 8% better than the Adam
optimizer with the learning rate of 0.001. The size of the fully con-
nected layer has a great impact on the training results because it con-
nects all the neuron and gives the final decision.

Fig. 11 shows that the fine-tuned GoogLeNet achieves higher ac-
curacy and more robust compare to the original model. As the epoch
increases, the accuracy of both models keeps increasing and then

Previous
1.0
0.9
> >
E 0.8 E
] -
|5 v
< <
0.7 1
0.6 .
—— train_acc
—— Val_acc
0 10 20 30 40 50 60 70
epoch

stabilizes after the 15th epoch. The original model achieves an accuracy
of about 93%, whereas the fine-tuned model gets the accuracy of
98.91%.

4.4. Crop pest classification results

Table 4 shows the confusion matrix of the GoogLeNet model on the
testing set. The indexes of 10 types of pests are represented as follow: 1.
Cydia pomonella, 2. Gryllotalpa, 3. Leafhopper, 4. Locust, 5. Oriental
fruit fly, 6. Pieris rapae Linnaeus, 7. Snail, 8. Spodoptera litura, 9.
Stinkbug, 10. Weevil.

The result suggests that the model correctly recognizes ten species
with an average accuracy of 98.91%. The table shows that the error rate
of class 3 (leathopper) is the highest at 2.84% because the model mis-
classified it as locus, oriental fruit fly, and snail. Those species have
similar shape and color with the background environment.
Furthermore, the model achieves 100% classification accuracy on three

Current

1.00 A

0.95 A

0.90 +

0.85 A

0.80 A

0.75 A

— train_acc
—— Val_acc

0.70 -

50 60 70

T T

10 30 40

epoch

20

Fig. 11. Performance of the original GoogLeNet and the fine-tuned GoogLeNet.



Y. Li, et al.

Computers and Electronics in Agriculture 169 (2020) 105174

Table 4

Confusion matrix for the crop pests classification with 10 classes.
Class 1 2 3 4 5 6 7 8 9 10 Accuracy(%)
1 100 0 0 0 0 0 0 0 0 0 100
2 0 110 0 0 0 0 0 0 0 0 100
3 0 0 101 1 1 0 1 0 0 0 97.16
4 0 0 1 113 0 0 0 0 1 0 98.26
5 0 0 0 0 117 0 0 1 0 0 98.34
6 0 0 0 0 0 136 0 0 0 0 100
7 0 0 0 0 0 0 118 2 0 0 99.33
8 0 0 0 1 0 0 0 101 0 0 99.02
9 0 1 1 0 0 0 0 0 126 0 98.43
10 0 0 0 0 0 0 0 0 2 132 98.51
Average accuracy 98.91

locust:100.00%
leafhopper:0.00%

snail:100.00%
Gryllotalpa:0.00%

leafhopper:99.53%
locust:0.47%

locust: 58.48%
Gryllotalpa:33.23%
stinkbug:6.99%

(€)

Weevil:100.00%
Cydia pomonella:0.00%

Pieris rapae Linnaeus:100.00%
stinkbug:0.00%

Weevil:99.62%
Oriental fruit fly:0.22%

Gryllotalpa:99.98%
stinkbug:0.02%

®)

leafhopper:36.74%
locust:30.42%

(d)

Fig. 12. Classification result for different cases, (a) six correctly classified images; (b) two misclassified images; (c) image that has multiple pests; (d) image without

pests.

species of pests (Cydia pomonella, Gryllotalpa, Pieris rapae linnaeus),
while the other six species of pests have the accuracy between 98.26%
and 99.33%.

Fig. 12(a) shows the correct classification results for 6 randomly
selected images using the fine-tuned GoogLeNet model. Fig. 12(b) de-
monstrates two misclassified results, where the Oriental fruit fly is
mistakenly classified as snail because the color and shape of the wings
are different from the typical Oriental fruit fly. In addition, Stinkbug is
classified as Gryllotalpa because the pest shadow is recognized as part
of the pest. Furthermore, Fig. 12(c) and 12(d) show two special cases of
the pest classification, Fig. 12(c) has multiple pests and Fig. 12(d)

contains no pests. The experimental results show that when there are
more than one pests in the image, the model gives the corresponding
probability of each class by using the Top-K approach. On the other
hand, the model also provides a class names when there are no pests in
the image, but the probability for each class is low.

4.5. Comparison with other work

In this section, the fine-tuned model is compared with the state-of-
the-art CNN model proposed by (Xie et al., 2015; Cheng et al., 2017). In
that research, the authors used the dataset that contains 400 images in
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Parameters setting for GoogLeNet and ResNet101.
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Model Learning rate Decay Optimizer Class/Number of images Training time (s) Accuracy (%)
GoogLeNet 0.0001 0 Adagrad 10/550 3765 96.67
ResNet101 0.0001 0.0005 SGD with momentum (0.9) 10/550 4938 90.45

the training set and 150 images in the testing set. The model used in
(Cheng et al., 2017) was the fine-tuned ResNet101. The momentum
parameter was set to 0.9, and the basic learning rate was 0.0001. The
fine-tuned ResNet101 achieved a high accuracy of 98.67%.

In this paper, the fine-tuned GoogLeNet model is compared with the
fine-tuned ResNet101 model. The experimental result in Table 5 shows
that the fine-tuned GoogleNet model performs better than the fine-
tuned ResNet101 in both accuracy and training time.

5. Discussion

Based on the experimental results, three questions proposed in the
introduction are answered in this section. The first question was about
the best model used in this research. In this research, five popular CNN
models (VGG-16, VGG-19, ResNet50, ResNet152 and GoogLeNet) were
used. Among them, GoogLeNet was selected as the target model be-
cause this model showed the highest performance. The second question
asked about which data preprocessing methods are used to improve the
overall performance of the model. As shown in Section 4.1, two back-
ground removal methods were applied before the training process.
After that, data augmentation was used to generate more training data.
As for the last question, the optimized model was compared to another
work, and the experiment results proved that the GoogLeNet model
achieved the classification accuracy of 6.22% higher than the Re-
sNet101 model. The experimental result proved that the GoogLeNet
model was effective and robust for the identification of crop pests, and
can significantly reduce processing times and labour costs if it is in-
tegrated into the practical applications. Although GoogLeNet achieves
better accuracy than other models, certain limitations can be seen, such
as it requires higher computing capacity and more training time.
Moreover, the complex architecture of Inception-V3 makes it difficult to
adjust the layer structure according to the dataset.

6. Conclusion

In this research, deep learning-based pests detection framework was
proposed to classify ten types of crop pests using a manually collected
dataset. A total of 5629 images was downloaded from different websites
and manually validated. In the data preparation phase, data augmen-
tation was used to expand the dataset. In addition, GrabCut and wa-
tershed algorithms were implemented to remove the complicated
background. In the training phase, VGG-16, VGG-19, ResNet50,
ResNet152, and GoogLeNet were investigated. The experimenta show
that the GoogLeNet model outperformed other models in terms of ac-
curacy, model complexity, and robustness. The fine-tuned model
achieved 5.91% higher accuracy than the original model.

In the future, more concentration should be put on the development
of crop pest identification systems on mobile devices, because mobile
devices are widely accessible to farmers. Besides RGB images, infrared
images can be employed to monitor the pests, and the infrared filter can
be easily equipped on the UAV.

CRediT authorship contribution statement

Yanfen Li: Data curation, Methodology, Visualization, Writing -
original draft. Hanxiang Wang: Data curation, Methodology, Writing -
original draft. L. Minh Dang: Formal analysis, Investigation, Writing -
review & editing. Abolghasem Sadeghi-Niaraki: Conceptualization.

Hyeonjoon Moon: Conceptualization, Funding acquisition, Validation.
Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgement

This work was supported by Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant funded by the
Korea government(MSIT) (2019-0-00136, Development of Al-
Convergence Technologies for Smart City Industry Productivity
Innovation) and by Korea Institute of Planning and Evaluation for
Technology in Food, Agriculture, Forestry and Fisheries(IPET) through
Agri-Bio Industry Technology Development Program, funded by
Ministry of Agriculture, Food and Rural Affairs(MAFRA) (316033-04-2-
338 SB030).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.compag.2019.105174.

References

Al-Hiary, H., Bani-Ahmad, S., Reyalat, M., Braik, M., ALRahamneh, Z., 2011. Fast and
accurate detection and classification of plant diseases. Int. J. Comput. Appl. 17,
31-38.

Bergmeir, C., Hyndman, R.J., Koo, B., 2018. A note on the validity of cross-validation for
evaluating autoregressive time series prediction. Comput. Stat. Data Anal. 120,
70-83.

Boissard, P., Martin, V., Moisan, S., 2008. A cognitive vision approach to early pest de-
tection in greenhouse crops. Comput. Electron. Agric. 62, 81-93.

Boykov, Y., Jolly, M.-P. (2005). Graph cuts for binary segmentation of n-dimensional
images from object and background seeds. Google Patents.

Cheng, X., Zhang, Y., Chen, Y., Wu, Y., Yue, Y., 2017. Pest identification via deep residual
learning in complex background. Comput. Electron. Agric. 141, 351-356.

Cui, X., Goel, V., Kingsbury, B., 2015. Data augmentation for deep neural network
acoustic modeling. IEEE/ACM Trans. Audio Speech Language Process. (TASLP) 23,
1469-1477.

Dang, L.M., Hassan, S.I., Suhyeon, L., kumar Sangaiah, A., Mehmood, I., Rho, S., Seo, S.,
Moon, H. (2018). UAV based wilt detection system via convolutional neural net-
works. Sustain. Comput.: Informat. Syst.

Dang, L.M., Piran, M., Han, D., Min, K., Moon, H., 2019. A survey on internet of things
and cloud computing for healthcare. Electronics 8, 768.

Dawei, W., Limiao, D., Jiangong, N., Jiyue, G., Hongfei, Z., Zhongzhi, H., 2019.
Recognition pest by image-based transfer learning. J. Sci. Food Agric. 99, 4524-4531.

Faithpraise, F., Birch, P., Young, R., Obu, J., Faithpraise, B., Chatwin, C., 2013. Automatic
plant pest detection and recognition using k-means clustering algorithm and corre-
spondence filters. Int. J. Adv. Biotechnol. Res. 4, 189-199.

Gandhi, R., Nimbalkar, S., Yelamanchili, N., Ponkshe, S. (2018). Plant disease detection
using CNNs and GANs as an augmentative approach. In: 2018 IEEE International
Conference on Innovative Research and Development (ICIRD). IEEE, pp. 1-5.

Hadgu, A.T., Nigam, A., Diaz-Aviles, E. (2015). Large-scale learning with AdaGrad on
Spark. In: 2015 IEEE International Conference on Big Data (Big Data). IEEE, pp.
2828-2830.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778.

Leonardo, M.M., Carvalho, T.J., Rezende, E., Zucchi, R., Faria, F.A. (2018). Deep feature-
based classifiers for fruit fly identification (diptera: Tephritidae). In: 2018 31st
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE, pp.
41-47.

Lévy, D., Jain, A. (2016). Breast mass classification from mammograms using deep con-
volutional neural networks. arXiv preprint arXiv:1612.00542.

Lim, S., Kim, S., Park, S., Kim, D. (2018). Development of Application for Forest Insect


https://doi.org/10.1016/j.compag.2019.105174
https://doi.org/10.1016/j.compag.2019.105174
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0005
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0005
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0005
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0010
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0010
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0010
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0015
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0015
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0025
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0025
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0030
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0030
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0030
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0040
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0040
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0045
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0045
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0050
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0050
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0050
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0065
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0065
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0065

Y. Li, et al.

Classification using CNN. In: 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV). IEEE, pp. 1128-1131.

Montserrat, D.M., Lin, Q., Allebach, J., Delp, E.J., 2017. Training object detection and
recognition CNN models using data augmentation. Electronic Imaging 2017, 27-36.

Nguyen, T.N., Lee, S., Nguyen-Xuan, H., Lee, J., 2019a. A novel analysis-prediction ap-
proach for geometrically nonlinear problems using group method of data handling.
Comput. Methods Appl. Mech. Eng. 354, 506-526.

Nguyen, T.N., Thai, C.H., Luu, A.-T., Nguyen-Xuan, H., Lee, J., 2019b. NURBS-based
postbuckling analysis of functionally graded carbon nanotube-reinforced composite
shells. Comput. Methods Appl. Mech. Eng. 347, 983-1003.

Rother, C., Kolmogorov, V., Boykov, Y., Blake, A., 2011. Interactive foreground extraction
using graph cut. Advances in Markov Random Fields for Vision and Image Processing.

Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., Pliimer, L., 2010. Early
detection and classification of plant diseases with support vector machines based on
hyperspectral reflectance. Comput. Electron. Agric. 74, 91-99.

Seal, A., Das, A., Sen, P., 2015. Watershed: an image segmentation approach. Int. J.
Comput. Sci. Informat. Technol. (IJCSIT) 6, 2295-2297.

Shijie, J., Peiyi, J., Siping, H. (2017). Automatic detection of tomato diseases and pests
based on leaf images. In: 2017 Chinese Automation Congress (CAC). IEEE, pp.
2537-2510.

Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale

10

Computers and Electronics in Agriculture 169 (2020) 105174

image recognition. arXiv preprint arXiv:1409.1556.

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D., 2016. Deep neural
networks based recognition of plant diseases by leaf image classification. Comput.
Intell. Neurosci.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception
architecture for computer vision. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818-2826.

Wang, R., Zhang, J., Dong, W., Yu, J., Xie, C.J., Li, R., Chen, T., Chen, H., 2017. A crop
pests image classification algorithm based on deep convolutional neural network.
Telkomnika 15.

Xiao, D., Feng, J., Lin, T., Pang, C., Ye, Y., 2018. Classification and recognition scheme for
vegetable pests based on the BOF-SVM model. Int. J. Agric. Biol. Eng. 11, 190-196.

Xie, C., Zhang, J., Li, R., Li, J., Hong, P., Xia, J., Chen, P., 2015. Automatic classification
for field crop insects via multiple-task sparse representation and multiple-kernel
learning. Comput. Electron. Agric. 119, 123-132.

Yosinski, J., Clune, J., Bengio, Y., Lipson, H. (2014). How transferable are features in deep
neural networks? In: Advances in Neural Information Processing Systems, pp.
3320-3328.

Zeiler, M.D., Fergus, R. (2014). Visualizing and understanding convolutional networks.
In: European Conference on Computer Vision, Springer, pp. 818-833.


http://refhub.elsevier.com/S0168-1699(19)31363-8/h0085
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0085
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0090
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0090
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0090
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0095
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0095
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0095
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0100
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0100
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0105
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0105
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0105
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0110
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0110
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0125
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0125
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0125
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0130
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0130
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0130
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0135
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0135
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0135
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0140
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0140
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0145
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0145
http://refhub.elsevier.com/S0168-1699(19)31363-8/h0145

	Crop pest recognition in natural scenes using convolutional neural networks
	Introduction
	Dataset
	Data preparation
	Data augmentation

	Methodology
	Image preprocessing
	Mixed image processing techniques
	GrabCut algorithm

	CNN models
	VGG-16 and VGG-19
	ResNet50 and ResNet152
	GoogLeNet


	Experimental result
	Features extraction
	Comparison of the performance of five models
	Fine-tuning of GoogleNet model
	Crop pest classification results
	Comparison with other work

	Discussion
	Conclusion
	CRediT authorship contribution statement
	mk:H1_22
	Acknowledgement
	Supplementary material
	References




